# Liquidity, Debt Denomination, and Currency Dominance

Antonio Coppola (Stanford GSB) Arvind Krishnamurthy (Stanford GSB) Chenzi Xu (Stanford GSB) May 2023

#### Currency dominance: world features US dollar dominance

- Historical precedents: Dutch florin (17<sup>th</sup>-18<sup>th</sup> c.), British pound sterling (19<sup>th</sup>-20<sup>th</sup> c.)

This paper: liquidity-based theory for currency dominance in debt issuance

- Debt obligations are denominated in the unit required to be delivered at settlement
- Obtaining unit for settlement is less costly in more liquid money markets

US  $\$  is attractive for issuance because of a large, liquid  $\$  stock of instruments for settlement

Key mechanism: complementarity in liquidity supply (issuance) & demand (settlement)

 $\implies$  Endogenous positive feedback: \$ issuance begets more debt market liquidity for settlement

## **Related Literature**

#### International monetary system:

- Dollar world: Matsuyama Kiyotaki Matsui (1993), Obstfeld Dornbusch McKinnon (1995), Tirole (2002), Gourinchas Rey (2007a,b),
   Eichengreen Mehl Chitu (2017), Maggiori (2017), Farhi Maggiori (2018), He Krishnamurthy Milbradt (2019), Ilzetzki Reinhart Rogoff (2019),
   Gopinath Stein (2021), Chahrour Valchev (2021)
- Historical precedents: Keynes (1923), Nurske (1944), Dickson (1967), Despres Kindleberger Salant (1969), Lindert (1969), King (1972),
   Flandreau Jobst (2006), Eichengreen Flandreau (2008), Eichengreen (2008, 2012, 2017), Quinn Roberds (2014a,b), Kynaston (2015a,b),
   Roberds Velde (2016), Payne Szoke Hall Sargent (2022), Bolt Frost Shin Wierts (2023)

#### Safe asset shortages:

- Holmstrom Tirole (1998), Caballero Farhi Gourinchas (2008), Caballero Krishnamurthy (2009), Farhi Gourinchas Rey (2011), Krishnamurthy Vissing-Jorgensen (2012), Gorton Lewellen Metrick (2012), Obstfeld (2012), Greenwood Hanson Stein (2015)

#### US dollar dominance:

- Trade invoicing: Engel (2006), Goldberg Tille (2008), Gopinath Itskhoki Rigobon (2010), Gopinath Boz Casas Díez Gourinchas Plagborg-Møller (2020), Amiti Itskhoki Konings (2022), Mukhin (2022)
- Global finance: Krugman (1984), Frankel (1992), Cetorelli Goldberg (2012), Bruno Shin (2015a,b), Ivashina Scharfstein Stein (2015), McCauley McGuire Sushko (2015), Du Tepper Verdelhan (2018), Bahaj Reis (2020, 2021), Koijen Yogo (2020), Maggiori Neiman Schreger (2020), Bianchi Bigio Engel (2021), Jiang Krishnamurthy Lustig (2021), Kekre Lenel (2021), Jiang Richmond Zhang (2022), Correa Du Liao (2022), Eren Malamud (2022), Arslanalp Eichengreen Simpson-Bell (2022), Du Huber (2023)

#### Search frictions in financial markets:

Kiyotaki Wright (1989, 1993), Pagano (1989), Trejos Wright (1995), Freeman (1996), Duffie Garleanu Pedersen (2005, 2007), Lagos Wright (2005), Garleanu Pedersen (2007), Vayanos Wang (2007), Vayanos Weill (2008), Weill (2008, 2020), Lagos Rocheteau (2009), Doepke Schneider (2017), Copeland Duffie Yang (2021), Passadore Xu (2022)

Historical Example: The First Global Currency International payments made in illiquid metallic coin for much of history

- Hundreds of types; costly to verify, insure, and transport; uncertain supply at any given time/place

Bank of Amsterdam (1609) overcame fractions with florin (ledger currency)

- Standardized unit of account: obtainable with coin deposits for payments via account transfers

Florin was liquid  $\implies$  florin-denominated "bill on Amsterdam" used internationally

- At any given time, florins available in Amsterdam; yield premium for florin-denominated assets

International payments made in illiquid metallic coin for much of history

- Hundreds of types; costly to verify, insure, and transport; uncertain supply at any given time/place

Bank of Amsterdam (1609) overcame fractions with florin (ledger currency)

- Standardized unit of account: obtainable with coin deposits for payments via account transfers

Florin was liquid  $\implies$  florin-denominated "bill on Amsterdam" used internationally

- At any given time, florins available in Amsterdam; yield premium for florin-denominated assets

Contrast with illiquid Spanish "pieces of eight" as a potential alternative global currency

- Spain bigger, wealthier,  $6 \times$  trade volumes, but serial defaulter

Model: Within-Country Setup

## Debt Market: Firms and Investors



#### **Debt suppliers & demanders at** $t_0$ :

- Entrepreneur-owned Firms (mass F) and Government (mass G) issue bonds at  $t_0$ 
  - Entrepreneurs borrow to finance project which costs  $\beta^2$ , and generates profits  $\pi = 1$
- Investors (mass I) buy bonds, have endowments w; each investor can invest in 1 bond

**Preferences** (risk neutral):

$$u_i^{F,I} = c_0 + \beta c_1 + \beta^2 c_2, \quad c_t \ge 0$$

#### Bonds:

- Face value 1, mature at t<sub>2</sub>, indivisible
- Zero default risk, perfect substitutes  $\implies$  same endogenous price  $P_0$

Total bonds mass:  $m_I = F + G \leq I$ 

## Timing Mismatch Generates Liquidity Demand at t<sub>1</sub>



#### Central element: potential for timing mismatch generates liquidity demand

- Firms receive profits  $\pi = 1$  at either  $t_1$  or  $t_2$
- Probability of early profits  $\phi \rightarrow \text{mass } m_F = \phi F$  of mismatched firms

#### Timing Mismatch Generates Liquidity Demand at t<sub>1</sub>



Central element: potential for timing mismatch generates liquidity demand

- Firms receive profits π = 1 at either t<sub>1</sub> or t<sub>2</sub>
- Probability of early profits  $\phi \rightarrow \text{mass } m_F = \phi F$  of mismatched firms

**Gains from asset trade**  $(1 - \beta)$  possible in the market at  $t_1$  if firm is early:



## Asset Market Equilibrium and Issuance Benefits



**Solving for**  $P_0$ : market at  $t_0$  is Walrasian, so investor bids result in price

$$P_0 = \underbrace{\alpha_I \beta (\beta + (1 - \eta)(1 - \beta))}_{P(\text{Matched}) \times \text{PV of Sale Price}} + \underbrace{(1 - \alpha_I) \beta^2}_{P(\text{Not Matched}) \times \text{PV of}}$$

Convenience yield at  $t_0$  captured by  $P_0 - \beta^2 = \beta(1-\beta)(1-\eta) \times \alpha_I$ 

• A fully illiquid bond ( $\alpha_I = 0$ ) would be priced at  $\beta^2$ 

**Expected utility** from debt issuance for firm *i* is increasing  $\alpha_I$  and  $\alpha_F$ :

$$\mathbb{E}[u_i^F] = \beta(1-\beta) \times \left[ \underbrace{(1-\eta)\alpha_l}_{\text{Convenience yield at } t_0} + \underbrace{\eta\phi\alpha_F}_{\text{Benefit of liquidity at } t_1} \right]$$

## Closing the Model With Search Specification, Complementary Issuance Benefits

Matching function at  $t_1$ : number of meetings between firms (demanders) and investors (suppliers) is

$$n = \lambda m_F^{\ \theta} m_I^{\ \theta}, \quad \lambda > 0, \quad \underbrace{\theta > 1/2}_{\text{Increasing returns}}$$

• Duffie Garleanu Pedersen (2005) case:  $\theta = 1$ , micro-foundations in Duffie Qiao Sun (2018)

#### Meeting probabilities:

$$\underbrace{\alpha_F}_{P(\text{Firm finds a bond seller})}^{\alpha_F} = \frac{n}{m_F} = \lambda m_I^{\theta} m_F^{\theta-1}, \qquad \underbrace{\alpha_I = \frac{n}{m_I} = \lambda m_F^{\theta} m_I^{\theta-1}}_{P(\text{Bond seller finds a firm})}$$

**Expected firm utility** given equilibrium prices and probabilities (taking  $\theta = 1$  case):

$$\mathbb{E}[u_i^F] = \lambda\beta(1-\beta) \times \left[ \underbrace{(1-\eta)m_F}_{\text{Convenience yield at }t_0, } + \underbrace{\eta\phi m_I}_{\text{Benefit of liquidity at }t_1, } \right]$$

Model: Two-Country Environment

**Two countries** j = A, B with fundamentals  $\{G_j, F_j, \lambda_j\}$ 

Currency denomination choice for firms *i* in each country

- Fixed cost  $\propto K_i$  of foreign issuance
  - Ex: expected costs of balance sheet currency mismatch, underwriting, risk aversion (hedging), ...

**Two countries** j = A, B with fundamentals  $\{G_j, F_j, \lambda_j\}$ 

Currency denomination choice for firms *i* in each country

- Fixed cost  $\propto K_i$  of foreign issuance
  - Ex: expected costs of balance sheet currency mismatch, underwriting, risk aversion (hedging), ...

Endogenous masses  $\mathcal{M} = (m_{F,A}, m_{I,A}, m_{F,B}, m_{I,B})$ 

Four denomination possibilities with expected utility denoted:

 $U_{A \to A}(\mathcal{M}) \qquad \qquad U_{A \to B}(\mathcal{M}, K_i)$  $U_{B \to B}(\mathcal{M}) \qquad \qquad U_{B \to A}(\mathcal{M}, K_i)$ 

**Two countries** j = A, B with fundamentals  $\{G_j, F_j, \lambda_j\}$ 

Currency denomination choice for firms *i* in each country

- Fixed cost  $\propto K_i$  of foreign issuance
  - Ex: expected costs of balance sheet currency mismatch, underwriting, risk aversion (hedging), ...

Endogenous masses  $\mathcal{M} = (m_{F,A}, m_{I,A}, m_{F,B}, m_{I,B})$ 

Four denomination possibilities with expected utility denoted:

 $U_{A\to A}(\mathcal{M}) \qquad U_{A\to B}(\mathcal{M}, K_i)$  $U_{B\to B}(\mathcal{M}) \qquad U_{B\to A}(\mathcal{M}, K_i)$ 

Firm optimality requires *threshold strategy*: firms issue in foreign currency iff  $K_i \leq \overline{K}$ 

•  $H(K_i)$  is the (Pareto) CDF of  $K_i \in [\underline{K}, \infty) \rightarrow$  share  $H(\overline{K})$  issues in foreign currency

**Two countries** j = A, B with fundamentals  $\{G_j, F_j, \lambda_j\}$ 

Currency denomination choice for firms *i* in each country

- Fixed cost  $\propto K_i$  of foreign issuance
  - Ex: expected costs of balance sheet currency mismatch, underwriting, risk aversion (hedging), ...

Endogenous masses  $\mathcal{M} = (m_{F,A}, m_{I,A}, m_{F,B}, m_{I,B})$ 

Four denomination possibilities with expected utility denoted:

$$\begin{split} \bar{U}_{A\to A}(\mathcal{M}(\bar{K})) & \bar{U}_{A\to B}(\mathcal{M}(\bar{K}), \bar{K}) \\ \bar{U}_{B\to B}(\mathcal{M}(\bar{K})) & \bar{U}_{B\to A}(\mathcal{M}(\bar{K}), \bar{K}) \end{split}$$

Firm optimality requires threshold strategy: firms issue in foreign currency iff  $K_i \leq \overline{K}$ 

•  $H(K_i)$  is the (Pareto) CDF of  $K_i \in [\underline{K}, \infty) \rightarrow$  share  $H(\overline{K})$  issues in foreign currency

**Two countries** j = A, B with fundamentals  $\{G_j, F_j, \lambda_j\}$ 

Currency denomination choice for firms *i* in each country

- Fixed cost  $\propto K_i$  of foreign issuance
  - Ex: expected costs of balance sheet currency mismatch, underwriting, risk aversion (hedging), ...

Endogenous masses  $\mathcal{M} = (m_{F,A}, m_{I,A}, m_{F,B}, m_{I,B})$ 

Four denomination possibilities with expected utility denoted:

$$\begin{split} \bar{U}_{A\to A}(\mathcal{M}(\bar{K})) & \bar{U}_{A\to B}(\mathcal{M}(\bar{K}), \bar{K}) \\ \bar{U}_{B\to B}(\mathcal{M}(\bar{K})) & \bar{U}_{B\to A}(\mathcal{M}(\bar{K}), \bar{K}) \end{split}$$

Firm optimality requires threshold strategy: firms issue in foreign currency iff  $K_i \leq \overline{K}$ 

- $H(K_i)$  is the (Pareto) CDF of  $K_i \in [\underline{K}, \infty) \rightarrow$  share  $H(\overline{K})$  issues in foreign currency
- Class BA (focus today) and class AB (symmetric analysis) equilibria can arise

Define  $\hat{K}$  as the equilibrium value of  $\overline{K}$ , equilibrium characterized by:

1. Firm optimality: the marginal firm  $(K_i = \bar{K})$  has  $K_i = \hat{K}$  in equilibrium and satisfies

$$ar{U}_{j'
ightarrow j}(\hat{K})=ar{U}_{j'
ightarrow j'}(\hat{K})$$

2. Market clearing: given  $\hat{K}$ , masses  $\mathcal{M}$  satisfy

$$m_{I,j} = G_j + F_j + H(\hat{K})F_{j\prime} \qquad m_{I,j\prime} = G_{j\prime} + \left[1 - H(\hat{K})\right]F_{j\prime}$$
$$m_{F,j} = \phi \left[F_j + H(\hat{K})F_{j\prime}\right] \qquad m_{F,j\prime} = \phi \left[1 - H(\hat{K})\right]F_{j\prime}$$









Liquidity and Dominance Throughout History **Italian city-states** (15th – 16th c.) also prominent in trade and finance, but no dominant currency:

• Symmetry  $\rightarrow$  stable multipolar arrangement

Amsterdam disrupted multipolarity:

 Govt commitment and financial technology generated asymmetrically large G

Transition to British pound had similar features:

- Bank of Amsterdam collapses in 1791 ( $\downarrow G_A$ )
- Britain wins Napoleonic Wars ( $\uparrow G_B$ )
- $\implies$  In paper:  $\uparrow F$  not sufficient for eq. transition

**Increasing** *G*<sub>A</sub> sufficiently leads to unique equilibrium selection:



Specify the government's objective as

$$W_{j} = \underbrace{F_{j} \int u_{i,j}^{F}(K_{i}) \, \mathrm{d}H(K_{i})}_{\text{Domestic firm utility}} + \underbrace{G_{j} \left(P_{0,j} - \beta^{2}\right)}_{\text{Seignorage conv. yield}}$$

Specify the government's objective as

$$W_{j} = \underbrace{F_{j} \int u_{i,j}^{F}(K_{i}) \, \mathrm{d}H(K_{i})}_{\text{Domestic firm utility}} + \underbrace{G_{j} \left(P_{0,j} - \beta^{2}\right)}_{\text{Seignorage conv. yield}}$$

**Consider**:  $B \rightarrow A$  equilibrium with  $G_A > G_B$ ,  $\lambda_A = \lambda_B$ ,  $F_A = F_B$ 

- **1.** Bigger incentive to create liquidity (G) for the leader (A):  $\frac{\partial W_A}{\partial G_A} > \frac{\partial W_B}{\partial G_B}$
- **2.** Complementarity: investment incentive reinforced by endogenous rise in entry  $(\hat{K})$ :

$$rac{\partial^2 W_A}{\partial G_A \, \partial \hat{K}} > 0, \qquad rac{\partial \hat{K}}{\partial G_A} > 0$$

Incentives manifested in history of Bank of England: LoLR, backstopping of private credit market

⇒ More in paper: analogous complementarity in incentives to facilitate private liquidity creation

#### International trade and finance are highly related

- Ex: bills of exchange in Amsterdam both settlement instruments for trade and source of credit

Trade invoicing is complementary to currency dominance in debt denomination

- If revenues in dominant currency, lower FX mismatch reduces  $K_i$  (as in Gopinath Stein 2021)
- Shifting H(K) to the left  $\longrightarrow$  more entry with  $\hat{K}_1 > \hat{K}_0$ :

$$\underbrace{\lambda_{A}\phi\left[2F_{A}+G_{A}+F_{B}H(\hat{K}_{0})\right]-\hat{K}_{0}}_{\bar{U}_{B\to A}}=\underbrace{\lambda_{B}\phi\left[2F_{B}+G_{B}+F_{B}(1-H(\hat{K}_{0}))\right]}_{\bar{U}_{B\to B}}$$

- If firms choose invoicing currency, generate trade dominance as by-product of financial dominance
- $\Longrightarrow$  Additional complementarity that reinforces dominant equilibrium

Welfare, Aggregate Risk, and International Cooperation

Global planner has objective:

 $\mathcal{W} = \mathcal{W}_A + \mathcal{W}_B$ 

Socially optimal entry > competitive equilibrium because entry carries positive liquidity externality



• First best  $(K^*)$  is a Pareto improvement over competitive equilibrium (with transfers)

Global planner has objective:

 $\mathcal{W} = \mathcal{W}_A + \mathcal{W}_B$ 

Socially optimal entry > competitive equilibrium because entry carries positive liquidity externality



• First best (K<sup>\*</sup>) is a Pareto improvement over competitive equilibrium (with transfers)

**Country A underprovisions**  $G_A$  relative to global planner if  $\frac{\partial W}{\partial G_A} > \frac{\partial W_A}{\partial G_A}$ 

- In this case, there are gains from international cooperation in liquidity supply
  - Historical analog: Bretton Woods ightarrow major economies coordinated on US-provided liquidity
  - This case occurs in the model if  $F_B$  is sufficiently larger than  $G_B$

## Aggregate risk:

- State at  $t_1$  is  $\omega \in \Omega$  with probability  $q_\omega o$  aggregate liquidity demand shock:  $\phi_\omega$
- State-contingent liquidity supply  $G^A_\omega$  chosen in advance at  $t_0$

**Equilibrium indifference condition** now features **moments** of the  $(\phi_{\omega}, G_{\omega}^{A})$  distribution:

$$\lambda_{A}\left(\mathbb{E}[\phi_{\omega}]\left(2(F_{A}+H(\hat{K})F_{B})+\mathbb{E}[G_{\omega}^{A}]\right)+\mathsf{Cov}[\phi_{\omega},G_{\omega}^{A}]\right)-\hat{K}=\lambda_{B}\mathbb{E}[\phi_{\omega}]\left(2(1-H(\hat{K}))F_{B}+G_{B}\right)$$

• State-contingent liquidity provision (positive covariance) induces entry

Policy tool: Central bank swap lines that provide liquidity when it is most demanded

Sources of dominance we highlight appear in many features of the dollar:

- Base for USD-denominated money markets is T-Bills (large, liquid, safe stock)
- Financial technologies make private assets liquid (repo, securitization, banking)
- Fed swap lines: contingent expansion of US \$-denominated liquidity
- Complementarities in dollar issuance by wide spectrum of entities:
  - Safe liquidity suppliers taking advantage of US \$ convenience yields (e.g., KFW)
  - Other lower-rated global corporates also issue US \$ drawn in by liquidity benefit

Renminbi dominance question: current Chinese financial system lacks these elements

## **Additional Slides**

## Model equilibrium:

- Equilibrium lemmas
- Formal firm problem
- Class AB equilibria
- Increasing F<sub>A</sub>

## Theoretical extensions:

- Issuance complementarities
- The  $\theta < 1$  case
- Limited pledgeability
- Sovereign denomination choice

## History:

Go

Go

Go

Go

Go

Go

Go

Go



Go

Go

Go

## **Empirics:**

- Debt quantitiesBritish dominance
- Finance and trade

# **Extra Slides**

## The Denomination Choices of Safe and Risky Private Borrowers Are Complementary



# Convenience Yields and Sovereign Debt Supply

$$P_{0,j} - \beta^2 = rac{\lambda_j \beta(1-\beta)}{2} m_{F,j}^{ heta} m_{I,j}^{ heta-1}$$

(a) Case 1: Convenience yield decreasing in  $G_A$ 

(b) Case 2: Convenience yield increasing in  $G_A$ 



# Crowding In and Crowding Out of Heterogeneous Private Borrowers

- In general case ( $\theta < 1$ ), can generate negative impact of sovereign debt supply on conv. yields
- As a result, more government debt crowds out safe borrowers while crowding in risky borrowers



Improving capacity of private sector to issue safe money-like assets also part of financial development

Extend model to include country-specific **pledgeability** parameter  $\rho_j$ 

• After currency choice, firms find out if revenues are fully pledgeable (probability  $\rho_j$ ) or not

*Ex ante* expectation of pledgeability is  $\rho_j$ , so equilibrium condition becomes:

$$\rho_{A}\left[\lambda_{A}(m_{F,A}+\phi m_{I,A})-\hat{K}\right]=\rho_{B}\left[\lambda_{B}(m_{F,B}+\phi m_{I,B})\right]$$

As in previous case, sovereign incentives to invest in firm pledgeability complementary to dominance:

$$\frac{\partial W_A}{\partial \rho_A} > \frac{\partial W_B}{\partial \rho_B}, \qquad \frac{\partial^2 W_A}{\partial \rho_A \partial \hat{K}} > 0, \qquad \frac{\partial \hat{K}}{\partial \rho_A} > 0$$

Mandate from the Bank's founding decree:

"To check all agio of the current money and confusion of coin, and to be of use to all persons who are in need of any kind of coin in business."

Entrepreneur chooses whether to issue  $(D_i)$  at  $t_0$  and whether to trade  $(T_i)$  at  $t_1$ :

$$\max_{D_i, T_i} E[c_0 + \beta c_1 + \beta^2 c_2]$$

subject to

$$\begin{split} c_0 &= D_i(P_0-\beta^2),\\ c_1 &= \begin{cases} 0, & \text{late;}\\ 0, & \text{early, but not matched;}\\ D_i \ T_i \ \eta(1-\beta), & \text{early, and matched} \end{cases} \\ c_2 &= 0. \end{split}$$

Since  $P_0 \ge \beta^2$  and  $\beta < 1$ , solution is to set  $D_i = 1$  and  $T_i = 1$ 



#### Lemma 1

Consider firms  $\hat{i}$  and i in country j, where  $K_i < K_{\hat{i}}$ . If it is optimal for firm  $\hat{i}$  to issue in foreign currency  $j' \neq j$ , then it is optimal for firm i to issue in foreign currency j'.

#### Lemma 2

Suppose that there is a positive mass of firms in j that find it optimal to issue in currency j'. Then, no firms in j' will issue in currency j.

#### Lemma 3

A necessary condition for a collection of firm denominations choices  $\mathcal{D}_{i,j}$  to be consistent with firm optimality is that it must take the following threshold form:

$$\mathcal{D}_{i,j'} = \begin{cases} 1 & \text{if } K_i < \bar{K}, \\ 0 & \text{if } K_i \ge \bar{K}, \end{cases} \qquad \mathcal{D}_{i,j} = 0.$$

**Consider the choice for firms in** A and define  $\hat{K}$  as the equilibrium value of  $\bar{K}$ 

The **threshold firm**  $(K_i = \overline{K})$  has  $K_i = \hat{K}$  in equilibrium and satisfies:

 $\underbrace{\lambda_{A}\left[m_{F,A}+\phi m_{I,A}\right]}_{\bar{U}_{A\to A}(\bar{\mathcal{M}}): \text{ Utility from issuing in home currency}} = \underbrace{\lambda_{B}\left[m_{F,B}+\phi m_{I,B}\right]-\hat{K}}_{\bar{U}_{A\to B}(\bar{\mathcal{M}},\bar{K}): \text{ Utility from issuing in foreign currency}}$ 

Given  $\hat{K}$ , masses are:

$$m_{I,A} = G_A + \left[1 - H(\hat{K})\right] F_A \qquad m_{I,B} = G_B + F_B + H(\hat{K})F_A$$
$$m_{F,A} = \phi \left[1 - H(\hat{K})\right] F_A \qquad m_{F,B} = \phi \left[F_B + H(\hat{K})F_A\right]$$

## **Financial Innovation Driving Florin Success**



Monthly bank balances (1666 - 1703); Source: Quinn and Roberds (2014)



Agio: percent premium of bank florin over current guilders (1736 - 1792)

Source: Quinn and Roberds (2019)

# Short-Term Government Debt Supply Vastly Higher in the United States



## Allowing Denomination Choice for *G* Entrenches Dominance

Allow government in *B* to choose amount of denomination in currency *A*:  $G_B^* \in [0, G_B]$ 

Government's objective:

$$W_{j} = \underbrace{G_{j}(P_{0,j} - \beta^{2})}_{\text{Seignorage conv. yield}} + \underbrace{F_{j} \int u_{i,j}^{F}(K_{i}) \, dH(K_{i})}_{\text{Domestic firm utility}}$$

In equilibrium in the baseline model, the follower's objective (B) is

$$W_{B} = G_{B} \times \underbrace{\lambda_{B} m_{F,B}}_{\text{Conv. Yield in B}} + F_{B}(1 - H(\hat{K})) \times \underbrace{\lambda_{B}(m_{F,B} + \phi m_{I,B})}_{\text{Conv. Yield +}} + \underbrace{U_{B \to A}}_{\text{Switchers}}$$

With the choice, B trades off better convenience yields in govt debt with lower liquidity benefit to private firms

## Allowing Denomination Choice for G Entrenches Dominance

Allow government in B to choose amount of denomination in currency A:  $G_B^* \in [0, G_B]$ 

Government's objective:

$$W_{j} = \underbrace{G_{j}(P_{0,j} - \beta^{2})}_{\text{Seignorage conv. yield}} + \underbrace{F_{j} \int u_{i,j}^{F}(K_{i}) \, dH(K_{i})}_{\text{Domestic firm utility}}$$

In equilibrium in the baseline model, the follower's objective (B) is

$$W_{B} = G_{B} \times \underbrace{\lambda_{B} m_{F,B}}_{\text{Conv. Yield in B}} + F_{B}(1 - H(\hat{K})) \times \underbrace{\lambda_{B}(m_{F,B} + \phi m_{I,B})}_{\text{Conv. Yield +}} + \underbrace{U_{B \to A}}_{\text{Switchers}}$$

With the choice, B trades off better convenience yields in govt debt with lower liquidity benefit to private firms

$$W_{B} = \underbrace{\mathbf{G}_{B}^{*} \times \lambda_{A} m_{F,A}}_{\text{Higher conv. yield}} + (1 - G_{B}^{*}) \lambda_{B} m_{F,B} + F_{B}(1 - H(\hat{K})) \times \lambda_{B}(m_{F,B} + \phi \underbrace{((1 - G_{B}^{*})}_{\text{for own debt}} + F_{B}H(\hat{K}))) + \dots$$

 $\implies$   $G_B^*$  will issue more in A if convenience yields are much better and private firms are small

## Allowing Denomination Choice for G Entrenches Dominance

Allow government in B to choose amount of denomination in currency A:  $G_B^* \in [0, G_B]$ 

Government's objective:

$$W_{j} = \underbrace{G_{j}(P_{0,j} - \beta^{2})}_{\text{Seignorage conv. yield}} + \underbrace{F_{j} \int u_{i,j}^{F}(K_{i}) \, dH(K_{i})}_{\text{Domestic firm utility}}$$

In equilibrium in the baseline model, the follower's objective (B) is

$$W_{B} = G_{B} \times \underbrace{\lambda_{B} m_{F,B}}_{\text{Conv. Yield in B}} + F_{B}(1 - H(\hat{K})) \times \underbrace{\lambda_{B}(m_{F,B} + \phi m_{I,B})}_{\text{Liquidity Benefit in B}} + \underbrace{U_{B \to A}}_{\text{Switchers}}$$

With the choice, B trades off better convenience yields in govt debt with lower liquidity benefit to private firms

$$W_{B} = \underbrace{\mathbf{G}_{B}^{*} \times \lambda_{A} m_{F,A}}_{\text{Higher conv. yield}} + (1 - G_{B}^{*}) \lambda_{B} m_{F,B} + F_{B}(1 - H(\hat{K})) \times \lambda_{B}(m_{F,B} + \phi \underbrace{((1 - G_{B}^{*})}_{\text{Lower liquidity benefits}} + F_{B}H(\hat{K}))) + \dots$$

 $\implies$   $G_B^*$  will issue more in A if convenience yields are much better and private firms are small



# Trade Volumes and Financial Quantities Today



## The Evolution of British Pound Dominance

