

#### 2<sup>nd</sup> Annual International Roles of the U.S. Dollar Conference, May 18, 2023

Disclaimer: The views expressed in this paper are those of the authors and do not necessarily represent those of the Bank for International Settlements (BIS).

Nexus between capital flows and exchange rates

- Global banks play a vital role in channeling global portfolio flows
- Global banks are also active in a key segment of global flows: cross-currency lending
  - Role of intermediaries in FX markets (Gabaix & Maggiori (2015))
  - Inelastic markets hypothesis (Gabaix & Koijen (2021a)):

Asset prices react to shifts in quantities ("flows")

Nexus between capital flows and exchange rates

- Global banks play a vital role in channeling global portfolio flows
- Global banks are also active in a key segment of global flows: cross-currency lending
  - Role of intermediaries in FX markets (Gabaix & Maggiori (2015))
  - Inelastic markets hypothesis (Gabaix & Koijen (2021a)): Asset prices react to shifts in quantities ("flows")

#### → How do cross-currency loan flows affect exchange rates?

- What shapes the elasticity of exchange rates w.r.t. flows?
- How do shifts in cross-currency lending affect funding market conditions?

#### What we do:

- · Conceptual framework for cross-currency loan flows and exchange rates
- Estimate empirically how cross-currency lending impacts exchange rates

#### Basic idea/ mechanism:

- $\rightarrow$  when a foreign bank grants a USD loan, it needs to acquire USD liquidity
- $\rightarrow$  puts pressure on exchange rates and short-term funding markets

#### Deploying a GIV instrument to gauge:

- Exchange rate elasticity with respect to cross-currency loan flows
- Impact of loan flows on conditions in USD funding markets

### Global syndicated USD bank lending between 2001-2021



- Non-US bank  $\rightarrow$  US borrower
- US bank  $\rightarrow$  non-US borrower
- non-US bank  $\rightarrow$  non-US borrower

- 1. Exchange rate responds to cross-currency lending flows
  - $\rightarrow~$  Net USD lending by foreign banks  $\uparrow \rightarrow$  USD appreciates
- 2. Tightness in USD funding and intermediation constraints affect the exchange rate response
  - $\rightarrow\,$  Appreciation more pronounced when USD funding more constrained
- Net USD lending by foreign banks adds to pressure in USD funding markets
  - $\rightarrow~$  CIP deviations tend to widen

### Overview of related literature (non-exhaustive)

Impact of imbalances and intermediation constraints for exchange rates: e.g., Gabaix & Maggiori (2015)

Frictions in international funding markets: e.g., Avdjiev, Du, Koch & Shin (2019), Rime, Schrimpf & Syrstad (2022), Du, Tepper & Verdelhan (2018b), Correa, Du & Liao (2020)

**Cross-border bank flows and economic outcomes:** e.g., Bruno & Shin (2015), Buch, Bussierè, Goldberg & Hills (2019), Adrian & Xie (2020), Buch & Goldberg (2020), Bräuning & Ivashina (2020), Meisenzahl, Niepmann & Schmidt-Eisenlohr (2020), Shen & Zhang (2022), Correa, Paligorova, Sapriza & Zlate (2022), Niepmann & Schmidt-Eisenlohr (2023)

**Global bank USD funding:** e.g., Aldasoro & Ehlers (2018), Aldasoro, Ehlers, McGuire & von Peter (2020), Aldasoro, Ehlers & Eren (2022a), Anderson, Du & Schlusche (2021)

Methodology: e.g., Gabaix & Koijen (2021a), Gabaix & Koijen (2021b), Shen & Zhang (2022), Camanho, Hau & Rey (2022)

# Institutional background

- Non-US banks regularly originate USD denominated loans
- Popular funding sources:
  - Use local currency funding + FX swap
  - USD wholesale funding
- · Exchange of home currency liquidity for USD liquidity
- Liquidity needed shortly after loan origination
- Need to roll over the (FX swap) funding (unless loan is sold or has matured)

# Funding mechanism for USD loans originated by foreign banks



#### Generalization of Ivashina, Scharfstein & Stein (2015):

- Static model with two time periods
- Two players: EUR bank and globally active dealer
  - EUR bank:
    - decides on lending in EUR or USD
    - USD loan funding either via FX swaps, or USD wholesale market
  - Dealer:
    - offers funding via FX swaps at increasing (balance sheet) cost of doing so
- Details on model equations

- 1. Increased USD lending by foreign banks  $\rightarrow$  USD appreciation
  - $\rightarrow$  Positive exchange rate elasticity
- 2. When it is more costly for the dealer to provide swaps, the exchange rate elasticity is higher
- 3. For higher USD wholesale funding rates, the USD appreciates by more
- 4. When the foreign bank increases loan supply, the CIP deviation widens

 $<sup>\</sup>rightarrow\,$  foreign bank USD lending leads to tighter USD funding conditions

### Data overview

- Syndicated loan data: Refinitiv DealScan
- Combine with other data sources:
  - CP/CD issuance volume: Refinitiv Eikon
  - Global cross-border banking statistics: BIS CBS/LBS
  - FFIEC call reports

- 223 internationally operative banks o/w 209 domiciled outside the US
- Banks from 14 different countries for the time period 1997-01 to 2021-12
- Around 30,000 non-US borrowers and 16,000 US borrowers

Summary statistics

 $\Rightarrow$  Look at changes in USD loan originations by foreign banks relative to changes in loan originations in currency c by US banks

$$\Delta \text{NCCL}_{c,t} = \underbrace{\Delta \text{log}(\text{loans}_{c,t}^{\text{USD}})}_{\text{Change in outstanding USD lending of foreign banks}} - \underbrace{\Delta \text{log}(\text{loans}_{US,t}^{\text{C}})}_{\text{lending of ustanding foreign currency lending of US banks}}$$

 NCCL<sub>c,t</sub> ↑ → relative increase in USD lending by foreign banks vs foreign currency lending by US peers ... We estimate the two-step procedure:



- Elasticity  $\phi$ : effect of net cross-currency lending on the exchange rate
- S: FCU/USD  $\rightarrow$  higher S: USD appreciation

## Estimation of the effect of loan flows on exchange rates

Simultaneity bias in regression of loan flows on exchange rate changes

- → Solution: Gabaix & Koijen (2021b) Granular IV (GIV) approach
  - Idea: Idiosyncratic shocks to large banks affects aggregate flows more than shocks to smaller banks, but *not* exchange rates

## Estimation of the effect of loan flows on exchange rates

Simultaneity bias in regression of loan flows on exchange rate changes

- → Solution: Gabaix & Koijen (2021b) Granular IV (GIV) approach
  - Idea: Idiosyncratic shocks to large banks affects aggregate flows more than shocks to smaller banks, but *not* exchange rates

#### Intuition: G-SIB suffering reputational damage

- Deposit withdrawals accelerate / counterparties cut limits
- No direct effect of reputational damage on FX rates
- But, bank might (have to) reduce lending
- · Greater effect on loan flows the larger the bank
- GIV captures the variation in idiosyncratic shocks

## Granular instrumental variable approach

 $\Rightarrow$  Compute difference in **volume-weighted** and **equally-weighted** flows:

$$\Delta_{c,t}^{\text{Inflow}} = \underbrace{\sum_{j \in C_c} \Delta l_{j,USD,t}^c \times w_{j,USD,t-1}^c}_{\text{Volume-weighted average}} - \underbrace{\frac{1}{N_{C_c}} \sum_{j \in C_c} \Delta l_{j,USD,t}^c}_{\text{Equally-weighted average}}$$

 $\Delta l_{j,USD,t}^c$ : change in the outst. originated USD loans of bank *j* over month *t*  $w_{j,USD,t-1}^c$ : share of outst. USD loans in *t* – 1 of bank *j* from currency area *c*  $N_{C_c}$ : number of foreign banks that grant USD loans

## Granular instrumental variable approach

 $\Rightarrow$  Compute difference in **volume-weighted** and **equally-weighted** flows:

$$\Delta_{c,t}^{\text{Inflow}} = \underbrace{\sum_{j \in C_c} \Delta l_{j,USD,t}^c \times w_{j,USD,t-1}^c}_{\text{Volume-weighted average}} - \underbrace{\frac{1}{N_{C_c}} \sum_{j \in C_c} \Delta l_{j,USD,t}^c}_{\text{Equally-weighted average}}$$

 $\Delta l_{j,USD,t}^c$ : change in the outst. originated USD loans of bank *j* over month *t*  $w_{j,USD,t-1}^c$ : share of outst. USD loans in *t* – 1 of bank *j* from currency area *c*  $N_{C_c}$ : number of foreign banks that grant USD loans

• Proceed analogously for loan outflows, and define the instrument *z*<sub>*c*,*t*</sub>:

$$z_{c,t} = \Delta_{c,t}^{\mathsf{Inflow}} - \Delta_{c,t}^{\mathsf{Outflow}}$$

 $\rightarrow$  captures differential effect of large vs. small banks on aggregate loan flow

|                            | $\Delta s_{c,t}$ |                  |                  |  |
|----------------------------|------------------|------------------|------------------|--|
| $\Delta \text{NCCL}_{c,t}$ | 81.06<br>(15.09) | 95.63<br>(18.77) | 72.33<br>(13.20) |  |
| Observations               | 1266             | 1184             | 1184             |  |
| Macro-controls             | No               | Yes              | Yes              |  |
| Currency FE                | No               | No               | Yes              |  |
| Year FE                    | No               | No               | Yes              |  |
| Currency Areas             | 14               | 14               | 14               |  |
| Pseudo-R <sup>2</sup>      | 0.03             | 0.07             | 0.15             |  |

- $\rightarrow\,$  1 ppt increase in net loan flows into the USD  $\rightarrow\,$  72bp USD appreciation
- $\rightarrow$  1  $\sigma$  ( $\approx$  \$42*bn*) increase translates to a 36 bp appreciation of the USD

▹ Details on sample

# The effect is much stronger post-GFC

|                       | $\Delta s_{c,t}$ |          |  |
|-----------------------|------------------|----------|--|
|                       | Pre-GFC          | Post-GFC |  |
| $\Delta NCCL_{c,t}$   | 18.90            | 71.95    |  |
|                       | (18.98)          | (18.04)  |  |
| Observations          | 448              | 736      |  |
| Macro-controls        | Yes              | Yes      |  |
| Currency FE           | Yes              | Yes      |  |
| Year FE               | Yes              | Yes      |  |
| Currency Areas        | 8                | 14       |  |
| Pseudo-R <sup>2</sup> | 0.03             | 0.11     |  |

- → Rise in net cross-currency flows into USD leads to USD appreciation after GFC
- Graphical illustration

What shapes the exchange rate elasticity w.r.t. bank lending flows?

- 1. Importance of intermediary constraints
  - More constrained intermediaries charging a higher price for providing USD liquidity
  - $\rightarrow$  Broker-dealer leverage  $\blacktriangleright$  More details.
- 2. Importance of USD funding conditions
  - Funding conditions evolving over the monetary policy cycle
  - Liquidity holdings among US banks
- 3. When the foreign bank increases USD loan supply, the CIP deviation widens

## Exchange rate elasticity and the US monetary policy cycle

|                       | $\Delta s_{c,t}$    |         |         |
|-----------------------|---------------------|---------|---------|
|                       | Fed Cycle           |         |         |
|                       | Hike No Change Ease |         |         |
| $\Delta NCCL_{c,t}$   | 100.9               | 21.20   | -22.38  |
|                       | (18.87)             | (49.83) | (144.7) |
| Observations          | 332                 | 629     | 223     |
| Currency Areas        | 11                  | 13      | 10      |
| Pseudo-R <sup>2</sup> | 0.06                | 0.10    | 0       |

- Exchange rates react more to cross-currency loan flows when the Federal Reserve is tightening policy
- · Periods when foreign banks need to compete harder for USD funding

# Exchange rate elasticity and USD funding scarcity

|                       |          |                  | $\Delta s$ | c,t      |          |         |
|-----------------------|----------|------------------|------------|----------|----------|---------|
|                       | Share of | reserves         | Share of   | of loans | Res      | erve    |
|                       |          | to foreign banks |            | concer   | ntration |         |
|                       | High     | Low              | High       | Low      | High     | Low     |
| $\Delta NCCL_{c,t}$   | -68.43   | 98.69            | -0.803     | 134.7    | 79.63    | 47.85   |
|                       | (50.51)  | (22.88)          | (48.34)    | (38.17)  | (29.88)  | (34.43) |
| Observations          | 338      | 393              | 459        | 277      | 395      | 341     |
| Currency Area         | 12       | 12               | 14         | 11       | 13       | 12      |
| Pseudo-R <sup>2</sup> | 0.10     | 0.09             | 0.10       | 0.07     | 0.11     | 0.07    |

 $\rightarrow$  When US banks have less reserves (to distribute),  $\hat{\phi}$  tends to be larger

#### So far:

- Exchange rates are affected by cross-currency loan flows (Implication 1)
- $\widehat{\phi}$  greater when ...
  - ... broker-dealers face more difficulties expanding the balance sheet by deploying more leverage (Implication 2)
  - … conditions in USD funding markets are tighter (Implication 3)

#### Now:

 $\Rightarrow$  focus more directly on how cross-currency lending flows impact USD

#### short-term funding markets

- $\rightarrow$  CIP deviations (Implication 4)
- $\rightarrow$  USD CP/CD issuance

# Lending flows and the term structure of CIP deviations

- Endogeneity of lending with respect to funding conditions
- → Gabaix & Koijen (2021b) Granular IV method also suitable here

We estimate the two-step procedure:

1st-stage:

 $\Delta \text{NCCL}_{c,t} = \theta \underbrace{z_{c,t}}_{\text{GIV}} + \text{Controls}_{c,t} + \varepsilon_{c,t}$ 

2nd-stage:

CIP deviation<sub>*n*,*c*,*t*</sub> =  $\psi \Delta \widehat{\text{NCCL}}_{c,t}$  + Controls<sub>*c*,*t*</sub> +  $\vartheta_{c,t}$ ,

 $\rightarrow$  Elasticity  $\psi$ : effect of net cross-currency lending (NCCL) on CIP deviation

# Rise in lending flows into USD widens CIP deviations



Increase of net cross-currency lending by one std. dev.

- $\rightarrow$  CIP deviation widens by 4.8 annualized bp for 3M maturity
- $\rightarrow$  USD funding conditions for non-US banks worsen

### Impact on other segments of USD funding markets

- FX swap funding is expensive
  - Do banks over time substitute FX swap funding with CPs/CDs?
- USD funding market highly segmented
  - Which types of banks can substitute FX swap funding?

## Impact on other segments of USD funding markets

- FX swap funding is expensive
  - Do banks over time substitute FX swap funding with CPs/CDs?
- USD funding market highly segmented
  - Which types of banks can substitute FX swap funding?
- $\Rightarrow$  How does USD CP/CD issuance evolve after a pick-up in USD lending by foreign banks?
  - We estimate a local linear projection

 $\Delta log(\mathsf{CP+CD}_{c,r,t+i}) = \Delta log(\mathsf{USD Lending}_{c,t}) + \mathsf{Controls}_{c,t} + \vartheta_{c,t},$ 

(CP+CD)<sub>c,r,t+i</sub>: USD CP/CD issuance volume of banks

USD Lending<sub>c,t</sub>: Outstanding USD loans of banks

- c: Currency area
- r: Issuer rating

## USD CP & CD Issuance After USD Lending Outflows



 $\rightarrow$  Well-rated banks increase their USD CP/CD issuance after some months

1. "Lending Tightness" as an alternative instrument

Details on results

- 2. Spot and forward exchange rates
  - Details on results
- 3. Banking systems with USD deficit exhibit larger response
  - Details on results

- Cross-currency lending flows significantly move exchange rates
  - Primarily so after the GFC (characterised by structural shifts in funding markets and banking regulation)
- · When a foreign bank issues a USD loan, it needs to source USD liquidity
  - $\Rightarrow$  Puts pressure on USD funding markets
  - $\Rightarrow$  Leads to an exchange rate appreciation
- International spillover effects of monetary policy may be magnified by the cross-currency lending activities of global banks

# Appendix

### Maximization Problem I Back.

#### Bank:

$$\max_{L^{D}, L^{E}, D^{S}} S^{E/D} \underbrace{\left[g\left(L^{D}\right) - \left(L^{D} - D^{S}\right)\left(1 + r^{\$}\right)\right]}_{\text{Proceeds from lending in USD}} - \underbrace{p^{S}D^{S}}_{\text{Cost of USD swap}} + \underbrace{h\left(L^{E}\right) - \left(L^{E} + D^{S}\right)\left(1 + r^{\pounds}\right)}_{\text{Proceeds from EUR lending}} - \underbrace{\frac{\phi}{2}\max\left(0, L^{E} + D^{S} - \bar{D}\right)^{2}}_{\text{Cost of raising additional deposits}} ,$$

$$\text{s.t. } K - S^{E/D}L^{D} - L^{E} \ge c.$$

 $L^{D}$ : USD denominated loans,  $L^{E}$ : EUR denominated loans,  $D^{S}$ : Deposits used for swap

#### Dealer's objective function:

$$\max_{I^S} f(W - (1 + \Gamma)I^S) + p^S I^S,$$

where  $f(x) = \theta \log(x) - x$ *I*<sup>S</sup>: Supply of swaps

#### Table: Global syndicated lending differentiated by borrower and lender origin

| Category                         | Obs.      |           |          |             |
|----------------------------------|-----------|-----------|----------|-------------|
| Individual Loans                 | 83,563    |           |          |             |
| Individual Tranches              | 131,509   |           |          |             |
| Borrower-Lender-Loan connections | 1,284,863 |           |          |             |
| USD loans                        | to US bo  | orrowers  | to non-U | S borrowers |
|                                  | Obs.      | Countries | Obs.     | Countries   |
| Lending Parent Banks             | 209       | 31        | 222      | 31          |
| Borrowers                        | 16,289    | 1         | 29,297   | 165         |
|                                  | Mean      | Std. Dev. | Mean     | Std. Dev.   |
| Tranche Term                     | 4.21      | 2.05      | 4.90     | 3.43        |
| Ind. USD Loan size (mn)          | 54.97     | 176.08    | 66.33    | 2,047.38    |

# Sample of globally active banks - Back.

- Final sample consists of banks headquartered in Australia, Canada, China, Denmark, the Euro Area, Great Britain, Japan, Mexico, Norway, Singapore, South Africa, South Korea, Sweden, Switzerland, and the US.
- 223 internationally operative banks, of which 209 are domiciled outside the US
- We exclude
  - public banks
  - small and locally-oriented banks
- All issued term loans and credit lines from Refinitiv LPC DealScan for the time period 1997-01 to 2021-12

|                            | $\Delta s_{c,t}$ |                |  |
|----------------------------|------------------|----------------|--|
| Measure                    | Leverage Ratio   | Leverage Ratio |  |
| Level                      | Low              | High           |  |
| $\Delta \text{NCCL}_{c,t}$ | 78.29            | -35.31         |  |
|                            | (25.65)          | (76.72)        |  |
| Observations               | 774              | 410            |  |
| Macro-controls             | Yes              | Yes            |  |
| Currency FE                | Yes              | Yes            |  |
| Year FE                    | Yes              | Yes            |  |
| Currency Areas             | 12               | 13             |  |
| Pseudo-R <sup>2</sup>      | 0.04             | 0.06           |  |

 $\rightarrow$  Effect is stronger, when broker-dealers exhibit below average leverage

# Post-GFC Developments - Funding Conditions Back.

Non-US bank USD loans and local USD liabilities:



(b) British banks



- $\rightarrow$  Cross-border bank lending increased greatly
- $\rightarrow$  Funding gap intensified

### Exchange Rate Elasticity and US Monetary/Funding Conditions - Bac

|                            | $\Delta s_{c,t}$   |         |  |
|----------------------------|--------------------|---------|--|
|                            | CIP deviation (3M) |         |  |
|                            | Small Large        |         |  |
| $\Delta \text{NCCL}_{c,t}$ | 33.60              | 112.7   |  |
|                            | (53.93)            | (51.93) |  |
| Observations               | 189                | 73      |  |
| Currency Areas             | 7                  | 8       |  |
| Pseudo-R <sup>2</sup>      | 0.02               | 0.05    |  |

 $\rightarrow$  When the Fed hikes interest rates, exchange rates react more to loan flows

 $\rightarrow$  High funding market stress  $\rightarrow$  higher exchange rate elasticity

# Accounting for Cross-Country Funding Differences Back.

|                       | $\Delta s_{c,t}$ |                 |                  |
|-----------------------|------------------|-----------------|------------------|
| Banking system with   | Net USD surplus  | Net USD deficit | Interaction Term |
| $\Delta NCCL_{c,t}$   | 73.00            | 82.08           | 0.175            |
|                       | (64.46)          | (18.44)         | (0.0891)         |
| Observations          | 487              | 555             | 1042             |
| Year FE               | Yes              | Yes             | Yes              |
| Currency Areas        | 4                | 5               | 6                |
| Pseudo-R <sup>2</sup> | 0.110            | 0.100           | 0.180            |

 $\rightarrow$  Stronger effect for currency areas that exhibit negative net USD claims

▶ Graph on sample.

## Lending Tightness as an Alternative Instrument Back.

- An instrument needs to affect lending, but not exchange rates
- Potential candidate: Proxy for "lending tightness".
- → EBA capital exercise as a quasi-natural experiment
  - Differential effect of European banks compared to Canada and UK

# Lending Tightness as an Alternative Instrument Back.

- An instrument needs to affect lending, but not exchange rates
- Potential candidate: Proxy for "lending tightness".
- → EBA capital exercise as a quasi-natural experiment
  - Differential effect of European banks compared to Canada and UK

#### Definition:

Lending tightness<sub>c,t</sub> = lending conditions<sub>c,t-3</sub> × Tier 1 capital<sub>c,t</sub> ×  $\mathbb{1}_{c,t}^{EBA}$ 

Interaction of

- (Expected) lending demand conditions of banks (higher value = worse)
- Average Tier 1 capital holdings of banks
- · Binary variable indicating European banks

# Tighter Lending Conditions Lead to USD Appreciation Back.

|                     | First Stage $\Delta NCCL_{c,t}$ | Second Stage $\Delta s_{c,t}$          |
|---------------------|---------------------------------|----------------------------------------|
| Lending tightness   | -0.013                          |                                        |
|                     | (0.004)                         |                                        |
| $\Delta NCCL_{c,t}$ |                                 | 329.0                                  |
|                     |                                 | (133.8)                                |
| Observations        | 93                              | 93                                     |
| Currency Areas      | 3                               | 3                                      |
|                     | F-test: 12.04                   | Pseudo – <i>R</i> <sup>2</sup> : 0.136 |

 $\rightarrow$  More loan flows into the USD lead to USD appreciation

But: Few countries and small time horizon (2011/06 to 2013/12)

|                       | Spot rate | Forward rate |
|-----------------------|-----------|--------------|
| $\Delta NCCL_{c,t}$   | 72.33     | 52.37        |
|                       | (13.20)   | (8.677)      |
| Observations          | 1184      | 1038         |
| Currency Areas        | 14        | 13           |
| Pseudo-R <sup>2</sup> | 0.15      | 0.11         |

 $\rightarrow$  Results hold for forward rate as well

### References

Adrian, Tobias, Peichu Xie (2020). *The Non-U.S. Bank Demand for U.S. Dollar Assets*. IMF Working Paper No. 20/101.

Aldasoro, Iñaki, Torsten Ehlers (2018). *The geography of dollar funding of non-US banks*. BIS Quarterly Review December.

Aldasoro, Iñaki, Torsten Ehlers, Egemen Eren (2022a). *Global banks, dollar funding, and regulation*. Journal of International Economics.

Aldasoro, Iñaki, Torsten Ehlers, Patrick McGuire, Goetz von Peter (2020). Global banks' dollar funding needs and central bank swap lines. BIS Bulletin.

Anderson, Alyssa, Wenxin Du, Bernd Schlusche (2021). *Arbitrage Capital of Global Banks*. NBER Working Paper No. 28658.

 Avdjiev, Stefan, Wenxin Du, Cathérine Koch, Hyun Song Shin (2019). The Dollar, Bank Leverage, and Deviations from Covered Interest Parity.
 American Economic Review: Insights, 1(2):193–208.

- Bräuning, Falk, Victoria Ivashina (2020). *Monetary Policy and Global Banking*. Journal of Finance, 75(6):3055–3095.
- Bruno, Valentina, Hyun Song Shin (2015). Cross-Border Banking and Global Liquidity. Review of Economic Studies, 82(2):535–564.
- Buch, Claudia M., Matthieu Bussierè, Linda Goldberg, Robert Hills (2019).
   The international transmission of monetary policy. Journal of International Money and Finance, 91:29–48.

Buch, Claudia M., Linda S. Goldberg (2020). Global Banking: Toward an Assessment of Benefits and Costs. Annual Review of Financial Economics, 12:141–175.

Camanho, Nelson, Harald Hau, Hélène Rey (2022). *Global Portfolio Rebalancing and Exchange Rates*. Review of Financial Studies, 35(11):5228–5274.

- Correa, Ricardo, Wenxin Du, Gordon Y. Liao (2020). U.S. Banks and Global Liquidity. NBER Working Paper 27491.
- Correa, Ricardo, Teodora Paligorova, Horacio Sapriza, Andrei Zlate (2022). *Cross-Border Bank Flows and Monetary Policy*. Review of Financial Studies, 35(1):438–481.

- Du, Wenxin, Alexander Tepper, Adrien Verdelhan (2018b). *Deviations from Covered Interest Rate Parity*. Journal of Finance, 73(3):915–957.
- Gabaix, Xavier, Ralph S. J. Koijen (2021a). In Search of the Origins of Financial Fluctuations: The Inelastic Markets Hypothesis. NBER Working Paper 28967.
- Gabaix, Xavier, Ralph S. J. Koijen (2021b). *Granular Instrumental Variables*. NBER Working Paper No. 28204.
- Gabaix, Xavier, Matteo Maggiori (2015). *International Liquidity and Exchange Rate Dynamics*. Quarterly Journal of Economics, 130(3):1369–1420.

Ivashina, Victoria, David S. Scharfstein, Jeremy C. Stein (2015). Dollar Funding and the Lending Behavior of Global Banks. Quarterly Journal of Economics, 130(3):1241–1281.

Meisenzahl, Ralf, Friederike Niepmann, Tim Schmidt-Eisenlohr (2020). *The Dollar and Corporate Borrowing Costs.* CEPR Discussion Paper 14892.

Niepmann, Friederike, Tim Schmidt-Eisenlohr (2023). Institutional investors, the dollar, and U.S. credit conditions. Journal of Financial Economics, 147(1):198–220.

Rime, Dagfinn, Andreas Schrimpf, Olav Syrstad (2022). *Covered Interest Parity Arbitrage*. Review of Financial Studies, 35(11):5185–5227.

Shen, Leslie Sheng, Tony Zhang (2022). *Risk Sharing and Amplication in the Global Financial Network*. Working Paper.