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Abstract. We investigate the properties of several bootstrap-based inference

procedures for semiparametric density-weighted average derivatives. The key innova-

tion in this paper is to employ an alternative, more general asymptotic framework to

assess the properties of these inference procedures. This theoretical approach is con-

ceptually distinct from the traditional approach (based on asymptotic linearity of the

estimator and Edgeworth expansions), and leads to di¤erent theoretical prescriptions

for bootstrap-based semiparametric inference. First, we show that the conventional

bootstrap-based approximations to the distribution of the estimator and its classi-

cal studentized version are both invalid in general. This result shows a fundamental

lack of �robustness�of the associated, classical bootstrap-based inference procedures

with respect to the bandwidth choice, a �nding that is borne out in our small sim-

ulation study. Second, we present a new, valid bootstrap-based inference procedure

for density-weighted average derivatives that is more �robust�to perturbations of the

bandwidth choice, and hence exhibits demonstrably superior statistical properties over

the traditional bootstrap-based inference procedures available in the literature. This

theory-driven result is also corroborated in our small-scale Monte Carlo experiment.

Finally, we also examine the validity and invalidity of related boostrap-based inference

procedures, and discuss additional results that may be of independent interest.
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1. Introduction

The bootstrap has gained great popularity in modern econometrics and statistics.1 In semi-

parametric problems, where estimators of a �nite-dimensional parameter of interest involve

a nonparametric estimator of an unknown function, the bootstrap is attractive because of

its ability to approximate the distribution of the semiparametric estimator in cases where

variance estimation is di¢ cult (e.g., Chen, Linton, and van Keilegom (2003) and Cheng and

Huang (2010)). Even when variance estimation is relatively straightforward, the bootstrap is

potentially useful in semiparametrics because it may provide more accurate approximations

to the distributions of (asymptotically) pivotal quantities such as studentized estimators,

whenever it achieves asymptotic re�nements similar to those well-established in parametric

problems (e.g., Hall (1992)).

The kernel-based density-weighted average derivative estimator of Powell, Stock, and

Stoker (1989) is one of the few semiparametric estimators for which the bootstrap has been

shown to o¤er asymptotic re�nements. Nishiyama and Robinson (2005) recently showed that

a suitably implemented version of the nonparametric bootstrap provides a distributional

approximation for the classical studentized test statistic that is superior to the standard

Gaussian approximation. In this paper we revisit this problem, and obtain new results that

can be viewed as a cautionary tale regarding �the potential for bootstrap-based inference to

(...) provide improvements in moderate-sized samples�(Nishiyama and Robinson (2005, p.

927)). We present simulation evidence that appears hard to reconcile with the theoretical

results establishing asymptotic re�nements of the bootstrap in this semiparametric context,

and develop an alternative theory-based explanation of this evidence. In addition, we use our

theoretical framework to derive results for alternative bootstrap-based inference procedures

and to show, among other things, that there exists a valid bootstrap-based inference proce-

dure that dominates the one proposed by Nishiyama and Robinson (2005), a theory-based

1For reviews, see, e.g., Politis, Romano, and Wolf (1999) and Horowitz (2001).
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prediction also borne out in our simulations.

The traditional approach to evaluating the accuracy of bootstrap-based inference pro-

cedures (in parametric and semiparametric problems) relies on asymptotic linearity of esti-

mators and employs Edgeworth expansions to elucidate the role of �higher-order�terms in

the distributional approximation of the associated test statistics. For the density-weighted

average derivative estimator, Nishiyama and Robinson (2005) used this traditional approach

to demonstrate the ability of a bootstrap-based inference procedure to deliver asymptotic

re�nements. In contrast, we propose in this paper to employ an alternative (�rst-order)

distributional approach to examine the properties of bootstrap-based inference procedures,

which retains some terms that are asymptotically negligible when the estimator is asymp-

totically linear but can be �rst-order otherwise. This alternative approach accommodates,

but does not require, certain departures from asymptotic linearity, namely those that occur

when the bandwidth of the nonparametric estimator vanishes too rapidly for asymptotic lin-

earity to hold. Thus, we refer to this approach as a �small bandwidth�approach (Cattaneo,

Crump and Jansson (2010, 2012a)).

Although similar in spirit to the Edgeworth expansion approach to improve asymptotic

approximations, our small bandwidth approach is conceptually distinct and leads to di¤erent

theoretical prescriptions for bootstrap-based semiparametric inference. In particular, Theo-

rem 1 �nds that the conventional bootstrap-based approximations to the distribution of the

kernel-based semiparametric estimator and the associated studentized version of this estima-

tor employing the traditional (jackknife) variance estimator are both invalid in general. On

the other hand, Theorem 2 establishes consistency of the bootstrap approximation to the

distribution of the semiparametric estimator when studentized by a di¤erent, bias-corrected

variance estimator. This alternative variance estimator is one for which the resulting stu-

dentized statistic is asymptotically standard normal even when asymptotic linearity fails.

However, and perhaps surprisingly, Theorem 3 shows that pivotality of the studentized esti-
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mator is not su¢ cient for bootstrap validity: a variance estimator is exhibited which renders

the associated studentized statistic asymptotically standard normal even when asymptotic

linearity fails, but nonetheless the standard bootstrap provides a valid distributional approx-

imation for this asymptotically pivotal statistic only when asymptotic linearity holds.

These results have implications for both theoretical and empirical work. First, our �nd-

ings shed new light on the properties of the bootstrap and some of its variants in the context

of semiparametric inference, documenting and highlighting in particular a fragility of tradi-

tional bootstrap-based distributional approximations for kernel-based semiparametric statis-

tics with respect to perturbations of the bandwidth choice. (See Section 5 for further discus-

sion on this point.) Second, our results also include a new, valid bootstrap-based inference

procedure for density-weighted average derivatives which is more �robust�to perturbations

of the bandwidth choice, and hence exhibits demonstrably superior statistical properties over

the traditional bootstrap-based inference procedures available in the literature. Finally, our

results also have direct applicability for empirical work because semiparametric averaged

derivatives have received considerably attention in applications since introduced by Stoker

(1986).2

The remainder of the paper is organized as follows. Section 2 introduces the model,

summarizes some theoretical results available in the literature, and provides a motivation for

our work using a small-scale simulation study. Section 3 reviews our alternative approach

based on the small bandwidth framework and develops the main theoretical tools needed

to study the bootstrap. Section 4 includes the main results of the paper, while Section 5

discusses some of the practical implications of our results. Section 6 concludes and discusses

other contexts where our results could be applied. The Appendix contains brief mathematical

proofs, but the supplemental appendix includes a detailed development of our results.

2Empirical examples include Härdle, Hildenbrand, and Jerison (1991), Deaton and Ng (1998), Coppejans
and Sieg (2005) and Campbell (2011).
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2. Setup and Motivation

We assume throughout that zi = (yi; x0i)
0, i = 1; : : : ; n, is a random sample of z = (y; x0)0,

where y 2 R is a dependent variable and x 2 Rd is a continuous explanatory variable with

density f(�). The density-weighted average derivative of the regression function g(x) = E[yjx]

is � = E[f(x)@g(x)=@x]. (Detailed regularity conditions are given in the following section,

but omitted here to ease the discussion.) Models where this estimand is of interest include

single-index limited dependent variable models, generalized partially linear models, and other

related semi-linear single-index generalized additive and non-additive models. For example,

suppose g(�) is of the form g(x) = G(x01�; x2) with G(�) unknown and x partitioned as

x = (x01; x
0
2)
0. Then, partitioning � conformably with x as � = (�01; �

0
2)
0, the index parameter

� is proportional to �1 with proportionality factor E[f(x) _G1(x01�; x2)] where _G1(u; x2) =

@G(u; x2)=@u.

Powell, Stock, and Stoker (1989, henceforth PSS) noted that � = �2E [y@f(x)=@x], and

hence proposed the kernel-based estimator

�̂n = �2
1

n

nX
i=1

yi
@

@x
f̂n;i(xi), f̂n;i(x) =

1

n� 1

nX
j=1;j 6=i

1

hdn
K

�
xj � x
hn

�
,

where K : Rd ! R is a kernel function and hn is a vanishing (positive) bandwidth sequence.

Having subsequently been studied by Härdle and Tsybakov (1993), Robinson (1995), Powell

and Stoker (1996), Nishiyama and Robinson (2000, 2001, 2005), and many others, this

estimator is one of the most widely investigated estimators in the semiparametrics literature.

Under conditions similar to those discussed below, PSS showed that �̂n is asymptotically

linear with in�uence function L(z) = 2(@[f(x)g(x)]=@x� y@f(x)=@x� �); that is,

p
n(�̂n � �) =

1p
n

nX
i=1

L(zi) + op(1) N (0;�), � = E [L(z)L(z)0] , (1)
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where denotes weak convergence. (Throughout the paper limits are taken as n!1 unless

otherwise noted.) PSS also exhibited a consistent estimator �̂n of �. De�ning V̂0;n = n�1�̂n,

these results imply in particular that V̂
�1=2
0;n (�̂n � �) N (0; Id), a result that can be used to

construct asymptotically valid and easily implemented con�dence intervals for �.

Although asymptotically valid, the distributional approximation V̂
�1=2
0;n (�̂n��)

a� N (0; Id)

might be suspected to be somewhat inaccurate in samples of moderate size due to the pres-

ence of the nonparametric estimator of (the derivative of) the density f(�). In particular,

folklore and simulation evidence suggests that the distributional properties of kernel-based

estimators such as �̂n, and studentized versions thereof, can be rather sensitive to the choice of

bandwidth hn. Motivated by concerns of this nature, Nishiyama and Robinson (2000, 2001)

developed valid Edgeworth expansions for statistics of the form �0(�̂n � �)=
q
�0V̂0;n� with

� 2 Rd, and found that in general the magnitude of the error in the distributional approxima-

tion V̂
�1=2
0;n (�̂n��)

a� N (0; Id) depends on both the sample size and the bandwidth, this error

vanishing at a conventional parametric rate n�1=2 only in exceptional circumstances. Subse-

quently, Nishiyama and Robinson (2005, henceforth NR) developed more detailed expansions

and showed that the nonparametric bootstrap provides approximations to the sampling dis-

tribution of (a possibly bias-corrected version of) �0(�̂n � �)=
q
�0V̂0;n� that are not merely

asymptotically valid, but actually capable of achieving asymptotic re�nements.

It is tempting to interpret the latter result as evidence that even in samples of moderate

size, highly accurate con�dence intervals for � can be constructed using the bootstrap. To

investigate the extent to which this interpretation is warranted, we conducted a Monte Carlo

experiment to evaluate the performance of the standard normal and bootstrap approxima-

tions to the distribution of V̂
�1=2
0;n (�̂n � �). Following NR, the simulation study uses a Tobit

model yi = ~yi1 (~yi > 0) with ~yi = x0i� + "i, "i s N (0; 1) independent of the bivariate vec-

tor xi, and 1 (�) representing the indicator function. We set � = (1; 1)0 and consider two

models: Model 1, also used by NR, employs (x1i; x2i)0 s N (0; I2) ; while Model 2 introduces
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asymmetry in the regressor distribution by employing x1i s (�4� 4)=
p
8, x2i s N (0; 1) and

x1i ?? x2i, where �4 denotes a chi-squared random variable with 4 degrees of freedom. The

estimator �̂n is implemented using a fourth-order Gaussian product kernel (i.e., P = 4 in

Assumption K below). For speci�city we set � = (1; 0)0, and consider three 95% con�dence

intervals:

CI0 =
�
�0�̂n � 1:96

q
�0V̂0;n�; �0�̂n + 1:96

q
�0V̂0;n�

�
,

CI�0 =
�
�0�̂n � c�0;2:5

q
�0V̂0;n�; �0�̂n + c

�
0;97:5

q
�0V̂0;n�

�
,

CI�0;BC =
�
�0(�̂n � B̂n)� c�0;2:5

q
�0V̂0;n�; �0(�̂n � B̂n) + c�0;97:5

q
�0V̂0;n�

�
,

where c�0;� denotes the �th percentile of the bootstrap approximation and B̂n denotes a bias-

correction estimate, both implemented as in NR. We conducted 3; 000 simulations, each with

a sample size n = 1; 000 and 2; 000 bootstrap replications.

Figure 1 presents a summary of the Monte Carlo results. To investigate the sensitivity of

the empirical coverage probabilities with respect to the bandwidth, these results are presented

for a grid of possible bandwidth choices. This �gure includes two horizontal lines at 0:90 and

at the nominal coverage rate 0:95 for reference, and also plots as vertical lines two (infeasible)

bandwidth choices available in the literature proposed by Powell and Stoker (1996) and NR,

respectively, denoted hPS and hNR.

In perfect agreement with the theoretical �ndings of NR, the results for Model 1 indi-

cate that the bootstrap-based con�dence intervals without bias-correction (CI�0) are more

accurate than those based on a standard normal approximation (CI0) and, in particular,

that these bootstrap-based con�dence intervals are highly accurate across a nontrivial range

of bandwidths. (CI�0;BC do not perform well when the bias-correction is estimated.) On

the other hand, the results for Model 2 are much less encouraging, indicating in particular

that the impressive �ndings about the bootstrap in Model 1 are to some extent an arti-
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Figure 1: Empirical Coverage of Traditional 95% Con�dence Intervals.

fact of the particular distributional assumption made on the part of the regressors in that

model. Speci�cally, in the case of Model 2 both approximations are inaccurate outside a

narrow range of bandwidths, although the bootstrap approximation tends to outperform the

standard normal approximation.

Particularly noteworthy in the case of Model 2 and, albeit to a somewhat lesser extent

in Model 1, are the results for bandwidths that are �small�in the sense that they fall below

the optimal bandwidths. Across a wide range of such bandwidths, both con�dence intervals

are conservative with the degree of conservatism being noticeably larger for the intervals

based on the standard normal approximation than for the bootstrap-based intervals. These

features appear hard to reconcile with the Edgeworth expansion-based theory of NR and

suggest that in the case of the density-weighted average derivative estimator of PSS there is

room for improvement when it comes to a theoretical understanding of the properties of the

bootstrap in samples of moderate size.

One important objective of this paper is to propose a theory-based explanation of the

�small bandwidth� results reported in Figure 1 for the bootstrap, which will be based on
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the framework of Cattaneo, Crump, and Jansson (2012a, henceforth CCJ). (This alternative

asymptotic framework was found to deliver predictions consistent with Figure 1�s results for

the case of the standard normal approximation.) Another goal of the paper is to use this

framework to analyze the properties of alternative bootstrap-based procedures. In addition

to providing additional novel implications, whose �nite-sample relevance will also be present

in our simulations, at least one of the theoretical results obtained in pursuit of our goals may

be of independent theoretical interest (e.g., Theorem 3).

Remark. For the model and estimator used in the simulations, hPS / n�1=6 and hNR /

n�1=6, with factors of proportionality that are functionals of the unknown distribution

of z. Implementing these selectors with estimated factors of proportionality will likely

introduce additional estimation error that will seriously a¤ect the empirical coverage of

the resulting data-driven con�dence intervals. Cattaneo, Crump, and Jansson (2010)

reports results corroborating this conjecture for CI0 (standard normal approximation).

In Section 4.4 we further discuss these implementation issues.

3. Preliminary Results

3.1. Assumptions and Bandwidth Conditions. Throughout the development of our

theoretical results we maintain the following standard assumptions.

Assumption M. (Model) (a) E[y4] <1, E [�2(x)f(x)] > 0 and V [@e(x)=@x� y@f(x)=@x]

is positive de�nite, where �2(x) = V[yjx] and e(x) = f(x)g(x).

(b) f is (Q+1) times di¤erentiable, and f and its �rst (Q+1) derivatives are bounded,

for some Q � 2.

(c) g is twice di¤erentiable, and e and its �rst two derivatives are bounded.

(d) v is di¤erentiable, and vf and its �rst derivative are bounded, where v(x) = E[y2jx].

(e) limkxk!1 [f(x) + je(x)j] = 0, where k�k is the Euclidean norm.
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Assumption K. (Kernel) (a) K is even and di¤erentiable, and K and its �rst derivative

are bounded.

(b)
R
Rd
_K(u) _K(u)0du is positive de�nite, where _K(u) = @K(u)=@u.

(c) For some P � 2,
R
Rd jK(u)j (1 + kuk

P )du+
R
Rd k _K(u)k(1 + kuk

2)du <1, and

Z
Rd
ul11 � � �u

ld
d K(u)du =

8><>: 1; if l1 = � � � = ld = 0;

0; if (l1; : : : ; ld)0 2 Zd+ and l1 + � � �+ ld < P
.

The purpose of the following assumption is to ensure that the smoothing bias of the

estimator �̂n is asymptotically negligible (relative to its standard deviation).

Assumption B. (Bias) min(nhd+2n ; 1)nh2sn ! 0, where s = min(P;Q).

Finally, the following conditions will play a crucial role in our theoretical developments.

Condition AL. (Asymptotic Linearity) nhd+2n !1.

Condition AN. (Asymptotic Normality) nhd=2n !1.

Conditions AL and AN are nested, the latter being signi�cantly weaker than the former

by accommodating bandwidths that are �small�in the sense that the sequence hn is allowed

to converge more rapidly to zero than is permitted by Condition AL. While the traditional

Gaussian and Bootstrap distributional approximations employ Condition AL, our alternative

approximation framework relaxes this condition, employing instead Condition AN.

3.2. Gaussian Approximation. To further appreciate the distinction between Condi-

tions AL and AN, observe that �̂n = �̂n(hn) admits the (n-varying) U -statistic representation:

�̂n(h) =

�
n

2

��1 n�1X
i=1

nX
j=i+1

U(zi; zj;h), U(zi; zj;h) = �h�(d+1) _K
�
xi � xj
h

�
(yi � yj) ,
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which leads to the Hoe¤ding decomposition �̂n�� = Bn+�Ln+ �Wn, where Bn = �(hn)�� with

�(h) = E[U(zi; zj;h)], �Ln = n�1
Pn

i=1 L(zi;hn) with L(zi;h) = 2[E[U(zi; zj;h)jzi] � �(h)],

and �Wn =
�
n
2

��1Pn�1
i=1

Pn
j=i+1W (zi; zj;hn) with W (zi; zj;h) = U(zi; zj;h) � (L(zi;h) +

L(zj;h))=2� �(h). It can be shown that if Assumptions M and K hold, then

p
n(�̂n � �) =

p
nBn| {z }

O(
p
nhsn)

+
1p
n

nX
i=1

L(zi;hn) +
p
n �Wn| {z }

Op

�
1=
p
nhd+2n

�

and �Ln = n�1=2
Pn

i=1 L(zi) + op (1) whenever hn ! 0. As a consequence, Assumption B and

Condition AL are su¢ cient for the asymptotic linearity result (1), as shown by PSS.

Condition AL helps ensure asymptotic linearity of �̂n by rendering the �remainder�term

�Wn asymptotically negligible. In contrast, CCJ showed that if Assumptions M, K, and B

hold and if Condition AN is satis�ed, then Condition AL can be removed, and obtained the

alternative Gaussian approximation

V �1=2n (�̂n � �) N (0; Id) , Vn = n
�1� +

�
n

2

��1
h�(d+2)n �, (2)

where� = 2E[�2(x)f(x)]
R
Rd
_K(u) _K(u)0du. This result shows that while failure of Condition

AL leads to a failure of asymptotic linearity, asymptotic normality of �̂n holds under the

signi�cantly weaker Condition AN, which permits failure not only of asymptotic linearity, but

also of
p
n-consistency when nhd+2n ! 0 (and even of consistency when limn!1nh

d=2+1
n <1).

A key result exploited in the derivation of the asymptotic normality result (2) is that

the degenerate U -statistic �Wn is itself asymptotically normal under the stated conditions:p
n2hd+2n

�Wn  N (0; 2�) : Therefore, and in sharp contrast to the distributional approxi-

mation �̂n
a� N (�; n�1�) suggested by (1), the distributional approximation �̂n

a� N (�; Vn)

suggested by (2) does not ignore the variability in the �remainder� term �Wn. This latter
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feature seems desirable when �nite sample accuracy of conventional distributional approxi-

mations is a concern, as is the case here.

Because the distributional approximation suggested by (2) is normal, asymptotic stan-

dard normality of studentized estimators can be achieved also when Condition AL is replaced

by Condition AN provided that the variance estimator V̂n (say) used for studentization pur-

poses satis�es V �1n V̂n !p Id under Condition AN. PSS�s estimator �̂n of � mentioned in

Section 2 is (proportional to) the jackknife variance estimator of �̂n(h), being of the form

�̂n = �̂n(hn) =
1

n

nX
i=1

L̂n;i(hn)L̂n;i(hn)
0, L̂n;i(h) = 2

 
1

n� 1

nX
j=1;j 6=i

U(zi; zj;h)� �̂n(h)
!
.

It was shown by CCJ that

V̂0;n = n
�1�̂n(hn) = n

�1 [� + op (1)] + 2

�
n

2

��1
h�(d+2)n [� + op (1)] .

This expansion, which will play an important role in the present study of the bootstrap,

implies in particular that validity of V̂0;n requires Condition AL. The lack of �robustness�of

V̂0;n with respect to hn can be avoided by employing either of the variance estimators

V̂1;n = V̂0;n �
�
n

2

��1
h�(d+2)n �̂n(hn) and V̂2;n = n

�1�̂n(2
1=(d+2)hn),

where �̂n(h) = hd+2
�
n
2

��1Pn�1
i=1

Pn
j=i+1 Ŵn;ij(h)Ŵn;ij(h)

0 with Ŵn;ij(h) = U(zi; zj;h) �

(L̂n;i(h) + L̂n;j(h))=2� �̂n(h).

Remark. It can be shown that the adjustment employed in the construction of V̂1;n is

asymptotically equivalent to the bias-correction proposed by Efron and Stein (1981).

The multiplicative factor 21=(d+2) involved in the construction of V̂2;n is designed to

yield equality between the terms premultiplying � in the expansions of Vn and V̂2;n.
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The following result is adapted from CCJ and formulated in a manner that facilitates

comparison with the main theorems given below.

Lemma 1. Suppose Assumptions M, K, and B hold and suppose Condition AN is satis�ed.

(a) The following are equivalent:

i. Condition AL is satis�ed.

ii. V �1n V̂0;n !p Id.

iii. V̂
�1=2
0;n (�̂n � �) N (0; Id).

(b) If nhd+2n is convergent in �R+ = [0;1], then V̂
�1=2
0;n (�̂n � �) N (0;
0), where


0 = lim
n!1

(nhd+2n � + 4�)�1=2(nhd+2n � + 2�)(nhd+2n � + 4�)�1=2.

(c) For k 2 f1; 2g, V �1n V̂k;n !p Id and V̂
�1=2
k;n (�̂n � �) N (0; Id).

Part (a) is a qualitative result highlighting the crucial role played by Condition AL in

connection with asymptotic validity of inference procedures based on V̂0;n: The equivalence

between (i) and (iii) shows that Condition AL is necessary and su¢ cient for the test statistic

V̂
�1=2
0;n (�̂n � �) proposed by PSS to be asymptotically pivotal. In turn, this equivalence is

a special case of part (b), which is a quantitative result that can furthermore be used to

characterize the consequences of relaxing Condition AL. Speci�cally, part (b) shows that

also under departures from Condition AL the statistic V̂
�1=2
0;n (�̂n � �) can be asymptotically

normal with mean zero, but with a variance matrix 
0 whose value depends on the limiting

value of nhd+2n . This matrix satis�es Id=2 � 
0 � Id (in a positive semide�nite sense), and

takes on the limiting values Id=2 and Id when limn!1 nh
d+2
n equals 0 and1, respectively. By

implication, part (b) indicates that inference procedures based on the test statistic proposed
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by PSS will be conservative across a nontrivial range of bandwidths. In contrast, part (c)

shows that studentization by means of V̂1;n and V̂2;n achieves asymptotic pivotality across the

full range of bandwidth sequences allowed by Condition AN, suggesting in particular that

coverage probabilities of con�dence intervals constructed using these variance estimators will

be close to their nominal level across a nontrivial range of bandwidths.

3.3. Bootstrap Approximation. We study two variants of them-out-of-n replacement

bootstrap with m = m(n) ! 1: the standard nonparametric bootstrap (m = n) and the

variant where m is a vanishing fraction of n (i.e., m=n ! 0), calling the latter �m-out-of-n

bootstrap�for short. (Here, and elsewhere in the sequel, the dependence of m(n) on n will

often be suppressed to achieve notational economy.) Speci�cally, to describe the bootstrap

procedure(s), let z�i , i = 1; : : : ;m, be a random sample with replacement from the observed

sample Zn = fz1; : : : ; zng. The bootstrap analogue of �̂n is

�̂
�
n = �̂

�
n(hm) =

�
m

2

��1 m�1X
i=1

mX
j=i+1

U(z�i ; z
�
j ;hm),

while the bootstrap analogues of �̂n and �̂n are �̂�n = �̂
�
n(hm) and �̂

�
n = �̂

�
n(hm), respec-

tively, where

�̂�n(h) =
1

m

mX
i=1

L̂�n;i(h)L̂
�
n;i(h)

0, L̂�n;i(h) = 2

 
1

m� 1

mX
j=1;j 6=i

U(z�i ; z
�
j ;h)� �̂

�
n(h)

!
,

and, de�ning Ŵ �
n;ij(h) = U(z

�
i ; z

�
j ;h)�

�
L̂�n;i(h) + L̂

�
n;j(h)

�
=2� �̂�n(h),

�̂�
n(h) =

�
m

2

��1
hd+2

m�1X
i=1

mX
j=i+1

Ŵ �
n;ij(h)Ŵ

�
n;ij(h)

0.
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Finally, the bootstrap analogues of V̂0;n, V̂1;n, and V̂2;n are V̂ �0;n = m
�1�̂�n(hm),

V̂ �1;n = V̂
�
0;n �

�
m

2

��1
h�(d+2)m �̂�

n(hm), and V̂ �2;n = m
�1�̂�n(2

1=(d+2)hm).

Remark. The m-out-of-n bootstrap is closely related to subsampling (i.e., the m-out-of-

n non-replacement bootstrap). The properties of subsampling are immediate conse-

quences of Lemma 1(b)-(c) and Politis and Romano (1994). In particular, for k 2 f1; 2g

consistency of the subsampling approximation to the distribution of V̂
�1=2
k;n (�̂n � �) is

automatic (under the assumptions of Lemma 1) whenever m=n ! 0 and the follow-

ing (mild) additional assumption holds: If nhd+2n ! 0; then (m=n)2 (hm=hn)
d+2 ! 0:

Also, under the same assumptions the subsampling approximation to the distribution

of V̂
�1=2
0;n (�̂n � �) is consistent whenever nhd+2n is convergent in �R+: As will be shown

in Theorem 1(c), Theorem 2, and Theorem 3(b) below, these properties are shared by

m-out-of-n bootstrap studied in this paper.

Let P�, E�, or V� denote a probability or moment computed under the bootstrap distrib-

ution conditional on Zn, and let  p denote weak convergence in probability (e.g., Gine and

Zinn (1990)). Also, de�ne ��n = ��(hm), where �
�(h) = E�[U(z�i ; z�j ;h)] = (n � 1)�̂n(h)=n.

The main results of this paper follow from (Lemma 1 and) the following lemma.

Lemma 2. Suppose Assumptions M and K hold, suppose Condition AN is satis�ed, and

suppose hn ! 0; m!1; and limn!1m=n <1.

(a) V �
�1

n V�[�̂
�
n]!p Id, where

V �n = m
�1� +

�
1 + 2

m

n

��m
2

��1
h�(d+2)m �.
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(b) ��
�1
n �̂�n !p Id and ��1�̂�

n !p Id, where

��n = �+ 2m
�
1 +

m

n

��m
2

��1
h�(d+2)m �.

(c) V �
�1=2

n (�̂
�
n � ��n) p N (0; Id).

The (conditional on Zn) Hoe¤ding decomposition gives �̂
�
n = �

�(hm) + �L
�
n +

�W �
n , where

�L�n = m
�1

mX
i=1

L�(z�i ;hm), �W �
n =

�
m

2

��1 m�1X
i=1

mX
j=i+1

W �(z�i ; z
�
j ;hm),

with L�(z�i ;h) = 2(E�[U(z�i ; z�j ;h)jz�i ]� ��(h)) and W �(z�i ; z
�
j ;h) = U(z

�
i ; z

�
j ;h)� (L�(z�i ;h)+

L�(z�j ;h))=2� ��(h). Lemma 2 (a) is obtained from this decomposition by noting that

V�[�̂
�
n] = m

�1V�[L�(z�i ;hm)] +
�
m

2

��1
V�[W �(z�i ; z

�
j ;hm)],

where, with �An � Bn�being shorthand for A�1n Bn !p Id,

V�[L�(z�i ;hm)] � �̂n(hm) � � + 2
m2

n

�
m

2

��1
h�(d+2)m �

and V�[W �(z�i ; z
�
j ;hm)] � h

�(d+2)
m �̂n(hm) � h�(d+2)m �.

The bootstrap estimator of the variance of �̂n is V�[�̂
�
n] with m = n: In view of the

foregoing, this estimator exceeds n�1V�[L�(z�i ;hn)] � n�1�̂n(hn) = V̂0;n; implying that the

bootstrap variance estimator exhibits an upward bias even greater than that of V̂0;n. In par-

ticular, the bootstrap variance estimator is inconsistent whenever PSS�s variance estimator

is, a result also contained in Theorem 1 below. This failure of the bootstrap is attributable

solely to its inability to consistently estimate the variability of the term �Ln in the Hoe¤ding

decomposition of �̂n; since V�[W �(z�i ; z
�
j ;hn)] � h

�(d+2)
n � implies that the variability of �Wn
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is estimated consistently.

The proof of Lemma 2(b) shows that

�̂�n � �̂n(hm) + 2m
�
m

2

��1
h�(d+2)m �̂n(hm),

implying that the asymptotic behavior of �̂�n di¤ers from that of �̂n(hm) whenever Condition

AL fails. Finally, Lemma 2(c) is a bootstrap counterpart of (2), giving a weak convergence

in probability result for �̂
�
n without requiring asymptotic linearity.

Remark. By continuity of the d-variate standard normal cdf �d(�) and Polya�s theorem for

weak convergence in probability (e.g., Xiong and Li (2008, Theorem 3.5)), Lemma 2(c)

is equivalent to the statement that

sup
t2Rd

���P� hV ��1=2n (�̂
�
n � ��n) � t

i
� �d(t)

���!p 0. (3)

By arguing along subsequences, it can be shown that a su¢ cient condition for (3) is

the following (uniform) Cramér-Wold-type condition:

sup
�2�d

sup
t2Rd

����P� ��0(�̂�n � ��n)=q�0V �n � � t�� �1(t)����!p 0, (4)

where �d = f� 2 Rd : �0� = 1g denotes the unit sphere in Rd. The proof of Lemma

2(c) uses the theorem of Heyde and Brown (1970) to verify (4). In contrast to the

case of unconditional joint weak convergence, it would appear to be an open question

whether a pointwise Cramér-Wold condition such as

sup
t2Rd

����P� ��0(�̂�n � ��n)=q�0V �n � � t�� �1(t)����!p 0, 8� 2 �d,

implies weak convergence in probability of V �
�1=2

n (�̂
�
n � ��n), and for this reason we
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establish the stronger result (4) in the Appendix.

4. Main Results

4.1. Bootstrapping PSS�s Estimator and Test Statistic. To anticipate our �ndings,

notice that Lemma 1 gives

V[�̂n] � n�1� +
�
n

2

��1
h�(d+2)n � and V̂0;n � n�1� + 2

�
n

2

��1
h�(d+2)n �,

whereas in the case of the nonparametric bootstrap (when m = n) Lemma 2 gives

V�[�̂
�
n] � n�1� + 3

�
n

2

��1
h�(d+2)n � and V̂ �0;n � n�1� + 4

�
n

2

��1
h�(d+2)n �,

strongly indicating that Condition AL is crucial for consistency of the bootstrap. On the

other hand, in the case of the m-out-of-n bootstrap (when m=n! 0), Lemma 2 gives

V�[�̂
�
n] � m�1� +

�
m

2

��1
h�(d+2)m � and V̂ �0;n � m�1� + 2

�
m

2

��1
h�(d+2)m �,

suggesting that consistency of the m-out-of-n bootstrap might hold even if Condition AL

fails, at least in those cases where V̂
�1=2
0;n (�̂n� �) converges in distribution. (By Lemma 1(b),

convergence in distribution of V̂
�1=2
0;n (�̂n � �) occurs when nhd+2n is convergent in �R+.)

The following result, which follows from Lemmas 1�2 and the continuous mapping the-

orem for weak convergence in probability (e.g., Xiong and Li (2008, Theorem 3.1)), makes

the preceding heuristics precise.

Theorem 1. Suppose the assumptions of Lemma 1 hold.

(a) If m = n, then the following are equivalent:

i. Condition AL is satis�ed.
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ii. V �1n V�[�̂
�
n]!p Id.

iii. supt2Rd
���P�[�̂�n � ��n � t]� P[�̂n � � � t]���!p 0.

iv. supt2Rd
���P�[V̂ ��1=20;n (�̂

�
n � ��n) � t]� P[V̂

�1=2
0;n (�̂n � �) � t]

���!p 0.

(b) If m = n and if nhd+2n is convergent in �R+, then V̂ �
�1=2

0;n (�̂
�
n � ��n) p N (0;
�0), where


�0 = lim
n!1

(nhd+2n � + 8�)�1=2(nhd+2n � + 6�)(nhd+2n � + 8�)�1=2.

(c) If m�1+m=n! 0 and if nhd+2n is convergent in �R+, then V̂ �
�1=2

0;n (�̂
�
n���n) p N (0;
0).

In an obvious way, Theorem 1(a)-(b) can be viewed as a bootstrap analogue of Lemma

1(a)-(b). In particular, Theorem 1(a) shows that Condition AL is necessary and su¢ cient

for consistency of the nonparametric bootstrap and therefore implies that the nonpara-

metric bootstrap is inconsistent whenever the estimator is not asymptotically linear (when

limn!1nh
d+2
n < 1), including in particular the knife-edge case nhd+2n ! � 2 (0;1) where

the estimator is
p
n-consistent and asymptotically normal (we discuss this issue further in

Section 5). The implication (i) ) (iv) in Theorem 1(a) is essentially due to NR. (Their

results are obtained under slightly stronger assumptions than those of Lemma 1 and require

nhd+3n =(log n)9 ! 1.) On the other hand, the result that Condition AL is necessary for

bootstrap consistency would appear to be new.

Theorem 1(b) can be used to quantify the severity of the bootstrap inconsistency under

departures from Condition AL. The extent of the failure of the bootstrap to approximate

the asymptotic distribution of the test statistic is captured by the variance matrix 
�0, which

satis�es 3Id=4 � 
�0 � Id and takes on the limiting values 3Id=4 and Id when limn!1 nh
d+2
n

equals 0 and1, respectively. Interestingly, comparing Theorem 1(b) with Lemma 1(b), the

nonparametric bootstrap approximation to the distribution of V̂
�1=2
0;n (�̂n � �) is seen to be

superior to the standard normal approximation because 
0 � 
�0 � Id, both inequalities
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being strict when Condition AL fails. In other words, replacing Condition AL by Condition

AN yields the prediction that bootstrap-based con�dence �should�be conservative (albeit

less so than con�dence intervals based on standard normal approximations) when bandwidths

are �small�. In combination, Theorem 1(b) with Lemma 1(b) therefore provide a theory-

based explanation of the simulation evidence in Figure 1.

Theorem 1(c) shows that a su¢ cient condition for consistency of m-out-of-n bootstrap is

convergence of nhd+2n in �R+. To illustrate what can happen when the latter condition fails,

suppose nhd+2n is �large�when n is even and �small�when n is odd. Speci�cally, suppose that

nhd+22n ! 1 and nhd+22n+1 ! 0. Then, if m is even for every n, it follows from Theorem 1(c)

that V̂ �
�1=2

0;n (�̂
�
n���n) p N (0; Id), whereas, by Lemma 1(b), V̂

�1=2
0;2n+1(�̂2n+1��) N (0; Id=2).

Remarks. (i) The example just given is intentionally extreme, but the qualitative message

that consistency of m-out-of-n bootstrap can fail when limn!1 nh
d+2
n does not exist

is valid more generally. Indeed, Theorem 1(c) admits the following partial converse:

If nhd+2n is not convergent in �R+, then there exists a sequence m = m(n) such that

(m!1, m=n! 0, and)

sup
t2Rd

���P�[V̂ ��1=20;n (�̂
�
n � ��n) � t]� P[V̂

�1=2

0;n (�̂n � �) � t]
���9p 0.

In other words, employing critical values obtained by means of them-out-of-n bootstrap

does not automatically �robustify�an inference procedure based on PSS�s statistic.

(ii) Applying Lemma 1(b) and Politis and Romano (1994), it can be shown that the

previous remark also applies to subsampling. In other words, the subsampling approx-

imation to the distribution of V̂
�1=2
0;n (�̂n � �) can be inconsistent whenever nhd+2n is not

convergent in �R+:

4.2. Bootstrapping �Robust�Test Statistics. Because V̂ �1=21;n (�̂n��) and V̂ �1=22;n (�̂n�

�) are both asymptotically standard normal under the assumptions of Lemma 1, folklore
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suggests that the bootstrap should be capable of consistently estimating their distributions.

In the case of the statistic studentized by means of V̂1;n, this conjecture turns out to be

correct, essentially because it follows from Lemma 2 that

V̂ �1;n � m�1� +
�
1 + 2

m

n

��m
2

��1
h�(d+2)m � � V�[�̂�n].

More precisely, an application of Lemma 2 and the continuous mapping theorem for weak

convergence in probability yields the following result.

Theorem 2. If the assumptions of Lemma 1 hold, m!1, and if limn!1m=n <1, then

V̂ �
�1=2

1;n (�̂
�
n � ��n) p N (0; Id).

Theorem 2 demonstrates by example that even if Condition AL fails it is possible, by

proper choice of variance estimator, to achieve consistency of the nonparametric bootstrap

estimator of the distribution of a studentized version of PSS�s estimator.

In the case of the m-out-of-n bootstrap, consistency of the approximation to the distrib-

ution of V̂ �1=21;n (�̂n � �) is unsurprising in light of its asymptotic pivotality, and it is natural

to expect an analogous result holds for V̂ �1=22;n (�̂n� �). On the other hand, in the case of the

nonparametric bootstrap it follows from Lemma 2 that

V̂ �2;n � n�1� + 2
�
n

2

��1
h�(d+2)n � � V�[�̂�n]�

�
n

2

��1
h�(d+2)n �,

suggesting that Condition AL will be required for consistency in the case of V̂ �1=22;n (�̂n � �).

Theorem 3. Suppose the assumptions of Lemma 1 hold.

(a) If m = n and if nhd+2n is convergent in �R+, then V̂ �
�1=2

2;n (�̂
�
n � ��n) p N (0;
�2), where


�2 = lim
n!1

(nhd+2n � + 4�)�1=2(nhd+2n � + 6�)(nhd+2n � + 4�)�1=2.
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In particular, V̂ �
�1=2

2;n (�̂
�
n � ��n) p N (0; Id) if and only if Condition AL is satis�ed.

(b) If m�1 +m=n! 0, then V̂ �
�1=2

2;n (�̂
�
n � ��n) p N (0; Id).

While there is no shortage of examples of bootstrap failure in the literature, it seems

surprising that the nonparametric bootstrap fails to approximate the distribution of the

asymptotically pivotal statistic V̂ �1=22;n (�̂n� �) whenever Condition AL is violated. (Counter-

example 1 of Bickel and Freedman (1981) is also concerned with U -statistics, but the boot-

strap failure reported there is due to a violation of their (von Mises) condition (6.5) whose

natural counterpart is automatically satis�ed here.) Intuitively, the failure of the nonpara-

metric bootstrap for this statistic follows naturally from the results of Theorem 1. The logic

underpinning the form of V̂2;n is that we can scale hn up by the appropriate constant, 21=(d+2),

to o¤set the bias of the untransformed estimator V̂0;n. However, by Theorem 1, 
0 < 
�0 < Id

when Condition AL fails and so the closer approximation of the bootstrap-based statistic

to the standard normal distribution implies that the factor 21=(d+2) overcompensates. This

leads directly to the invalidity result in Theorem 3(a). The degree of this overcompensation

is measured by the variance matrix 
�2, which satis�es Id � 
�2 � 3Id=2, implying that in-

ference based on the bootstrap approximation to the distribution of V̂ �1=22;n (�̂n � �) will be

asymptotically conservative.

Remark. In light of the above discussion, a variation on the idea underlying the construction

of V̂2;n can be used to construct a test statistic whose bootstrap distribution validly

approximates the distribution of PSS�s statistic under the assumptions of Lemma 1.

Speci�cally, because it follows from Lemmas 1�2 that V�[�̂
�
n(3

1=(d+2)hn)] � V[�̂n] and

V̂ �2;n � V̂0;n, it can be shown that if the assumptions of Lemma 1 hold, then

sup
t2Rd

���P�[V̂ ��1=22;n (�̂
�
n(3

1=(d+2)hn)� ��n(31=(d+2)hn)) � t]� P[V̂
�1=2

0;n (�̂n � �) � t]
���!p 0,
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even if nhd+2n does not converge. Admittedly, this construction is mainly of theoretical

interest, but it does seem noteworthy that this resampling procedure works even in the

case where the m-out-of-n bootstrap might fail.

4.3. Summary of Theoretical Results. The main results of this paper are summarized

in Table 1, which describes the limiting distributions of the three test statistics V̂
�1=2
k;n (�̂n��)

(k = 1; 2; 3) as well as the limiting distributions (in probability) of their bootstrap analogues.

Each panel corresponds to one test statistic and includes three rows corresponding to each

approximation used (large sample distribution, nonparametric bootstrap, and m-out-of-n

bootstrap, respectively). Each column analyzes a subset of possible bandwidth sequences,

which leads to di¤erent approximations in general. The only statistic that remains valid in

all cases is V̂
�1=2
1;n (�̂n��). For PSS�s statistic V̂

�1=2
0;n (�̂n��) both the nonparametric bootstrap

and them-out-of-n bootstrap (and subsampling) are invalid in general, while for V̂
�1=2
2;n (�̂n��)

only the m-out-of-n bootstrap (and subsampling) is valid in general. As discussed above, the

direction and �worst case�magnitude of the �bias�of the bootstrap can be extracted from

the � = 0 column of Table 1. Finally, the ���entries in the last column of Table 1 serve as

reminders that that when nhd+2n is not convergent in �R+, weak convergence (in probability)

of bootstrap distribution estimators is not guaranteed in general.

4.4. Further Simulation Evidence. To evaluate the small sample relevance of our the-

oretical results, we revisit the Monte Carlo experiment from Section 2. For brevity we focus

on the �robustness�of the nonparametric bootstrap with respect to the choice of bandwidth.

We employ exactly the same simulation setup as described above, and compare the perfor-

mance of the con�dence intervals CI�k =
�
�0�̂n � c�k;2:5

q
�0V̂k;n�; �

0�̂n + c
�
k;97:5

q
�0V̂k;n�

�
across a range of bandwidths and for intervals constructed using estimated bandwidths (fur-

ther discussed below), where c�k;� denotes the �th percentile of the distribution of �
0(�̂

�
n �

n�̂n=(n� 1))=
q
�0V̂ �k;n� for k 2 f0; 1; 2g.
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Table 1: Summary of Main Results

Test Distributional limn!1 nhd+2n = � 2 �R+ limn!1nh
d+2
n

Statistic Approximation � =1 � 2 (0;1) � = 0 6= limn!1nh
d+2
n

V̂
�1=2
0;n (�̂n � �) Large-sample distribution N (0; Id) N (0;
0) N (0; Id=2) �

Nonparametric bootstrap N (0; Id) N (0;
�0) N (0; 3Id=4) �

m-out-of-n bootstrap N (0; Id) N (0;
0) N (0; Id=2) �

V̂
�1=2
1;n (�̂n � �) Large-sample distribution N (0; Id) N (0; Id) N (0; Id) N (0; Id)

Nonparametric bootstrap N (0; Id) N (0; Id) N (0; Id) N (0; Id)

m-out-of-n bootstrap N (0; Id) N (0; Id) N (0; Id) N (0; Id)

V̂
�1=2
2;n (�̂n � �) Large-sample distribution N (0; Id) N (0; Id) N (0; Id) N (0; Id)

Nonparametric bootstrap N (0; Id) N (0;
�2) N (0; 3Id=2) �

m-out-of-n bootstrap N (0; Id) N (0; Id) N (0; Id) N (0; Id)

Notes:
(i) 
0, 
�0, 


�
2 are de�ned in Lemma 1(b), Theorem 1(b) and Theorem 3(a), respectively.

(ii) Lemmas 1�2 specify other assumptions and conditions imposed.

The main results from the simulation study are reported in Figure 2 and Table 2. As

before, the �gure includes the infeasible bandwidth choices hPS and hNR, but now we also

include a third infeasible bandwidth choice, denoted hSB, which is compatible with the

small bandwidth asymptotic framework. These are the main �optimal�bandwidth choices

available in the literature for �̂n(hn), and take the form

hPS = CPS n�
2

2s+d+2 , hNR = CNR n�
2

2s+d+2 , hSB = CSB n�
2

2s+d ,

where CPS, CNR and CSB are �xed constants depending on the population parameter of

interest and the underlying data generating process. The exact form of these constants, as

well as a detailed discussion and comparison of these bandwidth selectors, is available in

Cattaneo, Crump, and Jansson (2010). The Monte Carlo experiment considers both the

infeasible choices hPS, hNR, hSB, as well as their feasible fully data-driven versions, which

are denoted by ĥPS, ĥNR, ĥSB. The latter estimators for the bandwidth hn are constructed

as described in Cattaneo, Crump, and Jansson (2010), but we do not provide the details here

to avoid unnecessary repetition. Table 2 reports results for con�dence intervals constructed
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Figure 2: Empirical Coverage of 95% Bootstrap Con�dence Intervals.

employing the infeasible bandwidths and their estimators, thus providing simulation evidence

for fully data-driven inference procedures. This table also reports results for the Gaussian-

based con�dence intervals for completeness.

Figure 2 shows the following results. As predicted by Theorem 1, the interval CI�0 is

conservative for small bandwidths, having a coverage probability well in excess of 0:95. In

contrast, and in agreement with Theorem 2, one of the new bootstrap-based con�dence

intervals introduced in this paper, CI�1, provides close-to-correct empirical coverage for a

substantial range of small bandwidth choices. In terms of bandwidth selection, the Monte

Carlo experiment shows that hSB falls clearly inside the �robust� range of bandwidths in

all cases. Interestingly, and because of the large �robust� range of bandwidths for CI�1,

the bandwidth selectors hPS and hNR also appear to be �valid�when used to construct CI�1.

Finally, as predicted by Theorem 3, the interval CI�2 is also conservative for small bandwidths.
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Remark. Unlike Condition AL, Condition AN can be satis�ed (under Condition B) even

when s = 2. Consistent with our theory, the bottom half of Figure 2 shows that the

bootstrap-based interval CI�1 is reasonably accurate also when a second-order kernel is

used (i.e., when P = 2).

The results reported in Table 2 are in general consistent with the �ndings reported above,

showing also how the estimation of the bandwidths translate into the performance of the dif-

ferent con�dence intervals. The bootstrapped con�dence intervals CI�1 perform well across all

designs considered, and on par with the con�dence intervals based on the Gaussian approxi-

mation CI1. The competing (classical) con�dence intervals do not perform particularly well

when P = 2 (Table 1), especially in the empirically important case when the bandwidth is

estimated. When P = 4, however, the performance of these con�dence intervals is improved

(as theoretically expected), especially when the bandwidth is estimated. Nonetheless, they

never outperform the con�dence intervals based on the bootstrap and Gaussian approxima-

tions in terms of empirical coverage. As for the (average) interval length of these intervals,

we �nd that bootstrapping does not improve their performance in any case. In particu-

lar, the nonparametric bootstrap leads to conventional con�dence intervals with essentially

the same interval length as those constructed using the Gaussian approximation, while the

new con�dence intervals proposed in this paper actually exhibit an increase in their length

on average. This increase, however, should be contrasted with the fact that for estimated

bandwidth CI�1 have approximately correct coverage, while the corresponding CI
�
0 do not. In

our view, these simulation results highlight a natural trade-o¤ between �robustness�(to the

bandwidth choice) and �e¢ ciency�of these competing con�dence intervals.

To summarize, the theoretical results developed in this paper and the simulation evidence

reported indicate that bootstrap-based con�dence intervals constructed using the �robust�

statistic V̂ �1=21;n (�̂n � �) dominate the traditional bootstrap-based con�dence intervals con-
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structed using the statistic V̂ �1=20;n (�̂n � �), in the sense that they provide close-to-correct

empirical coverage for a substantially large range of potential bandwidth choices. In addi-

tion, our results show that the feasible, data-driven con�dence intervals CI�1(ĥSB) performed

well in all cases.

5. Practical Implications and Further Discussion

Semiparametric estimators, even the simplest ones such as the density-weighted average

derivative estimator studied herein, are known to be highly sensitive to the choice of tuning

parameters; e.g., the bandwidth hn in the case of �̂n(hn). Conventional distributional approx-

imations, and hence the associated inference procedures, are greatly a¤ected by the speci�c

choice of these tuning parameters, suggesting that from a practical perspective inference

employing these approximations may be unreliable. Since the bootstrap is believed to pro-

vide accurate distributional approximations in �nite-samples, or at least easy-to-implement

approximations, it is natural to conjecture that bootstrapping semiparametric estimators

may lead to improved, less sensitive distributional approximations. Moreover, at least from

a practical point of view, bootstrapping semiparametric estimators may be advisable if one

believes their poor performance is related to the (semiparametric) standard-error estimators.

In our view, this discussion gives additional (ex-ante) motivation for our work, beyond the

theoretical motivation outlined in the introduction.

In this paper we showed that even in the arguably simplest possible example of a semi-

parametric estimator, the bootstrap does not provide improvements over the conventional

large-sample approximations in general, and hence it cannot o¤er more �robust� (to the

tuning parameter choices) semiparametric inference procedures in empirical applications.

To further describe this key implication of our theoretical work, we consider two of the most

common approaches to conduct bootstrap-based inference in empirical work: (i) Efron-type
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con�dence intervals and (ii) bootstrap-based variance-covariance estimators.3 For simplicity,

we focus on conducting inference on �0�, with � 2 Rd. Let f�̂�n;b(hn) : b = 1; 2; � � � ; Bg

be a nonparametric (m = n) bootstrap sample of size B of the semiparametric estimator

�̂n(hn), and set F̂ �n(t) = B
�1PB

b=1 1(�
0�̂
�
n;b(hn) � t). To simplify the exposition we assume

throughout this section that nhd+2n ! � 2 (0;1], but our discussion also applies to the case

� = 0 (albeit the scaling factor must be changed). Note that � = 1 corresponds to the

conventional, asymptotically linear case.

The popular, easy-to-implement Efron-type 100�% con�dence intervals are

CI =
�
q��=2; q�1��=2

�
, q�� = infft 2 R : F̂ �n(t) � �g,

where B is chosen large enough so that the bootstrap distribution is well approximated. Our

theoretical results have important implications for this popular approach, showing in par-

ticular that asymptotic linearity is a fundamental feature for (at least) this semiparametric

estimator. Speci�cally, whenever nhd+2n ! � 2 (0;1],

p
n(�̂n(hn)� �) =

1p
n

nX
i=1

(
L(zi;hn) +

r
2

�

�
n

2

��1=2 X
i�j�n

W (zi; zj;hn)

)
+ op(1)

 N
�
0;� +

2

�
�

�
,

but, in contrast,

p
n(�̂

�
n(hn)� �̂n(hn)) =

1p
n

nX
i=1

(
L(z�i ;hn) +

r
6

�

�
n

2

��1=2 X
i�j�n

W (z�i ; z
�
j ;hn)

)
+ op(1)

 p N
�
0;� +

6

�
�

�
.

3The discussion below also applies immediately to the centered version of Efron-type con�dence intervals,
usually known as the �percentile method�.



Bootstrapping Density-Weighted Average Derivatives 28

Consequently, our results show that even the �vanilla�nonparametric Efron-type con�-

dence intervals are valid if and only if the semiparametric estimator is asymptotically linear

(i.e., � = 1). Importantly, this result shows that the nonparametric bootstrap fails in a

fundamental way, as this result holds separately from any results involving standard-error

estimators.

The previous result shows that even the simplest of the bootstrap approaches fails in

one of the simplest semiparametric inference contexts, in the sense that perturbations in the

choice of hn may lead to invalid con�dence intervals. An alternative approach also many

times employed in empirical work is to estimate the variance-covariance matrix using the

bootstrap, as an alternative to employing an analytic standard-errors estimator. In cases

where the analytic standard-errors are believed to be di¢ cult to estimate (e.g., quantile

regression), this approach may o¤er a useful empirical alternative. In our semiparametric

context, this approach leads to the following 100�% con�dence intervals:

CI =
�
�0�̂n � q1��=2

p
�0V̂ ��; �0�̂n + q1��=2

q
�0V̂ �n �

�
, q� = �

�1
1 (�),

with

V̂ �n =
1

B � 1

BX
b=1

 
�̂
�
n;b �

1

B

BX
b=1

�̂
�
n;b

! 
�̂
�
n;b �

1

B

BX
b=1

�̂
�
n;b

!0
,

where here again B is chosen large enough so that V̂ �n approximates V�[�̂
�
n] well. Our results

also show that this approach leads to biased con�dence intervals because

V̂ �n �
1

n

�
� +

6

�
�

�
6= 1

n

�
� +

2

�
�

�
� V[�̂n],

whenever � 6=1, that is, when asymptotic linearity fails.

In our view, the main message of this section is negative but nonetheless important for

empirical work: one cannot expect that the bootstrap will in general improve the �robust-
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ness�of semiparametric estimators with respect to the choice of tuning parameters.

6. Conclusion

Using an alternative asymptotic framework that removes the bandwidth conditions imply-

ing asymptotic linearity, we obtained new theory-based predictions about the �nite-sample

behavior of a variety of bootstrap-based inference procedures associated with the density-

weighted averaged derivative estimator of PSS. In important respects, the predictions and

methodological prescriptions emerging from the analysis presented here di¤er from those

obtained by NR, who employ traditional bandwidth conditions and Edgeworth expansions.

The results of a small-scale Monte Carlo experiment were found to be consistent with the the-

ory developed here, indicating in particular that while the properties of inference procedures

employing the conventional (jackknife) variance estimator are very sensitive to bandwidth

choice, this sensitivity can be substantially ameliorated by using a �robust�bias-corrected

variance estimator.

The main qualitative �ndings obtained herein for the density-weighted average deriva-

tive estimator of PSS should extend to other kernel-based statistics that are asymptotically

equivalent to n-varying second-order U-statistics also when �small� bandwidths are em-

ployed. Examples of statistics having the latter property include density-weighted averages

(see Newey, Hsieh, and Robins (2004, Section 2) and references therein), certain functionals

of U-processes (see Aradillas-Lopéz, Honoré, and Powell (2007) and references therein), and

kernel-based speci�cation test statistics (see Li and Racine (2007, Chapter 12) and references

therein). However, and perhaps surprisingly, in recent work (Cattaneo, Crump, and Jansson

(2012b)) we found that our results are not applicable to kernel-based (non-density-)weighted

average derivative estimators, as these estimators are not asymptotically equivalent to n-

varying second-order U-statistics when smaller-than-usual bandwidths are employed. Fur-

ther research on the properties of the bootstrap for kernel-based semiparametric estimators
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that are not asymptotically equivalent to an n-varying second-order U -statistic is currently

underway.

7. Appendix

7.1. Auxiliary Lemmas. For � 2 Rd, let ~Uij;n (�) = �0[U(zi; zj;hn)� �(hn)] and de�ne

T1;n(�) =

�
n

2

��1 X
1�i<j�n

~Uij;n(�), T2;n(�) =

�
n

2

��1 X
1�i<j�n

~Uij;n(�)
2,

T3;n(�) =

�
n

3

��1 X
1�i<j<k�n

~Uij;n(�) ~Uik;n(�) + ~Uij;n(�) ~Ujk;n(�) + ~Uik;n(�) ~Ujk;n(�)

3
,

T4;n(�) =

�
n

4

��1 X
1�i<j<k<l�n

~Uij;n(�) ~Ukl;n(�) + ~Uik;n(�) ~Ujl;n(�) + ~Uil;n(�) ~Ujk;n(�)

3
,

as well as their bootstrap analogues

T �1;n(�) =

�
m

2

��1 X
1�i<j�m

~U�ij;n(�), T �2;n(�) =

�
m

2

��1 X
1�i<j�m

~U�ij;n(�)
2,

T �3;n(�) =

�
m

3

��1 X
1�i<j<k�m

~U�ij;n(�)
~U�ik;n(�) +

~U�ij;n(�)
~U�jk;n(�) +

~U�ik;n(�)
~U�jk;n(�)

3
,

T �4;n(�) =

�
m

4

��1 X
1�i<j<k<l�m

~U�ij;n(�) ~U
�
kl;n(�) +

~U�ik;n(�)
~U�jl;n(�) +

~U�il;n(�)
~U�jk;n(�)

3
,

where ~U�ij;n(�) = �
0[U(z�i ; z

�
j ;hm)� �� (hm)].

The proof of Lemma 2 uses four technical lemmas, proofs of which are provided in the

supplemental appendix. Lemma A-1 relates �̂n and �̂n (and their bootstrap analogues) to

T1;n; T2;n; T3;n; and T4;n (and their bootstrap analogues), Lemma A-2 gives some asymptotic

properties of T1;n; T2;n; T3;n; and T4;n (and their bootstrap analogues), while Lemmas A-3

and A-4 are used to establish a pointwise version of (4) and to deduce (4) from its pointwise
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counterpart, respectively.

Lemma A-1. If the assumptions of Lemma 2 hold and if � 2 Rd, then

(a) �0�̂n(hn)� = 4 [1 + o(1)]n�1T2;n(�) + 4[1 + o(1)]T3;n(�)� 4T1;n(�)2,

(b) h�(d+2)n �0�̂n(hn)� = [1 + o(1)]T2;n(�)� T1;n(�)2 � 2[1 + o(1)]T3;n(�) + 2[1 + o(1)]T4;n(�),

(c) �0�̂�n(hm)� = 4 [1 + o(1)]m
�1T �2;n(�) + 4[1 + o(1)]T

�
3;n(�)� 4T �1;n(�)2,

(d) h�(d+2)m �0�̂�
n(hm)� = [1+ o(1)]T

�
2;n(�)� T �1;n(�)2� 2[1 + o (1)]T �3;n(�) + 2[1 + o(1)]T �4;n(�).

Let �n = 1=min
�
1; nhd+2n

�
.

Lemma A-2. If the assumptions of Lemma 2 hold and if � 2 Rd, then

(a) T1;n(�) = op(
p
�n),

(b) T2;n(�) = E[ ~Uij;n(�)2] + op(h�(d+2)n ),

(c) T3;n(�) = E[(E[ ~Uij;n(�)jzi])2] + op(�n),

(d) T4;n(�) = op (�n),

(e) hd+2n E[ ~Uij;n(�)2]! �0�� and E[(E[ ~Uij;n(�)jzi])2]! �0��=4,

(f) T �1;n(�) = op(
p
�m),

(g) T �2;n(�) = E�[ ~U�ij;n(�)2] + op(h
�(d+2)
m ),

(h) T �3;n(�) = E�[(E�[ ~U�ij;n(�)jz�i ])2] + op(�m),

(i) T �4;n(�) = op(�m),

(j) hd+2m E�[ ~U�ij;n(�)2]!p �
0�� and E�[(E�[ ~U�ij;n (�) jz�i ])2]� �0�̂n(hm)�=4!p 0.

Lemma A-3. If the assumptions of Lemma 2 hold and if � 2 Rd, then

(a) E[(E�[ ~U�ij;n(�)jz�i ])4] = O(�2m + h2m�3m),

(b) E[ ~U�ij;n(�)4] = O(h
�(3d+4)
m ),

(c) E[(E�[ ~U�ij;n(�)2jz�i ])2] = O(m�1h
�(3d+4)
m + h

�(2d+4)
m ),

(d) E[(E�[ ~U�ij;n(�) ~U�ik;n(�)jz�j ; z�k])2] = O(h
�(d+4)
m +m�2h

�(3d+4)
m ),

(e) E[(E�[E�[ ~U�ij;n(�)jz�i ] ~U�ij;n(�)jz�j ])2] = O(1 +m�1h
�(d+4)
m +m�3h

�(3d+4)
m ).

Lemma A-4. There exist constants C and J (only depending on d) and a collection
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l1; : : : ; lJ 2 �d such that for every d� d matrix M , sup�2�d(�
0M�)2 � C

PJ
j=1(l

0
jMlj)

2.

7.2. Proof of Lemma 2. As noted in the discussion of Lemma 2,

V�[�̂
�
n] = m

�1V�[L�(z�i ;hm)] +
�
m

2

��1
V�[W �(z�i ; z

�
j ;hm)],

where, using Lemmas A-1 and A-2,

V�[L�(z�i ;hm)] =
�
n� 1
n

�2
�̂n(hm) = � + 2

m2

n

�
m

2

��1
h�(d+2)m �+ op (�m) .

The proof of part (a) can be completed by using Lemmas A-1 and A-2 to show that

�0V�[W �(z�i ; z
�
j ;hm)]� = h�(d+2)m

�
n� 1
n

�h
�0�̂n(hm)�+ op (1)

i
� 3
2

�
n� 1
n

�2
�0�̂n(hm)�

= h�(d+2)m �0��+ op (m�m) (8� 2 Rd).

Next, part (b) can be established by using Lemmas A-1 and A-2 to show that

�0�̂�n(hm)� = 4[1 + o (1)]m�1T �2;n(�) + 4[1 + o (1)]T
�
3;n(�)� 4T �1;n(�)2

= �0�̂n(hm)�+ 4m
�1h�(d+2)m �0��+ op(�m) = �

0��n�+ op (�m) (8� 2 Rd).

Finally, to establish part (c), the theorem of Heyde and Brown (1970) is employed to

prove the following condition, which is equivalent to (4) in view of part (a):

sup
�2�d

sup
t2Rd

����P� ��0(�̂�n � ��n)=q�0V�[�̂�n]� � t�� �1 (t)����!p 0.

For any � 2 �d,

�0(�̂
�
n � ��n)=

q
�0V�[�̂

�
n]� =

X
1�i�m

Y �i;m (�) ,
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where, de�ning L�i;m(�) = �
0L�(z�i ;hm) and W

�
ij;m(�) = �

0W �(z�j ; z
�
i ;hm);

Y �i;m(�) =

"
m�1L�i;m(�) +

X
1�j<i

�
m

2

��1
W �
ij;m(�)

#
=

q
�0V�[�̂

�
n]�.

For any n,
�
Y �i;m(�);F�

i;n

�
is a martingale di¤erence sequence, where F�

i;n = �(Zn; z�1 ; : : : ; z�i ).

Therefore, by the theorem of Heyde and Brown (1970), there exists a constant C such that

sup
�2�d

sup
t2Rd

����P� ��0(�̂�n � ��n)=q�0V�[�̂�n]� � t�� �1 (t)����
� C sup

�2�d

8<: X
1�i�m

E�
�
Y �i;m(�)

4
�
+ E�

24 X
1�i�m

E
�
Y �i;m(�)

2
��F�

i�1;n
�
� 1
!2359=;

1=5

.

Moreover, by Lemma A-4,

sup
�2�d

8<: X
1�i�m

E�
�
Y �i;m(�)

4
�
+ E�

24 X
1�i�m

E
�
Y �i;m(�)

2
��F�

i�1;n
�
� 1
!2359=;!p 0

if (and only if) (5)�(6) hold for every � 2 �d, where

X
1�i�m

E�
�
Y �i;m(�)

4
�
!p 0; (5)

E�
24 X

1�i�m
E
�
Y �i;m(�)

2
��F�

i�1;n
�
� 1
!235!p 0. (6)

The proof of part (c) will be completed by �xing � 2 �d and verifying (5)�(6) : First,

using (�0V �[�̂
�
n]�)

�1 = Op(m�
�1
m ) and basic inequalities, it can be shown that (5) holds if

R1;m = m
�2��2m

X
1�i�m

E
�
L�i;m(�)

4
�
! 0, R2;m = m

�6��2m
X
1�i�m

E

24 X
1�j<i

W �
ij;m(�)

!435! 0.
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Both conditions are satis�ed because, using Lemma A-3,

R1;m = O
�
m�1��2m E[(E�[ ~U�ij;n (�) jz�i ])4]

�
= O

�
m�1 +m�1h2m�m

�
= O

�
m�1 +m�2h�dm

�
! 0

and

R2;m = O
�
m�4��2m E[ ~U�ij;n(�)4] +m�3��2m E[(E�[ ~U�ij;n(�)2jz�i ])2]

�
= O

�
m�4��2m h

�(3d+4)
m +m�3��2m h

�(2d+4)
m

�
= O

�
m�2h�dm +m�1�! 0.

Next, consider (6). Because

(�0V�[�̂
�
n]�)

" X
1�i�m

E
�
Y �i;m(�)

2
��F�

i�1;n
�
� 1
#

=

�
m

2

��2 X
1�i�m

0@E
24 X

1�j<i
W �
ij;m(�)

!2������F�
i�1;n

35� X
1�j<i

E�
�
W �
ij;m(�)

2
�1A

+ 2m�1
�
m

2

��1 X
1�j<i�m

E
�
L�i;m(�)W

�
ij;m(�)jF�

i�1;n
�
,

it su¢ ces to show that

R3;m = m
�6��2m E

24 X
1�j<i�m

�
E
�
W �
ij;m(�)

2
��F�

i�1;n
�
� E�

�
W �
ij;m(�)

2
�	!235! 0,

R4;m = m
�6��2m E

24 X
1�k<j<i�m

E
�
W �
ij;m(�)W

�
ik;m(�)

��F�
i�1;n

�!235! 0,

R5;m = m
�4��2m E

24 X
1�j<i�m

E
�
L�i;m(�)W

�
ij;m(�)jZn; z�j

�!235! 0.
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By simple calculations and Lemma A-3,

R3;m = O
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m�4��2m E[W �

ij;m(�)
4]
�
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�
m�4��2m E[ ~U�ij;n(�)4]

�
= O

�
m�4��2m h

�(3d+4)
m

�
= O

�
m�2h�dm

�
! 0,

R4;m = O
�
m�2��2m E

h�
E�[W �

ij;m(�)W
�
ik;m(�)jz�j ; z�k]

�2i�
= O

�
m�2��2m E

��
E�[ ~U�ij;n(�) ~U�ik;n(�)jz�j ; z�k]

�2��
= O

�
m�2��2m h

�(d+4)
m +m�4��2m h

�(3d+4)
m

�
= O

�
hdm +m

�2h�dm
�
! 0,

R5;m = O
�
m�1��2m E

h�
E�
�
L�i;m(�)W

�
ij;m(�)jz�j

��2i�
= O

�
m�1��2m E

��
E�
h
E�[ ~U�ij;n(�)jz�i ] ~U�ij;n(�)jz�j

i�2��
= O

�
m�1��2m +m�2��2m h

�(d+4)
m +m�4��2m h

�(3d+4)
m

�
= O

�
m�1 + hdm +m

�2hdm
�
! 0,

as was to be shown. �

References

Aradillas-Lopéz, A., B. E. Honoré, and J. L. Powell (2007): �Pairwise Di¤erence

Estimation with Nonparametric Control Variables,� International Economic Review, 48,

1119�1158.

Bickel, P. J., and D. A. Freedman (1981): �Some Asymptotic Theory for the Boot-

strap,�Annals of Statistics, 9(6), 1196�1217.

Campbell, J. R. (2011): �Competition in Large Markets,�Journal of Applied Economet-

rics, 26(7), 1113�1136.



Bootstrapping Density-Weighted Average Derivatives 36

Cattaneo, M. D., R. K. Crump, and M. Jansson (2010): �Robust Data-Driven In-

ference for Density-Weighted Average Derivatives,� Journal of the American Statistical

Association, 105(491), 1070�1083.

(2012a): �Small Bandwidth Asymptotics for Density-Weighted Average Deriva-

tives,�forthcoming Econometric Theory.

(2012b): �Generalized Jackknife Estimators of Weighted Average Derivatives,�

working paper, University of Michigan.

Chen, X., O. Linton, and I. van Keilegom (2003): �Estimation of Semiparametric

Models when The Criterion Function Is Not Smooth,�Econometrica, 71(5), 1591�1608.

Cheng, G., and J. Z. Huang (2010): �Bootstrap Consistency for General Semiparametric

M-Estimation,�Annals of Statistics, 38(5), 2884�2915.

Coppejans, M., and H. Sieg (2005): �Kernel Estimation of Average Derivatives and

Di¤erences,�Journal of Business and Economic Statistics, 23, 211�225.

Deaton, A., and S. Ng (1998): �Parametric and Nonparametric Approaches to Price and

Tax Reform,�Journal of the American Statistical Association, 93, 900�909.

Efron, B., and C. Stein (1981): �The Jackknife Estimate of Variance,�Annals of Statis-

tics, 9(3), 586�596.

Gine, E., and J. Zinn (1990): �Bootstrapping General Empirical Measures,�Annals of

Probability, 18(2), 851�869.

Hall, P. (1992): The Bootstrap and Edgeworth Expansions. Springer, New York.

Härdle, W., W. Hildenbrand, and M. Jerison (1991): �Empirical Evidence on the

Law of Demand,�Econometrica, 59, 1525�1549.



Bootstrapping Density-Weighted Average Derivatives 37

Härdle, W., and A. Tsybakov (1993): �How Sensitive are Average Derivatives?,�Jour-

nal of Econometrics, 58, 31�48.

Heyde, C. C., and B. M. Brown (1970): �On the Departure from Normality of a Certain

Class of Martingales,�Annals of Mathematical Statistics, 41(6), 2161�2165.

Horowitz, J. (2001): �The Bootstrap,� in Handbook of Econometrics, Volume V, ed. by

J. Heckman, and E. Leamer, pp. 3159�3228. Elsevier Science B.V., New York.

Li, Q., and S. Racine (2007): Nonparametric Econometrics. Princeton University Press,

New Yersey.

Newey, W. K., F. Hsieh, and J. M. Robins (2004): �Twicing Kernels and a Small Bias

Property of Semiparametric Estimators,�Econometrica, 72, 947�962.

Nishiyama, Y., and P. M. Robinson (2000): �Edgeworth Expansions for Semiparametric

Averaged Derivatives,�Econometrica, 68(4), 931�979.

(2001): �Studentization in Edgeworth Expansions for Estimates of Semiparametric

Index Models,�in Nonlinear Statistical Modeling: Essays in Honor of Takeshi Amemiya,

ed. by C. Hsiao, K. Morimune, and J. L. Powell, pp. 197�240. Cambridge University Press,

New York.

(2005): �The Bootstrap and the Edgeworth Correction for Semiparametric Averaged

Derivatives,�Econometrica, 73(3), 197�240.

Politis, D., and J. Romano (1994): �Large Sample Con�dence Regions Based On Sub-

samples Under Minimal Assumptions,�Annals of Statistics, 22(4), 2031�2050.

Politis, D., J. Romano, and M. Wolf (1999): Subsampling. Springer, New York.



Bootstrapping Density-Weighted Average Derivatives 38

Powell, J. L., J. H. Stock, and T. M. Stoker (1989): �Semiparametric Estimation of

Index Coe¢ cients,�Econometrica, 57(6), 1403�1430.

Powell, J. L., and T. M. Stoker (1996): �Optimal Bandwidth Choice for Density-

Weighted Averages,�Journal of Econometrics, 75(2), 291�316.

Robinson, P. M. (1995): �The Normal Approximation for Semiparametric Averaged Deriv-

atives,�Econometrica, 63, 667�680.

Stoker, T. M. (1986): �Consistent Estimation of Scaled Coe¢ cients,� Econometrica,

54(6), 1461�1481.

Xiong, S., and G. Li (2008): �Some Results on the Convergence of Conditional Distribu-

tions,�Statistics and Probability Letters, 78(18), 3249�3253.



Bootstrapping Density-Weighted Average Derivatives 39
T
ab
le
2:
E
m
pi
ri
ca
l
C
ov
er
ag
e
an
d
In
te
rv
al
L
en
gt
h
of
95
%
C
on
�d
en
ce
In
te
rv
al
s.

B
an
d
w
id
th

E
m
p
ir
ic
al
C
ov
er
ag
e

(B
o
ot
st
ra
p
A
p
p
ro
x
.)

E
m
p
ir
ic
al
C
ov
er
ag
e

(G
au
ss
ia
n
A
p
p
ro
x
.)

In
te
rv
al
L
en
gt
h

(B
o
ot
st
ra
p
A
p
p
ro
x
.)

In
te
rv
al
L
en
gt
h

(G
au
ss
ia
n
A
p
p
ro
x
.)

h
n

C
I� 0

C
I� 0
;B
C

C
I� 1

C
I 0

C
I 0
;B
C

C
I 1

C
I� 0

C
I� 0
;B
C

C
I� 1

C
I 0

C
I 0
;B
C

C
I 1

M
o
d
el
1

P
=
2

h
P
S

0.
20
5

0.
93
0

0.
80
9

0.
91
7

0.
94
2

0.
82
5

0.
90
2

0.
01
3

0.
01
3

0.
01
4

0.
01
4

0.
01
4

0.
01
3

h
N
R

0.
20
5

0.
93
0

0.
80
9

0.
91
7

0.
94
2

0.
82
5

0.
90
2

0.
01
3

0.
01
3

0.
01
4

0.
01
4

0.
01
4

0.
01
3

h
S
B

0.
09
2

0.
97
6

0.
84
3

0.
94
4

0.
99
4

0.
89
7

0.
94
2

0.
04
1

0.
04
1

0.
04
7

0.
04
7

0.
04
7

0.
03
4

ĥ
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ĥ
S
B

0.
08
8

0.
97
3

0.
83
7

0.
94
2

0.
98
7

0.
89
0

0.
94
8

0.
07
1

0.
07
1

0.
08
2

0.
08
3

0.
08
3

0.
05
9

M
o
d
el
1

P
=
4

h
P
S

0.
41
7

0.
95
1

0.
95
2

0.
94
9

0.
95
6

0.
95
1

0.
94
4

0.
01
2

0.
01
2

0.
01
3

0.
01
2

0.
01
2

0.
01
2

h
N
R

0.
44
2

0.
95
0

0.
94
3

0.
94
9

0.
95
2

0.
93
5

0.
94
1

0.
01
2

0.
01
2

0.
01
2

0.
01
2

0.
01
2

0.
01
2

h
S
B

0.
28
4

0.
95
6

0.
98
3

0.
95
3

0.
97
5

0.
99
1

0.
94
7

0.
01
5

0.
01
5

0.
01
6

0.
01
6

0.
01
6

0.
01
4

ĥ
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