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Abstract. This paper is concerned with inference on the coeffi cient
on the endogenous regressor in a linear instrumental variables model with a
single endogenous regressor, nonrandom exogenous regressors and instruments,
and i.i.d. errors whose distribution is unknown. It is shown that under mild
smoothness conditions on the error distribution it is possible to develop tests
which are “nearly”effi cient in the sense of Andrews, Moreira, and Stock (2006)
when identification is weak and consistent and asymptotically optimal when
identification is strong. In addition, an estimator is presented which can be
used in the usual way to construct valid (indeed, optimal) confidence intervals
when identification is strong. The estimator is of the two stage least squares
variety and is asymptotically effi cient under strong identification whether or
not the errors are normal.

1. Introduction
This paper is concerned with inference on the coeffi cient on the endogenous regressor
in a linear instrumental variables (IVs) model with a single endogenous regressor,
nonrandom exogenous regressors and IVs, and i.i.d. errors. Models of this type have
been studied intensively in recent years, with particular attention being devoted to
the case where the IVs are weak (in the terminology of Staiger and Stock (1997)).1
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National Research Foundation).

1For reviews of the weak IV literature, see e.g. Dufour (2003) and Andrews and Stock (2007).
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Analyzing such a model in which the i.i.d. errors are furthermore assumed to be
Gaussian, Andrews, Moreira, and Stock (2006, henceforth AMS) find that the con-
ditional likelihood ratio test proposed by Moreira (2003) is “nearly” effi cient when
identification is weak and asymptotically effi cient when identification is strong.
The purpose of the present paper is to explore the consequences of relaxing the

assumption of normality on the part of the i.i.d. errors in a model which is otherwise
identical to the model studied by AMS (and others). Recent work by Andrews and
Marmer (2007) and Andrews and Soares (2007) shows that departures from normality
can be exploited for power purposes when the errors satisfy a certain symmetry
condition. Although these papers do not establish optimality results on the part of the
rank-based testing procedures proposed therein, the findings of the papers imply in
particular that for certain classes of error distributions the conditional likelihood test
ceases to be (nearly) optimal once the assumption of normality is relaxed. This paper
addresses the issue of optimality and shows that under mild smoothness conditions
on the (otherwise unknown) error distribution it is possible to develop tests which
are (nearly) optimal whether or not the errors are Gaussian.
The asymptotic optimality theory developed herein treats the distribution of the

i.i.d. errors as an unknown nuisance parameter and is therefore of the semiparamet-
ric variety. In fact, under the assumption that the model contains an intercept (an
assumption which we maintain throughout), we establish adaptation results, namely
that one can construct procedures which perform asymptotically as well as proce-
dures which optimally utilize knowledge of the error distribution. This adaptation
result bears more than a superficial resemblance to Bickel’s (1982) celebrated result
on adaptive estimation of the slope coeffi cients in a regression model. Specifically, it
turns out that the problem of conducting inference in an IV model with an unknown
error distribution can be decomposed into two separate problems, each of which is
well understood, in isolation, from the works of Bickel (1982) and AMS, respectively.
The first of these problems concerns effi cient estimation of the slope coeffi cients in
the reduced form of the IV model. That problem is a bivariate version of the problem
addressed by Bickel (1982) and can be solved in essentially the same way. Because
effi cient estimators of the slope coeffi cients turn out to be asymptotically suffi cient
statistics for the relevant parameters of the IV model, the problem of conducting opti-
mal inference can be reduced to the problem of optimally extracting information from
the effi cient estimators of the reduced form regression coeffi cients. The mathematical
structure of that problem turns out to be the same whether or not the errors are
Gaussian, implying that we can utilize the results of AMS to construct test statistics
which combine the effi cient estimators of the reduced form regression coeffi cients in
an optimal way.
Our construction of feasible inference procedures proceeds in several steps, cul-

minating with a procedure which is nearly effi cient when identification is weak and
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consistent and asymptotically optimal when identification is strong. The resulting
procedure is of the conditional likelihood ratio variety, but being optimal (or nearly so,
depending on the strength of identification) it is of necessity different from Moreira’s
(2003) procedure. Analogously to Moreira’s (2003) procedure, a potential drawback
of our procedure is that although it enjoys optimality properties when identification
is strong, it is somewhat tedious to invert it in order to obtain confidence intervals
in strongly identified models. To address this issue, we present an estimator and an
accompanying standard error formula which can be used in the usual way to con-
struct valid (indeed, optimal) confidence intervals when identification is strong. The
estimator, which would appear to be new, is of the two stage least squares (2SLS)
variety and is asymptotically effi cient under strong identification whether or not the
errors are normal.
The paper proceeds as follows. Section 2 presents the model and the assumptions

under which the asymptotic analysis will proceed. Section 3 is concerned with as-
ymptotic inference under the assumptions that the error distribution is known and
identification is weak. The counterfactual assumption that the error distribution is
known is dispensed with in Section 4, where it is also shown how strong identification
can be accommodated. Section 5 presents some simulation results, while mathemat-
ical derivations have been relegated to an Appendix.

2. The Model
We consider a model given by

y1i = Γ′1xi + βy2i + ui,

y2i = γ′2xi + π′zi + v2i (i = 1, . . . , n) , (1)

where y1i, y2i ∈ R, xi ∈ Rp, and zi ∈ Rq are observed variables; ui, v2i ∈ R are
unobserved errors; and β ∈ R, π ∈ Rq, and Γ1, γ2 ∈ Rp are parameters. The
exogenous variables xi and zi are nonrandom and the first element of xi is assumed
to equal unity. The errors (ui, v2i) are i.i.d. from a continuous distribution with zero
mean and finite variance.
It turns out to be convenient to work with the reduced form of the model. The

reduced form is given by the pair of equations

y1i = γ′1xi + βπ′zi + v1i,

y2i = γ′2xi + π′zi + v2i (i = 1, . . . , n) , (2)

where γ1 = Γ1 + γ2β and v1i = v2iβ + ui. The parameters of the reduced form are β,
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π, γ = (γ′1, γ
′
2)′ , and f, the Lebesgue density of vi = (v1i, v2i)

′ . The analysis of the
reduced form is facilitated by the fact that it can be embedded in the model

y1i = γ′1xi + δ′1zi + v1i,

y2i = γ′2xi + δ′2zi + v2i (i = 1, . . . , n) , (3)

where δ1, δ2 ∈ Rq and the other parameters are as in (2) .2 Indeed, the main results
of this paper can and will be derived as relatively simple consequences of results
concerning the bivariate regression model (3) , which itself can be analyzed by means
of fairly standard tools.
Our goal is to develop powerful tests of

H0 : β = β0 vs. H1 : β 6= β0,

treating π, γ, and f as unknown nuisance parameters.3 Replacing y1i by y1i − β0y2i

if necessary, we assume without loss of generality that β0 = 0.
The analysis proceeds under the following assumptions.4

Assumption 1. (a) Qzz,n = n−1
∑n

i=1 ziz
′
i → Qzz > 0 and max1≤i≤n ‖zi‖ /

√
n→ 0.

(b) Qxx,n = n−1
∑n

i=1 xix
′
i → Qxx > 0 and max1≤i≤n ‖xi‖ /

√
n→ 0.

Assumption 2. The density f admits a function ḟ such that
(a) for almost every v ∈ R2, f is differentiable at v, with total derivative ḟ .
(b) for every v, θ ∈ R2, f (v + θ)− f (v) = θ′

∫ 1

0
ḟ (v + θt) dt.

(c)
∫
R2 ‖` (v)‖2 f (v) dv <∞, where ` (v) = −1 [f (v) > 0] ḟ (v) /f (v) .

Assumption 3. Qzx,n = n−1
∑n

i=1 zix
′
i → 0.

Remarks. (i) Assumption 1 is a fairly standard assumption concerning the exogenous
variables. As in Bickel (1982), the assumption that the exogenous variables (x′i, z

′
i)
′

are nonrandom can be relaxed, and the main results of this paper will remain valid,
provided the errors {vi} are assumed to be independent of

{
(x′i, z

′
i)
′} .

(ii) The assumption that second moments of the errors exist serves three purposes.
First, it implies that the Fisher information matrix I defined in (4) is nonsingular.

2The model (3) reduces to (2) when δ = (δ1, δ2)
′

= (βπ′, π′)
′
.

3Testing problems of this type are of interest partly because the duality between hypothesis test-
ing and interval estimation implies that confidence intervals for β can be obtained by test inversion.

4In Assumption 1 and elsewhere in the paper, ‖·‖ is the Euclidean norm and limits are taken as
n→∞, except where otherwise noted.
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Second, it implies that the
√
n-consistency requirements of Assumptions 6-8 are met

by OLS estimators. Finally, it is required for the validity of the statements concerning
procedures based on the Gaussian (quasi-)likelihood that are made throughout the
paper. As in Bickel (1982), the main results of this paper are valid even without
moment assumptions provided it is assumed that I > 0.
(iii) Assumption 2 is a relatively mild smoothness condition on the error density.

Parts (a) and (b) of Assumption 2 hold if, but do not require that, f is continuously
differentiable. In particular, Assumption 2 accommodates mild departures from con-
tinuous differentiability, such as that which occurs when the elements of vi, or some
rotation thereof, are independent and double exponentially distributed.
(iv) If Assumption 1 holds and Qzx = limn→∞ n

−1
∑n

i=1 zix
′
i exists, Assumption

3 is a normalization in the sense that it entails no loss of generality. Specifically,
replacing zi by z∗i = zi−QzxQ

−1
xxxi has no effect on the value of (β, π) and guarantees

validity of Assumption 3. Our main results depend on
{

(x′i, z
′
i)
′} only through {z∗i } ,

so Assumption 3 is convenient insofar as it enables us to simplify the notation by
eliminating the distinction between {zi} and {z∗i } .
(v) Throughout this paper the endogenous regressor y2i is assumed to be scalar.

Most of our distributional results should generalize straightforwardly to models with
multiple endogenous regressors, as should the optimality results reported in Section
4.4. On the other hand, analogues of the near optimality results (established by AMS
for Moreira (2003)-type inference procedures in models with weak instruments and a
scalar endogenous regressor) that underlie some of the effi ciency claims made in other
sections of the paper do not seem to be available for models with multiple endogenous
regressors.

An immediate implication of Assumptions 1(a) and 2 is that

1√
n

n∑
i=1

` (vi)⊗ zi →d N (0, I ⊗Qzz) ,

where

I =

∫
R2
` (v) ` (v)′ f (v) dv (4)

is the Fisher information for the location family generated by f. As shown in the
Appendix, Assumption 2 furthermore enables nonparametric estimation of ` and
implies that the model (3) is differentiable in quadratic mean at any (γ, δ) . In other
words, the roles played by parts (a) and (b) of Assumption 2 are analogous to those
played by the assumption of absolute continuity routinely invoked in regression models
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with scalar errors. In fact, the natural scalar counterpart of Assumption 2(b) is the
assumption of absolute continuity.
As mentioned in remark (iv), Assumption 3 is a normalization which greatly

simplifies the derivation and statements of asymptotic results. Specifically, because
the limit ofQzx,n is a zero matrix under Assumption 3, the parameters (β, π) and γ are
orthogonal (in the sense of Cox and Reid (1987)). This fact, which is an immediate
consequence of the fact that δ = (δ1, δ2)′ and γ are orthogonal in (3) , implies that
the analysis can proceed under the “as if” assumption that γ is known. Similarly,
the fact that n−1

∑n
i=1 zi → 0 under Assumption 3 (because the first element of xi

equals unity) implies that the analysis can proceed under the “as if” assumption
that f is known. This is so because δ in (3) can be estimated adaptively, the latter
fact essentially following from Bickel’s (1982) result on adaptive estimation of slope
coeffi cients in a regression model.
In other words, Assumption 3 implies that π is the only nuisance parameter which

matters asymptotically. Concerning π, particular attention will be devoted to the
weakly identified case where π is “close”to zero in the sense of the following assump-
tion.

Assumption 4W. π = c/
√
n for some constant c ∈ Rq and β is a constant.

Under the local-to-zero parameterization of π specified by Assumption 4W, contigu-
ous alternatives to H0 are of the form β = β0 +O (1) . Accordingly, β is modeled as a
constant in the weakly identified case. Although our main emphasis is on the weakly
identified case, we shall on occasion employ one of the following (strong identification)
assumptions.

Assumption 4SC. π is a nonzero constant and β = b/
√
n for some constant b ∈ R.

Assumption 4SF. π is a nonzero constant and β is a constant.

When π is a nonzero constant, identification is strong and contiguous alternatives to
H0 are of the form β = β0+O (1/

√
n) . Assumption 4SC covers that case and is appro-

priate when studying local asymptotic power properties under strong identification.
In contrast, Assumption 4SF assumes strong identification and furthermore holds β
fixed. This combination of strong identification and fixed alternatives is appropriate
when studying the consistency properties of various tests. Moreover, Assumption
4SF is useful when studying the properties of point estimators of β under strong
identification.
Assumptions 4W, 4SC, and 4SF are nonnested, but it seems natural to study them

in the order indicated above. This is so because the assumptions impose decreasingly
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strong upper bounds on the magnitude of the parameters δ1 and δ2 of (3) . Specif-
ically, Assumption 4W implies that δ1 = O (1/

√
n) and δ2 = O (1/

√
n) . Relative

to Assumption 4W, Assumption 4SC removes the requirement δ2 = O (1/
√
n) and

Assumption 4SF furthermore relaxes the requirement δ1 = O (1/
√
n) . In this paper,

these differences are important because the feasible inference procedures constructed
in Section 4 employ one-step estimators of δ. As usual, one-step estimators utilize
initial estimators that are required to be

√
n-consistent. Under Assumption 4W, this

requirement is met by the zero vector, while Assumption 4SC and 4SF imply that
nondegenerate initial estimators of δ2 and (δ1, δ2) , respectively, are required in order
to guarantee that one-step estimators of δ are well behaved. Accordingly, the three
constructions presented in Section 4 differ in terms of (and only in terms of) the
nature of the initial estimators of δ being employed.

3. The Limiting Experiment when Identification is Weak
This section is concerned with asymptotic inference under the assumptions that (i) the
nuisance parameters γ and f are known and (ii) identification is weak. As mentioned
in the previous section, Assumption 3 ensures that (i) can be dispensed with. Precise
statements to that effect will be provided in the next section, where it is also shown
how departures from (ii) can be accommodated.
When f is Gaussian and the reduced form variance Ω =

∫
R2 vv

′f (v) dv is known,
the problem of testing β = β0 vs. β 6= β0 is nonstandard, but amenable to finite
sample analysis using the theory of curved exponential families (e.g., Moreira (2003)
and AMS). This feature is lost, in general, when f is not Gaussian. On the other
hand, the testing problem remains amenable to asymptotic analysis using the limits
of experiments approach even when f is non-Gaussian.5 In fact, it turns out that
the family of limiting experiments associated with non-Gaussian error distributions
coincides with the family of limiting experiments for the Gaussian case.
In the Gaussian case, the limiting experiment is that of a single observation from

the N [µ (β, c) ,Ω⊗Q−1
zz ] distribution, where

µ (β, c) = (β, 1)′ ⊗ c.

Equivalently, because Ω = I−1 when f is Gaussian, the limiting experiment in the
Gaussian case is that of a single observation from the N [µ (β, c) , I−1 ⊗Q−1

zz ] distrib-
ution. As it turns out, the latter characterization generalizes readily to non-Gaussian
error distributions.

5For an exposition of the elements of the theory of limits of experiments employed in this paper,
see e.g. van der Vaart (1998).
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To give a precise statement, we proceed in the spirit of van der Vaart (1998,
Section 7.6). Define the log likelihood ratio function

Ln (β, c) =
n∑
i=1

log f
(
y1i − γ′1xi − βc′zi/

√
n, y2i − γ′2xi − c′zi/

√
n
)

−
n∑
i=1

log f (y1i − γ′1xi, y2i − γ′2xi)

and let “op0 (1)”and “→d0”be shorthand for “op (1) under the distributions associated
with (β, π) = (0, 0)”and “→d under the distributions associated with (β, π) = (0, 0)”,
respectively.

Theorem 1. If Assumptions 1(a) and 2 hold, then

Ln (β, c) = µ (β, c)′ (I ⊗Qzz) ∆n −
1

2
µ (β, c)′ (I ⊗Qzz)µ (β, c) + op0 (1)

for every (β, c) , where

∆n =
(
I−1 ⊗Q−1

zz

) 1√
n

n∑
i=1

` (y1i − γ′1xi, y2i − γ′2xi)⊗ zi →d0 N
(
0, I−1 ⊗Q−1

zz

)
.

Theorem 1 is a special case of a local asymptotic normality (LAN) result for the
model (3) . The general LAN result is given in Theorem A.1 in the Appendix.
As in van der Vaart (1998, Section 9.3), Theorem 1 and Le Cam’s third lemma

can be used to show that if Assumptions 1(a), 2, and 4W hold, then the asymp-
totically suffi cient statistic ∆n satisfies ∆n →d N [µ (β, c) , I−1 ⊗Q−1

zz ] , implying
in particular that the limiting experiment is that of a single observation from the
N [µ (β, c) , I−1 ⊗Q−1

zz ] distribution whether or not the errors are Gaussian.
Under the same assumptions, the quasi-suffi cient (i.e., suffi cient when the errors

are Gaussian) statistic

∆̄n =
(
Ω⊗Q−1

zz,n

) 1√
n

n∑
i=1

¯̀(y1i − γ′1xi, y2i − γ′2xi)⊗ zi, ¯̀(v) = Ω−1v,

obtained from the Gaussian quasi-likelihood satisfies ∆̄n →d N [µ (β, c) ,Ω⊗Q−1
zz ] .

The Cauchy-Schwarz inequality can be used to show that I−1 ≤ Ω, with equality if
and only if ` (v) is linear in v on the support of f. By implication, procedures based on



Instrumental Variables Regression with non-Gaussian Errors 9

the Gaussian quasi-likelihood are asymptotically ineffi cient in general. More specifi-
cally, any test based on a “smooth”(e.g., almost everywhere continuous) function of
∆̄n, such as those proposed by Anderson and Rubin (1949), Kleibergen (2002), and
Moreira (2003), will be dominated by a test which is effi cient (or nearly so) under the
assumptions of Theorem 1.6

Nevertheless, the results obtained under the assumption of Gaussian errors are of
considerable relevance also in models with non-Gaussian errors. This is so because
the limiting experiments, indexed by I−1 ⊗ Q−1

zz , in the general case are isomorphic
to the limiting experiments, indexed by Ω ⊗ Q−1

zz , associated with Gaussian errors,
a very convenient result because it implies that the insights concerning the relative
merits of various testing procedures obtained under the assumption of normality are
directly applicable in the general case.
To be specific, let Sn, Tn ∈ Rq be given by

(S ′n, T
′
n)
′
=
[
I1/2′ ⊗Q1/2′

zz

]
∆n,

where M1/2 denotes the upper triangular Cholesky factor of a symmetric, positive
semi-definite matrix M ; that is, M = M1/2M1/2′, where M1/2 is upper triangular.7

The pair (Sn, Tn) is a non-Gaussian counterpart of
(
S̄ ′n, T̄

′
n

)′
=
[
(Ω−1)

1/2′ ⊗Q1/2′
zz,n

]
∆̄n,

which features prominently in the work by Moreira (2003), AMS, and others.
In terms of

(
S̄n, T̄n

)
, the (known Ω) Anderson-Rubin, Lagrange multiplier, and

likelihood ratio test statistics popularized by Anderson and Rubin (1949), Kleibergen
(2002), and Moreira (2003), respectively, can be expressed as

ARn = AR
(
S̄n
)

= S̄ ′nS̄n, LMn = LM
(
S̄n, T̄n

)
=

(
S̄ ′nT̄n

)2

T̄ ′nT̄n
,

LRn = LR
(
S̄n, T̄n

)
=

1

2

(
S̄ ′nS̄n − T̄ ′nT̄n +

√(
S̄ ′nS̄n − T̄ ′nT̄n

)2
+ 4

(
S̄ ′nT̄n

)2
)
.

In perfect analogy with the Gaussian case, letARn = AR (Sn) , LMn = LM (Sn, Tn) ,
and LRn = LR (Sn, Tn) . The tests which reject H0 when ARn > χ2

α (q) , LMn >

6Section 4 will exhibit tests which are nearly effi cient under the assumptions of Theorem 1.
7In particular, letting Iij denote element (i, j) of I, we have:

I1/2 =

( √
I11.2 I12/

√
I22

0
√
I22

)
, I11.2 = I11 − I212/I22.
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χ2
α (1) , and LRn > κα (Tn) have asymptotic size α, where χ2

α (d) is the 1 − α quan-
tile of the χ2 distribution with d degrees of freedom and κα (t) is the 1− α quantile
of the distribution of LR (Z, t) , where Z ∼ N (0, Iq) .

8 Because of the isomorphism
between the Gaussian case and the general case, the relative merits of these testing
procedures are well understood from the numerical work of AMS. In particular, it
follows from AMS that the test which rejects when LRn > κα (Tn) is nearly effi cient
in the sense that its power function is “close” to the two-sided power envelope for
invariant similar tests.

4. Feasible Inference Procedures
The results of the previous section were obtained under the tacit assumption that
γ and f are known. In addition, it was assumed to be known that identification is
weak. This section relaxes these assumptions.

4.1. Inference without knowledge of γ and f . First, consider the problem
of conducting inference under weak identification without knowledge of the nuisance
parameters γ and f. Doing so is easy provided we can find a pair

(
∆̂n, În

)
which is

asymptotically equivalent to (∆n, I) under weak identification and can be computed
without knowledge of (γ, f) . To that end, let

∆̂n =
(
Î−1
n ⊗Q−1

zz,n

) 1√
n

n∑
i=1

ˆ̀
i,n ⊗ zi, În =

1

n

n∑
i=1

ˆ̀
i,n

ˆ̀′
i,n,

where ˆ̀
i,n is an estimator of ` (y1i − γ′1xi, y2i − γ′2xi) . In the spirit of Schick (1987),

we assume that ˆ̀
i,n = ˆ̀

n (v̂i) , where v̂i = (y1i − γ̂′1nxi, y2i − γ̂′2nxi)
′ for some estimator

γ̂n = (γ̂′1n, γ̂
′
2n)
′ of γ and

ˆ̀
n (v) = −∂f̂n (v) /∂v

f̂n (v) + an
, f̂n (v) =

1

nh2
n

n∑
i=1

K

(
v − v̂i
hn

)
,

where K is a kernel and an and hn are positive sequences. Theorem 2 shows that
this construction, which does not involve sample splitting, works when the following
assumptions hold.

Assumption 5. (a) K (s1, s2) = k (s1) k (s2) , where k is a bounded, symmetric,
continuously differentiable density with

∫
R r

2k (r) dr+supr∈R |k′ (r)| /k (r) <∞.
(b) an → 0, hn → 0, and na2

nh
4
n →∞.

8As shown by Moreira (2003), κα (t) depends on t only through ‖t‖ , is monotonically decreasing
in ‖t‖ , and satisfies lim‖t‖→∞ κα (t) = χ2α (1) . The latter result will be utilized when studying the
behavior of the test based on LRn under strong identification.
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Assumption 6. γ̂n is discrete and
√
n (γ̂n − γ) = Op (1) .

Remarks. (i) The nonparametric estimation method used here involves two smooth-
ing parameters, hn and an, of which the former is a bandwidth sequence whereas the
latter enables us to avoid trimming when handling the density estimator f̂n appearing
in the denominator of ˆ̀

n.
(ii) If the variances of v1 and v2 are suspected to be of different magnitude it may be

desirable to letK be a product kernel of the formK (s1, s2) = σ−1
1 σ−1

2 k (s1/σ1) k (s2/σ2) ,
where σ1 and σ2 are positive constants and k is as in Assumption 5(a). All results,
and their proofs, remain valid if Assumption 5(a) is modified in this way.
(iii) Assumption 5(a) holds if k is the logistic density, but not if k is the standard

normal density, the reason being that |k′ (r)| /k (r) is unbounded when k is the stan-
dard normal density. As explained in remark (ii) following the proof of Theorem A.2
in the Appendix, it is possible to accommodate the normal kernel provided the error
density f is such that ḟ is bounded.
(iv) In Assumption 6, the statement “γ̂n is discrete” is shorthand for the as-

sumption that γ̂n takes only values in the grid {κZ/
√
n : Z ∈ Z2p} , where κ is some

constant 2p× 2p matrix. Assuming discreteness on the part of an initial estimator is
technically convenient and it seems plausible that this assumption can be dropped if
additional smoothness is assumed on the part of f. If γ̃n is a

√
n-consistent estimator

of γ, then Assumption 6 will be satisfied by γ̂n = b
√
nγ̃nc /

√
n, where b·c denotes the

integer part of the argument (defined element-by-element). A similar remark applies
to Assumptions 7 and 8.
(v) Assumption 6 is satisfied by a discretized version of γ̂OLSn =

(
γ̂OLS′1,n , γ̂OLS′2,n

)′
,

where γ̂OLSj,n = (
∑n

i=1 xix
′
i)
−1

(
∑n

i=1 xiyji) is the OLS estimator of γj (j = 1, 2) .

Theorem 2. If Assumptions 1-3, 4W, and 5-6 hold, then(
∆̂n, În

)
= (∆n, I) + op (1) .

In the model (3) , the statistic ∆̂n/
√
n can be interpreted as a one-step estimator

of δ which uses the zero vector as an initial estimator. As a consequence, Theorem 2
can and will be derived as a special case of a general adaptation result, Theorem A.2
in the Appendix, for one-step estimators of δ in the model (3) . Theorem A.2 assumes
existence of a discrete

√
n-consistent initial estimator of δ. This requirement is easily

met, especially so under weak identification because the zero vector can serve as a√
n-consistent estimator of δ in that case.9 Somewhat surprisingly, perhaps, some

9The full force of Theorem A.2 will be needed when Assumption 4W is replaced by Assumption
4SC or 4SF.
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aspects of conducting inference are therefore simplified by the assumption of weak
identification.
Theorem 2 and the continuous mapping theorem can be used to show that if

identification is weak, then the local asymptotic power properties of the tests based
on ARn, LMn, and LRn are matched by those of the tests based on ÂRn = AR

(
Ŝn

)
,

L̂Mn = LM
(
Ŝn, T̂n

)
, and L̂Rn = LR

(
Ŝn, T̂n

)
, respectively, where

(
Ŝ ′n, T̂

′
n

)′
=[

Î1/2′
n ⊗Q1/2′

zz,n

]
∆̂n. More specifically, we have the following corollary, which implies

in particular that the test which rejects when L̂Rn > κα

(
T̂n

)
is nearly effi cient when

identification is weak.

Corollary 3. If Assumptions 1-3, 4W, and 5-6 hold, then[
ÂRn, L̂Mn, L̂Rn, κα

(
T̂n

)]
=
[
ARn, LMn, LRn, κα (Tn)

]
+ op (1) .

4.2. Inference when identification may be strong. Next, consider the con-
sequences of relaxing the assumption that identification is known to be weak. We
are interested in finding a pair of statistics, computable without knowledge of (γ, f) ,
which is asymptotically equivalent to (∆n, I) under weak identification and is “well
behaved”also when identification is strong.
When Assumptions 1-3 and 4SC hold, the quasi-suffi cient statistic ∆̄n obtained

from the Gaussian quasi-likelihood satisfies

∆̄n −
√
nµ (0, π)→d N

[
(bπ′, 0′)

′
,Ω⊗Q−1

zz

]
.

It follows immediately from this result that if Assumptions 1-3 and 4SC holds, then

ARn →d χ
2
(
q; b2π′Qzzπ/ω11

)
and

LMn = LRn + op (1) =
(
S̄ ′nQ

1/2′
zz π

)2
/π′Qzzπ + op (1)→d χ

2
(
1; b2π′Qzzπ/ω11

)
,

where ω11 is element (1, 1) of Ω and χ2 (d;λ) denotes the noncentral χ2 distribution
with d degrees of freedom and noncentrality parameter λ.10 The convergence result

10Moreover, the properties of κα mentioned in footnote 8 at the end of Section 3 can be used to
show that κα

(
T̄n
)

= χ2α (1) + op (1) .
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for ∆̄n derives in part from the linearity of ¯̀ and an analogous result will typically
fail to hold for ∆n and/or ∆̂n. Indeed, at the present level of generality very little
can be said about the asymptotic null properties of statistics such as L̂Rn under
strong identification. This observation motivates the search for a statistic which
is asymptotically equivalent to ∆n under weak identification and exhibits behavior
qualitatively similar to that of ∆̄n under Assumption 4SC.
Theorem 4 gives conditions under which this property is enjoyed by

∆̂∗n =

(
0√
nπ̂n

)
+
(
Î∗−1
n ⊗Q−1

zz,n

) 1√
n

n∑
i=1

ˆ̀∗
i,n ⊗ zi, Î∗n =

1

n

n∑
i=1

ˆ̀∗
i,n

ˆ̀∗′
i,n,

with ˆ̀∗
i,n = ˆ̀∗

n (v̂∗i ) , where v̂
∗
i = (y1i − γ̂′1nxi, y2i − γ̂′2nxi − π̂′nzi)

′ for some estimators
(γ̂n, π̂n) of (γ, π) , and

ˆ̀∗
n (v) = −∂f̂

∗
n (v) /∂v

f̂ ∗n (v) + an
, f̂ ∗n (v) =

1

nh2
n

n∑
i=1

K

(
v − v̂∗i
hn

)
.

As defined, ∆̂∗n/
√
n is a one-step estimator of δ in (3) which uses (0′, π̂′n)

′ as an
initial estimator of δ. This initial estimator is

√
n-consistent under Assumption 4SC

provided π̂n satisfies the following condition, which holds if π̂n is a discretized version
of π̂OLSn = (

∑n
i=1 ziz

′
i)
−1

(
∑n

i=1 ziy2i) .

Assumption 7. π̂n is discrete and
√
n (π̂n − π) = Op (1) .

Theorem 4. (a) If Assumptions 1-3, 4W, and 5-7 hold, then(
∆̂∗n, Î∗n

)
= (∆n, I) + op (1) .

(b) If Assumptions 1-3, 4SC, and 5-7 hold, then Î∗n = I + op (1) and

∆̂∗n −
√
nµ (0, π)→d N

[
(bπ′, 0′)

′
, I−1 ⊗Q−1

zz

]
.

As a consequence of Theorem 4, we have the following result concerning the
statistics ÂR

∗
n = AR

(
Ŝ∗n

)
, L̂M

∗
n = LM

(
Ŝ∗n, T̂

∗
n

)
, and L̂R

∗
n = LR

(
Ŝ∗n, T̂

∗
n

)
, where(

Ŝ∗′n , T̂
∗′
n

)′
=
[
Î∗1/2′n ⊗Q1/2′

zz,n

]
∆̂∗n.

Corollary 5. (a) If Assumptions 1-3, 4W, and 5-7 hold, then[
ÂR

∗
n, L̂M

∗
n, L̂R

∗
n, κα

(
T̂ ∗n

)]
=
[
ARn, LMn, LRn, κα (Tn)

]
+ op (1) .
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(b) If Assumptions 1-3, 4SC, and 5-7 hold, then κα
(
T̂ ∗n

)
= χ2

α (1) + op (1) and

ÂR
∗
n = ARn + op (1)→d χ

2
(
q; b2π′Qzzπ/I−1

11.2

)
,

L̂M
∗
n = L̂R

∗
n + op (1) =

(
S ′nQ

1/2′
zz π

)2
/π′Qzzπ + op (1)→d χ

2
(
1; b2π′Qzzπ/I−1

11.2

)
.

It follows from Corollary 5(a) that the test which rejects when L̂R
∗
n > κα

(
T̂ ∗n

)
is

nearly effi cient when identification is weak. Moreover, Theorem A.1 in the Appendix
and Choi, Hall, and Schick (1996, Theorem 2) can be used to show that the test which

rejects for large values of
(
S ′nQ

1/2′
zz π

)2

/ (π′Qzzπ) is asymptotically uniformly most

powerful unbiased (in the terminology of Choi, Hall, and Schick (1996, Section 4))
under the assumptions of Corollary 5(b). As a consequence, Corollary 5(b) implies

that the test which rejects when L̂R
∗
n > κα

(
T̂ ∗n

)
enjoys demonstrable optimality

properties under strong identification, as does the test which rejects when L̂M
∗
n >

χ2
α (1) . In particular, under strong identification these (asymptotically equivalent)
tests are superior to the tests based on the statistics ARn, LMn, LRn and Andrews
and Soares’s (2007) rank-based analogues thereof.

4.3. Consistency. Finally, we address the issue of test consistency under strong
identification. The tests based on ARn, LMn, and LRn are all consistent because
κα (·) is bounded and because

n−1ARn = n−1LMn + op (1) = n−1LRn + op (1) = β2π′Qzzπ/ω11 + op (1)

under Assumptions 1-3 and 4SF, the displayed results following almost immediately
from the fact that if Assumptions 1-3 and 4SF hold, then

∆̄n −
√
nµ (β, π)→d N

(
0,Ω⊗Q−1

zz

)
.

Once again, this convergence result for ∆̄n derives in part from the linearity of ¯̀ and
an analogous result will typically fail to hold for ∆n, ∆̂n and/or ∆̂∗n. In fact, at the
present level of generality there is no guarantee that the tests based on ÂR

∗
n, L̂M

∗
n,

and L̂R
∗
n are consistent under strong identification.

Fortunately this potential problem is easily avoided. Indeed, let
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∆̂∗∗n =

( √
nΠ̂n√
nπ̂n

)
+
(
Î∗∗−1
n ⊗Q−1

zz,n

) 1√
n

n∑
i=1

ˆ̀∗∗
i,n ⊗ zi, Î∗∗n =

1

n

n∑
i=1

ˆ̀∗∗
i,n

ˆ̀∗∗′
i,n,

with ˆ̀∗∗
i,n = ˆ̀∗∗

n (v̂∗∗i ) , where v̂∗∗i =
(
y1i − γ̂′1nxi − Π̂′nzi, y2i − γ̂′2nxi − π̂′nzi

)′
for some

estimators
(
γ̂n, π̂n, Π̂n

)
of (γ, π, βπ) ,

ˆ̀∗∗
n (v) = −∂f̂

∗∗
n (v) /∂v

f̂ ∗∗n (v) + an
, f̂ ∗∗n (v) =

1

nh2
n

n∑
i=1

K

(
v − v̂∗∗i
hn

)
,

and Π̂n is assumed to satisfy the following condition, which holds if Π̂n is a discretized
version of Π̂OLS

n = (
∑n

i=1 ziz
′
i)
−1

(
∑n

i=1 ziy1i) .

Assumption 8. Π̂n is discrete and
√
n
(

Π̂n − βπ
)

= Op (1) .

Once again, ∆̂∗∗n /
√
n can be interpreted as a one-step estimator of δ in (3) . Un-

like ∆̂n/
√
n and ∆̂∗n/

√
n, ∆̂∗∗n /

√
n employs an initial estimator of δ with global

√
n-

consistency properties. This feature is utilized in the proof of part (c) of the following
result, which in turn can be used to establish consistency of tests based on ∆̂∗∗n .

Theorem 6. (a) If Assumptions 1-3, 4W, and 5-8 hold, then(
∆̂∗∗n , Î∗∗n

)
= (∆n, I) + op (1) .

(b) If Assumptions 1-3, 4SC, and 5-8 hold, then Î∗∗n = I + op (1) and

∆̂∗∗n −
√
nµ (0, π)→d N

[
(bπ′, 0′)

′
, I−1 ⊗Q−1

zz

]
.

(c) If Assumptions 1-3, 4SF, and 5-8 hold, then Î∗∗n = I + op (1) and

∆̂∗∗n −
√
nµ (β, π)→d N

(
0, I−1 ⊗Q−1

zz

)
.

Let
(
Ŝ∗∗′n , T̂ ∗∗′n

)′
=
[
Î∗∗1/2′n ⊗Q1/2′

zz,n

]
∆̂∗∗n and define ÂR

∗∗
n = AR

(
Ŝ∗∗n

)
, L̂M

∗∗
n =

LM
(
Ŝ∗∗n , T̂

∗∗
n

)
, and L̂R

∗∗
n = LR

(
Ŝ∗∗n , T̂

∗∗
n

)
. The salient properties of these statistics

are characterized in the following corollary to Theorem 6.
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Corollary 7. (a) If Assumptions 1-3, 4W, and 5-8 hold, then[
ÂR

∗∗
n , L̂M

∗∗
n , L̂R

∗∗
n , κα

(
T̂ ∗∗n

)]
=
[
ARn, LMn, LRn, κα (Tn)

]
+ op (1) .

(b) If Assumptions 1-3, 4SC, and 5-8 hold, then κα
(
T̂ ∗∗n

)
= χ2

α (1) + op (1) and

ÂR
∗∗
n = ARn + op (1)→d χ

2
(
q; b2π′Qzzπ/I−1

11.2

)
,

L̂M
∗∗
n = L̂R

∗∗
n + op (1) =

(
S ′nQ

1/2′
zz π

)2
/π′Qzzπ + op (1)→d χ

2
(
1; b2π′Qzzπ/I−1

11.2

)
.

(c) If Assumptions 1-3, 4SF, and 5-8 hold, then

n−1ÂR
∗∗
n = n−1L̂M

∗∗
n + op (1) = n−1L̂R

∗∗
n + op (1) = β2π′Qzzπ/I−1

11.2 + op (1) .

In perfect analogy with Corollary 5, parts (a) and (b) of Corollary 7 imply that

the test which rejects when L̂R
∗∗
n > κα

(
T̂ ∗∗n

)
is nearly optimal when identification is

weak and demonstrably optimal when identification is strong. Relative to Corollary 5,
which establishes analogous results for the test which rejects when L̂R

∗
n > κα

(
T̂ ∗n

)
,

the additional property that can be claimed on the part of the test based on L̂R
∗∗
n is

that of consistency under strong identification. This, and the analogous consistency
results about the tests based on ÂR

∗∗
n and L̂M

∗∗
n , is the content of Corollary 7(c).

4.4. Inference when identification is strong. If identification is strong, then
the usual duality between estimation and testing holds, implying in particular that
the asymptotic optimality properties of the tests based on L̂R

∗∗
n and L̂M

∗∗
n are shared

by a Wald test based on an asymptotically effi cient estimator of β.
Let

β̂
∗∗
n = ∆̂∗∗′1,nQzz,n∆̂∗∗2,n/∆̂

∗∗′
2,nQzz,n∆̂∗∗2,n,

where ∆̂∗∗n =
(

∆̂∗∗′1,n, ∆̂
∗∗′
2,n

)′
and partitioning is after the qth row. The estimator β̂

∗∗
n

can be interpreted as a non-Gaussian counterpart of the 2SLS estimator of β, the
latter being given by β̄n = ∆̄′1,nQzz,n∆̄2,n/∆̄

′
2,nQzz,n∆̄2,n, where ∆̄n =

(
∆̄′1,n, ∆̄

′
2,n

)′
.

The estimators β̂
∗∗
n and β̄n are both obtained by means of a generalized least squares

(GLS) regression of an estimator of δ1 onto an estimator of δ2 in (3) . The GLS
regressions utilize identical weighting matrices, but differ in terms of the estimators
of δ being employed, with β̂

∗∗
n being based on an asymptotically effi cient estimator,

∆̂∗∗n /
√
n, and β̄n being based on the OLS estimator ∆̄n/

√
n.
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If Assumptions 1-3 and 4SF hold, then
√
n
(
β̄n − β

)
→d N

(
0, Σ̄β

)
, where Σ̄β =[

(1,−β) Ω (1,−β)′
]
/π′Qzzπ. The next result, which follows from Theorem 6(c) and

the delta method, gives the corresponding result for β̂
∗∗
n .

Corollary 8. If Assumptions 1-3, 4SF, and 5-8 hold, then

√
n
(
β̂
∗∗
n − β

)
→d N (0,Σβ) , Σβ =

[
(1,−β) I−1 (1,−β)′

]
/π′Qzzπ.

Under normality the convergence result in Corollary 8 agrees with that for the
2SLS estimator of β and its asymptotic equivalents, such as the limited information
maximum likelihood (LIML) estimator and Fuller’s (1977) modification thereof. With
non-Gaussian errors, on the other hand, the estimator β̂

∗∗
n compares favorably with

β̄n whenever the inequality I−1 ≤ Ω is strict.
The existence of estimators which outperform 2SLS for certain non-Gaussian error

distributions has been known at least since Amemiya (1982) and Powell (1983). For
the purposes of relating β̂

∗∗
n to the two-stage least absolute deviations (2SLAD) and

double 2SLAD (D2SLAD) estimators studied in those papers, define

β̃n (λ1, λ2) = Π̂n (λ1)′Qzz,nπ̂n (λ2) /π̂n (λ2)′Qzz,nπ̂n (λ2) , (λ1, λ2)′ ∈ R2,

where Π̂n (λ1) = λ1Π̂LAD
n + (1− λ1) Π̂OLS

n , π̂n (λ2) = λ2π̂
LAD
n + (1− λ2) π̂OLSn , and

(
Π̂LAD
n , π̂LADn

)
= arg min(Π,π) min(γ1,γ2)

n∑
i=1

|y1i − γ′1xi − Π′zi|+ |y2i − γ′2xi − π′zi| .

In this notation β̃n (0, 0) is the 2SLS estimator, while nonzero pairs (λ1, λ2) give rise
to estimators that are asymptotically distinct from the 2SLS estimator. The Bahadur
representation of any β̃n (λ1, λ2) is readily obtained from the Bahadur representations
of Π̂LAD

n , Π̂OLS
n , π̂LADn , and π̂OLSn . Utilizing these Bahadur representations it can be

shown that β̃n (λ1, 0) is asymptotically equivalent to the 2SLAD(λ1) estimator and
that β̃n (1, 1) is asymptotically equivalent to the D2SLAD estimator(s).

Because
(

∆̂∗∗1,n, ∆̂
∗∗
2,n

)
/
√
n is an asymptotically effi cient estimator of (δ1, δ2) in

(3) , it compares favorably with
(

Π̂n (λ1) , π̂n (λ2)
)
for any value of (λ1, λ2) . This

superiority is inherited by β̂
∗∗
n , which compares favorably with all estimators of the

form β̃n (λ1, λ2) (and their asymptotic equivalents, such as the 2SLAD and D2SLAD
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estimators). In fact, Theorems A.1 and A.2 can be used to show that β̂
∗∗
n is an

asymptotically effi cient (i.e., best regular) estimator of β under strong identification.
As a consequence, one would expect the strong identification local asymptotic

power properties of the tests based on L̂R
∗∗
n and L̂M

∗∗
n to be matched by those of the

test which rejects when Ŵ ∗∗
n > χ2

α (1) , where

Ŵ ∗∗
n = n

(
β̂
∗∗
n

)2

/Σ̂∗∗β , Σ̂∗∗β =

[(
1,−β̂∗∗n

)
Î∗∗−1
n

(
1,−β̂∗∗n

)′]
/π̂′nQzz,nπ̂n.

The next result, which follows from Theorem 6(b) and the delta method, verifies that
conjecture.

Corollary 9. If Assumptions 1-3, 4SC, and 5-8 hold, then

Ŵ ∗∗
n =

(
S ′nQ

1/2′
zz π

)2
/π′Qzzπ + op (1)→d χ

2
(
1; b2π′Qzzπ/I−1

11.2

)
.

An attractive feature of Ŵ ∗∗
n is that its ingredients, β̂

∗∗
n and Σ̂∗∗β , can be combined

in the usual way to form a Wald test of any null hypothesis regarding β, not just the
null hypothesis that β = 0. This feature is particularly convenient when hypothesis
tests are used to construct confidence intervals by inversion, as it implies that valid
(indeed, optimal) confidence intervals are trivial to construct. Indeed, a confidence
interval with asymptotic coverage probability 1− α is given by(

β̂
∗∗
n −

√
χ2
α (1) Σ̂∗∗β /n, β̂

∗∗
n +

√
χ2
α (1) Σ̂∗∗β /n

)
.

It should be emphasized, however, that the displayed confidence interval does not
have asymptotic coverage probability 1 − α under weak identification. As a conse-
quence, while the computational simplicity of Ŵ ∗∗

n makes it an attractive competitor
to L̂M

∗∗
n and L̂R

∗∗
n under strong identification, the Wald statistic does not enjoy the

robustness (and, in the case of L̂R
∗∗
n , near optimality) properties under weak identi-

fication that Corollary 7(a) establishes on the part of L̂M
∗∗
n and L̂R

∗∗
n .

Remark. The LIMLK (i.e., LIML with known Ω) estimator of β is given by

arg minβ
(1,−β)

(
∆̄1,n, ∆̄2,n

)′
Qzz,n

(
∆̄1,n, ∆̄2,n

)
(1,−β)′

(1,−β) Ω (1,−β)′
.

This estimator is asymptotically equivalent to the 2SLS estimator β̄n when identifica-
tion is strong, but enjoys certain advantages over β̄n when identification is weak (e.g.,
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Staiger and Stock (1997)). Analogously, the following non-Gaussian counterpart of
the LIMLK estimator of β is asymptotically equivalent (superior) to β̂

∗∗
n under strong

(weak) identification:

arg minβ
(1,−β)

(
∆̂∗∗1,n, ∆̂

∗∗
2,n

)′
Qzz,n

(
∆̂∗∗1,n, ∆̂

∗∗
2,n

)
(1,−β)′

(1,−β) Î∗∗−1
n (1,−β)′

.

5. Simulations
This section presents the results of a simulation study investigating the finite-sample
performance of the procedure considered in this paper. Although we primarily focus
on power properties of the tests based on ÂR

∗∗
n , L̂M

∗∗
n , and L̂R

∗∗
n , we also discuss the

properties of the point estimator β̂
∗∗
n under strong identification.

5.1. Model Setup. The data are generated by the model (2) . Specifically, we set
xi = 1 and set q, the dimension of the instrumental variable, equal to 4. The instru-
ments are randomly generated from a standard Gaussian distribution, demeaned, and
then kept fixed throughout the experiment. For the errors we consider two different
specifications, based on (i) the standard normal distribution and (ii) the t (3) distrib-
ution, respectively. (The Fisher information for the location model generated by the
t(3) distribution is 2/3, twice the inverse of the variance of the t(3) distribution.).
The probability densities associated with the distributions are depicted in Figure 1.

FIGURE 1 ABOUT HERE

We generate 2n independent (studentized) errors ṽi = (ṽ1i, ṽ2i)
′ from each distrib-

ution and define (v1i, v2i)
′ =
(
ṽ1i,
√

1− ρ2ṽ2i + ρṽ1i

)′
, hereby inducing a correlation

of ρ between the errors v1i and v2i. Consistent with the previous discussion, we take
β0 = 0. The 4 × 1 vector π is given by ι ·

√
ζq/
√
ι′Z ′Zι, where ι is a 4 × 1 vector

of ones, Z is the n × 4 matrix of instruments, and ζ is the concentration parameter
π′Z ′Zπ/q, which determines the “strength”of the instruments. For the simulations,
we chose n = 1, 000 as the sample size, S = 5, 000 as the number of simulations,
ρ = 0.5, and ζ taking on the values 1 and 10. In addition we chose α = 0.05 for the
size of our tests. (We obtained qualitatively similar results for other choices of n, S,
ρ, and ζ, but omit these to conserve space.)

5.2. Implementation. The new procedures are compared to three benchmark
procedures. The first of these is the Gaussian procedure constructed using a feasible
version of the quasi-suffi cient statistics

(
S̄n, T̄n

)
employing the OLS estimator Ω̂OLS

n =

(n− 5)−1∑n
i=1 v̂

OLS
i v̂OLS′i of Ω, where v̂OLSi are the OLS residuals. We will refer to

this technique as “OLS”for simplicity.
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As a second benchmark procedure we compute the Normal Scores Rank Tests
introduced by Andrews and Soares (2007). We refer to this procedure as “RNK”
for brevity. These tests are seen to have superior power properties to those denoted
OLS herein and are recommended by the authors based on both asymptotic and
finite-sample results. However, based on our asymptotic results, our procedures are
expected to have superior power properties over the corresponding RNK tests.
Finally, the third benchmark procedure utilizes an “oracle”version of ∆̂∗∗n . Specif-

ically, using the true ` instead of its estimate, we obtain

∆̂MLE
n =

( √
nΠ̂OLS

n√
nπ̂OLSn

)
+
(
Î−1
` ⊗Q−1

zz,n

) 1√
n

n∑
i=1

`
(
v̂OLSi

)
⊗ zi,

where Î` = n−1
∑n

i=1 `
(
v̂OLSi

)
`
(
v̂OLSi

)′
. It should be noted that this is not a true

“oracle” procedure in the sense that it uses the estimated error terms rather than
their true values and also relies on an estimate of the information matrix. We include
this additional benchmark in an effort to identify the effects on performance of using
nonparametric estimates of the score function. Although a slight abuse of notation,
we will refer to this technique as “MLE”for simplicity.
The (feasible) adaptive procedure based on ∆̂∗∗n is referred to as “ADP”for no-

tational simplicity. This procedure is fully data-driven, but requires the additional
choice of three parameters: the kernel k, the trimming parameter a, and the smooth-
ing parameter h. For specificity we set k equal to a standard Gaussian kernel and
set a = 0. The choice a = 0 violates Assumption 5(b), but was made for simplic-
ity and concreteness because the qualitative results seemed to be more sensitive to
the choice of h than to the choice of a. Regarding the choice of h, we experimented
with a variety of procedures and specifications. In terms of procedures we considered
both first-generation and second-generation bandwidth selection procedures for both
univariate density and derivative estimation and bivariate density and derivative es-
timation (e.g., Ichimura and Todd (2007)). In terms of specifications, we considered
a common bandwidth as well as different combinations of alternative bandwidths
for densities and partial derivatives. Unfortunately, but unsurprisingly in light of
previous Monte Carlo results on adaptive estimation in the univariate case (e.g.,
Steigerwald (1992)), our preliminary findings showed that these procedures have dis-
appointing size properties for modest sample sizes. In the end we therefore opted for
a simple re-scaling of a rule of thumb choice for bivariate density estimation. Specif-

ically, we set hj = c
√
ω̂OLSjj n−λ (j = 1, 2) , where h1 and h2 are the bandwidth choice

for the first and second dimension of the nonparametric score estimator, respectively,
and c and λ are constants to be chosen. Regarding λ, the goal was to achieve size
distortions that exhibit minimal sensitivity with respect to sample size. The choice
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λ = 1/9 was found to be satisfactory and was employed when constructing Tables
1-3, which report size as a function of c for each of the four designs considered and
for samples of size n = 500 (Table 1), n = 1, 000 (Table 2), and n = 5, 000 (Table 3),
respectively. In all cases, size is a decreasing function of c. The size properties are
somewhat sensitive to the true distribution of the error terms. Although there does
not seem to be any choice of c for which size distortions are close to zero across all
designs, the choices c = 0.65 and c = 0.50 seem to work well for the Gaussian and
t (3) model, respectively.

TABLES 1-3 ABOUT HERE

5.3. Results. Our explicit goal is to explore the extent to which the asymptotic
optimality properties of adaptive procedures are inherited at least partially in finite
samples, we report power graphs based on choices of h that deliver tests with actual
size close to nominal size in our simulations. (Power curves are easier to interpret
and compare when competing tests have common size.) Accordingly, based on the
findings reported in Tables 1-3 we set c = 0.65 and c = 0.50 for the Gaussian and
t (3) model, respectively. Figure 2 presents the power graphs for the AR, LM, and
CLR tests for the case where the reduced form errors are generated from a Gaussian
distribution.

FIGURE 2 ABOUT HERE

The strength of the instruments is equal to 1 and 10 in the first and second rows
of graphs, respectively. In this particular case, the OLS and MLE estimators of
the linear coeffi cients coincide, while the second-moment matrices are equal up to
a constant multiple which converges to 1 with the sample size. As a consequence,
the power curves of the tests based on these two procedures are virtually equivalent.
The RNK tests also appear to reach the power curve generated by OLS and MLE.
Because the adaptive procedures employ a nonparametric estimator of `, we would
expect them to have reduced finite sample power relative to the “oracle”procedures
and this does indeed seem to be the case. Nevertheless, the power loss is encouragingly
small and the findings suggest that the ADP procedures can dominate the OLS and
RNK procedures when the errors are non-Gaussian.

FIGURE 3 ABOUT HERE

Figure 3 presents the results for the case when the errors are generated from a
non-Gaussian distribution, a t(3) distribution in this case. Again, the first and second
rows differ by the choice of the strength of the instruments. The results in this case
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are consistent with the theoretical predictions. The tests based on the MLE estimator
have superior power relative to the test statistics based on the OLS estimator, while
the test statistics based on the RNK procedure and ADP estimator have power curves
which reside in between the other two. Moreover, tests based on ADP appear to (non-
strictly) dominate the corresponding RNK tests. As expected, the MLE estimator
delivers important power gains when compared to the RNK procedure. Presumably
the difference between the MLE and ADP power curves can be attributed to the fact
that ADP employs a nonparametric estimator of the nuisance parameter `. In other
words, the asymptotic theory probably overstates the extent to which departures from
Gaussianity can be exploited in finite samples. On the other hand, the qualitative
predictions of the asymptotic theory are borne out in the simulations insofar as Figure
3 clearly suggests that even in finite samples the ADP procedures can enjoy power
advantages over the OLS procedures when the errors are non-Gaussian.

FIGURE 4 ABOUT HERE

Finally, in Figure 4 we present (kernel density estimators of) the sampling distri-
butions of the estimators of β using each procedure when instruments are “strong.”
The sampling distribution of the ADP estimator β̂

∗∗
n is more concentrated than that

of the “OLS”estimator β̄n and less concentrated than that of the “oracle”estima-
tor. This is also consistent with the theoretical predictions. (Similar results were
obtained for the ADP estimator of the reduced-form coeffi cients. We omit the results
to conserve space.)
In our view, the Monte Carlo results provide evidence in favor of the procedure(s)

developed in this paper. The key potential drawback of the new procedure(s), which
is common to all nonparametric procedures, is the fact that no firm guidance on the
choice of the smoothing parameter is available. Although it is beyond the scope of
this paper to develop a theory-based bandwidth selection rule with uniformly good
size (and power) properties, our results lead us to recommend the use of bandwidths

of the form hj = 0.65
√
ω̂OLSjj n−1/9, as this choice yields good results when the errors

are Gaussian and seems to be conservative otherwise.

6. Appendix: Proofs
The main results of the paper will follow from two facts, Theorems A.1 and A.2, about
the model (3) . Neither result is particularly surprising, but we have been unable to
find statements of these results in the literature.
Theorem A.1 is an LAN result. To state it, let
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Ln (d, g) =
n∑
i=1

log f
[
y1i − γ1n (g1)′ xi − δ1n (d1)′ zi, y2i − γ2n (g2)′ xi − δ2n (d2)′ zi

]
−

n∑
i=1

log f [y1i − γ′1xi − δ′1zi, y2i − γ′2xi − δ′2zi]

denote the log likelihood ratio function associated with the local reparameterization

γ =

[
γ1n (g1)
γ2n (g2)

]
=

[
γ1 + g1/

√
n

γ2 + g2/
√
n

]
, δ =

[
δ1n (d1)
δ2n (d2)

]
=

[
δ1 + d1/

√
n

δ2 + d2/
√
n

]
,

let “opδ,γ (1)”and “→dδ,γ”be shorthand for “op (1) under the distributions associated
with (d, g) = (0, 0)”and “→d under the distributions associated with (d, g) = (0, 0)”,
respectively, and let `i = ` (y1i − γ′1xi − δ′1zi, y2i − γ′2xi − δ′2zi) .

Theorem A.1. Suppose (y1i, y2i) is generated by (3) .

(a) If Assumptions 1(a) and 2 hold and dn is a bounded sequence, then

Ln (dn, 0) = Lδn (dn) + opδ,γ (1) ,

where Lδn (dn) = d′n (I ⊗Qzz) ∆δ
n − d′n (I ⊗Qzz) dn/2 and

∆δ
n =

(
I−1 ⊗Q−1

zz

) 1√
n

n∑
i=1

`i ⊗ zi →dδ,γ N
(
0, I−1 ⊗Q−1

zz

)
.

(b) If, moreover, Assumptions 1(b) and 3 hold and gn is a bounded sequence, then

Ln (dn, gn) = Lδn (dn) + Lγn (gn) + opδ,γ (1) ,

where Lγn (gn) = g′n (I ⊗Qxx) ∆γ
n − g′n (I ⊗Qxx) gn/2 and

(
∆δ
n

∆γ
n

)
→dδ,γ N

[
0, I−1 ⊗

(
Q−1
zz 0
0 Q−1

xx

)]
, ∆γ

n =
(
I−1 ⊗Q−1

xx

) 1√
n

n∑
i=1

`i ⊗ xi.
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Theorem A.2 is an adaptation result for one-step estimators of δ. Given initial esti-

mators δ̂n =
(
δ̂
′
1n, δ̂

′
2n

)′
and γ̂n = (γ̂′1n, γ̂

′
2n)
′ of δ and γ, let

δ̃n

(
δ̂n, γ̂n

)
= δ̂n +

[
Ĩn
(
δ̂n, γ̂n

)−1

⊗Q−1
zz,n

]
1

n

n∑
i=1

ˆ̀
n (v̂i)⊗ zi,

where

Ĩn
(
δ̂n, γ̂n

)
=

1

n

n∑
i=1

ˆ̀
n (v̂i) ˆ̀

n (v̂i)
′ , v̂i =

(
y1i − γ̂′1nxi − δ̂

′
1nzi

y2i − γ̂′2nxi − δ̂
′
2nzi

)
,

ˆ̀
n (v) = −∂f̂n (v) /∂v

f̂n (v) + an
, f̂n (v) =

1

nh2
n

n∑
i=1

K

(
v − v̂i
hn

)
.

Theorem A.2. Suppose (y1i, y2i) is generated by (3) . If Assumptions 1-3 and 5

hold,
(
δ̂n, γ̂n

)
is discrete, and

√
n
(
δ̂n − δ, γ̂n − γ

)
= Op (1) , then

Ĩn
(
δ̂n, γ̂n

)
= I + opδ,γ (1) ,

√
n
[
δ̃n

(
δ̂n, γ̂n

)
− δ
]

= ∆δ
n + opδ,γ (1) .

Proof of Theorem 1. Apply Theorem A.1(a) with δ = 0 and dn = µ (β, c) . �

Proof of Theorems 2, 4, and 6. Theorems 2 and 4(a) are special cases of Theo-
rem 6(a) and Theorem 4(b) is a special case of Theorem 6(b), so it suffi ces to prove
Theorem 6. In turn, Theorem 6 can be derived with the help of Theorem A.2 because

∆̂∗∗n =
√
nδ̃n

(
δ̂n, γ̂n

)
and Î∗∗n = Ĩn

(
δ̂n, γ̂n

)
, where δ̂n =

(
Π̂′n, π̂

′
n

)′
and γ̂n is as in

the main text.
Proof of Theorem 6(a). If c = 0 in Assumption 4W, then the result can be

obtained by applying Theorem A.2 with δ = (0′, 0′)′ . The result for c 6= 0 follows by
the contiguity property implied by Theorem A.1(a).
Proof of Theorem 6(b). If b = 0 in Assumption 4SC, then the result can be

obtained by applying Theorem A.2 with δ = (0′, π′)′ . The result for b 6= 0 follows by
applying Theorem A.1(a) with dn = (bπ′, 0′)′ and using Le Cam’s third lemma.
Proof of Theorem 6(c). Apply Theorem A.2 with δ = (βπ′, π′)′ . �

Proof of Theorem A.1. For every θ ∈ R2, let R̄ (θ) = θ′Iθ/4 +
∫
R2 R (v, θ) f (v) dv,

where, for v ∈ R2, R (v, θ) = 2
[√

f (v − θ) /f (v)− 1− 1
2
θ′` (v)

]
1 [f (v) > 0] .
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If Assumption 2 holds, then

√
f (v − θ)−

√
f (v) =

1

2
θ′
∫ 1

0

` (v − θt)
√
f (v − θt)dt ∀v, θ ∈ R2,

and for almost every v ∈ R2,
√
f is differentiable at v, with total derivative −1

2
`
√
f.

Using these facts and proceeding as in the proof of van der Vaart (1998, Lemma 7.6),
it can be shown that if Assumption 2 holds, then

limη↓0 V (η) = 0, V (η) = sup‖θ‖≤η,θ 6=0 ‖θ‖
−2

∫
R2
R (v, θ)2 f (v) dv. (5)

It follows from this result and Lemma 1 of Pollard (1997) that

limη↓0 V̄ (η) = 0, V̄ (η) = sup‖θ‖≤η,θ 6=0 ‖θ‖
−2 R̄ (θ) . (6)

The proofs of parts (a) and (b) are completely analogous, so to conserve space we
only establish part (a). The log likelihood ratio Ln (dn, 0) admits the expansion

Ln (dn, 0) = d′n (I ⊗Qzz) ∆δ
n +

n∑
i=1

Ri,n −
1

4

n∑
i=1

[
d′n
`i ⊗ zi√

n
+Ri,n

]2 (
1 + ξi,n

)
,

where

Ri,n = R

[(
y1i − γ′1xi − δ′1zi
y2i − γ′2xi − δ′2zi

)
,

(
d′1nzi/

√
n

d′2nzi/
√
n

)]
, ξi,n = ξ

[
d′n
`i ⊗ zi√

n
+Ri,n

]
,

and the defining property of ξ (·) is log (1 + t) = t− 1
2
t2 [1 + ξ (2t)] .

It suffi ces to show that the following conditions hold:

n∑
i=1

Ri,n = −1

4
d′n (I ⊗Qzz) dn + opδ,γ (1) , (7)

max1≤i≤n
∣∣ξi,n∣∣ = opδ,γ (1) , (8)

n∑
i=1

[
d′n
`i ⊗ zi√

n
+Ri,n

]2

= d′n (I ⊗Qzz) dn + opδ,γ (1) . (9)
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To do so, suppose (d, g) = (0, 0) .
Proof of (7) . The random variables R1,n, . . . , Rn,n are independent and satisfy

n∑
i=1

E
(
R2
i,n

)
≤

n∑
i=1

V

(∥∥∥∥( d′1nzi/
√
n

d′2nzi/
√
n

)∥∥∥∥2
)∥∥∥∥( d′1nzi/

√
n

d′2nzi/
√
n

)∥∥∥∥2

≤ max1≤i≤n V

(∥∥∥∥( d′1nzi/
√
n

d′2nzi/
√
n

)∥∥∥∥2
)

1

n

n∑
i=1

∥∥∥∥( d′1nzi
d′2nzi

)∥∥∥∥2

= o (1)O (1) = o (1) ,

where the penultimate equality uses (5) and Assumption 1(a). As a consequence,

n∑
i=1

Ri,n =
n∑
i=1

E (Ri,n)+op (1) = −1

4
d′n (I ⊗Qzz,n) dn+

n∑
i=1

R̄

[(
d′1nzi/

√
n

d′2nzi/
√
n

)]
+op (1) ,

where d′n (I ⊗Qzz,n) dn = d′n (I ⊗Qzz) dn + o (1) by Assumption 1(a) and

∣∣∣∣∣
n∑
i=1

R̄

[(
d′1nzi/

√
n

d′1nzi/
√
n

)]∣∣∣∣∣ ≤
n∑
i=1

∣∣∣∣R̄ [( d′1nzi/
√
n

d′2nzi/
√
n

)]∣∣∣∣
≤

n∑
i=1

V̄

(∥∥∥∥( d′1nzi/
√
n

d′2nzi/
√
n

)∥∥∥∥2
)∥∥∥∥( d′1nzi/

√
n

d′2nzi/
√
n

)∥∥∥∥2

≤ max1≤i≤n V̄

(∥∥∥∥( d′1nzi/
√
n

d′2nzi/
√
n

)∥∥∥∥2
)

1

n

n∑
i=1

∥∥∥∥( d′1nzi
d′2nzi

)∥∥∥∥2

= o (1)O (1) = o (1) ,

where the penultimate equality uses (6) and Assumption 1(a).
Proof of (8) . Because limt→0 ξ (t) = 0 (by Taylor’s Theorem), the result follows

from the fact that max1≤i≤n ‖`i ⊗ zi‖ /
√
n = op (1) (by `i ∼ i.i.d. (0, I) and Assump-

tion 1(a)) and max1≤i≤n |Ri,n| ≤
√∑n

i=1R
2
i,n = op (1) , where the latter uses the

relation E
(∑n

i=1 R
2
i,n

)
= o (1) established in the proof of (7) .
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Proof of (9) . Because
∑n

i=1R
2
i,n = op (1) and

n∑
i=1

[
d′n
`i ⊗ zi√

n

]2

= d′n

(
1

n

n∑
i=1

`i`
′
i ⊗ ziz′i

)
dn,

it suffi ces to show that n−1
∑n

i=1 `i`
′
i ⊗ ziz′i = I ⊗Qzz + op (1) . The latter result can

be established using `i ∼ i.i.d. (0, I) and Assumption 1(a). �

Proof of Theorem A.2. The proof uses Schick’s (1987) approach.
First, it follows from Theorem A.1(b) and the properties of

(
δ̂n, γ̂n

)
that we may

assume
(
δ̂n, γ̂n

)
= (δ, γ) . (This is so because Theorem 6.2 of Bickel (1982) can be

used to verify that Condition A of Schick’s (1987) Method 3 holds.) In other words,
it suffi ces to show that

∆̌δ
n =

[
Ǐ−1
n ⊗Q−1

zz,n

] 1√
n

n∑
i=1

ˇ̀
n (vi)⊗ zi = ∆δ

n + op (1) (10)

and

Ǐn =
1

n

n∑
i=1

ˇ̀
n (vi) ˇ̀

n (vi)
′ = I + op (1) , (11)

where

ˇ̀
n (v) = −∂f̌n (v) /∂v

f̌n (v) + an
, f̌n (v) =

1

nh2
n

n∑
i=1

K

(
v − vi
hn

)
.

To do so, let ˇ̀
n,i (·) denote the leave-one-out version of ˇ̀

n (·) given by

ˇ̀
n,i (v) = −∂f̌n,i (v) /∂v

f̌n,i (v) + an
, f̌n,i (v) = f̌n (v)− 1

nh2
n

[
K

(
v − vi
hn

)
−K (0)

]
.

It follows from (the proof of) Lemma 3.1 and Remark 3.2 of Schick (1987) that
condition (10) is implied by condition (11) , Assumptions 1(a) and 2, and the following
conditions:

E
[∫

R2

∥∥ˇ̀
n (v)− ` (v)

∥∥2
f (v) dv

]
= o (1) , (12)
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max1≤i≤n E
[∫

R2

∥∥ˇ̀
n (v)− ˇ̀

n,i (v)
∥∥2
f (v) dv

]
= o

(
n−1
)
. (13)

Utilizing Assumptions 2 and 5 and proceeding as in Schick (1987, p. 100), it can
be shown that ∫

R2
‖`n (v)− ` (v)‖2 f (v) dv = o (1) , (14)

where

`n (v) = −∂fn (v) /∂v

fn (v) + an
, fn (v) =

∫
R2
f (v − hnr)K (r) dr = E

[
f̌n (v)

]
.

It follows from this result that∫
R2
‖`n (v)‖2 f (v) dv = O (1) . (15)

Using Assumptions 2 and 5 we have, uniformly in v ∈ R2, E
[∥∥f̌n (v)− fn (v)

∥∥2
]

=

O (n−1h−2
n ) and E

[∥∥∂f̌n (v) /∂v − ∂fn (v) /∂v
∥∥2
]

= O (n−1h−4
n ) . Utilizing these facts,

(15) , and the decomposition

ˇ̀
n (v)− `n (v) = −`n (v)

f̌n (v)− fn (v)

f̌n (v) + an
− ∂f̌n (v) /∂v − ∂fn (v) /∂v

f̌n (v) + an
,

it is easily shown that∫
R2
E
[∥∥ˇ̀

n (v)− `n (v)
∥∥2
]
f (v) dv = O

(
n−1a−2

n h−4
n

)
= o (1) , (16)

a result which can be combined with (14) to yield (12) .

It follows from (15) − (16) that
∫
R2 E

[∥∥ˇ̀
n (v)

∥∥2
]
f (v) dv = O (1) . Utilizing this

fact, Assumption 5, and the decomposition

ˇ̀
n (v)− ˇ̀

n,i (v) = ˇ̀
n (v)

f̌n (v)− f̌n,i (v)

f̌n,i (v) + an
+
∂f̌n (v) /∂v − ∂f̌n,i (v) /∂v

f̌n,i (v) + an
,

it is easily shown that (13) holds.
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Finally, condition (11) holds because

Ǐn =
1

n

n∑
i=1

ˇ̀
n,i (vi) ˇ̀

n,i (vi)
′ =

1

n

n∑
i=1

`i`
′
i + op (1) = I + op (1) ,

where the first equality uses the fact that ˇ̀
n,i (vi) = ˇ̀

n (vi) for each i and the second
equality uses (14) and (16) . �

Remarks. (i) Conditions (12) and (13) are counterparts of Schick’s (1987) conditions
(3.2) and (3.6) . No counterpart of Schick’s (1987) condition (3.1) is needed because
n−1

∑n
i=1 zi → 0. Also, the present definition of ˇ̀

n,i ensures that ˇ̀
n,i (vi) = ˇ̀

n (vi)
for every i, implying in particular that the natural counterpart of Schick’s (1987)
condition (3.5) is satisfied.
(ii) With the possible exception of (14) , all steps in the proof of Theorem A.2

remain valid if the condition supr∈R |k′ (r)| /k (r) <∞ of Assumption 5(a) is replaced
by the condition

∫
R k
′ (r)2 dr < ∞. The latter condition, which is implied by As-

sumption 5(a), is satisfied by the normal kernel. Furthermore, if the error density

f is such that supv∈R2
∥∥∥ḟ (v)

∥∥∥ < ∞, then (14) is satisfied (for any kernel) provided

limn→∞hn/an <∞. This is so because

∫
R2
‖`n (v)− ` (v)‖2 f (v) dv ≤ 2

∫
Sf
‖`n (v)‖2

[√
f (v)−

√
fn (v)

]2

dv

+2

∫
Sf

∥∥∥`n (v)
√
fn (v)− ` (v)

√
f (v)

∥∥∥2

dv

=
(

supv∈R2
∥∥∥ḟ (v)

∥∥∥)2

o
(
h2
n/a

2
n

)
+ o (1) ,

where Sf = {v ∈ R2 : f (v) > 0} and the last equality uses∫
Sf

[√
f (v)−

√
fn (v)

]2

dv = o
(
h2
n

)
, (17)

∫
Sf

∥∥∥`n (v)
√
fn (v)− ` (v)

√
f (v)

∥∥∥2

dv = o (1) , (18)

and the bound supv∈R2 ‖`n (v)‖2 ≤
(

supv∈R2
∥∥∥ḟ (v)

∥∥∥)2

/a2
n. The result (17) can be
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shown by means of Proposition A.7 of Koul and Schick (1996), while (18) can be es-
tablished using Vitali’s theorem, the L1-continuity theorem, and arguments analogous
to those used in the proof of Lemma 6.2 of Bickel (1982).
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Figure 1: Probability Densities
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Figure 4: Estimators of β


