Julien Bengui Nick Sander

Bank of Canada & CEPR Bank of Canada

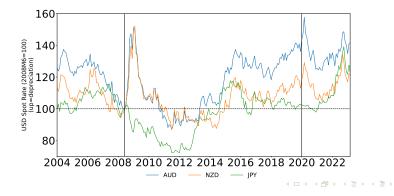
May, 2023

The views expressed are those of the authors and do not necessarily represent those of the Bank's Governing Council. The content is not related to the economic outlook or the direction of monetary policy.

Currency Risk Premia

Carry trade/UIP deviations can be motivated as risk premia (Lustig & Verdelhan 2007)

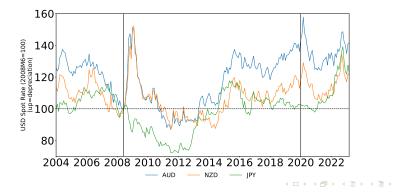
The Yen (JPY) appreciates in global "bad times"



Currency Risk Premia

Carry trade/UIP deviations can be motivated as risk premia (Lustig & Verdelhan 2007)

- The Yen (JPY) appreciates in global "bad times"
- o The New Zealand Dollar (NZD) depreciates in global "bad times"



Currency Risk Premia

Carry trade/UIP deviations can be motivated as risk premia (Lustig & Verdelhan 2007)

- o The Yen (JPY) appreciates in global "bad times"
- o The New Zealand Dollar (NZD) *depreciates* in global "bad times"
- $\diamond~$ For an investor in Hong Kong: Safe JPY Assets \succ Safe NZD assets
- Yields on safe JPY assets < yields on safe NZD assets

Understanding this:

 Under log-normality of SDFs (Mⁱ) and real exchange rates (Q^j_i): (Engel, 2014 Handbook Chapter)

$$\lambda_{i,t}^{j} \equiv \underbrace{r_{i,t} - r_{j,t} + \mathbb{E}\left[\Delta q_{i,t+1}^{j}\right]}_{\text{UIP gap}} = -\text{Cov}_{t}\left(\frac{m_{t+1}^{i} + m_{t+1}^{j}}{2}, \Delta q_{i,t+1}^{j}\right)$$

- ◇ $Cov(SDF, return_i return_j)$.
- Except pricing kernel is an average of each country's SDF.

Any macro/finance theory explaining carry trade needs to:

- ♦ Model global bad states $(m^i + m^j)$ ↑.
- Model which currencies appreciate and which depreciate in bad times $\Delta q_i^j \uparrow \downarrow$?.
- Key: global shocks (SDFs co-move) but asymmetric exposure (Δq_i^j changes)!

Previous work and our work:

$$\lambda_{i,t}^{j} = -\operatorname{Cov}_{t}\left(\frac{m_{t+1}^{i} + m_{t+1}^{j}}{2}, \Delta q_{i,t+1}^{j}\right)$$

Hassan (2013):

•

Motivation

Previous work and our work:

$$\lambda_{i,t}^{j} = -\operatorname{Cov}_{t}\left(\frac{m_{t+1}^{i} + m_{t+1}^{j}}{2}, \Delta q_{i,t+1}^{j}\right)$$

Hassan (2013):

◇ Large countries bid up the prices of global tradable goods: $m^{large} \uparrow \uparrow \rightarrow m^{i} \uparrow$.

Motivation

Previous work and our work:

$$\lambda_{i,t}^{j} = -\operatorname{Cov}_{t}\left(\frac{m_{t+1}^{i} + m_{t+1}^{j}}{2}, \Delta q_{i,t+1}^{j}\right)$$

Hassan (2013):

- ♦ Large countries bid up the prices of global tradable goods: $m^{large} \uparrow \uparrow \rightarrow m^{i} \uparrow$.
- ♦ Large countries most exposed to their own shocks: Δq_{large}^{j} ↑.

Motivation

Previous work and our work:

$$\lambda_{i,t}^{j} = -\operatorname{Cov}_{t}\left(\frac{m_{t+1}^{i} + m_{t+1}^{j}}{2}, \Delta q_{i,t+1}^{j}\right)$$

Hassan (2013):

- ◇ Large countries bid up the prices of global tradable goods: $m^{large} \uparrow \uparrow \rightarrow m^i \uparrow$.
- ♦ Large countries most exposed to their own shocks: Δq_{large}^{j} ↑.
- Large countries' assets are the best hedge to "global" risk.

Motivation

Previous work and our work:

$$\lambda_{i,t}^{j} = -\operatorname{Cov}_{t}\left(\frac{m_{t+1}^{i} + m_{t+1}^{j}}{2}, \Delta q_{i,t+1}^{j}\right)$$

Hassan (2013):

- ♦ Large countries bid up the prices of global tradable goods: $m^{large} \uparrow \uparrow \rightarrow m^i \uparrow$.
- ♦ Large countries most exposed to their own shocks: Δq_{large}^{j} ↑.
- Large countries' assets are the best hedge to "global" risk.

Ready, Roussanov, and Ward (2017), Richmond (2019):

- Countries producing downstream/final goods have more global influence.
- Global Production Networks: Central countries have out-sized influence.

Motivation

Previous work and our work:

$$\lambda_{i,t}^{j} = -\operatorname{Cov}_{t}\left(\frac{m_{t+1}^{i} + m_{t+1}^{j}}{2}, \Delta q_{i,t+1}^{j}\right)$$

Hassan (2013):

- ♦ Large countries bid up the prices of global tradable goods: $m^{large} \uparrow \uparrow \rightarrow m^i \uparrow$.
- ♦ Large countries most exposed to their own shocks: Δq_{large}^{j} ↑.
- Large countries' assets are the best hedge to "global" risk.

Ready, Roussanov, and Ward (2017), Richmond (2019):

- Countries producing downstream/final goods have more global influence.
- Global Production Networks: Central countries have out-sized influence.

This paper: Currency composition of global trade (Goldberg & Tille, 2008...)

Previous work and our work:

$$\lambda_{i,t}^{j} = -\operatorname{Cov}_{t}\left(\frac{m_{t+1}^{i} + m_{t+1}^{j}}{2}, \Delta q_{i,t+1}^{j}\right)$$

Hassan (2013):

- ♦ Large countries bid up the prices of global tradable goods: $m^{large} \uparrow \uparrow \rightarrow m^i \uparrow$.
- ♦ Large countries most exposed to their own shocks: Δq_{large}^{j} ↑.
- Large countries' assets are the best hedge to "global" risk.

Ready, Roussanov, and Ward (2017), Richmond (2019):

- Countries producing downstream/final goods have more global influence.
- Global Production Networks: Central countries have out-sized influence.

This paper: Currency composition of global trade (Goldberg & Tille, 2008...)

Dominance of the USD and Euro in global trade amplify US & Euro Area shocks.

Previous work and our work:

$$\lambda_{i,t}^{j} = -\operatorname{Cov}_{t}\left(\frac{m_{t+1}^{i} + m_{t+1}^{j}}{2}, \Delta q_{i,t+1}^{j}\right)$$

Hassan (2013):

- ♦ Large countries bid up the prices of global tradable goods: $m^{large} \uparrow \uparrow \rightarrow m^i \uparrow$.
- ♦ Large countries most exposed to their own shocks: Δq_{large}^{j} ↑.
- Large countries' assets are the best hedge to "global" risk.

Ready, Roussanov, and Ward (2017), Richmond (2019):

- Countries producing downstream/final goods have more global influence.
- Global Production Networks: Central countries have out-sized influence.

This paper: Currency composition of global trade (Goldberg & Tille, 2008...)

- Dominance of the USD and Euro in global trade amplify US & Euro Area shocks.
- ♦ Bad shock in US $m^{US} \uparrow$ = bad shock globally $m^i \uparrow$ and $\Delta q_{USD}^j \uparrow$.

What we do:

Model:

- Currency invoicing and bond pricing in a tractable multi-country model.
- ◊ *No financial frictions* : markets are complete.
- Trade frictions: prices are sticky bilaterally in an arbitrary currency.

Empirical: Link currency composition to

- 1. Bilateral consumption correlations.
- 2. Carry trade risk premia.

What we find:

Currency Concentration of Consumption (CCC) \rightarrow Carry trade risk premia

- $\diamond~$ US/EU/Japan consume largely in their own currencies \rightarrow low rates!
- ◊ US dominance in non-US trade less relevant for risk free rates.

Empirical Result #1: Bilateral consumption correlations

- Covariances of common currencies explain consumption correlations.
 - $_{\diamond}\,$ Even controlling for correlation with world consumption.
- Consistent with model mechanism

Empirical Result 2: Carry Trade Factors

- CCC can explain Forward/Spot spreads (measure of $r_i^{rf} r_{US}^{rf}$).
 - $_{\circ}~$ Even when controlling for size and centrality.
- Portfolio sorts on CCC show that it explains much of (unconditional) carry trade.

- Open-economy New-Keynesian model with N countries, 2 periods (t = 0, 1).
- Households have log-linear utility:

$$U^{k} = \log(C_{0}^{k}) - L_{0}^{k} + \beta E_{0} \left[\log(C_{1}^{k}) - L_{1}^{k} \right]$$

- Armington structure:
 - Cobb-Douglas aggregator: $C_t^k = \prod_{n=1}^N (C_{n,t}^k)^{\omega_n^k}$.
 - CRS production: $Y_t^k = \mathbf{Z}_t^k L_t^k$.
- o Price stickiness and invoicing currency:
 - Prices from origin *n* to destination *k* fully rigid in some currency *j*: $p_n^k = \bar{p}_n^j \times \mathcal{E}_j^k$ $(\bar{p}_n^j \text{ normalized to 1, } \mathcal{E}_i^k \equiv \text{nominal ER})$

- Open-economy New-Keynesian model with N countries, 2 periods (t = 0, 1).
- Households have log-linear utility:

$$U^{k} = \log(C_{0}^{k}) - L_{0}^{k} + \beta E_{0} \left[\log(C_{1}^{k}) - L_{1}^{k} \right].$$

- Armington structure:
 - Cobb-Douglas aggregator: $C_{t}^{k} = \prod_{n=1}^{N} (C_{n,t}^{k})^{\omega_{n}^{k}}$.
 - CRS production: $Y_t^k = Z_t^k L_t^k$.
- Price stickiness and invoicing currency:
 - Prices from origin *n* to destination *k* fully rigid in some currency *j*: $p_n^k = \bar{p}_n^j \times \mathcal{E}_j^k$ $(\bar{p}_n^j \text{ normalized to 1, } \mathcal{E}_j^k \equiv \text{nominal ER})$
 - Nests popular benchmarks: Producer Currency Pricing (PCP) — set $j = n \forall n$

- Open-economy New-Keynesian model with N countries, 2 periods (t = 0, 1).
- Households have log-linear utility:

$$U^{k} = \log(C_{0}^{k}) - L_{0}^{k} + \beta E_{0} \left[\log(C_{1}^{k}) - L_{1}^{k} \right].$$

- Armington structure:
 - Cobb-Douglas aggregator: $C_{t}^{k} = \prod_{n=1}^{N} (C_{n,t}^{k})^{\omega_{n}^{k}}$.
 - CRS production: $Y_t^k = Z_t^k L_t^k$.
- Price stickiness and invoicing currency:
 - Prices from origin *n* to destination *k* fully rigid in some currency *j*: $p_n^k = \bar{p}_n^j \times \mathcal{E}_j^k$ $(\bar{p}_n^j \text{ normalized to 1, } \mathcal{E}_j^k \equiv \text{nominal ER})$
 - Nests popular benchmarks: Local Currency Pricing (LCP) — set $j = k \forall k$

- Open-economy New-Keynesian model with N countries, 2 periods (t = 0, 1).
- Households have log-linear utility:

$$U^{k} = \log(C_{0}^{k}) - L_{0}^{k} + \beta E_{0} \left[\log(C_{1}^{k}) - L_{1}^{k} \right].$$

- Armington structure:
 - Cobb-Douglas aggregator: $C_t^k = \prod_{n=1}^N (C_{n,t}^k)^{\omega_n^k}$.
 - CRS production: $Y_t^k = \mathbf{Z}_t^k L_t^k$.
- o Price stickiness and invoicing currency:
 - Prices from origin *n* to destination *k* fully rigid in some currency *j*: $p_n^k = \bar{p}_n^j \times \mathcal{E}_j^k$ $(\bar{p}_n^j \text{ normalized to 1}, \mathcal{E}_j^k \equiv \text{nominal ER})$
 - Nests popular benchmarks:

Dominant Currency Pricing (DCP) — set
$$j = \begin{cases} d & \text{if } n \neq k \\ n & \text{if } n = k \end{cases}$$

- Open-economy New-Keynesian model with *N* countries, 2 periods (t = 0, 1).
- Households have log-linear utility:

$$U^{k} = \log(C_{0}^{k}) - L_{0}^{k} + \beta E_{0} \left[\log(C_{1}^{k}) - L_{1}^{k} \right]$$

- Armington structure:
 - Cobb-Douglas aggregator: $C_t^k = \prod_{n=1}^N (C_{n,t}^k)^{\omega_n^k}$.
 - CRS production: $Y_t^k = \mathbf{Z}_t^k L_t^k$.
- o Price stickiness and invoicing currency:
 - Prices from origin *n* to destination *k* fully rigid in some currency *j*: $p_n^k = \bar{p}_n^j \times \mathcal{E}_j^k$ (\bar{p}_n^j normalized to 1, $\mathcal{E}_j^k \equiv$ nominal ER)
 - Let
 ⁱ denote (exogenous) aggregate share of country k's consumption invoiced in currency j.
 k = ∑^N e^kt^k = (t^k) = (t^{k^k)} = (t^k) = (t^k) = (t^{k^k)} = (t^{k^k)} =

$$\gamma_j^k \equiv \sum_{n=1}^N \omega_n^k \mathbb{1}_{n,j}^k - (\mathbb{1}_{n,j}^k = 1 \text{ if trade from } n \text{ to } k \text{ is in currency } j)$$

- Open-economy New-Keynesian model with *N* countries, 2 periods (t = 0, 1).
- o Households have log-linear utility:

$$U^{k} = \log(C_{0}^{k}) - L_{0}^{k} + \beta E_{0} \left[\log(C_{1}^{k}) - L_{1}^{k} \right].$$

- Armington structure:
 - Cobb-Douglas aggregator: $C_t^k = \prod_{n=1}^N (C_{n,t}^k)^{\omega_n^k}$.
 - CRS production: $Y_t^k = \mathbf{Z}_t^k L_t^k$.
- o Price stickiness and invoicing currency:
 - Prices from origin *n* to destination *k* fully rigid in some currency *j*: $p_n^k = \bar{p}_n^j \times \mathcal{E}_j^k$ $(\bar{p}_n^j \text{ normalized to 1}, \mathcal{E}_i^k \equiv \text{nominal ER})$
 - Let
 i denote (exogenous) aggregate share of country *k*'s consumption invoiced in currency *j*.
- Financial markets are complete (payoffs in some nominal currency).
- Monetary policy stabilizes nominal marginal costs in each country.
 ロトイアトイネト・ミト 見当 のへの

Invoicing currencies & consumption risk

 Consumption growth between dates 0 and 1 given by

$$\Delta c_1^k = \sum_{j=1}^N \frac{\gamma_j^k z_1^j}{2}.$$

 ▷ Efficient allocation (or sticky prices with PCP), where Δc^k₁ = Σ^N_{i=1} ω^k_iz^j₁.

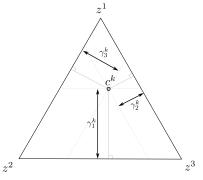


Figure: Consumption risk for country k.

Invoicing currencies & consumption risk

 Consumption growth between dates 0 and 1 given by

$$\Delta c_1^k = \sum_{j=1}^N \gamma_j^k z_1^j.$$

 ▷ Efficient allocation (or sticky prices with PCP), where Δc^k₁ = Σ^N_{i=1} ω^k_iz^j₁.

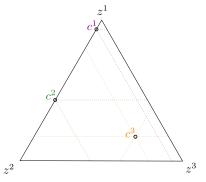
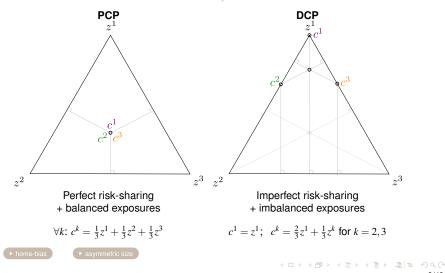


Figure: Equilbrium allocation of consumption risk.

Consumption risk exposures under PCP vs DCP

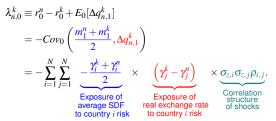
Illustration with 3 countries of symmetric size, no home bias (N = 3, $\omega_j^k = \theta_k = 1/3 \ \forall j, k$)



Log currency risk premium (UIP deviation) between countries *n* and *k*:

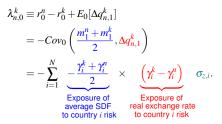
$$\begin{split} \lambda_{n,0}^{k} &\equiv r_{0}^{n} - r_{0}^{k} + E_{0}[\Delta q_{n,1}^{k}] \\ &= -Cov_{0}\left(\frac{m_{1}^{n} + m_{1}^{k}}{2}, \Delta q_{n,1}^{k}\right) \end{split}$$

Log currency risk premium (UIP deviation) between countries *n* and *k*:

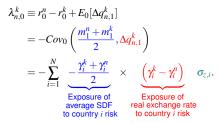


♦ To simplify: assume no correlation of shocks $\rho_{i,j} = \mathbb{1}_{i=j}$

Log currency risk premium (UIP deviation) between countries *n* and *k*:



Log currency risk premium (UIP deviation) between countries *n* and *k*:



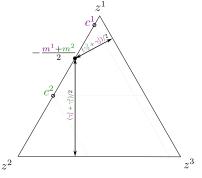
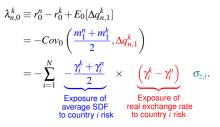


Figure: Determination of most relevant shock for a country pair.

Log currency risk premium (UIP deviation) between countries *n* and *k*:



 Lowest return on currency that is best hedge against most relevant shocks.

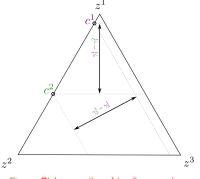
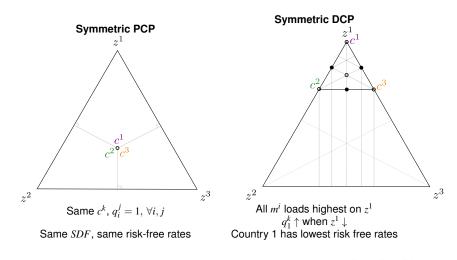


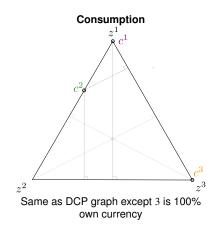
Figure: Risk properties of (real) currencies.

Risk premia under PCP/DCP

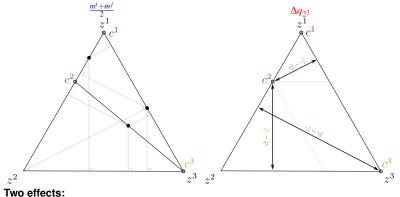
Illustration with 3 countries of symmetric size, no home bias (N = 3, $\omega_j^k = \theta_k = 1/3 \ \forall j, k$)



Final Example - Euro/Japan



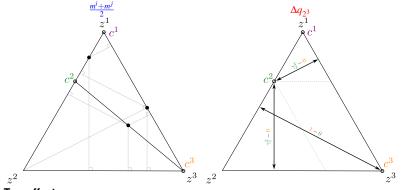
Final Example – Euro/Japan



I WO Effects:

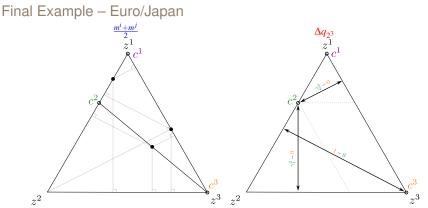
1. Pricing kernel $(m^2 + m^3)/2$ exposure to z^2 and z^3 are low

Final Example – Euro/Japan



Two effects:

- 1. Pricing kernel $(m^2 + m^3)/2$ exposure to z^2 and z^3 are low
- 2. Bilateral ReR Δq_2^3 very exposed to z^3 , some exposure to z^2



Two effects:

- 1. Pricing kernel $(m^2 + m^3)/2$ exposure to z^2 and z^3 are low
- 2. Bilateral ReR Δq_2^3 very exposed to z^3 , some exposure to z^2

End result:

 $\circ r^3 < r^2$ because country 3's invoicing currency "concentration" is higher

Measuring currency concentration in the data

Assuming i.i.d shocks across countries, currency risk premium simplifies to

$$\lambda_{n,0}^{k} \equiv r_{0}^{n} - r_{0}^{k} = \frac{\sigma_{z}^{2}}{2} \sum_{i=1}^{N} \left[\left(\gamma_{i}^{k} \right)^{2} - \left(\gamma_{i}^{n} \right)^{2} \right].$$

- ⇒ Testable prediction: Invoicing currency concentration of consumption (CCC) is a determinant of currency risk premia and return differences.
- ◊ Define our empirical CCC measure:

$$\boldsymbol{\xi_k} \equiv \sum_{i=1}^N (\boldsymbol{\gamma_i^k})^2$$

• Constructing ξ_k assuming *uncorrelated* $\{z^i\}$ *works against us* in empirical tests.

- Empricial Results

Data

Currency Invoice Shares

- From Boz, et al (2022). Time series from 1990-2020 (but very sparse coverage).
- o Data on share of imports in USD, Euros, Home Currency and "Other"
- Use Import/Consumption to convert to share of consumption

UIP Deviations and interest rate gaps

- Many countries don't have risk-free assets (default risk)
- ♦ But if CIP holds $r_{i,t}^{rf} r_{US,t}^{rf} \approx f_{US,t}^i s_{US,t}^i$ and $r_{Xi,t} = r_{i,t}^{rf} r_{US,t}^{rf} + \Delta s_{US,t+1}^i \approx f_{US,t}^{ij} s_{US,t+1}^{ij}$
- Source: Barclays and Reuters

Other data

- Size: NGDP shares
- Centrality: follow Richmond (2019) including data sources
- Real consumption: Sourced from Haver (aggregated from national accounts)

- Empricial Results

F

Evidence of link between invoicing shares and consumption growth

- Model predicts $\Delta c_t^k = \sum_{j=1}^N \gamma_j^k z_t^k$, and thus $Corr(\Delta c_t^k, \Delta c_t^i) \equiv \xi_{k,i} = \sum_{j=1}^N \gamma_j^k \gamma_j^i$
- ♦ Construct empirical measure as $\xi_{k,i} = \gamma_{USD}^k \gamma_{USD}^i + \gamma_{EUR}^k \gamma_{EUR}^i$

	(1)	(2)	(3)	(4)	(5)	(6)
Prod of size	12.26*** (4.60)				18.44*** (5.91)	
Prod of correlation with world cons.		-0.48*** (0.11)		0.0431 (0.10)		
Prod of cons. invoice shares $\xi_{k,i}$			0.33*** (0.027)	0.26*** (0.03)	0.28*** (0.03)	0.20* (0.10)
Prod of output invoice shares						0.15 (0.12)
Ν	351	351	351	351	351	351

Table: Consumption correlation regressions

and 1 percent level respectively.

- Empricial Results

Evidence of link between invoicing shares and return differential: regression

Test main model prediction by running panel regression

 $\log(F_{US,t}^{k}) - \log(S_{US,t}^{k}) = \delta_{t} + \beta \times \xi_{k,t} + \Gamma \text{controls}_{i,t} + \varepsilon_{k,t}$

Table: Forward spread regression

	Forward - Spot Rate					
	(1)	(2)	(3)	(4)	(5)	(6)
Size	-15.24*** (2.54)			-10.70*** (3.40)	-5.11 (3.64)	-6.89* (3.81)
Richmond (2019) centrality		-516.06* (75.00)		-245.45** (101.98)	-228.28** (101.15)	-222.66** (103.88)
Consumption Invoice Concentration $\xi_{k,t}$			-9.53*** (1.69)		-5.27*** (1.98)	-9.22*** (3.17)
Output Invoice Concentration						4.70* (2.56)
N	239	239	239	239	239	239
Time Fixed Effects	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Country Fixed Effects	×	×	×	×	×	×

and 1 percent level respectively.

- Empricial Results

Evidence of link between invoicing shares and return differential: portfolios

◦ Sort currencies into portfolios (Lustig and Verdelhan, 2007) using our model-based invoicing currency concentration measure $\xi_{i,t}$.

	Dispersed	2	3	Concentrated	DMC
Previous Concentration $\xi_{i,t-12}$					
mean	0.43	0.52	0.63	0.76	-0.33
Forward Spread $f_{US,t}^i - s_{US,t}^i$					
mean	3.59	3.54	2.20	-0.32	3.90
standard error	0.24	0.25	0.16	0.16	0.36
Excess Returns $rx_{US,t}^{i}$					
mean	2.91	3.36	1.63	0.36	2.54
standard deviation	10.19	11.29	9.80	9.83	8.14
standard error	2.31	2.55	2.22	2.23	1.85
Real Forward Spread					
mean	2.04	2.12	1.59	0.17	1.86
standard error	0.13	0.16	0.10	0.12	0.19
Sharpe Ratio					
mean	0.29	0.30	0.17	0.04	0.31
standard error	0.24	0.22	0.23	0.23	0.24

Table: Portfolios sorted on Currency Concentration

- Empricial Results

Evidence of link between invoicing shares and return differential: risk factors

- Denote by HML^{FX}_t and UHML^{FX}_t risk factors constructed by sorting portfolios using current forward spreads and average 1988-2001 forward spreads.
- Run time-series regressions:

$$(U)HML_{t}^{FX} = \alpha + \beta DMC_{t}^{FX} + \varepsilon_{t}.$$

	HML ^{FX} (1)	UHML ^{FX} (2)
α	5.39*** (1.67)	1.74 (1.41)
β on DMC	0.32*** (0.07)	0.51*** (0.08)
N Adjusted R ²	233 0.14	180 0.21

Table: Explanatory Regressions for Benchmark Risk Factors

- Empricial Results

Conclusion

- Present multi-country sticky price model indicating that countries with more concentrated invoicing currency structures should face lower risk free rates.
- o Provide empirical support for:
 - mechanism relying on influence of invoicing currencies onto consumption risk exposures,
 - effect of currency concentration on return differentials and carry trade.

Implications:

- \diamond USD Trade dominance \rightarrow financial advantage of US even with complete markets.
 - Gopinath & Stein (2021) generated with with financial frictions.

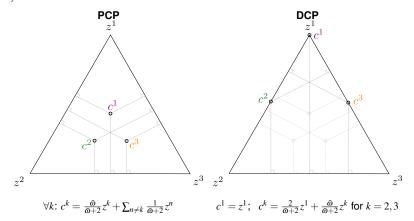
What we're working on:

- Currency Areas could be thought of as a mechanism to reduce risk-free rates.
- Same as Exchange rate pegs (Hassan, Mertens and Zhang, 2022).

- Back-up slides

Consumption risk exposures under PCP vs DCP with home bias

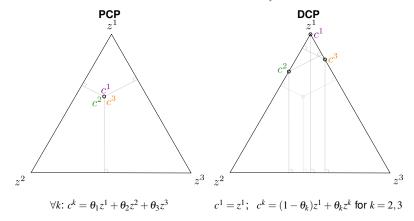
3 countries of symmetric size & home bias (N = 3, $\theta_k = 1/3$, $\omega_k^k = \tilde{\omega}/(\tilde{\omega}+2)$, $\omega_i^k = 1/(\tilde{\omega}+2)$, $\forall j \neq k$, $\tilde{\omega} > 1$)



- Back-up slides

Consumption risk exposures under PCP vs DCP with asymmetric size

3 countries of **asymmetric size**, no home bias (N = 3, $\omega_j^k = \theta_k \forall j, k$)



Back-up slides

Carry Trade Factor (HML)

Table: Portfolios sorted on Current Forward	Spread $f_{i,t-1} - s_{i,t-1}$	
---	--------------------------------	--

	Low	2	3	High	HML ^{FX}
Average Forward Spread $f_{US,t-1}^i - s_{US,t-1}^i$					
mean	-1.56	0.31	2.00	6.52	8.08
Forward Spread $f_{US,t}^i - s_{US,t}^i$					
mean	-1.35	0.38	2.01	6.18	7.52
standard error	0.08	0.09	0.08	0.12	0.13
Excess Returns rx ⁱ _{US,t}					
mean	-2.06	-0.51	2.99	3.36	5.41
standard deviation	6.22	5.84	7.40	9.02	7.14
standard error	1.16	1.09	1.38	1.67	1.32
Sharpe Ratio					
mean	-0.33	-0.09	0.040	0.37	0.76
standard error	0.19	0.19	0.19	0.19	0.20

back

Back-up slides

Unconditional Carry Trade Factor (UHML)

Table: Portfolios sorted on Average Forward Spread (1988-2001)

	Low	2	3	High	UHML ^{FX}
Average Forward Spread (1988-2001)					
mean	-1.24	0.66	2.24	8.13	9.37
Forward Spread $f_{US,t}^i - s_{US,t}^i$					
mean	-0.42	0.36	1.16	2.95	3.37
standard error	0.07	0.17	0.10	0.10	0.09
Excess Return rx ⁱ _{US,t}					
mean	0.48	1.11	2.07	2.79	2.31
standard deviation	5.58	2.65	9.79	9.84	6.55
standard error	1.46	0.69	2.55	2.54	1.69
Sharpe Ratio					
mean	0.09	0.42	0.21	0.28	0.35
standard error	0.26	0.26	0.27	0.27	0.27

back

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

22/18