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Abstract

We examine the relationship between MIDAS regressions and the Kalman filter when
forecasting with mixed frequency data. In general, state space models involve a system of
equations, whereas MIDAS regressions involve a single equation. As a consequence, MIDAS
regressions might be less efficient, but could also be less prone to parameter estimation error
and/or specification errors. We examine how MIDAS regressions and Kalman filters match up
under ideal circumstances, that is in population, and in cases where all the stochastic processes
- low and high frequency - are correctly specified. We characterize cases where the MIDAS
regression exactly replicates the steady state Kalman filter weights. We compare MIDAS and
Kalman filter forecasts in population where the state space model is mis-specified. We also
compare MIDAS and Kalman filter forecasts in small samples. The paper concludes with an
empirical application. Overall we find that the MIDAS and Kalman filter methods give similar
forecasts. In most cases, the Kalman filter is a bit more accurate, but it is also computationally

much more demanding.
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1 Introduction

Not all economic data are sampled at the same frequency. Financial data are readily available
on a (intra-)daily basis, whereas most macroeconomic data are sampled weekly, monthly,
quarterly or even annually. The literature has mainly addressed mixed frequency data in
the context of state space models by Harvey and Pierse (1984), Harvey (1989), Bernanke,
Gertler, and Watson (1997), Zadrozny (1990), Mariano and Murasawa (2003), Mittnik and
Zadrozny (2005), Aruoba, Diebold, and Scotti (2009), Ghysels and Wright (2009), Camacho
and Perez-Quiros (2010) and Kuzin, Marcellino, and Schumacher (2011), among others.
State space models consist of a system of two equations, a measurement equation which
links observed series to a latent state process, and a state equation which describes the
state process dynamics. The setup treats the low-frequency data as “missing data” and
the Kalman filter is a convenient computational device to extract the missing data. The
approach has many benefits, but also some drawbacks. State space models can be quite
involved, as one must explicitly specify a linear dynamic model for all the series involved: low-
frequency data series, latent low-frequency series treated as missing and the high-frequency
observed processes. The system of equations therefore can require a lot of parameters, for

the measurement equation, the state dynamics and their error processes.

Recently, some alternative approached have been proposed. One approach, considered by
Hamilton (2008) is to run an unrestricted regression of the low-frequency data on past
low- and high-frequency observations. Another approach to dealing with data sampled at
different frequencies has emerged in work by Ghysels, Santa-Clara, and Valkanov (2002),
Ghysels, Santa-Clara, and Valkanov (2006) and Andreou, Ghysels, and Kourtellos (2009)
using so called MIDAS, meaning Mi(xed) Da(ta) S(ampling), regressions] Recent work
has used the regressions in the context of constructing quarterly macro forecasts using
monthly data (see e.g. (see e.g. Armesto, Hernandez-Murillo, Owyang, and Piger (2009),
Clements and Galvao (2008), Clements and Galvao (2009), Galvao (2006), Monteforte and
Moretti (2009), Schumacher and Breitung (2008), Tay (2007)), or improving quarterly and
monthly macroeconomic predictions with daily financial data (see e.g. Andreou, Ghysels,
and Kourtellos (2008), Ghysels and Wright (2009), Hamilton (2008), Tay (2006)) ]

!The original work on MIDAS focused on volatility predictions, see e.g. Alper, Fendoglu, and Saltoglu
(2008), Chen and Ghysels (2011), Engle, Ghysels, and Sohn (2008), Forsberg and Ghysels (2006), Ghysels,
Santa-Clara, and Valkanov (2005), Ghysels, Santa-Clara, and Valkanov (2006), and Léon, Nave, and Rubio
(2007), among others.

2A user-friendly introduction to MIDAS regression models appears in Armesto et al. (2010).



Our objective in this paper is to compare MIDAS regressions and the Kalman filter as means
of forecasting the low-frequency time series. The MIDAS regression relates the low-frequency
time series that we wish to predict to observables at high and low frequencies. The steady
state Kalman gain, yields a similar linear projection rule. The purpose of this paper is to
examine the relationship between these two filters. The basic Kalman filter applies to linear
Gaussian systems and yields an optimal filter in population, provided that the parameters
are known and the state space model is correctly specified. There are extensions of the
Kalman filter for non-linear and non-Gaussian state space models (Durbin and Koopman
(2001)). These are again optimal, but only if the parameters are known and the model is
correctly specified. On the other hand, MIDAS regressions provide linear projections given
the (high- and low-frequency) regressors without specifying their data generating process.
MIDAS regressions cannot hope to do better than the Kalman filter if the state space model
is correctly specified and the parameters are known, but otherwise they could give better
forecasts of the low-frequency time series. As parameter uncertainty is important and model
mis-specification is inevitable, it is not clear whether MIDAS or state space models will

forecast the low-frequency data better in practice.

The Kalman filter also has the useful spinoff of providing high-frequency estimates of the
latent state variable. The focus of this paper is however more limited. We focus on using
information at mixed frequencies to predict the low-frequency time series. This prediction

can either be for the current period (nowcasting) or for future periods.

The first objective of this paper is to examine how MIDAS regressions and Kalman filters
match up under ideal circumstances, that is in population, and in cases where all the
stochastic processes — low- and high-frequency — are correctly specified by a linear
state space model. We give conditions under which the equivalence between the steady
state Kalman filter and MIDAS regression is ezact, in population. With mixed sampling
frequencies, the steady state Kalman filter has a periodic structure and under certain
conditions this maps exactly into a multiplicative MIDAS regression model considered by
Chen and Ghysels (2011) and Andreou, Ghysels, and Kourtellos (2008). This multiplicative
MIDAS regression consists of a parameter-driven aggregation of the high-frequency data,
combined with the low-frequency observations using an autoregressive distributed lag (ADL)
model. We show that the multiplicative scheme exactly matches the steady state Kalman
gain that drives the state space model filter. Next, we compare the MIDAS regressions

and Kalman filter in population where the state space model is correctly specified, but the



conditions for the MIDAS regression and Kalman filter to be equivalent do not apply. For
those cases, we compute the approximation error, either in terms of forecast mean square
errors or in terms of differences in filter weights, and we find that the approximation errors,
regardless of the metric chosen, are very small. We also examine how MIDAS regressions
perform in comparison to the Kalman filter in population, when the state space model is mis-
specified. We find that the population mean square prediction error using the two forecasting
methods is very similar in many cases, but in other cases, the Kalman filter model does better

despite being mis-specified.

In a small-sample Monte-Carlo simulation, we compare the out-of-sample forecasting
properties of predictions from MIDAS regressions with those from the Kalman filter, both
in cases where the state-space model is correctly specified, and where it is mis-specified.
The two forecasting methods generally behave similarly. The Kalman filter typically gives
more accurate forecasts, but there are also cases in which MIDAS regressions give better

small-sample predictions.

Finally, the paper concludes with an empirical study similar to that of Kuzin, Marcellino,and
Schumacher (2011), except that we compare the MIDAS forecasts to Kalman filter forecasts,
rather than to forecasts from the mixed-frequency VAR of Zadrozny (1990) (the latter is
a VAR in high-frequency data using temporally disaggregated counterparts of the low-
frequency time series). We find the discrepancies between MIDAS and Kalman filter forecasts

to be small—with MIDAS performing a bit better in some cases, and a bit worse in others.

Our overall finding is that MIDAS and the Kalman filter generally deliver comparable
forecasts. This is true in term of the population filter weights, in small-sample Monte-Carlo
simulations, and in our empirical study. In most cases, the Kalman filter gives forecasts
that are a bit more accurate, but there are also cases in which MIDAS regressions give
better predictions. In guiding the choice of researchers as to which to use, it is however
important to note that estimating Kalman filter specifications with large number of series
can be numerically quite involved, whereas MIDAS estimation involves only a nonlinear
least squares regression and can be computationally a good bit easier. For example, Aruoba,
Diebold and Scotti (2009) construct a useful and widely-followed Business Conditions Index
published in real time by the Federal Reserve Bank of Philadelphia. The index uses the
Kalman filter with data sampled at mixed frequencies, but is limited to six series (weekly
initial jobless claims; monthly payroll employment, industrial production, personal income

less transfer payments, manufacturing and trade sales; and quarterly real GDP). In contrast,



Andreou, Ghysels, and Kourtellos (2008) compute macroeconomic forecasts with MIDAS
regressions using close to a hundred daily financial series which they combine via forecast
combinations. This is a fairly straightforward exercise with MIDAS regressions, but would

be computationally challenging with a fully specified state space model.

The remainder of this paper is organized as follows. In section |2, we introduce the state space
model of Nunes (2005) and derive its relationship with MIDAS regressions. In this section
we characterize cases where the MIDAS regression is an exact reduced form representation
of the steady state Kalman filter. Section [3| computes measures of the discrepancy between
the Kalman filter and MIDAS regressions in cases where the state space model is correctly
specified and the MIDAS regression is only an approximation to the Kalman filter. This
section also considers cases in which the state space model is mis-specified, and reports
some small-sample simulation results. Section |4] contains the empirical work, and section

concludes.

2 State space models and MIDAS regressions

We consider a dynamic factor model:

p
Ft-‘rj/m = Z@lFt-‘r(j—l)/m—i_nt-i—j/m Vit = 17"'7T7 .] = 1,...,777, (21)
=1

where F; is a ny x 1 dimensional vector process and the matrices ®; are ny X ny, with

71, being an i.i.d. zero mean Gaussian error process with diagonal covariance matrix X, =

2
5,

errors, the above equation is a typical multi-factor model used for instance by Stock and

Watson (1989), Forni, Hallin, Lippi, and Reichlin (2000), Stock and Watson (2002), Bai and

Ng (2004), among others. In anticipation of the mixed frequency sampling scheme, we adopt

diag(o;,,i = 1,...,ny). Apart from the time scale and distributional assumption for the

a time scale expressed in a form that easily accommodates such mixtures. For example, with
m = 3 we will have monthly data sampled every quarter, or with m = 22 we will have daily

data sampled every month (approximating the number of business days in a month as 22).E]

3 Tt should be noted that for the purpose of simplicity we select a fixed number of days each month. In
practice this is of course not the case. Both the Kalman filter and MIDAS regressions can handle calendar
variation in the number of days (m periods). In the context of MIDAS regressions, an example is Francis,
Ghysels and Owyang (2011) who measure the impact of FOMC policy shocks on low frequency macro



The monthly/quarterly combination will be most relevant for the empirical application and

simulations in later sections, but for the purpose of generality we start with a generic setup.

We have two types of data: (1) time series sampled at a low frequency — every ¢, and
(2) time series sampled at high-frequency — every ¢ + j/m j = 1, ..., m. We will make
two convenient simplifications that depart from generality. First, we assume that there is
only one low-frequency process and call it y;. This is without loss of generality — if we
had multiple low-frequency time series, then the theory given below would apply to a vector-
valued 1, process, though the notation would be a bit more cumbersome. Moreover, focusing
on a single low-frequency series is the most common situation involving macroeconomic
forecasting of say quarterly GDP growth, or of inflation, etc., using a collection of higher
frequency (monthly/weekly/daily) series. Second, we consider the combination of only two
sampling frequencies. For example, we do not consider the combination of daily, monthly

and quarterly data.

The high-frequency data, denoted x; ¢, j/m for i =2, ..., n, relates to the factors as follows:
Tiprj/m = YViFitjm + Uit j/m 1=2,...,n Vit j=1,....,m (2.2)

where {~,} are ny x 1 vectors and:
di( L™ Ui gipm = €iprgpm (L™ =1 —dyLY™ — . —dy L™ Vi (2.3)

where the lag operator L'™ applies to high-frequency data, i.e. LY™u;; = ;4 1/m, and

2

2 and are mutually independent. If

the es are i.i.d. normal with mean zero and variance o
the low-frequency process were observed at high-frequency, it would similarly relate to the

factors as follows:

Viosim = VFegim+ i VG =1o.m (2.4

with 1 44;/m having an AR(k) representation as in (2.3), denoting y* as the process which
is not directly observed. The observed low-frequency process y relates to the y* via a linear

aggregation scheme:
ytc—l,-j/m = ‘I’jyf+(j—1)/m + ejy;-j/m (2.5)

where y, is equal to yy for integer ¢, and is not observed otherwise. The above scheme, also

variables - where the FOMC meetings occur on different days of the month.



used by Harvey (1989) and Nunes (2005), covers both stock and flow aggregation, and yf
is a cumulator variable. We henceforth consider the case of stock variable only (setting ¥,
= 1for j # 0, m, 2m, ... and zero otherwise and 6; = 1 for j = 0, m, 2m, ... and zero
otherwise). However, if we were instead to pick ¥; =1 5 # 0, m, 2m, ... and zero otherwise

with 6, = 1/m V j, then this would correspond to a flow variable.

2.1 Periodic Data Structure and Steady State Predictions

The purpose of this subsection is to derive a steady state Kalman filtering formula that will
be used in the next subsections for comparisons with MIDAS regressions. The material in

this section is general and uses some derivations that appear in Assimakis and Adam (2009).

The above equations yield a periodic state space model with measurement equation:

Yg = (?Jn Loty .- 7xn,t)/ j =m
Y! =Zjayj/m { (2.6)
Yi = ($2,t+j/m7 HE axn,tJrj/m)/ 1 S ] S m— 1
where
71
7 7/2 Onxnf(pfl) In Onxn(kfl)

'7/

v

Zj = : O(n—l)xnf(p—l) L O(n—l)xn(k—l)
,7/

for 1 < 5 < m - 1 and state vector

o / / ! / !
Qrjm = ( thifmo s Ep(Gopn) fms Wejfms - - ,uH(j,kH)/m)

where Wyj/m = (Uiatj/m,- - Unttj/m) > and I,y is a matrix of size (n — 1) x n, that

corresponds to the identity matrix I,, with the top row removed.



The transition equation is:

Qrjjm = GOt (1) fm + Ry j/m (2.7)
where
@1 c. (Pp—l (I)p Onfx(kfl)n Onfxn
G — I(p—l)nf O(p—l)nfxnf O(p—l)nfx(k:—l)n O(p—l)nfxn
Onx(p—l)nf Onxnf Dl cee Dkfl Dk
OG—1ynx(p-1)n;  O@—1)nxn; | P O(k—1)nxn
Inf Oann
R — O(pfl)nfxnf O(pfl)nfxn
On><nf I,

On(lc—l)xnf On(k—l)xn
D; = diag(d;;,l =1,...,n) and Coriym = (771/t+j/m’ E1t4j/m> -+ Engti/m) - Let B¢ denote the

variance-covariance matrix of ¢, /..

The above state space model is periodic as it cycles to the data release pattern that repeats
itself every m periods. Such systems have a (periodic) steady state (see e.g. Assimakis and
Adam (2009)). If we let P;;_1 denote the steady state covariance matrix of o j/mi+(j—1)/m

then the equations:

PjJrlU - RECR, —|— GPJ‘jflG/ - GPﬂj,lZ;[Z]PJU,lZ;]_lZJPJ‘J,lG, ] - ]_, N 1
Pl\m - RECR, + GPm‘mflG/ - GPm|m71Z;n[Zum|m71Z;n]_1Zum\mflG/ (28)

must be satisfied and Pjj;_1 = Pjmjtm-1, V j. The periodic steady state Kalman gain is

therefore:
K1 =Py, 1 Z)[Z; P, . Z)] (2.9)

with Kjj;_1 = Kjpmj—14m, V J. When we define the extraction of the state vector as:
A —
S(irjfm(t+i/m) = Blotym| YT, YT LY Y2 Y2,

the filtered states are:

E(t4 )| (45 /m) = Aglj—16 (e (—1) fm) (14 (—1) fm) + K1 YT (2.10)



where A]|J—1 =G — K]|]_1ZJG and Y;n = Y?Jrl, with Aj|j—1 = Al\m fOI'j = 1.

Suppose we are interested in predicting at low-frequency intervals only, namely & i), for

k integer valued, using all available low and high-frequency data. First we note that:

m k
i k) = (AT Gy + > Y APTFIAT Ky Y (2.11)

i=1 j=1

where

3 AjictAiyia. Ay 127
Al = {

I 1< ]
Expression can be obtained via straightforward algebra — see Assimakis and Adam
(2009). If all eigenvalues of G lie inside the unit circle, then all the eigenvalues of Aj;_4, j
=1,...,m- 1, are also inside the unit circle, as are the eigenvalues of the product matrices
{A;} (see again Assimakis and Adam). This implies that we can iterate backwards

to give:

Yt—j
ae = SN TATVAT Ky Yi = S AT K |
iy — :
J -
oo m—1 T2t—1—j+i/m
+2 PPATL K : (2.12)
j=0 i=1

Tnt—1—j+i/m

from which forecasts can easily be constructed as E:[y;n| = Zim 1 Gmhdt|t, where Z,, 1 denotes

the first row of the matrix Z,,.

2.2 Using only High-Frequency Data and the DL-MIDAS
Regression Model

Suppose for the moment that we discard the observations of low-frequency data and only
consider projections on high-frequency data. The purpose of this subsection is to show that

this yields a linear projection linked to a standard steady state (aperiodic) Kalman gain



and that this projection has a reduced form representation that maps into what Andreou,
Ghysels, and Kourtellos (2008) called a Distributed Lag MIDAS (DL-MIDAS) regression.

Unlike the previous subsection, we will first start with a simple example to illustrate the
main finding and then we will cover the general case. In particular, let us consider a single

factor AR(1) model, instead of the general case in equation ([2.1]), namely:

ft-‘rj/m :Pft+(j—1)/m+77t+j/m Vt = 17"'7T7 ] = 17"‘am (213)

where 7 is white noise with variance 0,2, and there is only a single high-frequency series related
to the latent factor:

Ttyj/m = ft+j/m + U2 ttj/m vt Jj=1...,m (2~14)

instead of equation ([2.2)), and we also set the slope coefficient equal to one and assume that
2

T

Ugs4j/m in the above equation is white noise with variance o

While it is still the case that:
Y = fi +uy vt (2.15)

where u; + is white noise with variance 05, we assume in this subsection that this measurement

is not taken into account. Hence, we compute:
E [yt+h|ItHF} = thfﬂt (2.16)

where IFF is the high-frequency data set of past s available at time ¢ and ft‘t is the filtered
estimate of the factor conditional on that information set. Let s be the steady state Kalman

gain so that ft|t = (p— p/i)ft_l/m|t_1/m + ka;. This implies that:
E [yenl 177 = p™6 > (0= pr) 20 j/m (2.17)
=0

Note that « is a function of all the underlying state space parameters. We have deliberately
reduced those parameters to a small number by assuming slopes equal to one and assuming

that all measurement noise is uncorrelated. What is left are two variances: 0'% and ai.

The above equation compares directly with a DL-MIDAS regression (again ignoring



intercepts):

K
Yern =B Y Wik jm+er (2.18)

5=0
where the weighting scheme adopted in Ghysels, Santa-Clara and Valkanov (2006) and
Andreou, Ghysels, and Kourtellos (2008), among others, is a two-parameter exponential

Almon lag polynomial:
exp{01] + 05°}

S exp{fij + 025}
Note that the weights are governed by two parameters and scaled such that they add up to

w;(0y,0,) = (2.19)

one, hence the presence of a slope parameter /3. In the special case of 65 = 0 and 6, = In(p—pk)
(assuming p > pk), the DL-MIDAS regression involves a weighting scheme identical to that
appearing in the conditional mean projection of the Kalman filter appearing in equation
, except truncated at lag K. Thus the DL-MIDAS regression provides an exact fit
for the linear projection emerging from the steady state Kalman filter for sufficiently large

lag-length K (assuming the remaining weights to be negligible).

Consider now the general case of the model with n variables and ny factors given by equations
(2.1)) - (2.5) with only the high-frequency data being used for forecasting. Let K denote the

steady state Kalman gain and:

Y2
7 = Zl = : O(n—l)xnf(p—l) Infl O(n—l)xn(k—l)
,7/
Then ([2.12)) reduces to
[’ IQ,t—j/m
by = p™ > (G — KZG)'K . (2.20)
§=0 Tnt—sj/m

and Eyfy.n] = ZmJGmhézt‘t, where Z,, ; denotes the first row of the matrix Z,,. This is not
exactly a MIDAS regression, but may be well approximated by one — a possibility to which

we will return in section B

Turning back to the single factor model considered in this subsection, as in equation ([2.15]),

but now assuming many high-frequency series all with uncorrelated measurement noise,

10



equation (2.20)) yields the following interesting result:

L2t—5/m

Utpht = th Z(P - @P)jK . (2.21)
j=0

Tnt—j/m
where ¢ is a scalar and the (1,1) element of the product KZ. We can write this more explicitly

as a forecast combination:

n

Ytrnjt = Z Pk Z p— o) Tisj/m (2.22)
7=0

=2
where K = (Ko, ..., Kp).

The above Kalman filter-based prediction can be thought of (in population) as a forecast

combination specification, in which the forecast using the ith predictor is given weight

mh

p
are available. The use of forecast combinations generated by MIDAS regressions is in fact

;. This is interesting as typically large cross-sections of (financial) high-frequency data

advocated by Andreou, Ghysels, and Kourtellos (2008), as one way to handle large cross-
sections of daily financial variables. It is interesting to note that (1) the weights relate to
the Kalman filter gains and (2) the MIDAS regression polynomials across individual series
are constrained to have the same decay profile determined by p — pp. Hence, here again,
the DL-MIDAS involving exponential Almon lags provides an exact mapping with #, =
0 and 6; = In(p — py). The common decay across high-frequency series is of course not
imposed in a forecast combination setting—which therefore results in estimation efficiency
losses since the DL-MIDAS regressions are estimated with each individual high-frequency
series separately. The forecast combination scheme in equation is reminiscent of the
seminal work by Bates and Granger (1969) who advocated forecast combination method
based on variance/covariance properties of forecast errorsﬁ It is also worth noting that the
above result no longer holds when the individual series involve autocorrelated measurement

noise, as in equation (2.3). Here again, DL-MIDAS will provide only an approximation.

4There is a substantial literature on forecast combinations - see Timmermann (2006) for an excellent
recent survey of forecast combination methods.

11



2.3 Using Both Low- and High-Frequency Data and the ADL-
MIDAS Regression Model

We will start again with the simple example appearing in the previous subsection, yet
this time we also take into account past low-frequency measurements of y. For the sake
of simplicity we consider the quarterly/monthly data combination (m = 3). Hence, we are
interested in for instance F [ytJrh\ItM } , where IM is the mixed data set of past low (quarterly)
and high (monthly) frequency data, instead of the linear projection only involving high-
frequency data as in equation . In the latter case we obtained a standard (aperiodic)
steady state equation driving the linear projection. Here, however, we deal with a periodic
Kalman filter as in subsection applied to the model consisting of equations ,
and ([2.15)). Then the periodic Kalman gain matrices are:

K1 Ko R3,1 K32
Kg‘l = * ,K3|2 = * and K1|3 = * * y
* * * *

where “

x 7 denotes some element that does not need to be explicitly named. In addition,
let us write kK3 = K31 + Kz2. The state vector is ouij/m = (fitj/m, Ut t4j/ms U2,45/m) s and

we have

I
S O
o o o
o o o

and the first rows of the matrices A3, A3 and A3 are ((p — pr1)(p — pr2)(p — prs), 0, ...0),

((p — pra)(p — pK3),0,...0) and (p — pks,0,...0), respectively. From equation (2.12)) it then
follows that:

E [yt+h|ftM] = pghft\t = Pghff:a,l Zﬁj?/t—j + Zﬁjxwx}t—j (2.23)
j=0 j=0

where ¥ = [(p — pr1)(p — pr2)(p — prs3)], and

2(0,): = [K32 + (p — prs)kaLl® + (p — prs)(p — pra) ki L] (2.24)

12



which is a parameter-driven low-frequency process composed of high-frequency data

aggregated at the quarterly level.

The above equation relates to the multiplicative MIDAS regression models considered by
Chen and Ghysels (2011) and Andreou, Ghysels, and Kourtellos (2008). In particular
consider the following ADL-MIDAS regression:

K, K,
Yien = By D w0y + B Y wi(01)(03)ij + vy (2.25)
=0 j=0

where w;(6,), w;(6!) follow an exponential Almon scheme and

3

2(02)0 = 3 w02 L™, (2:26)
0

i

also follows an exponential Almon scheme. Provided that p > 0, equations (2.23)) and (2.24))
are a special case of this model with K, = K, = oo, w;(6,) o exp(log(9)j), w;(6}) o
exp(log(1)j) and wy(03) oc exp(62 1k + 02 ,k?) where 67, and 62 , are parameters that solve

the equations

log{(p — prs)ka/Ka2} = 992@,1 + 992;,2

log{(p — prs)(p — pr2)k1/kKs2} = 205, + 462,

This constructed low-frequency regressor is estimated jointly with the other (MIDAS)
regression parameters. Hence, one can view x(62), as the best aggregator that yields the
best prediction. This ADL-MIDAS regression involves more parameters than the usual
specification involving only one polynomial. The multiplicative specification was originally
suggested in Chen and Ghysels (2011) to handle seasonal patterns (in their case the intra-
daily seasonal of volatility patterns). Comparing equations and again yields an
exact mapping, if p > 0.

Similar to the previous subsection, let us also consider the case of multiple high-frequency

series. Then the periodic structure of the Kalman gain becomes:

Kig -+ Rin K22 -+ Ran k31 -+ K3n
K2‘1: * * ,K3|2: * * andK1|3: * * s
% ... %k % ... %k %k o .. %

13



where again “x” denotes some element that does not need to be explicitly named. Moreover,
we also denote #; = Y7, #;j for i = 1,2 and k3 = > " K3 ;. Algebraic derivations similar

to the single high-frequency series case yield:

E [yeenl IM] = 0™ fre = p*ksa Zﬁjyt—j + ™ Z Z P 2(0;2)is- (2.27)
=0

i=2 j=0

with similar expressions for ¥ and x(6; ) ;. As in the previous case this is again reminiscent
of forecasting combinations — involving ADL-MIDAS regressions. In fact, the empirical
applications appearing in Andreou, Ghysels, and Kourtellos (2008) actually involves such
regression models — rather than the DL-MIDAS discussed before[] Note again that the
low-frequency decay patterns are identical across the different within-period-aggregated high-
frequency series x(6; ;); ;. This means that estimating ADL-MIDAS regressions one at a time
— as is typical in forecast combination settings — involves efficiency losses compared to the

systems-based Kalman filter.

Finally, it should also be noted that the appearance of an aggregator series z(6,);; is not
restricted to cases where m = 3. Indeed, it is straightforward to show that the within-period

aggregation scheme applies to any sampling frequency combination.

3 Approximation and Specification Errors

From the previous section we know that the mapping between the Kalman filter and MIDAS
regressions can be exact. We now analyze cases where the MIDAS regression is instead only
an approximation. The purpose of this section is to assess the accuracy of a population

approximation to the Kalman filter obtained from a MIDAS regression.

We will focus on two cases where MIDAS regressions do not yield an exact mapping with
the Kalman filter. A subsection is devoted to each case. The first is a one-factor state
space model with measurement errors that are serially correlated over time. The second is

a two-factor state space model. The final subsection covers specification errors.

5The appearance is perhaps not so direct — recall however that in the ADL-MIDAS we force the weights
of x(6; )¢, to add up to one for the purpose of identification. This means that a weight is attached in
front of the MIDAS polynomial proper to each individual series. These weights can be viewed as forecast
combination weights - yet they do not relate in any straightforward manner to the Bates and Granger scheme
discussed earlier.
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3.1 One-Factor State Space Model versus MIDAS

We start again with the example of a single factor AR(1) model in equation (2.13|) with a
single high-frequency series appearing in Section[2.2] But now we allow for persistence in the
measurement errors, and use both high- and low-frequency data for forecasting. We again
consider the quarterly-monthly data combination (m = 3), without loss of generality. This
yields (Vtand j =1, ..., m):

ferjym = plerG-1)/m + Metj/m

yt*+j/m = NSrj/m T ULtrim
Tirjm = Yofirjim T U24i/m (3.1)
where
Ui t4j5/m — diui,t+(jfl)/m = €it4+j/m 1=1,2. (3-2)

Then the periodic Kalman gain matrices are:

1 2 3 3
K1 K1 Ki1 Rig

_ 1 _ 2 _ 3 3
Ky = Ky | Kz = ky | and Kyj3 = Ko1 Koo
K3 K3 K31 Kio

The state vector is ot j/m = (fi4j/ms Ut ,t4j/m> U244j/m) and we have

p 0 0
G - O dl O 3
0 0 d

zjz(ay2 0 1) 1<j<m-—1

1
z (710
v 01

Correspondingly, since Aj;-1 = G — K;;_1Z;G, we can compute Ay, Azp and Ay
appearing respectively in equations through in Appendix . Using these matrices
we can compute the Kalman filter equation for A-quarter-ahead prediction, a long expression
appearing in equation also in Appendix . To simplify notation, write the Kalman
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filter prediction as:

EKF yt+h|I Zwy] Yi—j +ZUJ - Li— —j/m (33)

and the corresponding MIDAS regression as:

=i

EMds yt+h|l %dsyt -7 + Zw%dsxt —j/m (34)
j=0 =0

We will consider two types of MIDAS regression specifications, both relate to the above
regression as follows: a multiplicative scheme referring to the ADL-MIDAS regression
appearing in equation (2.25) with K, = K, = K, and a ‘regular” MIDAS regression which
does not involve the aggregator scheme, but instead has a single polynomial specification for

the high-frequency data, namely:

Yt+h = ﬁy Z wj yt J + /8&7 Z w] xt —j/m + Et+h (35)

where w;(0,) and w;(f,) are both distributed lags of the form of equation (2.19).

will compare the models using two criteria. The first is the prediction error minimization.
Assuming that the Kalman Filter weights are negligible beyond lag length K, let >4y denote
the variance-covariance matrix of &, = (xt-l-hvyz(+h’xt+h*1/m’y:+h71/m7 Tk, Y; )5 the

elements of which are as follows:

. i} p‘z ]|a d‘f_jlaz
Cov(Yi i jms Ui ym) = Vi - L+ =&
i—j] li=7] 2
5P o2 Ao
Cov(Ty—ifm, Tr—j/m) = Vs 11— 77 12_ dg
li—jl 52
« p-o
Oov(xt—i/m)yt—j/m> =Ny 277
—p
for i,j = —3h,—3h+1,-3h +2,...,3K, where a = Var(n), 02 = Var(ey,) and o2 =

Var(egy). Then, the h-quarter-ahead Kalman Filter prediction error can be written as w'y p&,
where the vector of weights wxp is shown at the end of Appendix [A] and the variance of

the prediction error is w3, wxp. Similarly, the corresponding MIDAS prediction error
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variance is w'y; 3., Wards, With wygs also at the end of the aforementioned Appendix.

We choose the MIDAS parameters to minimize the variance of prediction errors, that is:
min w/MdsExwads (36)

It will be convenient to report the results in relative terms, namely the ratio of prediction

error variances (we will refer to as PE distance):

/
wKFEacwaF

3.7

w?wdszzwads ( )
with the MIDAS parameters minimizing ({3.6) and the Kalman filter weights maximizing the
likelihood function. An alternative measure that we also consider is the minimized value of

an L2 distance between the weights:

3K K
L7 = (wrf —we)’ + 3 (wy " —wy*)? (38)
j=0 5=0

Table [1] shows the minimized values of I.? comparing Kalman Filter and MIDAS regressions
(regular and multiplicative), with d = d; = ds, 73 = 72 = 1 and 072] = 05 = 02 = 1. Results
are shown for combinations of d and p, and the forecast horizons h = 1 (Panel A) and 4
(Panel B) quarters ahead. Both panels cover the monthly/quarterly sampling mix, i.e. m
= 3. Panels C and D cover the quarterly /weekly mix with m = 13H We do not actually
report the results for the prediction error distances as they are easy to summarize — for all
combinations of d and p, forecast horizon and sampling frequency combinations the MIDAS
and Kalman filter-based predictions are for all practical purposes identical, i.e. the value of

the PE distance is numerically extremely close to one.

For d = 0 and p > 0, the multiplicative MIDAS provides, by construction, a perfect fit
to the Kalman Filter, and so both distance measures are equal to zero. In contrast to the
multiplicative MIDAS, we do not expect the fit with the regular specification to be exact. Yet
the results in Table[I]show that the differences between the regular MIDAS and Kalman filter
weights are also negligible. For other combinations of d and p we occasionally observe some

significant differences. However, they are concentrated around the extreme values for either

6The comment in footnote [3| about fixed m applies here too, i.e. both Kalman filtering and MIDAS
regressions can handle time-varying weekly /quarterly calendar effects.
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d or p (-0.9 or 0.95). For all other entries to Table|1| the differences between MIDAS weights
and the Kalman filter ones are small. The multiplicative MIDAS specification generally yields
smaller errors than regular MIDAS. This is somewhat expected since the former provides
an exact match for some parameter combinations. It is also worth noting that the impact
of forecast horizon appears to be small, judging by the differences between h = 1 and 4 in
Table[T} In contrast, Panels C and D show that increasing m from 3 to 13 uniformly reduces
the L2 distances.

In Table[2] we turn to the forecast combination issue. Namely, consider the following system:

ft+j/m = Pft+(j—1)/m+77t+j/m

Yerjm = Nftrjm + Uitsj/m
Tit+i/m = 72ft+j/m + U2t 4j/m
Toppi/m = Veftrj/m + Ustri/m (3.9)

Hence, we have two high-frequency series and we examine cases where var(ultﬂ-/m) =
var(us q;/m) and cases where var(ugsyjm) = var(usy;/m)/10, which we call respectively
equal and unequal noise variance cases in the Table. We also vary m, namely Panels A and
B pertain to m = 3, while C and D cover m = 13. All four assume the forecast horizon
h = 1. The results in Table |2 indicate that forecast combinations with MIDAS regressions
work well and achieve the same weighting as the Kalman filter. We report again only the L2
distance measure results as the PFE distances are almost equal to one. Comparisons between
Tables [1|and [2| also allow us to appraise the effect of increasing the number of high-frequency
series. We note a slight deterioration of the L? distance as we add another high-frequency
series. Typically that effect seems negligible, though. Moreover, moving from m = 3 to 13

also improves the fit.
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3.2 Two-Factor State Space Model versus MIDAS

We also consider cases where the MIDAS regression is only an approximation. To do so, we

specify a two-factor state space model:

F o (fl,tJrj/m) P 0 (fl,t+(j1)/m) (771,t+j/m)
t+j/m — - +
Jo,44j/m 0 p) \SotrG-1)/m N2,t4j/m
y:_l,_j/m = YuSregm T 2 o m T UL m = '7/1Ft+j/m + UL 5 /m
Touvj/m = Verfrerim V22 orrim + Uairim = YoForim + U2 iiim (3.10)
where
Wity j/m — AUt (j—1)/m = €it+j/m 1=1,2 (3.11)

Then the periodic Kalman gain matrices are:

1 2 3 3
K1 K1 Ki1 Rig
1 2 3 3
K K K K
2 2 21 Ko
Kl\() = 1 ,K2|1 = 9 and K3|1 = 3 3 )
K K3 K31 HR3o
"@11 ’@21 ’“&,1 ”?1,2

: /
The state vector is ot j/m = (fie4j/m» f2,045/m, U145 /ms U2,t45/m) and we have

o O O
o O T O
S Qo O
QL O O O

Zj:<’Y2,1 Y22 0 1>1§j§m

10
7, = Y1 M2 j=0.
Yo Y22 0 1
Correspondingly, since Aj;_; = G — Kj;_1Z;G, we can compute again Ajjg, Ay and Ag)
appearing respectively in equations (B.1|) through (B.3]) in Appendix

E(yt—&-h’[tM) = E(’Yl,1f1,t+h+’71,2f2,t+h+U1,t+h\[tM)
= YA E(frd ) 4 Y1203 E(fo M) + di" E(uy | 1Y),
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and so we have:
E(yenl}') = ( Y1 yepdt dit 0 )dt|t

This gives a Kalman filter prediction that can be written as
o
Exp(yeinl ) Zwy] Yt—j + Zw;ﬁff%t—j/m
=0

As in the previous subsection, we can find the regular or multiplicative MIDAS
parameters using the objective functions given in equations (3.6) and (3.8)). In the two-

factor model that we consider, the elements of 3,,, the variance-covariance matrix of

(xtJrha yz(+h7 xt+h—1/m7 y;_h_l/m? sy TRy y:_[_{)la are as follows:
li—j] _2 li—3jl _2 li—3j] _2
« “ P1  Ona 9 P2 Ono dy oy
Cov(Y;sjm> Yi—jym) = N1, —"’+7 :

li—3jl _2 li—il 2 li—jl 2

P1 " Opa o P2 T 0n0 dy o
COV(Ttijms Tosjm) = 12y AL 4 ’ :
t—i/ t—j/ 2177 2 2,2 1- 2 1— &2

|Z j|02 |Z j|022

Cov(Te—ifm, Yi—jjm) = 271,172, 11_—+2’712’Y22 1_ 7

for i,j ==3h,—3h +1,-3h +2,...,3K, where 0}, = Var(ny), o, = Var(in), op =
Var(eis) and o2 = Var(eqy).

To save space, we do not report the results in a table, as they are quite similar to those
reported in Table (1 There are however a few differences with the results for the one-factor
case. First, for d = 0 and p > 0, multiplicative MIDAS is no longer a perfect fit to the
Kalman Filter. Yet, we find again that the fit is for all practical purposes identical as in the
one-factor case. This also applies to the regular MIDAS specification. Second, differences
between the multiplicative and regular specifications for the extremes in the parameter space
with regards to persistence in the factors and/or measurement errors, are smaller than in

the one-factor case considered in Table [1l

20



3.3 Specification Errors

All the models considered so far are correctly specified, and so the MIDAS regression cannot
hope to do better than the Kalman filter, in population at least. However, this is not true any
more if the state space model is mis-specified. Accordingly in this subsection, we consider the
case in which the Kalman filter weights are computed assuming that the data are generated
by a one-factor model, whereas in fact the data are generated by a two-factor model. The

MIDAS regressions are selected so as to approximate the data generating process minimizing

the objective functions (3.6)) or (3.8) with respect to a two-factor model.

More specifically, the mis-specified state space model in this case is that appearing in
equations (3.1) and (3.2). Hence, we let the six parameters p, 71, 72, and the three error
variances appearing in those equations determine how close a fit a one-factor model is to

the correctly specified two-factor model. We pick the MIDAS parameters also according to

either one of the objectives: (3.6)) or (3.8].

Table [3| compares the MIDAS regression with parameters chosen in and the Kalman
Filter in terms of PE distances (equation (3.7)). The structure of the table is similar to
that of Table , except that we report only results for the regular MIDAS (the results for
the multiplicative case are similar). The results tell us that mis-specified state space models
and MIDAS regressions generally perform roughly similarly, as many PF distances are close
to one. For extremes in the parameter space, either of the persistence of the factor (p), or
of the persistence of the measurement error (d), the Kalman filter performs better than the

MIDAS regression—despite being mis-specified (the PE distance being smaller than one).

In the next and last subsection we turn our attention to simulation results, in which we study
finite sample behavior via Monte-Carlo experiments. These will also be useful to examine

to what extent the findings we have reported so far also apply in a small-sample setting.

3.4 Monte Carlo Simulations

We consider three Monte-Carlo designs. The first specifies that the true data generating
process is a one-factor model given by equations and withy =y =1,dy =dy =
d, and where the errors {n.;/m} and {€; 1 /m} are all independent standard normal random
variables. In each Monte-Carlo simulation, we generate T' draws of the low-frequency series

{y:} and T'm draws of the high-frequency series ;. ;/,. We then consider forecasting v,y
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(h periods ahead, measured in the units of time of the low-frequency series) using three
different methods: least-squares estimation of the regular MIDAS regression, least-squares
estimation of the multiplicative MIDAS regression, and maximum-likelihood estimation of
the one-factor Kalman filter (a model that is correctly specified in this design). The sample
size is T' = 40 and we consider values of m equal to 3 (which we think of as quarterly-monthly

mixes).

Table [4] Panels A and B, reports the simulated root-mean-square prediction error (RMSPE)
from the Kalman filter, relative to the RMSPE from the two MIDAS regressions. Results are
shown for different values of d (persistence of the measurement error) and p (persistence of
the factor). All entries in Table [4| are a little below 1, indicating that the Kalman filter gives
slightly more accurate predictions than either MIDAS regression, uniformly in the parameter
space. As the Kalman filter is correctly specified in this design, it is not surprising that
maximum-likelihood estimation of this model gives the best forecasts. The magnitude of the

improvement from the Kalman filter is up to about 20 percent.

In the second Monte-Carlo design, the data generating process is a two-factor model given
by equations and where the errors {n; 1+ ;/m} and {€; 4+ ;/m} are all independent
standard normal random variables, with v;; = 0.9, 712 = 0.1, 727 = 0.1 and ;2 = 0.9.
As before, we consider forecasting ;. using three different methods: the regular MIDAS
regression, the multiplicative MIDAS regression, and maximum-likelihood estimation of the
one-factor Kalman filter. But notice that the one-factor state space model is now mis-
specified. The setup is therefore the small-sample analog of the asymptotic results for the

mis-specified case considered in Table 3] above.

Table [ Panels C and D, reports the simulated RMSPE from the Kalman filter relative to
the RMSPE from the two MIDAS regressions for T' = 40, m = 3 and for different values of d
and p. Most entries in panels C and D are a little below 1, indicating that the Kalman filter
again gives slightly more accurate predictions than either MIDAS regression. But for h = 1,
when d and p are of large absolute magnitude but opposite sign, the ratios of RMSPEs are
actually above 1, meaning that the MIDAS regressions (either regular or multiplicative) are
more accurate than the mis-specified one-factor Kalman filter. For example, with h =1, d =
—0.5 and p = 0.95, the regular MIDAS gives predictions that are 15 percent more accurate
(in RMSPE terms) than the Kalman filter. Thus the combination of a small sample with
mis-specification of the state space model can cause the MIDAS regression to give better

forecasts than the Kalman filter.
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In the third and final Monte-Carlo design, the data generating process is again the one-factor
model given by equations (3.1)) and with 74 = v = 1, dy = dy = d, and where the
errors {Ny;/m} and {€;;1;/m} are all independent standard normal random variables. The
MIDAS regressions are considered as above, but the Kalman filter is now applied to either
a one- or two-factor state space model, depending on which gives the higher value of the
Akaike Information Criterion (AIC) or Bayes Information Criterion (BIC). The simulation
design thus leaves open the possibility of the state space model being over-specified, which

may affect its performance in finite samples, although not in population.

Table[f|reports the simulated RMSPE from the Kalman filter relative to the RMSPE from the
two MIDAS regressions for T' = 40, m = 3 and for different values of d and p. Panels A and
C show the results using AIC (at one- and four-quarter forecasting horizons, respectively).
Because AIC has a tendency to overfit, it often selects the over-specified two-factor state
space model. This hurts the finite-sample forecasting performance of the state space model,
quite considerably in some cases. In the most extreme case, the state space model using
AIC gives a RMSPE that is 62 percent higher than the RMSPE from the regular MIDAS
regression. On the other hand, the BIC is more parsimonious, and nearly always correctly
picks the single-factor model. As a result, the forecasting performance of the Kalman filter
with BIC is a bit better than the predictive accuracy from either MIDAS regression, in

almost all the simulations considered here.

4 Empirical Study

As an illustration of the theoretical results in sections [2] and [3] we present an empirical
application to forecasting of U.S. GDP growth. In a first subsection we describe the data.

The results are discussed in a second subsection.

4.1 The Data

We use a dataset with mixed frequencies: monthly and quarterly. The quarterly variable
to be predicted is the growth rate of real GDP from 1959Q1 to 2009Q1. The explanatory
variables include nine monthly indicators until May 2009. In particular, we consider the term
spread (TERM), stock market returns (SP500), industrial production (IP), employment

23



(Emply), consumer expectations (Exptn), personal income (PI), the leading index (LEI),
manufacturing (Manu), and oil prices (Oil). They are transformed to induce stationarity and
to ensure that the transformed variables correspond to the real GDP growth observed at the
end of the quarter. See Table [6] for more details on the definition and data transformations ]

It should also be noted that we focus exclusively on one-factor state space models.

Each model uses just one out of nine monthly indicators. The forecasts are in all cases
made using monthly data up to and including the second month of the quarter. We evaluate
the state space and MIDAS forecasts in a standard recursive prediction exercise. The first
estimation window is from 1959:Q1 to 1978:QQ4, and is recursively expanded over time. For
example, for MIDAS, a one-step-ahead forecast of 1979:Q1 is generated from regressing GDP
growth up to 1978:Q4 on its own lags and the monthly predictor up to 1978:11 (November).
Then the values of GDP growth through 1978:Q4 and of the monthly predictor up to 1979:02
(February) are used with the estimated coefficients to predict the 1979:Q1 GDP growth
rate. We also do two- to eight-quarter-ahead forecasting in a similar fashion. The evaluation
sample is from 1979:Q1 to 2009Q1. Some monthly predictors are available only for more
recent subsamples (e.g. crude oil price and manufacturing). In these cases, we use the first 40
quarters as the estimation sample and the remaining period until 2009Q1 as the evaluation
sample. We should also note that—as usually is done in the context of state space models,

all series are normalized by the (full sample) mean and variance.

In line with Kuzin, Marcellino, and Schumacher (2011), we specify the lag order in the
mixed-frequency state space model by applying the Bayesian information criterion (BIC)
with a maximum lag order of p = 4 months. We also find that the chosen lag lengths are
usually small with only one or two lags in most cases. In both the regular and multiplicative
MIDAS model, we set the maximum number of lags as K, = 1 and K, = 6 quarters and
choose the lag length by the minimum in-sample fitting error criterion. Finally, we use the

root mean squared forecasting error (RMSE) to evaluate each model’s forecasting accuracy:

To—h
1 N
RMSE(h) = Yiin — Yiin)?
(h) Tz—Tl—fH-ltzT:(Hh tn)?,
=11

where the model is estimated for the period of ¢t = [1, T}], and the forecasting period is given

"Note that, because real-time vintages for all the series in the panel are not available, we did not perform
a pure real-time forecasting exercise. Authors such as Bernanke and Boivin (2003) and Schumacher and
Breitung (2008) find that data revisions have limited impact on forecasting accuracy for economic activity.
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by t = [Tl + h,TQ].

4.2 Forecasting Results

Table [7] compares the forecasting performance between the regular MIDAS, multiplicative
MIDAS and state space models. We consider horizons from one quarter up to two years.
Recall that all the series are normalized by the (full sample) mean and variance, including
real GDP growth. So the root mean squared forecasting errors reported in Table [7] are in
standard deviation units. We report the level of root mean squared forecasting errors for
state space models (denoted m0), and for regular MIDAS (denoted m1) and multiplicative
MIDAS (denoted m2). In addition, we also report the ratios (m0/m1) and (m0/m2). When
we see entries for ratios of say 0.80, we can interpret this as gains equivalent to 20 % of the
full sample standard deviation of GDP growth. The ratios above one imply that MIDAS
regressions produce better forecasts. Conversely, ratios below one imply that the Kalman

filter produces better forecasts.

When we consider the various series reported in Table [7] we see that MIDAS gives better
forecasts when the term spread and consumer expectations are used as predictors. On the
other hand, for the personal income and manufacturing series, the Kalman filter dominates
at all horizons. For the other series the results are mixed, with ratios generally slightly
above or below one. The results also differ across horizons, without a clear pattern. At the
longest horizon (h = 8), except for term spread and consumer expectations, we note a slight

preference for the Kalman filter—although the ratios are typically within a 5 to 10 % range.

Overall, the results support the theoretical results obtained earlier. There is little difference
between the MIDAS and state space forecasts. In some cases the MIDAS forecasts do a little

better, while in others, the state space forecasts appear to be slightly more accurate.

To conclude it is worth summarizing Table [7| across all series — and by doing so, we observe
the best predictor with the regular/multiplicative MIDAS and state space models is the

crude oil price, except at the longest horizons.
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h (Quarter) 1 2 3 4 5 6 7 8

Best State Space Oil Oil 0i 0il Oil Oil LEI LEI
Predictor Regular MIDAS Oil Oil 0Oil 0il 0Oil LEI Emply Emply
Multiplicative MIDAS Oil  Oil  Oil  Oil 0Oil Term Emply 1P

State Space 0.69 0.65 0.68 0.67 0.70 0.70 0.74 0.76
RMSE  Regular MIDAS 0.65 076 070 0.74 0.72 0.78 0.80 0.79
Multiplicative MIDAS 0.65 0.77 0.72 0.76 0.70 0.78 0.80 0.79

When we look at the best performance series in the above table we find evidence similar
to Kuzin, Marcellino, and Schumacher (2011)—they find gains at short horizons from
using MIDAS and the reverse for longer horizons (two years, as in our application). For
intermediate horizons we find the Kalman filter to be best. The differences are however

small.

5 Conclusion

The canonical approach in the literature to dealing with mixed frequency data is to use a
state space model estimated via the Kalman filter. State space models consist of a system
of two equations, a measurement equation which links observed series to a latent state
process, and a state equation which describes the state process dynamics. The system of
equations can require a lot of parameters, for the measurement equation, the state dynamics
and their error processes. In contrast, recent work by Ghysels, Santa-Clara, and Valkanov
(2002), Ghysels, Santa-Clara, and Valkanov (2006) and Andreou, Ghysels, and Kourtellos
(2009) using MIDAS regressions handles mixed sample frequencies in a simple single-equation
setting that is easy to estimate. This paper has examined the relationship between MIDAS
regressions and the Kalman filter applied to mixed frequency data. We showed that, in
population, MIDAS regressions and the correctly-specified Kalman steady state linear filter
can be identical—and if they are not, they are very close in terms of prediction behavior.
In small samples, MIDAS regressions and the Kalman filter also generally behave similarly.

The Kalman filter typically gives more accurate forecasts, but there are also cases in which
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MIDAS regressions give better small-sample predictions. Finally, it is important to note
that estimating Kalman filter specifications is numerically much more involved. In contrast,
all MIDAS estimations are in comparison computationally simple. This is relevant as the

computational complexity limits the applicability of the Kalman filter to a small set of series.
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Technical Appendices

A One-Factor State Space Model with Correlated Measurement Errors

We start from the state space model appearing in subsection repeated here for convenience:

Jevjim = Pler-1)/m + Metijm vt j=1...,m
y:—&-j/m = YSttj/m + UL triim vt J=1....,m
Tiyjim = V2ferj/m + U2ttj/m vt j=1,....,m
where
Wi t+5/m — diui,tJr(jfl)/m = €it+j/m i=1,2.

with periodic Kalman gain matrices:

1 2 3 3

K1 K1 ki1 KRip2
Ky = Kl Ksy = k2 | and Ky3 = K3, K3
2|1 2 )y TN3]2 2 113 2,1 2,2

K3 K3 K1 Ko

As noted in section the state vector is @ty j/m = (fi4j/m> 1,445 /m> U2,44j/m) and we have

p 0 O
G=1]104d 0 |,
0 0 do
. 10 .
Z; = ( v 0 1 ) for1 <j<m-—1and Z,, = 0 Using the formula Aj;_;
2
=G — K;);_1Z;G, we can write
p—prri 0 —kid
Ay = —pyery  di —rbdy (A.1)

—P’Y2/<:1; 0 do— K/:l))d2

p—pyKi 0 —K3dy
Agpp = —pyers  di —rK3dy (A.2)
—pyari 0 dy— K3do
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and

p— P(”Yl/f:f,l + 725?,2) _5:1)’,1d1 _“?,2d2
Az = —p(niks ) +2kse)  di— K3 di =K ody (A.3)
—p(nkdy +72K5,)  —riidr do — K3 oda

Letting A = A3, A = Aj3A32 and A = Aj3A32A 3 as before, and adoptlng the notation
that [A];; refers to the ijth element of the matrix A, from equation (2.12), the Kalman filter

implies the following equation for h-quarter-ahead prediction:

Exrlynll] = B fen + a1 = P E(f 1) + di B | 1)
= 7p™ Z{ sty + (A3 o3y + (A iskd 1 ey
+1p™" Z{ Tkt s + (A} ]iar3 5 + (A )13k o Yo

+y1p™" Z{[(A?)j]&ghmf + [(ADY AZ12k3 + [(AT) ASliand}ay_j1/s
=0

o]
+710°" > {[(AY Akt + [(AYY Adhiows + (A Adlisks}ay_j_oys

j—O
+di" Z{ Norwf 1 + [(A) ]22k3 1 + [(AT) |23k 1 bye—;
+di" Z{ Ja1kd 5 + [(A$)]a2rd 5 + [(AS)]agrs o bau—;

+di" Z{[(Ai’)j Aflo1rT + [(ATY Adloars + [(ADY Adlaswiya /s
=0

+d3" Y {[(A}Y Adlarkt + [(A3) Alaorh + [(AY) Aflaski}a j oss (A4)
=0

Hence, as stated in section the h-quarter-ahead Kalman Filter forecast error is w’, €, and

forecast error variance is W’y -3, W where
KF<zyWKF

KF KF KF
WKF = (1 01><mh—17_ x() 7_wy0 7_wzl 70 wa )O
KF KF KF KF KF KF\/
Wy 3, —Wy 1 >_wx4 ,0 wx5 70 Wy 3k — 2707 wngg_poa Wy 3k Wy, K)
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Similarly, the variance of the MIDAS forecast error is W', . XzyWarqs where

Mds Mds Mds Mds
Whds = (17 01xmh—1, Wy s T Wyo 5 T Wg1 s 0, —Wg 2 )0,
Mds Mds Mds Mds Mds Mds Mds Mds\/
—Wy gy —Wy i — Wy g, 0, —wy 5, 0, — W, 3k 9> 0, —W, 3K 15 0, —W, 3R W, K )

B Two-Factor State Space Model with Correlated Measurement Errors

We consider a two-factor state space model appearing in section repeated here for

convenience:
F _ (fl,t+j/m> [P, 0 <f1,t+(j1)/m) + (771,t+j/m> j=1 m
i — = =1,...,
+i/m Jo445/m 0 po f2t+(G-1)/m N2,t4+j/m
y:+j/m = ’Y/1Ft+j/m + UL t4j/m vt J=1....m
Toprj/m = YoFitj/m +U2irj/m Vi j=1,...,m
where

Uity /m = G (j-1)/m = €ipjm 0= 1,2,

Then the periodic Kalman gain matrices are:

1 2 3 3
K1 K1 K11 K12
1 2 3
K K K K
_ 2 _ 2 _ 2,1 H22
K2|1 = 1 3K3\2 = 9 and K1|3 = 3 3 )
K3 K3 3,1 K32
1 2 3
Ky Ky Riy1 K42
. o / _
The state vector is @uijm = (f1,t45/ms f2,045/m, U1 t4j/m> U244+j/m) and we have G =
pr 0 0 O

0 0 O 10
P2 Ly = ( Y21 Y22 0 1 ) and Z,, = o7 . Hence, since
0 0 d O Y21 Y22 0 1

0 0 0 do
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Aji1 =G -Kjj;j_1Z;G, we can write

pL— p1y2ikt  —peyekt 0 —kids
—p1Y21Ks P2 — PaV2,2Ks —kKdds
Ay = | . . (B.1)
—pP172,1K3 —p2y22Kk3  di —Kada
—p172,1 K] —payeky 0 dy — kydy
p1L— P1Y21kT  —pav22ki —kids
1 1 1
—pP17Y2,1K3 P2 — P272,2K —Kads
Agp = : ! : (B.2)
—pP172,1K3 —p2y22Kk3  di —Kada
—p172,154 —paye2ky 0 dy—kjdy
and
p1—p1(akt )+ 21k 0)  —pa(n2kt ) 4 2.2k ) —K} 1dy —#3 1 da
Aure — —p1(Y11K5 ) +Y21K50)  p2— pa(vi2ks g + 22K ,)  —K3 d —r5 1 d2
13 = 3 3 3 3 3 3
—p1(71,1K83 1 + V2,163 ) —p2(M2K51 +V22650)  di— K3 di —Kydo
—p1(v1RF 1 +Y2,1K5 o) —pa(m 26 1 +72,2K5 o) —widi  dy—Kfdo
(B.3)
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