Mortgage Market Institutions and Housing Market Outcomes

Edward Kung

UCLA

May 20th, 2015

Edward Kung (UCLA)

Mortgage Market Institutions

May 20th, 2015 1 / 51

・ロト ・日下・ ・ ヨト・

- General framework for studying interactions between housing and mortgage markets
- ► Focal points of model:
 - Institutional features of mortgage market, including long-term mortgage contracts
 - Equilibrium relationship between housing demand and mortgage credit availability

• • • • • • • • • • • •

Housing demand

- Demand generated by incoming buyers
- Buyers have limited wealth
- Whether to buy a home / type of home affected by mortgage availability

Housing supply

- Supply comes from existing owners who move
- Movers can either sell house or default
- In either case, a unit of supply is added to housing market
- House prices adjust so that housing market clears

A D F A A F F A

Lenders

- Risk neutral and competitive lenders
- Mortgage interest rate set so that expected return = opportunity cost of funds
- Because of default risk, interest rate depends on house price expectations and leverage ratio
- ▶ Equilibrium when all contracts earn zero net return over opportunity cost

Image: A matching of the second se

- Model calibrated to data from Los Angeles, 2003 2010
 - Many salient features of the data are captured
- Counterfactuals studied:
 - Impact of disappearing market for non-agency mortgages Figure
 - Effectiveness of government responses
 - Introducing shared appreciation mortgages
- General equilibrium effects are shown to be important

A D F A A F F A

Related Literature

- Models of the housing and mortgage markets
 - Ortalo-Magne and Rady (2006); Campbell and Cocco (2014); Favilukis et. al. (2015); Landvoigt et. al. (2015); Corbae and Quintin (2015); Guren and McQuade (2015)
- Empirical literature on interactions between housing and mortgages
 - Himmelberg et. al. (2005); Glaeser et. al. (2010); Ferreira and Gyourko (2011); Mian and Sufi (2009); Favara and Imbs (2015); Adelino et. al. (2014); Kung (2015); Hurst et. al. (2015)
- Mortgage design
 - Caplin et. al. (2007); Shiller (2008); Piskorski and Tchistyi (2010); Mian and Sufi (2014)
- Collateral equilibrium
 - Kiyotaki and Moore (1997); Geanakoplos (1996); Geanakoplos and Zame (2014)

- Discrete time
- Housing market with two types of housing h = 0, 1 (vertical quality)
- Fixed stock μ of each type
- Price in state s_t : $p_h(s_t)$

イロト イヨト イヨト イ

- *M* mortgage types, including m = 0 (no mortgage)
- ▶ Mortgage characterized by $z_t = (age_t, rate_t, balance_t)$
- Type determines how z_t evolves over time and translates to payments; also determines how much the lender can recover in a default
- Interest rate on new mortgage origination of type *m* collateralized by house type *h*:

$$r_h^m(b, x_{it}, s_t)$$

Image: A math a math

- Owns / occupies one housing unit
- Lives in housing unit until moving shock; λ probability each period
- Moving is terminal state; movers do not re-enter housing market Discussion
- Homeowners care about:
 - Flow consumption of a numeraire good: $u\left(\theta^{h}c_{t}\right)$
 - Final wealth at the time of a move: $\beta u(w_T)$
- Homeowners have constant income; can save at risk-free rate rfr_t but cannot borrow (except through mortgages)

イロト イヨト イヨト イヨ

Homeowner decision problem

< □ > < □ > < □ > < □ > < □ >

Homeowner that stays solves:

$$V_{it}^{stay} = \max u\left(\theta^{h}c\right) + \delta E\left[\left(1-\lambda\right)V_{it+1}^{stay} + \lambda V_{it+1}^{move}\right]$$

subject to:

$$c+rac{1}{1+\mathit{rfr}_t}w'=egin{cases} y_i+w_{it}-\mathit{pay}_{it} & ext{if no refinance}\ y_i+w_{it}-b_{it}+b-\mathit{pay}'_{it}-c_R & ext{if refinance} \end{cases}$$

・ロト ・日下・ ・ ヨト・

Potential buyers

- Buyers are heterogeneous on income y_i, initial wealth w_i, and outside option v_i
- Present value to buying house type h:

$$V_{h}^{buy}\left(y_{i}, w_{i}, s_{t}\right) = \max u\left(\theta^{h} c\right) + \delta E\left[\left(1 - \lambda\right) V_{it+1}^{stay} + \lambda V_{it+1}^{move}\right]$$

subject to:

$$c + rac{1}{1 + rfr_t}w' = y_i + w_i - p_h(s_t) + b - pay'_{it}$$

Buy house type h if:

$$V_{h}^{buy} = \max\left\{V_{0}^{buy}, V_{1}^{buy}, v_{i}\right\}$$

Image: A matched and A matc

Housing demand is the integral of individual buyers demands:

$$D_{h}(s_{t}) = \int_{y} \int_{w} \int_{v} d_{h}(y, w, v; s_{t}) \Gamma(y, w, v; s_{t}) dy dw dv$$

Housing market clearing condition:

$$D_h(s_t) = \lambda \mu$$
 for $h = 0, 1$

・ロト ・日下・ ・ ヨト・

Lenders

Lenders correctly anticipate homeowners' default and refinance rules

$$\begin{aligned} \Pi_{it}^{move} &= \tau_{it}\psi_{h}^{m}\left(z_{it},s_{t}\right) + \left(1-\tau_{it}\right)b_{it} \\ \Pi_{it}^{stay} &= \rho_{it}b_{it} + \left(1-\rho_{it}\right)\Pi_{it}^{norefi} \\ \Pi_{it}^{norefi} &= pay_{it} + \left(\frac{1}{1+rfr_{t}+a_{m}}\right)E\left[\lambda\Pi_{it+1}^{move} + \left(1-\lambda\right)\Pi_{it+1}^{stay}\right] \end{aligned}$$

- *a_m* is the opportunity cost of funds
 - Can differ by mortgage type to reflect higher liquidity in agency market
 - ▶ May be higher than *rfr*_t to reflect better investment opportunities available to lenders than borrowers
- Mortgage market clearing condition:

$$\prod_{it}^{norefi}|_{age_t=0}-b=0$$

Image: A matching of the second se

- Equilibrium solved via fixed point iteration on three nests
- Equilibrium objects to solve for:
 - *p_h*(*s_t*) the price of housing in each state (outer nest)
 - $r_h^m(b, x_{it}, s_t)$ the mortgage interest rate menu (middle nest)
 - V^{stay}, Π^{stay} (inner nest)

イロト イヨト イヨト イヨ

Implementation (Mortgage Types)

► Two mortgage types: agency and non-agency:

Table: Differences in agency and non-agency

Agency	Non-Agency
Lender recovers full loan amount on default	Lender recovers ϕ of collateral value on default
Cost of funds a1	Cost of funds a ₂
Cannot exceed 80% of collateral value	Cannot exceed 100% of collateral value
Payment cannot exceed 50% of income	Payment cannot exceed 50% of income
Cannot exceed <i>cll</i> _t	Unavailable if $mps_t = 0$

Contracts are 30-year fixed-rate mortgages

A D F A A F F A

Other Implementation Notes

- Aggregate state variables:
 - risk-free rate
 - conforming loan limit
 - availability of non-agency mortgages
 - unobserved demand shock
 - expected growth or decline of demand shock
- Ruthless default and no refinancing
- No savings

Image: A matching of the second se

- Choose parameters to simultaneously fit moments in the data
 - Ownership durations identify λ
 - Price paths identify \bar{v}_t and θ
 - \blacktriangleright Mortgage interest rates identify a and φ
 - \blacktriangleright Average LTVs identify parameters governing wealth distribution and β
 - Growth of demand shocks identified by requiring consistency between guessed and implied parameters

Image: A matching of the second se

Figure: Model Fit: House Prices

▲ロト ▲園ト ▲画ト ▲画ト 三直 - のんで

Table: Model Fit: LTVs of Home Buyers

	Real Data		Simulated Data	
Year	Low-Valued	High-Valued	Low-Valued	High-Valued
2003	0.844	0.756	0.882	0.794
2004	0.849	0.760	0.884	0.816
2005	0.857	0.760	0.867	0.873
2006	0.884	0.779	0.820	0.837
2007	0.842	0.723	0.795	0.806
2008	0.755	0.617	0.726	0.661
2009	0.725	0.608	0.698	0.629
2010	0.723	0.598	0.698	0.629

Figure: Model Fit: Cumulative Default Rates

(日) (日) (日) (日) (日) æ

Figure: Buyer Value Functions in 2007 (Baseline)

▲ロト ▲御ト ▲注ト ▲注ト 三注 - のの(

Figure: Housing Demand Profile in 2007 (Baseline)

æ

Figure: Buyer Value Functions in 2008 (Baseline)

イロト イヨト イヨト イヨト æ

Figure: Housing Demand Profile in 2008 (Baseline)

≡ の へ

Figure: Mortgage Demand Profile in 2007 (Baseline)

2

Figure: Mortgage Demand Profile in 2008 (Baseline)

æ

The Impact of Non-Agency Availability

- ▶ In the baseline, non-agency loans disappear in 2008
- Low wealth buyers are priced out of the housing market
- ▶ What if non-agency loans were made available in 2008?

Image: A math a math

Figure: House Prices of Non-Agency Available 2008+

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ● のへで

Figure: Housing Demand Profile in 2008 (Counterfactual)

(日) (日) (日) (日) (日) æ

Figure: Mortgage Demand Profile in 2008 (Counterfactual)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● つくで

Figure: Mortgage Rates in 2008 (Counterfactual)

▲ロト ▲団ト ▲ヨト ▲ヨト 三日 - のんの

Figure: Mortgage Rates in 2008 (Baseline)

æ

Figure: Sensitivity of Prices to Demand Shocks

200

Figure: Effectiveness of Government Response

- Availability of non-agency financing is an important driver of housing demand and house prices
- ▶ High leverage loans can *reduce* house-price volatility
 - Allows more households with inelastic housing demand to afford homes
- Government policy was effective in manipulating house prices

Image: A math the second se

Introducing Shared Appreciation Mortgages

- Introduce two types of shared-appreciation mortgages from 2003 to 2007 as a non-agency option
 - FSAM: indexed to house prices on both up and downside
 - PSAM: indexed to house prices on only downside
- > Payments and balances go up or down proportionally with house prices
- Homeowners are never underwater

Image: A math a math

Figure: House Prices if PSAMs Available 2003-2007

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣 ─ のへで

Figure: Mortgage Demand Profile in 2005 (PSAMs Available)

Figure: Interest Rates in 2005 (PSAMs Available)

▲ロト ▲団ト ▲ヨト ▲ヨト 三国 - のへの

Figure: Mortgage Demand Profile in 2007 (PSAMs Available)

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ● のへで

Figure: Interest Rates in 2005 (PSAMs Available)

<ロ> (四)、(四)、(日)、(日)、 æ

Figure: Cumulative Default Rates (PSAMs Available)

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ● ● ●

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● つくで

Figure: Mortgage Demand Profile in 2005 (FSAMs Available)

SOC

Figure: Interest Rates in 2005 (FSAMs Available)

(日) (日) (日) (日) (日) æ

Figure: Cumulative Default Rates (FSAMs Available)

(日) (日) (日) (日) (日)

- SAMs can be welfare-enhancing
- Uptake can be positive even if they don't receive the liquidity benefits of the GSEs
- ▶ Uptake depends on expectations on house-price growth, contract design
- Defaults can go up if not everyone chooses a SAM

• • • • • • • • • • • •

Figure: Agency and Non-Agency MBS Issuance (USD Billions)

Age profile of house value—2005 homeowners

・ロト ・日下・ ・ ヨト・

 $log house_value_i = \beta_0 + \beta_1 moved_from_within_i + \beta_2 moved_from_outside_i + X_i\beta_3 + \epsilon_i$

	(1)	(2)	(3)
	All ages	Age<45	Age \geq 45
Moved from within	0.0047*	0.0458***	-0.0488***
	(0.0026)	(0.0032)	(0.0041)
Moved from outside	0.0105***	0.0561***	-0.0379***
	(0.0027)	(0.0034)	(0.0041)
Ν	2,439,293	685,580	1,753,713

Back

イロト イ団ト イヨト イヨ