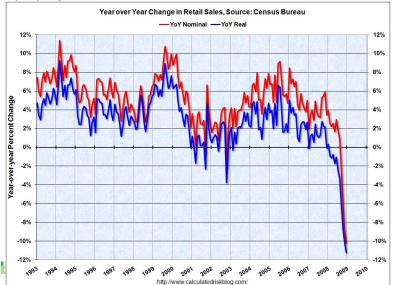
Two Papers About the MPC!

Two Papers About the MPC!

Two Papers About the MPC! (Sort Of)



Two Papers About the MPC! (Sort Of)

Chris Carroll
These are my views and not those of anybody else at CFPB

May 20, 2015

Nobody trying to make a forecast in 2009–2010 would ask:

Big negative shocks to income

- Big negative shocks to income
- Idea: Respond with big 'stimulus' tax cuts

- Big negative shocks to income
- Idea: Respond with big 'stimulus' tax cuts
- In simplest Keynesian liquidity trap model: If $\mathbf{c} = \bar{\mathbf{c}} + (\mathbf{y} \tau)\kappa$

- Big negative shocks to income
- Idea: Respond with big 'stimulus' tax cuts
- In simplest Keynesian liquidity trap model: If $\mathbf{c} = \bar{\mathbf{c}} + (\mathbf{y} \tau)\kappa$
- \Rightarrow multiplier on $\Delta \tau$ is $1/(1 \kappa) 1$

- Big negative shocks to income
- Idea: Respond with big 'stimulus' tax cuts
- In simplest Keynesian liquidity trap model: If $\mathbf{c} = \bar{\mathbf{c}} + (\mathbf{y} \tau)\kappa$
- \Rightarrow multiplier on $\Delta \tau$ is $1/(1 \kappa) 1$
 - $\,\,{\scriptstyle\square}\,$ If $\kappa=0.75$ then multiplier is 4-1=3

- Big negative shocks to income
- Idea: Respond with big 'stimulus' tax cuts
- In simplest Keynesian liquidity trap model: If $\mathbf{c} = \bar{\mathbf{c}} + (\mathbf{y} \tau)\kappa$
- \Rightarrow multiplier on $\Delta \tau$ is $1/(1 \kappa) 1$
 - $\,\,{\scriptstyle\square}\,$ If $\kappa=0.75$ then multiplier is 4-1=3

- Big negative shocks to income
- Idea: Respond with big 'stimulus' tax cuts
- In simplest Keynesian liquidity trap model: If $\mathbf{c} = \bar{\mathbf{c}} + (\mathbf{y} \tau)\kappa$
- \Rightarrow multiplier on $\Delta \tau$ is $1/(1 \kappa) 1$
 - □ If $\kappa = 0.75$ then multiplier is 4 1 = 3
 - Some micro estimates of κ are this large

- Big negative shocks to income
- Idea: Respond with big 'stimulus' tax cuts
- In simplest Keynesian liquidity trap model: If ${m c}={m {ar c}}+({m y}- au)\kappa$
- \Rightarrow multiplier on $\Delta \tau$ is $1/(1 \kappa) 1$
 - □ If $\kappa = 0.75$ then multiplier is 4 1 = 3
 - Some micro estimates of κ are this large
 - □ If $\kappa = 0.05$ then multiplier is only ≈ 0.05

- Big negative shocks to income
- Idea: Respond with big 'stimulus' tax cuts
- In simplest Keynesian liquidity trap model: If $\mathbf{c} = \bar{\mathbf{c}} + (\mathbf{y} \tau)\kappa$
- \Rightarrow multiplier on $\Delta \tau$ is $1/(1 \kappa) 1$
 - □ If $\kappa = 0.75$ then multiplier is 4 1 = 3
 - Some micro estimates of κ are this large
 - □ If $\kappa = 0.05$ then multiplier is only ≈ 0.05
 - 2007-vintage DSGE models mostly implied κ ∈ (0.00, 0.05)

Friedman [1957]:

$$\mathbf{y}_t = \mathbf{p}_t + \Theta_t$$
 $\mathbf{c}_t = \mathbf{p}_t$

• MPC out of permanent shocks is $\chi = 1$

Friedman [1957]:

$$\mathbf{y}_t = \mathbf{p}_t + \Theta_t$$
 $\mathbf{c}_t = \mathbf{p}_t$

- MPC out of permanent shocks is $\chi = 1$
- MPC out of transitory shocks is $\kappa = 0$

Friedman [1957]:

$$\mathbf{y}_t = \mathbf{p}_t + \Theta_t$$
 $\mathbf{c}_t = \mathbf{p}_t$

- MPC out of permanent shocks is $\chi = 1$
- MPC out of transitory shocks is $\kappa = 0$

Friedman [1957]:

$$\mathbf{y}_t = \mathbf{p}_t + \Theta_t$$
 $\mathbf{c}_t = \mathbf{p}_t$

- MPC out of permanent shocks is $\chi = 1$
- MPC out of transitory shocks is $\kappa = 0$
- ⇒ in a regression like

$$\Delta \boldsymbol{c}_{t+1} = \alpha \Delta \boldsymbol{y}_{t+1},$$

Friedman [1957]:

$$\mathbf{y}_t = \mathbf{p}_t + \Theta_t$$
 $\mathbf{c}_t = \mathbf{p}_t$

- MPC out of permanent shocks is $\chi = 1$
- MPC out of transitory shocks is $\kappa = 0$
- ⇒ in a regression like

$$\Delta \boldsymbol{c}_{t+1} = \boldsymbol{\alpha} \Delta \boldsymbol{y}_{t+1},$$

we should find $0 < \alpha < 1$ depending on extent to which people perceive $\Delta \mathbf{y}_{t+1}$ as transitory or permanent

Friedman [1957]:

$$\mathbf{y}_t = \mathbf{p}_t + \Theta_t$$
 $\mathbf{c}_t = \mathbf{p}_t$

- MPC out of permanent shocks is $\chi = 1$
- MPC out of transitory shocks is $\kappa = 0$
- ⇒ in a regression like

$$\Delta \boldsymbol{c}_{t+1} = \boldsymbol{\alpha} \Delta \boldsymbol{y}_{t+1},$$

we should find $0 < \alpha < 1$ depending on extent to which people perceive $\Delta \mathbf{y}_{t+1}$ as transitory or permanent

 $0 < \hat{\alpha} < 1$:

 $0 < \hat{\alpha} < 1$:

$0 < \hat{\alpha} < 1$: Not Exactly a Triumph

Problem:

Friedman's PIH is not really about r

Standard Theory About Response to r ...

If $u(\mathbf{c}) = (1 - \gamma)^{-1} \mathbf{c}^{1-\gamma}$, and r is believed to be constant forever, then perfect foresight infinite horizon model PerfForesightCRRA says

$$c = \underbrace{\left(b_t + p\left(\frac{1+r}{r}\right)\right)}_{o} \underbrace{\left(r - \gamma^{-1}(r-9)\right)}_{c}$$

Standard Theory About Response to r ...

If $u(\mathbf{c}) = (1 - \gamma)^{-1} \mathbf{c}^{1-\gamma}$, and r is believed to be constant forever, then perfect foresight infinite horizon model PerfForesightCRRA says

$$c = \underbrace{\left(b_t + p\left(\frac{1+r}{r}\right)\right)}_{o} \underbrace{\left(r - \gamma^{-1}(r-\theta)\right)}_{c}$$

$$= o\kappa$$

where o is 'overall wealth' (human plus nonhuman), and $o\kappa$ is the amount that the model says is OK to spend (!)

Unanticipated Permanent Change In r

$$\boldsymbol{c}_t = \left(r - \gamma^{-1}(r - \vartheta)\right)\left(\boldsymbol{b}_t + \boldsymbol{p}\left(\frac{1+r}{r}\right)\right)$$

Three effects:

• Income Effect (assume $\gamma^{-1} = 0$ and $\boldsymbol{p} = 0$):

$$\Delta \boldsymbol{c}_{t+1} = \Delta r_{t+1} \boldsymbol{b}_t$$

Unanticipated Permanent Change In r

$$\boldsymbol{c}_t = \left(r - \gamma^{-1}(r - \vartheta)\right)\left(\boldsymbol{b}_t + \boldsymbol{\rho}\left(\frac{1+r}{r}\right)\right)$$

Three effects:

• Income Effect (assume $\gamma^{-1} = 0$ and $\boldsymbol{p} = 0$):

$$\Delta \boldsymbol{c}_{t+1} = \Delta r_{t+1} \boldsymbol{b}_t$$

Substitution Effect (assume **p** = 0):

$$\Delta \boldsymbol{c}_{t+1} = \boldsymbol{\gamma}^{-1} \Delta r_{t+1} \boldsymbol{b}_t$$

Unanticipated Permanent Change In r

$$\boldsymbol{c}_t = \left(r - \gamma^{-1}(r - \vartheta)\right)\left(\boldsymbol{b}_t + \boldsymbol{p}\left(\frac{1+r}{r}\right)\right)$$

Three effects:

• Income Effect (assume $\gamma^{-1} = 0$ and $\boldsymbol{p} = 0$):

$$\Delta \boldsymbol{c}_{t+1} = \Delta r_{t+1} \boldsymbol{b}_t$$

Substitution Effect (assume *p* = 0):

$$\Delta \boldsymbol{c}_{t+1} = \boldsymbol{\gamma}^{-1} \Delta r_{t+1} \boldsymbol{b}_t$$

• Human Wealth Effect ($p \neq 0$, r_t and r_{t+1} small)

$$\Delta \boldsymbol{c}_{t+1} \approx (1/r_{t+1} - 1/r_t) \boldsymbol{p} \kappa_t = (r_t/r_{t+1} - 1) (\kappa_t/r_t) \boldsymbol{p}$$

Sizes? Depends ...

Simple calibration: $\boldsymbol{b}_t = \boldsymbol{p} = 1$, $r_t = 0.06$, $r_{t+1} = 9 = 0.03$

	Effect Size		
γ	Income-And-Subst	Human Wealth	$\Delta oldsymbol{c}_{t+1}/\Delta oldsymbol{y}_{t+1}$
∞	0.03	1.0	1.03/0.03 ≈ 30
1	0	1.0	1.0/0.03 ≈ 30

So, now, one theory/calibration or another can accommodate any $0 < \alpha < 30$.

Sizes? Depends ...

Simple calibration: $\boldsymbol{b}_t = \boldsymbol{p} = 1$, $r_t = 0.06$, $r_{t+1} = 9 = 0.03$

	Effect Size		
γ	Income-And-Subst	Human Wealth	$\Delta oldsymbol{c}_{t+1}/\Delta oldsymbol{y}_{t+1}$
∞	0.03	1.0	1.03/0.03 ≈ 30
1	0	1.0	1.0/0.03 ≈ 30

So, now, one theory/calibration or another can accommodate any $0 < \alpha < 30$.

Definitely not rejected!

Characteristics of borrowers: ARM borrowers in 2004-2006

Still in place in 2010-12

Characteristics of borrowers: ARM borrowers in 2004-2006

- Still in place in 2010-12
- Concentrated in a few 'hot' housing markets

Characteristics of borrowers: ARM borrowers in 2004-2006

- Still in place in 2010-12
- Concentrated in a few 'hot' housing markets
- Measured in 2010-12

Characteristics of borrowers: ARM borrowers in 2004-2006

- Still in place in 2010-12
- Concentrated in a few 'hot' housing markets
- Measured in 2010-12

Characteristics of borrowers: ARM borrowers in 2004-2006

- Still in place in 2010-12
- Concentrated in a few 'hot' housing markets
- Measured in 2010-12

We don't know:

• How they differ in ϑ , γ , σ_{ψ}^2 , σ_{θ}^2 , ...

Characteristics of borrowers: ARM borrowers in 2004-2006

- Still in place in 2010-12
- Concentrated in a few 'hot' housing markets
- Measured in 2010-12

- How they differ in ϑ , γ , σ_{ψ}^2 , σ_{θ}^2 , ...
- Assets, family size/structure, age, ...

Characteristics of borrowers: ARM borrowers in 2004-2006

- Still in place in 2010-12
- Concentrated in a few 'hot' housing markets
- Measured in 2010-12

- How they differ in ϑ , γ , σ_{ψ}^2 , σ_{θ}^2 , ...
- Assets, family size/structure, age, ..
- Beliefs about future housing price growth (by locale?)

Characteristics of borrowers: ARM borrowers in 2004-2006

- Still in place in 2010-12
- Concentrated in a few 'hot' housing markets
- Measured in 2010-12

- How they differ in ϑ , γ , σ_{ψ}^2 , σ_{θ}^2 , ...
- Assets, family size/structure, age, ...
- Beliefs about future housing price growth (by locale?)
- Beliefs about future own income growth

Characteristics of borrowers: ARM borrowers in 2004-2006

- Still in place in 2010-12
- Concentrated in a few 'hot' housing markets
- Measured in 2010-12

- How they differ in ϑ , γ , σ_{ψ}^2 , σ_{θ}^2 , ...
- Assets, family size/structure, age, ...
- Beliefs about future housing price growth (by locale?)
- Beliefs about future own income growth
- Beliefs about future path of interest rates (ARM and other)

Characteristics of borrowers: ARM borrowers in 2004-2006

- Still in place in 2010-12
- Concentrated in a few 'hot' housing markets
- Measured in 2010-12

- How they differ in ϑ , γ , σ_{ψ}^2 , σ_{θ}^2 , ...
- Assets, family size/structure, age, ...
- Beliefs about future housing price growth (by locale?)
- Beliefs about future own income growth
- Beliefs about future path of interest rates (ARM and other)
- Why did they pick an ARM; etc etc etc

Characteristics of borrowers: ARM borrowers in 2004-2006

- Still in place in 2010-12
- Concentrated in a few 'hot' housing markets
- Measured in 2010-12

- How they differ in ϑ , γ , σ_{ψ}^2 , σ_{θ}^2 , ...
- Assets, family size/structure, age, ...
- Beliefs about future housing price growth (by locale?)
- Beliefs about future own income growth
- Beliefs about future path of interest rates (ARM and other)
- Why did they pick an ARM; etc etc etc

Characteristics of borrowers: ARM borrowers in 2004-2006

- Still in place in 2010-12
- Concentrated in a few 'hot' housing markets
- Measured in 2010-12

We don't know:

- How they differ in ϑ , γ , σ_{ψ}^2 , σ_{θ}^2 , ...
- Assets, family size/structure, age, ...
- Beliefs about future housing price growth (by locale?)
- Beliefs about future own income growth
- Beliefs about future path of interest rates (ARM and other)
- Why did they pick an ARM; etc etc etc

Any of these differences could make *huge* difference for behavior

• From Keyes et al:

- From Keyes et al:
 - Difference in rate of car purchases, auto debt accumulation, and credit card debt path due to interest rate reset timing differences between 5/1 and 7/1 ARMs that expired in 2010-2012

- From Keyes et al:
 - Difference in rate of car purchases, auto debt accumulation, and credit card debt path due to interest rate reset timing differences between 5/1 and 7/1 ARMs that expired in 2010-2012
- From DiMaggio et al:

- From Keyes et al:
 - Difference in rate of car purchases, auto debt accumulation, and credit card debt path due to interest rate reset timing differences between 5/1 and 7/1 ARMs that expired in 2010-2012
- From DiMaggio et al:
 - For people who got privately securitized 5/1 ARMs in 2004-2006, consequences of resets for mortgage prepayment, auto debt, credit card debt

- From Keyes et al:
 - Difference in rate of car purchases, auto debt accumulation, and credit card debt path due to interest rate reset timing differences between 5/1 and 7/1 ARMs that expired in 2010-2012
- From DiMaggio et al:
 - For people who got privately securitized 5/1 ARMs in 2004-2006, consequences of resets for mortgage prepayment, auto debt, credit card debt

- From Keyes et al:
 - Difference in rate of car purchases, auto debt accumulation, and credit card debt path due to interest rate reset timing differences between 5/1 and 7/1 ARMs that expired in 2010-2012
- From DiMaggio et al:
 - For people who got privately securitized 5/1 ARMs in 2004-2006, consequences of resets for mortgage prepayment, auto debt, credit card debt

If I could send a message to my 2009 self, what is most I could say?

- From Keyes et al:
 - Difference in rate of car purchases, auto debt accumulation, and credit card debt path due to interest rate reset timing differences between 5/1 and 7/1 ARMs that expired in 2010-2012
- From DiMaggio et al:
 - For people who got privately securitized 5/1 ARMs in 2004-2006, consequences of resets for mortgage prepayment, auto debt, credit card debt

If I could send a message to my 2009 self, what is most I could say?

 ∃ people for whom extra income from ARM resets in 2009-2010 will lead to some c and some deleveraging

- From Keyes et al:
 - Difference in rate of car purchases, auto debt accumulation, and credit card debt path due to interest rate reset timing differences between 5/1 and 7/1 ARMs that expired in 2010-2012
- From DiMaggio et al:
 - For people who got privately securitized 5/1 ARMs in 2004-2006, consequences of resets for mortgage prepayment, auto debt, credit card debt

If I could send a message to my 2009 self, what is most I could say?

- ∃ people for whom extra income from ARM resets in 2009-2010 will lead to some c and some deleveraging
- Little progress has been made on 'What will the MPC be out of stimulus payments?'

Two views:

LATE/Natural Experiment/Micro Crowd:

Two views:

- LATE/Natural Experiment/Micro Crowd:
 - That's all we can do.

Two views:

- LATE/Natural Experiment/Micro Crowd:
 - That's all we can do.
- Me: No! Use data and results to calibrate a theory

Two views:

- LATE/Natural Experiment/Micro Crowd:
 - That's all we can do.
- Me: No! Use data and results to calibrate a theory
 - IF data line up reasonably with theory, maybe we learned something

Three kinds of 'heterogeneity':

• Within person over time:

- Within person over time:
 - Shift in state variable

- Within person over time:
 - Shift in state variable
 - e.g., wealth shock (due, say, to house prices)

- Within person over time:
 - Shift in state variable
 - e.g., wealth shock (due, say, to house prices)
 - Change in beliefs

- Within person over time:
 - Shift in state variable
 - e.g., wealth shock (due, say, to house prices)
 - Change in beliefs
 - e.g., a rise in uncertainty

- Within person over time:
 - Shift in state variable
 - e.g., wealth shock (due, say, to house prices)
 - Change in beliefs
 - e.g., a rise in uncertainty
- Differences Across People

- Within person over time:
 - Shift in state variable
 - e.g., wealth shock (due, say, to house prices)
 - Change in beliefs
 - e.g., a rise in uncertainty
- Differences Across People
 - e.g., time preference?

- Within person over time:
 - Shift in state variable
 - e.g., wealth shock (due, say, to house prices)
 - Change in beliefs
 - e.g., a rise in uncertainty
- Differences Across People
 - e.g., time preference?
 - Implicit assumption: Dummies control for these

- Within person over time:
 - Shift in state variable
 - e.g., wealth shock (due, say, to house prices)
 - Change in beliefs
 - e.g., a rise in uncertainty
- Differences Across People
 - e.g., time preference?
 - Implicit assumption: Dummies control for these
 - Problems:

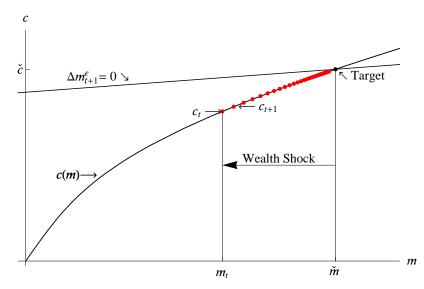
- Within person over time:
 - Shift in state variable
 - e.g., wealth shock (due, say, to house prices)
 - Change in beliefs
 - e.g., a rise in uncertainty
- Differences Across People
 - e.g., time preference?
 - Implicit assumption: Dummies control for these
 - Problems:
 - We don't WANT to control for this, we want to measure it!

- Within person over time:
 - Shift in state variable
 - e.g., wealth shock (due, say, to house prices)
 - Change in beliefs
 - e.g., a rise in uncertainty
- Differences Across People
 - e.g., time preference?
 - Implicit assumption: Dummies control for these
 - Problems:
 - We don't WANT to control for this, we want to measure it!
 - Dummies maybe control for levels but not patterns of behavior

Example Of Puzzle That Isn't

At a couple of places, some confusion about apparent contradiction:

Low wealth borrowers have a higher MPC

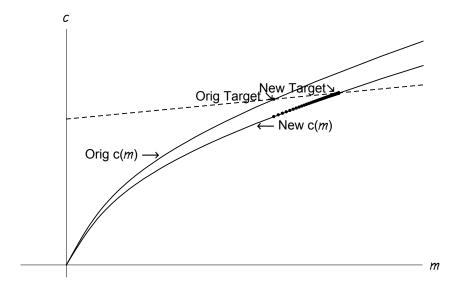

Example Of Puzzle That Isn't

At a couple of places, some confusion about apparent contradiction:

- Low wealth borrowers have a higher MPC
- Low wealth borrowers deleverage more

A Wealth Shock

Another Puzzle That Isn't


Sometimes low wealth borrowers deleverage more

Another Puzzle That Isn't

- Sometimes low wealth borrowers deleverage more
- Sometimes low wealth borrowers deleverage less

Differences Across Households In Time Preference

Counties with lots of ARMs: Notable shock to income

- Counties with lots of ARMs: Notable shock to income
 - Esp for Keyes et al

- Counties with lots of ARMs: Notable shock to income
 - Esp for Keyes et al
- Keyes et al do find substantial effects on restaurants, other NT

- Counties with lots of ARMs: Notable shock to income
 - Esp for Keyes et al
- Keyes et al do find substantial effects on restaurants, other NT
- DiMaggio et al, smaller

- Counties with lots of ARMs: Notable shock to income
 - Esp for Keyes et al
- Keyes et al do find substantial effects on restaurants, other NT
- DiMaggio et al, smaller
- cf. also related paper by Mondragon

- Counties with lots of ARMs: Notable shock to income
 - Esp for Keyes et al
- Keyes et al do find substantial effects on restaurants, other NT
- DiMaggio et al, smaller
- cf. also related paper by Mondragon

- Counties with lots of ARMs: Notable shock to income
 - Esp for Keyes et al
- Keyes et al do find substantial effects on restaurants, other NT
- DiMaggio et al, smaller
- cf. also related paper by Mondragon

This DOES reject a theory: RBC at local level

Conclusion

Authors have discovered a nearly perfect natural experiment

Conclusion

- Authors have discovered a nearly perfect natural experiment
- Without some theory, not clear whether results are a surprise

Conclusion

- Authors have discovered a nearly perfect natural experiment
- Without some theory, not clear whether results are a surprise
- ⇒ Use for calibrating theories

Milton A. Friedman. *A Theory of the Consumption Function*. Princeton University Press, 1957.