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Abstract. With the aim of improving the quality of asymptotic distributional

approximations for nonlinear functionals of nonparametric estimators, this paper revis-

its the large-sample properties of an important member of that class, namely a kernel-

based weighted average derivative estimator. Asymptotic linearity of the estimator is

established under weak conditions. Indeed, we show that the bandwidth conditions

employed are necessary in some cases. A bias-corrected version of the estimator is

proposed and shown to be asymptotically linear under yet weaker bandwidth condi-

tions. Implementational details of the estimators are discussed, including bandwidth

selection procedures. Consistency of an analog estimator of the asymptotic variance

is also established. Numerical results from a simulation study and an empirical illus-

tration are reported. To establish the results, a novel result on uniform convergence

rates for kernel estimators is obtained. The online supplemental material to this paper

includes details on the theoretical proofs and other analytic derivations, and further

results from the simulation study.
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1. Introduction

Two-step semiparametric m-estimators are an important and versatile class of estimators

whose conventional large-sample properties are by now well understood. These procedures

are constructed by �rst choosing a preliminary nonparametric estimator, which is then

�plugged in�in a second step to form the semiparametric estimator of the �nite-dimensional

parameter of interest. Although the precise nature of the high-level assumptions used in

conventional approximations varies slightly, it is possible to formulate su¢ cient conditions

so that the semiparametric estimator is
p
n-consistent (where n denotes the sample size)

and asymptotically linear (i.e., asymptotically equivalent to a sample average based on the

in�uence function). These results lead to a Gaussian distributional approximation for the

semiparametric estimator that, together with valid standard-error estimators, theoretically

justify classical inference procedures, at least in large samples. Newey and McFadden (1994,

Section 8), Ichimura and Todd (2007, Section 7) and Chen (2007, Section 4), among oth-

ers, give detailed surveys on semiparametric inference in econometric theory, and further

references in statistics and econometrics.

A widespread concern with these conventional asymptotic results is that the (�nite sam-

ple) distributional properties of semiparametric estimators are widely believed to be much

more sensitive to the implementational details of its nonparametric ingredient (e.g., band-

width choice when the nonparametric estimator is kernel-based) than predicted by conven-

tional asymptotic theory, according to which semiparametric estimators are asymptotically

linear with in�uence functions that are invariant with respect to the choice of nonpara-

metric estimator (e.g., Newey (1994a, Proposition 1)). Conventional approximations rely

on su¢ cient conditions carefully tailored to achieve asymptotic linearity, thereby assuming

away additional approximation errors that may be important in samples of moderate size.

In particular, whenever the preliminary nonparametric estimator enters nonlinearly in the

construction of the semiparametric procedure, a common approach is to linearly approx-
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imate the underlying estimating equation in order to characterize the contribution of the

nonparametric ingredient to the distributional approximation. This approach leads to the

familiar su¢ cient condition that requires the nonparametric ingredient to converge at a rate

faster than n1=4, e¤ectively allowing one to proceed �as if� the semiparametric estimator

depends linearly on its nonparametric ingredient, which in turn guarantees an asymptotic

linear representation of the semiparametric estimator under appropriate su¢ cient conditions.

In this paper we study the large-sample properties of a kernel-based estimator of weighted

average derivatives (Stoker (1986), Newey and Stoker (1993)), and propose a new �rst-order

asymptotic approximation for the semiparametric estimator based on a quadratic expansion

of the underlying estimating equation. The key idea is to relax the requirement that the

convergence rate of the nonparametric estimator be faster than n1=4, and to rely instead on a

quadratic expansion to tease out further information about the dependence of the semipara-

metric estimator on its nonparametric ingredient, thereby improving upon the conventional

(�rst-order) distributional approximation available in the literature. Although our idea leads

to an improved understanding of the di¤erences between linear and nonlinear functionals of

nonparametric estimators in some generality, we focus attention on weighted average deriva-

tives to keep the results as interpretable as possible, and because this estimand is popular in

theoretical and empirical work. Indeed, it should be conceptually straightforward to apply

the methodology employed herein to other kernel-based semiparametric m-estimators at the

expense of considerable more notation and technicalities.

We obtain several new results for the kernel-based weighted average derivatives estimator.

First, under standard kernel and bandwidth conditions we establish asymptotic linearity of

the estimator and consistency of its associated �plug-in�variance estimator under a weaker-

than-usual moment condition on the dependent variable. Indeed, the moment condition

imposed would appear to be (close to) minimal, suggesting that these results may be of in-

dependent theoretical interest in the speci�c context of weighted average derivatives. More
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broadly, the results (and their derivation) may be of interest as they are achieved by judi-

cial choice of estimator, and by employing a new uniform law of large numbers speci�cally

designed with consistency proofs in mind.

Second, we also establish asymptotic linearity of the weighted average derivative estimator

under weaker-than-usual bandwidth conditions. This relaxation of bandwidth conditions is

of practical usefulness because it permits the employment of kernels of lower-than-usual order

(and, relatedly, enables us to accommodate unknown functions of lower-than-usual degree

of smoothness). More generally, the derivation of these results may be of interest because of

its �generic�nature and because of its ability to deliver an improved understanding of the

distributional properties of other semiparametric estimators that depend nonlinearly on a

nonparametric component.

These results are based on a stochastic expansion retaining a �quadratic� term that is

treated as a �remainder� term in conventional derivations. Retaining this term not only

permits the relaxation of su¢ cient (bandwidth) conditions for asymptotic linearity, but also

enables us to establish necessity of these su¢ cient conditions in some cases and, most im-

portantly, to characterize the consequences of further relaxing the bandwidth conditions.

Indeed, the third (and possibly most important) type of result we obtain shows that in gen-

eral the nonlinear dependence on a nonparametric estimator gives rise to a nontrivial �bias�

term in the stochastic expansion of the semiparametric estimator. Being a manifestation of

the well known curse of dimensionality of nonparametric estimators, this �nonlinearity bias�

is a generic feature of nonlinear functionals of nonparametric estimators whose presence can

have an important impact on distributional properties of such functionals.

Because the �nonlinearity bias�is due to the (large) variance of nonparametric estimators,

attempting to remove it by means of conventional bias reduction methods aimed at reducing

�smoothing�bias, such as increasing the order of the kernel, does not work. Nevertheless, it

turns out that this �nonlinearity bias�admits a polynomial expansion (in the bandwidth),
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suggesting that it should be amenable to elimination by means of the method of generalized

jackkni�ng (Schucany and Sommers (1977)). Making this intuition precise is the purpose

of the �nal type of result presented herein. Although some details of this result are speci�c

to our weighted average derivative estimator, the main message is of much more general

validity. Indeed, an inspection of the derivation of the result suggests that the fact that

removal of �nonlinearity bias�can be accomplished by means of generalized jackkni�ng is a

property shared by most (if not all) kernel-based semiparametric two-step estimators.

The paper proceeds as follows. After brie�y discussing the related literature in the re-

maining of this section, Section 2 introduces the model and estimator(s) under study. Our

main theoretical results are presented in Section 3, including implementational recommenda-

tions for the estimators. Numerical results from a Monte Carlo and an empirical illustration

are given in Section 4. Section 5 o¤ers concluding remarks. Appendix A contains proofs of

the theoretical results, while Appendix B contains some auxiliary results (of possibly inde-

pendent interest) about uniform convergence of kernel estimators. The online supplemental

material includes details on the theoretical proofs and other analytic derivations, and further

results from the simulation study.

1.1. Related Literature. Our results are closely related and contribute to the impor-

tant literature on semiparametric averaged derivatives (Stoker (1986); see also, e.g., Härdle

and Stoker (1989), Härdle, Hart, Marron, and Tsybakov (1992) and Horowitz and Härdle

(1996)), in particular shedding new light on the problem of semiparametric weighted aver-

age derivative estimation (Newey and Stoker (1993)). This problem has wide applicability

in statistics and econometrics, as we further discuss in the following section. This problem is

conceptually and analytically di¤erent from the problem of semiparametric density-weighted

average derivatives because a kernel-based density-weighted average derivative estimator de-

pends on the nonparametric ingredient in a linear way (Powell, Stock, and Stoker (1989)),
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while the kernel-based weighted average derivative estimator has a nonlinear dependence

on a nonparametric estimator. As a consequence, the alternative �rst-order distributional

approximation obtained in Cattaneo, Crump and Jansson (2010, 2011) for a kernel-based

density-weighted average derivatives estimator is not applicable to the estimator studied

herein and our main �ndings are qualitatively di¤erent from those obtained in our earlier

work. Indeed, a crucial �nding in this paper is that considering �small bandwidth asymp-

totics�for the kernel-based weighted average derivative estimator leads to a �rst-order bias

contribution to the distributional approximation (rather than a �rst-order variance contribu-

tion, as in the case of the kernel-based density-weighted average derivative estimator), which

in turn requires bias-correction of the estimator (rather than adjustment of the standard-error

estimates, as in the case of the kernel-based density-weighted average derivative estimator).

From a more general perspective, our �ndings are also connected to other results in the

semiparametric literature. Mammen (1989) studies the large sample properties of a nonlin-

ear least-squares estimator when the (e¤ective) dimension of the parameter space is allowed

to increase rapidly, and �nds a �rst-order bias e¤ect qualitatively similar to the one char-

acterized herein. The �nonlinearity bias�we encounter is also analogous in source to the

so-called �degrees of freedom bias� discussed by Ichimura and Linton (2005) for the case

of a univariate semiparametric estimation problem, but due to the di¤erent nature of our

asymptotic experiment its presence has �rst-order consequences herein. Non-negligible bi-

ases in models with covariates of large dimension (i.e., �curse of dimensionality�e¤ects of

�rst order) were also found by Abadie and Imbens (2006), but in the case of their matching

estimator the bias in question does not seem to be attributable to nonlinearities. Finally,

the recent work of Robins, Li, Tchetgen, and van der Vaart (2008) on higher-order in�uence

functions is also related to our results insofar as it relaxes the underlying convergence rate

requirement for the nonparametric estimator. Whereas Robins, Li, Tchetgen, and van der

Vaart (2008) are motivated by a concern about the plausibility of the smoothness condi-
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tions needed to guarantee existence of n1=4-consistent nonparametric estimators in models

with large-dimensional covariates, our work seeks to relax this underlying convergence rate

requirement for the nonparametric estimator in order to improve the accuracy of the distrib-

utional approximation even in cases where lots of smoothness is assumed. Indeed, our results

highlight the presence of a leading, �rst-order bias term that is unrelated to the amount of

smoothness assumed (but clearly related to the dimensionality of the covariates).

2. Preliminaries

2.1. Model and Estimand. We assume that zi = (yi;x
0
i)
0, i = 1; � � � ; n, are i.i.d.

observed copies of a vector z = (y;x0)0, where y 2 R is a dependent variable and x =

(x1; x2; � � � ; xd)0 2 Rd is a continuous explanatory variable with density f(�). A weighted

average derivative of the regression function g(x) = E[yjx] is de�ned as

� = E
�
w(x)

@

@x
g(x)

�
, (1)

where w(�) is a known scalar weight function. (Further restrictions on w(�) will be imposed

below.) As illustrated by the following examples, � is an estimand which has been widely

considered in both theoretical and empirical work.

Example 1: Semi-linear Single-Index Models. Let x = (x01;x
0
2)
0 and g(x) = G(x01�;x2)

with G(�) unknown and � the parameter of interest. Partition � conformably with x

as � = (�01;�
0
2)
0. Under appropriate assumptions, � is proportional to �1 because

�1 = E
h
w(x) _G1(x

0
1�;x2)

i
�, _G1(u;x2) =

@

@u
G(u;x2).

This setup covers several problems of interest. For example, single-index limited depen-

dent variable models (e.g., discrete choice, censored and truncated models) are included

with x1 = x and G(�) the so-called link function. Another class of problems �tting in
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this example are partially linear models of the form G(x01�;x2) = �1(x
0
1� + �2(x2))

with �1(�) a link function and �2(�) another unknown function. For further discus-

sion on these and related examples see, e.g., Stoker (1986), Härdle and Stoker (1989),

Newey and Stoker (1993) and Powell (1994). �

Example 2: Non-Separable Models. Let x = (x01;x
0
2)
0 and y = m(x1; ") with m(�) un-

known and " an unobserved random variable. Under appropriate assumptions, includ-

ing x1 ?? " j x2, a population parameter of interest is given by

�1 = E
�
w(x)

@

@x1
m(x1; ")

�
= E

�
w(x)

@

@x1
g(x1;x2)

�
,

which captures the (weighted) average marginal e¤ect of x1 on m(�) over the popula-

tion (x01; ")
0. As in the previous example, �1 is the �rst component of the weighted

average derivative � partitioned conformably with x. The parameter �1 is of interest

in policy analysis and treatment e¤ect models. A canonical example is given by the

linear random coe¢ cients model y = �0(") + x
0
1�1("), where the parameter of interest

reduces to �1 = E [w(x)�1(")] under appropriate assumptions. For further discussion

on averaged derivatives in non-separable models see, e.g., Matzkin (2007), Imbens and

Newey (2009) and Altonji, Ichimura, and Otsu (2012). �

Example 3: Applications in Economics. In addition to the examples discussed above,

weighted average derivatives have also been employed in several speci�c economic ap-

plications that do not necessarily �t the previous setups. Some examples are: (i)

Stoker (1989) proposed several tests statistics based on averaged derivatives obtained

from economic-theory restrictions such as homogeneity or symmetry of cost functions,

(ii) Härdle, Hildenbrand, and Jerison (1991) developed a test for the law of demand

using weighted average derivatives, (iii) Deaton and Ng (1998) employed averaged



Generalized Jackknife Estimators 8

derivatives to estimate the e¤ect of a tax and subsidy policy change on individuals�

behavior, (iv) Coppejans and Sieg (2005) developed a test for non-linear pricing in

labor markets based on averaged derivatives obtained from utility maximization, and

(v) Campbell (2011) used averaged derivatives to evaluate empirically the simplifying

assumption of large market competition without strategic interactions. �

2.2. Estimator and Known Results. Newey and Stoker (1993) studied estimands of

the form (1) and gave conditions under which the semiparametric variance bound for � is

� = E[ (z) (z)0], where  (�), the pathwise derivative of �, is given by

 (z) = w(x)
@

@x
g(x)� � + [y � g(x)] s(x),

s(x) = � @

@x
w(x) + w(x)`(x), `(x) = �@f(x)=@x

f(x)
.

The following assumption, which we make throughout the paper, guarantees existence of

the parameter � and semiparametrically e¢ cient estimators thereof.

Assumption 1. (a) For some S � 2, E[jyjS] <1 and E[jyjSjx]f(x) is bounded.

(b) � = E[ (z) (z)0] is positive de�nite.

(c) w is continuously di¤erentiable, and w and its �rst derivative are bounded.

(d) infx2W f(x) > 0, where W =
�
x 2 Rd : w(x) > 0

	
.

(e) For some Pf � 2, f is (Pf + 1) times di¤erentiable, and f and its �rst (Pf + 1)

derivatives are bounded and continuous.

(f) g is continuously di¤erentiable, and e and its �rst derivative are bounded, where

e(x) = f(x)g(x).

(g) limkxk!1 [f(x) + je(x)j] = 0, where k � k is the Euclidean norm.

The restrictions imposed by Assumption 1 are fairly standard and relatively mild, with
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the possible exception of the ��xed trimming�condition in part (d). This condition simpli�es

the exposition in our paper, allowing us to avoid tedious technical arguments. It may be

relaxed to allow for non-random asymptotic trimming, but we decided not to pursue this

extension to avoid cumbersome notation and other associated technical distractions.

Under Assumption 1 it follows from integration by parts that � = E[ys(x)]. A kernel-

based analog estimator of � is therefore given by

�̂n(Hn) =
1

n

nX
i=1

yiŝn(xi;Hn), ŝn(xi;Hn) = �
@

@x
w(x)� w(x)@f̂n(x;Hn)=@x

f̂n(x;Hn)
,

where

f̂n(x;Hn) =
1

n

nX
j=1

KHn(x� xj), KH(x) = jHj�1K(H�1x),

for some kernel K : Rd ! R and some sequence Hn of diagonal, positive de�nite d � d

(bandwidth) matrices. By not requiring Hn / Id our results allow for di¤erent bandwidth

sequences for each coordinate of the covariates x 2 Rd. (We thank the Associate Editor for

encouraging us relax the restriction Hn / Id imposed in an earlier version of the paper.)

As de�ned, �̂n = �̂n(Hn) depends on the user-chosen objects K and Hn, but because our

main interest is in the sensitivity of the properties of �̂n with respect to the bandwidth matrix

Hn, we suppress the dependence of �̂n on K in the notation (and make the dependence on

Hn explicit).

The following assumption about the kernel K will be assumed to hold. [In Assumption

2(c), and elsewhere in the paper, we use the notational convention that if l = (l1; l2; � � � ; ld)0 2

Zd+ and if u = (u1; u2; � � � ; ud)0 2 Rd, then ul denotes ul11 ul22 � � �u
ld
d .]

Assumption 2. (a)K is even, bounded and twice di¤erentiable, and its �rst two derivatives

are bounded.

(b)
R
Rd k _K(u)k(1 + kuk

2)du <1, where _K(u) = @K(u)=@u.
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(c) For some PK � 2,
R
Rd jK(u)j(1 + kuk

PK+1)du <1 and for l = (l1; � � � ; ld)0 2 Zd+,

Z
Rd
ulK(u)du =

8>><>>:
1 if l1 = � � � = ld = 0

0 if 0 < l1 + � � �+ ld < PK
.

(d)
R
R
�K(u)du <1, where �K(u) = supkrk�u k@(K(r); _K(r)0)=@rk.

With the possible exception of Assumption 2(d), the restrictions imposed on the kernel

are fairly standard. Assumption 2(d) is inspired by Hansen (2008) and holds if K has

bounded support or if K is a Gaussian density-based higher-order kernel.

If Assumptions 1 and 2 hold (with Pf and PK large enough) it is easy to give condi-

tions on the bandwidth vector Hn under which �̂n is asymptotically linear with in�uence

function  (�). For instance, proceeding as in Newey (1994a, 1994b) it can be shown that if

Assumptions 1 and 2 hold and if

n�max(H
2P
n )! 0, P = min (Pf ; PK) (2)

and
n jHnj2 �min(H4

n)

(log n)2
!1, (3)

then

�̂n(Hn)� � =
1

n

nX
i=1

 (zi) + op
�
n�1=2

�
, (4)

where in conditions (3) and (2), and elsewhere in the paper, �min(�) and �max(�) denote the

smallest and largest eigenvalue, respectively, of the argument. Moreover, under the same

conditions the variance � is consistently estimable, as we discuss in more detail in Section

3.4.
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The lower bound on (the diagonal elements of) Hn implied by condition (3) helps ensure

that the estimation error of the nonparametric estimator f̂n is op(n�1=4) in an appropriate

(Sobolev) norm, which in turn is a high-level assumption featuring prominently in Newey�s

(1994a) work on asymptotic normality of semiparametric m-estimators and in more recent

re�nements thereof (see, e.g., Chen (2007) for references).

This paper explores the consequences of employing bandwidths that are �small� in the

sense that (3) is violated. Three main results will be derived. The �rst result, given in

Theorem 1 below, gives su¢ cient conditions for (4) that involve a weaker lower bound on

Hn than (3). For d � 3, the weaker lower bound takes the form njHnj2 ! 1. The second

result, given in Theorem 2 below, shows that njHnj2 ! 1 is also necessary for (4) to hold

(if d � 3). More speci�cally, Theorem 2 �nds that if d � 3, then �̂n has a non-negligible

bias when njHnj2 9 1. The third result, given in Theorem 3 below, shows that while

njHnj2 ! 1 is necessary for asymptotic linearity of �̂n (when d � 3), a bias-corrected

version of �̂n enjoys the property of asymptotic linearity under the weaker condition

n jHnj
3
2 �min(Hn)

(log n)3=2
!1. (5)

In addition, we provide some implementational recommendations. First, in Section 3.3

we derive an �optimal�choice of Hn based on an asymptotic expansion of the (approximate)

mean squared error of �̂n(Hn) and used this bandwidth choice to construct a feasible im-

plementation of the bias-corrected version of �̂n proposed in Theorem 3. Second, in Section

3.4, Theorem 4 shows that a modest strengthening of Assumption 1(a) is su¢ cient to obtain

consistency of the conventional plug-in standard-error estimator even when the lower bound

on the bandwidth is given by (5).

Remarks. (i) Most statements involving Hn can be simpli�ed somewhat in the important

special case when Hn / Id, as jHnj = hdn and �min(H
p
n) = �max(H

p
n) = hpn (for any



Generalized Jackknife Estimators 12

p 2 R) when Hn = hnId. For instance, conditions (2) and (5) become nhPn ! 0 and

nh
3d=2+1
n = (log n)3=2 !1, respectively, when Hn = hnId.

(ii) Imposing (2) and (3), and making assumptions similar to Assumptions 1 and 2,

Newey and McFadden (1994, pp. 2212�2214) establish asymptotic linearity of the

alternative kernel-based estimator

��n =
1

n

nX
i=1

w(xi)
@

@x
ĝn(xi), ĝn(x) =

1

n

nX
j=1

KHn(x� xj)yj=f̂n(x;Hn).

Their analysis (assumesHn = hnId and) requires S � 4 in order to handle the presence

of ĝn. The fact that �̂n does not involve ĝn enables us to develop distribution theory

for it under the seemingly minimal condition S = 2.

3. Theoretical Results

Validity of the stochastic expansion (4) can be established by exhibiting an approximation

�̂
A

n (say) to �̂n satisfying the following trio of conditions:

�̂n(Hn)� �̂
A

n = op
�
n�1=2

�
, (6)

�̂
A

n � E[�̂
A

n ] =
1

n

nX
i=1

 (zi) + op
�
n�1=2

�
, (7)

E[�̂
A

n ]� � = o
�
n�1=2

�
. (8)

Variations of this approach have been used in numerous papers, the typical choice being

to obtain �̂
A

n by �linearizing� �̂n with respect to the nonparametric estimator f̂n and then

establishing (6) by showing in particular that the estimation error of f̂n is op
�
n�1=4

�
in a

suitable norm. This general approach is now well-established in semiparametrics; see, e.g.,

Newey and McFadden (1994, Section 8), Ichimura and Todd (2007, Section 7), Chen (2007,
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Section 4), and references therein.

3.1. Asymptotic Linearity: Linear vs. Quadratic Approximations. In the con-

text of averaged derivatives, �linearization�amounts to setting �̂
A

n equal to

�̂
�
n(Hn) =

1

n

nX
i=1

yiŝ
�
n(xi;Hn),

where

ŝ�n(x;Hn) = s(x)�
w(x)

f(x)

�
@

@x
f̂n(x;Hn) + `(x)f̂n(x;Hn)

�
is obtained by linearizing ŝn with respect to f̂n. With this choice of �̂

A

n , conditions (6) �(8)

will hold if Assumptions 1 and 2 are satis�ed and if (2) and (3) hold. In particular, (3) serves

as part of what would appear to be the best known su¢ cient condition for the estimation

error of f̂n (and its derivative) to be op(n�1=4), a property which in turn is used to establish

(6) when �̂
A

n = �̂
�
n(Hn).

In an attempt to establish (6) under a bandwidth condition weaker than (3), we set �̂
A

n

equal to a �quadratic�approximation to �̂n(Hn) given by

�̂
��
n (Hn) =

1

n

nX
i=1

yiŝ
��
n (xi;Hn),

where

ŝ��n (x;Hn) = ŝ
�
n(x;Hn) +

w(x)

f(x)2

h
f̂n(x;Hn)� f(x)

i � @
@x
f̂n(x;Hn) + `(x)f̂n(x;Hn)

�
.

The use of a quadratic approximation to �̂n gives rise to a �cubic� remainder in (6),

suggesting that it su¢ ces to require that the estimation error of f̂n (and its derivative)

be op(n�1=6). In fact, the proof of the following result shows that the somewhat special

structure of the estimator (i.e., ŝn is linear in the derivative of f̂n) can be exploited to
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establish su¢ ciency of a slightly weaker condition.

Theorem 1. Suppose Assumptions 1 and 2 are satis�ed and suppose (2) holds. Then (4)

is true if either of the following conditions is satis�ed:

(i) d = 1 and njHnj3 !1,

(ii) d = 2 and njHnj2=(log n)3=2 !1, or

(iii) d � 3 and njHnj2 !1.

The proof of Theorem 1 veri�es (6) �(8) for �̂
A

n = �̂
��
n (Hn). Because the lower bounds on

Hn imposed in cases (i) through (iii) are weaker than (3) in all cases, working with �̂
��
n when

analyzing �̂n has the advantage that it enables us to weaken the su¢ cient conditions for

asymptotic linearity to hold on the part of �̂n. Notably, existence of a bandwidth sequence

satisfying the assumptions of Theorem 1 holds whenever P > d, a weaker requirement than

the restriction P > d + 2 implied by the conventional conditions (2) �(3). In other words,

Theorem 1 justi�es the use of kernels of lower order, and thus requires less smoothness on

the part of the density f , than do analogous results obtained using �̂
A

n = �̂
�
n(Hn). Moreover,

working with �̂
��
n enables us to derive necessary conditions for (4) in some cases.

Theorem 2. Suppose Assumptions 1 and 2 are satis�ed and suppose (2) and (5) hold.

(a) Small bandwidth bias:

E[�̂
��
n (Hn)]� � =

1

n jHnj
[B0 + o(1)] + o

�
n�1=2

�
, (9)

where

B0 =
�
�K(0d)Id +

Z
Rd

h
K(u)2Id +K(u) _K(u)u

0
i
du
�Z

Rd
g(r)w(r)`(r)dr.
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(b) Asymptotic Linearity: If either (i) d = 1 and n jHnj3 !1 or (ii) d � 2, then

�̂n(Hn)� E[�̂
��
n (Hn)] =

1

n

nX
i=1

 (zi) + op
�
n�1=2

�
.

The �rst part of Theorem 2 is based on an asymptotic expansion of the approximate bias

E[�̂
��
n (Hn)]�� and shows that, in general, the condition njHnj2 !1 is necessary for (8) to

hold when �̂
A

n = �̂
��
n (Hn). (We know of no �popular�kernels and/or �plausible�examples

of g(�), w(�), and `(�) for which B0 = 0.) The second part of Theorem 2 veri�es (6) �(7) for

�̂
A

n = �̂
��
n (Hn) and can be combined with the �rst part to yield the result that the su¢ cient

condition njHnj2 !1 obtained in Theorem 1(iii) is also necessary (in general) when d � 3.

To interpret the matrix B0 in the (approximate) bias expression (9), it is instructive to

decompose it as B0 = B�0 + B��0 , where

B�0 = �K(0d)
Z
Rd
g(r)w(r)`(r)dr

and

B��0 =
�Z

Rd

h
K(u)2Id +K(u) _K(u)u

0
i
du
�Z

Rd
g(r)w(r)`(r)dr.

The term B�0 is a �leave in�bias term arising because each ŝn(xi;Hn) employs a nonpara-

metric estimator ŝn which uses the own observation xi. The other bias term, B��0 , is a

�nonlinearity�bias term re�ecting the fact that ŝ��n involves a nonlinear function of f̂n. The

magnitude of this nonlinearity bias is n�1jHnj�1. This magnitude is exactly the magnitude

of the pointwise variance of f̂n, which is no coincidence because ŝ��n involves a term which is

�quadratic�in f̂n. (The approximation ŝ��n also involves a cross-product term in f̂n and its

derivative which, as shown in the proof of Lemma A-3, gives rise to a bias term of magnitude

n�1jHnj�1 when K is even.)

Remarks. (i) The leave-in-bias can be avoided simply by employing a �leave-one-out�es-
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timator of f when forming ŝn.

(ii) Merely removing leave-in-bias does not automatically render �̂n asymptotically lin-

ear unless njHnj2 !1, however, as the nonlinearity bias of the leave-one-out version

of �̂n is identical to that of �̂n itself.

(iii) Manipulating the order of the kernel (PK) does not eliminate the nonlinearity bias

either, as the magnitude, n�1jHnj�1, of the bias is invariant with respect to the order

of the kernel.

3.2. Asymptotic Linearity under Non-standard Conditions. The second part of

Theorem 2 suggests that if d � 3, then a bias-corrected version of �̂n might be asymptotically

linear even if the condition njHnj2 ! 1 is violated. Indeed, the method of generalized

jackkni�ng can be used to arrive at an estimator ~�n (say) whose (approximate) bias is

su¢ ciently small also when njHnj2 91. This approach is based on the following re�nement

of Theorem 2(a).

Lemma 1. Suppose the assumptions of Theorem 2 hold. Then, for any c > 0,

E[�̂
��
n (cHn)]� � =

c�d

njHnj

24B0 + b(P�1)=2cX
j=1

c2jBj(Hn)

35+ o �n�1=2� , (10)

where fBj(�) : 1 � j � b(P � 1)=2cg are functions depending only on the kernel function and

the data generating process. (The fBj(�)g are de�ned in Lemma A-3 in the Appendix.)
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Accordingly, let J be a positive integer with J < 1 + d=2, let c = (c0; : : : ; cJ)0 2 RJ+1++ be

a vector of distinct constants with c0 = 1, and de�ne

0BBBBBBBBBBB@

!0(c)

!1(c)

...

!J(c)

1CCCCCCCCCCCA
=

0BBBBBBBBBBB@

1 1 � � � 1

1 c�d1 � � � c�dJ

...
...

. . .
...

1 c
2(J�1)�d
1 � � � c

2(J�1)�d
J

1CCCCCCCCCCCA

�10BBBBBBBBBBB@

1

0

...

0

1CCCCCCCCCCCA
.

It follows from (10) that if the assumptions of Theorem 2 hold and if J � (d� 2)=8, then

JX
j=0

!j(c)E[�̂
��
n (cjHn)]� � = o

�
n�1=2

�
.

As a consequence, we have the following result about the (generalized jackknife) estimator

~�n(Hn; c) =
JX
j=0

!j(c)�̂n(cjHn).

Theorem 3. Suppose Assumptions 1 and 2 are satis�ed and suppose (2) and (5) hold. If

(d� 2)=8 � J < 1 + d=2, then

~�n(Hn; c)� � =
1

n

nX
i=1

 (zi) + op(n
�1=2)

if either (i) d = 1 and njHnj3 !1 or (ii) d � 2.

Theorem 3 gives a simple recipe for constructing an estimator of � which is semipara-

metrically e¢ cient under relatively mild restrictions on the rate at which the bandwidth Hn

vanishes.
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Remarks. (i) An alternative, and perhaps more conventional, method of bias correction

would employ (nonparametric) estimators of B0 and fBj(�)g and subtract an estimator

of E[�̂
��
n (Hn)]� � from �̂n(Hn). In our view, generalized jackkni�ng is attractive from

a practical point of view precisely because there is no need to explicitly (characterize

and) estimate complicated functionals such as B0 and fBj(�)g.

(ii) Our results demonstrate by example that a more nuanced understanding of the

bias properties of �̂n can be achieved by working with a �quadratic� (as opposed to

�linear�) approximation to it. It is conceptually straightforward to go further and

work with a �cubic� approximation (say) to �̂n. Doing so would enable a further

relaxation of the bandwidth condition at the expense of a more complicated �bias�

expression, but would not alter the fact that generalized jackkni�ng could be used to

eliminate also the bias terms that become non-negligible under the relaxed bandwidth

conditions. The simulation evidence presented in Section 4 suggests that eliminating

the biases characterized in (10) su¢ ces for the purposes of rendering the bias of the

estimator negligible relative to its standard deviation in many cases, so for brevity we

omit results based on a �cubic�approximation to �̂n.

3.3. Tuning Parameters Choices. We brie�y discuss an implementation approach for

the point estimators �̂n(Hn) and ~�n(Hn; c), focusing in particular on choosing Hn and c.

First we discuss the choice of bandwidthHn. With minor additional e¤ort, the derivations

upon which our results are based may be used to obtain an asymptotic expansion of the mean

squared error (MSE) of �̂
��
n (Hn), the �quadratic�approximation to �̂n(Hn). [In turn, this

approximation can be used to justify a second-order stochastic expansion of the estimator

�̂n(Hn).] It follows from Lemmas A-2 and A-3 in the appendix that the bias and variance

of �̂
��
n (Hn) satisfy, respectively, V[�̂

��
n (Hn)] � n�1� and E[�̂

��
n (Hn)] � � � n�1jHnj�1B0 +

S(Hn), where S(Hn) = O
�
�max(H

P
n )
�
is the �smoothing�bias of �̂

��
n (Hn) (see Lemma A-
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3(a) for the exact formula of S(�)). In these approximations only leading terms have been

retained on the right hand side, and the corresponding remainder terms are of smaller order

than the square of the leading term(s) in the bias expansion. As a consequence, choosing

the bandwidth Hn in an attempt to make (approximate) MSE small amounts to selecting

a value of Hn for which the outer product of the leading terms of E[�̂
��
n (Hn)] � � is small:

minHn AMSE[�̂
��
n (Hn)], where

AMSE[�̂
��
n (Hn)] =

�
B0
njHnj

+ S(Hn)

��
B0
njHnj

+ S(Hn)

�0
. (11)

Unfortunately, this problem does not have a closed-form solution in general, but may be

easily solved numerically.

If the same bandwidth hn is used for each coordinate, then Hn = hnId and the approxi-

mate bias expression becomes n�1h�dn B0+hPnS(Id). Minimizing the asymptotic order of this

expression requires hn / n�1=(P+d), a rate of decay that is permitted by our main results.

(Bandwidth sequences of this type violate the conventional condition (3) unless P is large

enough.) For example, when the object of main interest is a linear combination of the form

a0� (for some a 2 Rd), and a0B0 6= 0 and a0S(Id) 6= 0, then AMSE[a0�̂
��
n (hnId)] is minimized

by setting

h�n =

8>><>>:
�

ja0B0j
ja0S(Id)j

1
n

� 1
P+d

if sgn(a0B0) 6= sgn(a0S(Id))�
d
P

ja0B0j
ja0S(Id)j

1
n

� 1
P+d

if sgn(a0B0) = sgn(a0S(Id))
.

Implementation of the �optimal�bandwidth choice(s) based on minimizing AMSE[�̂
��
n (Hn)]

(or some variant thereof) requires knowledge or estimation of the constants underlying B0

and S(In). A natural approach is to estimate these constants nonparametrically, using some

preliminary choices of tuning parameters to construct the corresponding nonparametric esti-

mators. This approach is standard and readily applicable, but requires constructing several
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(preliminary) nonparametric estimators.

A simpler alternative is to construct a Silverman-style rule-of-thumb (ROT) bandwidth

estimator of Hn. We derive three ROT bandwidth choices under the following assump-

tions: (i) K(u) =
Qd
l=1 k(uj) and P even, (ii) f(x) =

Qd
l=1 �(xj=�j)=�j with �(x) the

standard Gaussian density, (iii) g(x) = x0�, and (iv) w(x) = f(x). The supplemental ap-

pendix includes all the derivations, and a few additional technical assumptions not listed

here. Using these assumptions, we �nd simple expressions for B0 and S(Id), which de-

pend only on the unknown but easy-to-estimate constants (�1; �2; � � � ; �d)0 and �. We

then employ these expressions to describe ROT bandwidth choices based on the follow-

ing three problems: (i) minhn AMSE[a
0�̂
��
n (hnId)], (ii) minhn tr(AMSE[�̂

��
n (hnId)]), and (iii)

minHn tr(AMSE[�̂
��
n (Hn)]). [We did not characterize the case minHn AMSE[a

0�̂
��
n (Hn)] be-

cause some of the associated constants are zero.] For example, the ROT bandwidth choice

based on AMSE[a0�̂
��
n (hnId)] with a = (1; 0; 0; � � � ; 0)0 2 Rd is

h�ROT-1d;n =

8>><>>:
�
�P1
Qd
l=1 �l

jCBj
jCSHj

1
n

� 1
P+d

if sgn(CB) 6= sgn(CSH)�
�P1
Qd
l=1 �l

d
P

jCBj
jCSHj

1
n

� 1
P+d

if sgn(CB) = sgn(CSH)

,

where CSH = (�1)3P=221�d�P��d=2
R
R u

Pk(u)du=� (P=2) and CB = �k(0)d+ 1
2

�R
R k(u)

2du
�d
.

If, in addition, � = �1 = � � � = �d, then we obtain h�ROT-1d;n / �n�1=(P+d). The supplemental

appendix provides details on the ROT bandwidth choices mentioned before. We explore the

performance of all three ROT choices in our simulations in Section 4.

Next, we discuss the choice of c, which requires selecting J and the constants c1; c2; � � � ; cJ .

Constructing �optimal�choices for the tuning parameters of a generalized jackkni�ng pro-

cedure is a hard problem, which has only been solved in special simple cases (e.g., Schucany

(1988)). Although it is beyond the scope of this paper to derived �optimal� choices, we
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may still o¤er some heuristic recommendations based on our derivations and our simulation

evidence. First, we recommend to choose J = d(d� 2) =8e, which amounts to remove only

the �rst few leading bias terms characterized in Lemma 1. This recommendation is based on

the observation that increasing J is likely to increase the variability of the resulting jackknife

estimator �̂
��
n (Hn), a fact con�rmed in our simulation study. Second, having chosen J , a sim-

ple implementation approach to choose the constants c1; c2; � � � ; cJ is to construct an evenly-

spaced grid starting from the value selected forHn. Because our results o¤er robustness prop-

erties for �small�bandwidths we recommend to select cJ < cJ�1 < � � � < c2 < c1 < c0 = 1. In

our simulations, for instance, 5% reductions in bandwidth (i.e., c0 = 1, c1 = 0:95, c2 = 0:90,

etc.) led to generalized jackknife estimators that performed well in all the designs considered.

3.4. Standard Errors. The emphasis so far has been on demonstrating approximate

normality of �̂n(Hn) even when the classical conditions imposed in the literature are not

satis�ed. For inference purposes it is important to also have a consistent standard-error

estimator. The purpose of the following result is to give conditions under which

�̂n = �̂n(Hn) =
1

n

nX
i=1

 ̂n(z;Hn) ̂n(z;Hn)
0 !p �, (12)

where

 ̂n(z;Hn) = w(x)
@

@x
ĝn(x;Hn)� �̂n(Hn) + [y � ĝn(x;Hn)] ŝn(x;Hn),

ĝn(x;Hn) =
ên(x;Hn)

f̂n(x;Hn)
, ên(x;Hn) =

1

n

nX
j=1

KHn(x� xj)yj.

Theorem 4. Suppose Assumptions 1 and 2 are satis�ed and suppose (2) and (5) hold. Then

(12) is true if either (i) S = 2 and njHnj2�min(H2
n)=(log n)

2 ! 1, (ii) d = 1, njHnj3 ! 1

and S > 3, or (iii) S � 3 + 2=d.
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Part (i) of the theorem shows that even under the (seemingly) minimal moment require-

ment S = 2, consistency of �̂n holds under conditions on Hn that are slightly weaker than

the conventional conditions (2) �(3). Perhaps more importantly, parts (ii) and (iii) gives

conditions (on S) for consistency of �̂n to hold under the assumptions of Theorem 3.

The proof of Theorem 4 utilizes a (seemingly) novel uniform consistency result kernel

estimators (and their derivatives), given in Appendix B. It does not seem possible to establish

part (i) using existing uniform consistency results for kernel estimators, as we are unaware

of any such results (for objects like ĝn) that require only S = 2. For instance, assuming

Hn = hnId, a proof of (12) based on Newey (1994b, Lemma B.1) requires S > 4� 4=(d+ 2)

when the lower bound on the bandwidth is of the form nh2d+2n =(log n)2 ! 1. (When the

lower bound on the bandwidth is of the form (5), Newey (1994b, Lemma B.1) can be applied

if d � 2 and S > 6� 8=(d+ 2).)

4. Numerical Results

We report the main �ndings from a simulation study and an empirical illustration employing

the conventional estimator �̂n(Hn) and the generalized jackknife estimator ~�n(Hn; c). The

supplemental appendix includes a complete set of results from our simulation study.

4.1. Simulation Setup. TheMonte Carlo study is based on a Tobit model yi = ~yi1 f~yi � 0g

with ~yi = x0i� + "i, so that � = � E[w(x)�(x0�)] with �(�) the standard normal cdf. We

set d = 3 and � = (1; 1; 1)0, and assume that "i �i:i:d: N (0; 1), i = 1; 2; � � � ; n, are indepen-

dent of the covariates. We report results for three models, which depend on the distribution

assumed on the vector of covariates. Speci�cally, for i = 1; 2; � � � ; n, we consider:

Model 1 : xi �i:i:d: N (03;V1), V1 = I3,
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Model 2 : xi �i:i:d: N (03;V2), V2 =

266666664
1 1=4 1=4

1=4 2=3 1=4

1=4 1=4 1

377777775
,

Model 3 : xi �i:i:d:

2664 (�24 � 4)=
p
8

N (02;V3)

3775 , V3 =

2664 2=3 1=4

1=4 1

3775 ,
with x1;i independent of (x2;i; x3;i)0. Consequently, Model 1 corresponds to independent,

equal variance regressors, Model 2 corresponds to correlated, non-equal variance regressors,

and Model 3 corresponds to asymmetric, partially correlated, non-equal variance regressors.

We investigated many other con�gurations of data generating processes, and in all cases we

found qualitative similar results to those reported here (and in the supplemental appendix).

As for the choice of weight function, we use

w(x; 
; �) =
dY
j=1

exp

"
�

x2�j

� 2�j
�
� 2�j � x2�j

�#1fjxjj < � jg.
The parameter � governs the degree of approximation between w (�) and the rectangular

function, the approximation becoming more precise as � grows. (Being discontinuous, w (�)

violates Assumption 1(c), so strictly speaking our theory does not cover the chosen weight

function.) For speci�city, we set � = 2. When the covariates are jointly standard normal

(Model 1), the trimming parameter � j = � (
) is given by �(
) = ��1
�
1� (1� d

p
1� 
)=2

�
,

where 
 is the (symmetric) nominal amount of trimming (i.e., 
 = 0:15 implies a nominal

trimming of 15% of the observations). Thus, for Model 1 we set � j = � (
) with 
 = 0:15,

while for the other models we chose (� 1; � 2; � 3)0 so that approximately 15% of the observations

were trimmed.
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We construct the estimators using a Gaussian density-based multiplicative kernel with

P = 4. (Note that since d = 3, choice of P = 4 not would not be available under the

conventional conditions (2) �(3).) The sample size is set to n = 700 for each replication,

and the number of simulations is set to 5; 000.

4.2. Simulation Results. We investigate the performance of the estimators �̂n(Hn)

and ~�n(Hn; c) for a variety of bandwidths choices, assuming both a common bandwidth

(Hn = hnI3) as well as di¤erent bandwidths (Hn = diag(h1;n; h3;n; h3;n)). For each case, we

consider a grid of �xed (infeasible) bandwidths and the three ROT (data-driven, feasible)

bandwidth choices introduced in Section 3.3.

The grid of bandwidth choices was constructed as follows. First, we computed the

MSE �optimal� bandwidth choice for each model in each case, Hn = hnI3 and Hn =

diag(h1;n; h3;n; h3;n), which we denote (abusing notation)H�
n = h

�
nI3 orH

�
n = diag(h

�
1;n; h

�
2;n; h

�
3;n),

respectively. Second, we constructed a grid of bandwidths by setting Hn = # � H�
n with

# 2 f:50; :55; :60; � � � ; 1:45; 1:50g. Thus, # = 1 corresponds to using the infeasible, MSE

optimal bandwidth choice for each of the 6 cases considered (3 models for either common

bandwidth or di¤erent bandwidths).

The ROT bandwidth choices were constructed as follows. First, we compute the scale of

each covariate by ŝj = min fSj; IQRj=1:349g with S2j and IQRj denoting, respectively, the

sample variance and interquartile range of the j-th covariate (j = 1; 2; 3). We also estimated

� by least-squares when needed. We report results for three feasible bandwidth choices: ROT

bandwidth choice for (i) the �rst element of the AMSE (ROT-1d) with common bandwidth,

(ii) the trace of the AMSE (ROT-tr) with common bandwidth, and (iii) the trace of the

AMSE (ROT-tr) with di¤erent bandwidths. Abusing notation, we let Ĥn denote any of

these ROT bandwidth estimates.

The estimators �̂n(Hn) and �̂n(Hn) are computed for each point in the bandwidths grid
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and for the estimated ROT bandwidths. The generalized jackknife estimator ~�n(Hn; c) was

constructed as follows. First, for the bandwidths on the grid, ~�n(Hn; c) was computed by

employing the adjacent bandwidth(s) toHn on the grid, depending on the speci�c implemen-

tation (discussed next). [This approach implies that the actual constants c = (c0; c1; � � � ; cJ)0

are slightly di¤erent along the grid.] Second, for the ROT estimated bandwidths, we con-

structed a �ve-point grid # � Ĥn with # 2 f:90; :95; 1; 1:05; 1:10g, and then implemented the

estimator ~�n(Hn; c) at # = 1 according to the speci�c implementation (discussed next).

As for the actual implementation of ~�n(Hn; c), for a given Hn, we consider �ve distinct

approaches depending on the choice of cL 2 f0; 1; 2g and cU 2 f0; 1; 2g. Speci�cally, cL

and cU determine, respectively, how many grid points below and above the speci�c value

Hn are used to construct ~�n(Hn; c). (Hence J = cL + cU .) In this section we only report

results for cL = 1 and cU = 0, but in the supplemental appendix we include four other cases:

(cL; cU) = (2; 0), (cL; cU) = (0; 1), (cL; cU) = (1; 1) and (cL; cU) = (0; 2).

Once the estimators �̂n(Hn) and ~�n(Hn; c) are constructed for each bandwidth value Hn

(either on the grid or estimated using the ROT procedures), we computed MSE, squared-bias,

variance, absolute-bias/square-root-variance, and coverage rates of 95% con�dence intervals

for each simulation design (Models 1�3, with either common or di¤erent bandwidths). In

this section, for brevity and to facilitate the comparison between the two estimators, we only

report two standardized measures: (i) MSE relative to MSE when employing the optimal

common bandwidth, and (ii) absolute-bias divided by square-root of variance. Thus, we

only include 3 short tables in the paper, but the supplemental appendix includes all the

results (30 long tables).

The results are presented in Tables 1�3 for Models 1�3, respectively. In all cases we

found that the generalized jackknife estimator ~�n(Hn; c) leads to noticeable reductions in

standardized bias, especially for �small�bandwidths (i.e., for smaller bandwidths than the

MSE-optimal ones). This �nding is consistent with our theory. In addition, we also found
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that the MSE of ~�n(Hn; c) was also reduced in most cases relative to the MSE of �̂n(Hn),

suggesting that in our simulations employing generalized jackkni�ng does not increase the

variability of the resulting estimator much (relative to the gains in bias-reduction). These

�ndings highlight the potential sensitivity of the conventional estimator to perturbations

of the bandwidth choice, which in the case of the weighted average derivatives leads to a

non-trivial bias for �small�bandwidths, and therefore a need for bias correction.

Our simulations also suggest that the rule-of-thumb bandwidth selectors perform rel-

atively well, providing a simple and easy-to-implement bandwidth choice. Although it is

important to also consider consistent nonparametric bandwidth choices, our rule-of-thumbs

seem to provide a natural and simple �rst bandwidth choice to employ.

We also explored the quality of the normal approximation to the distribution of the t-

statistic (we do not report result here to conserve space). We found that the distribution

of both �̂n(Hn) and ~�n(Hn; c) were close to Gaussian, although the classical estimator ex-

hibited a non-trivial bias. In contrast, the generalized estimator ~�n(Hn; c) was found to be

approximately centered correctly, especially for �small�bandwidths.

Finally, we also explored the empirical coverage rates of the conventional and bias-

corrected t-statistics. We found that neither the conventional nor the jackknife estimator

succeeded in achieving empirical coverage rates near the nominal rate. This �nding, to-

gether with the results reported above, suggests that the lack of good empirical coverage

of the associated con�dence intervals for the generalized jackknife procedure is due to the

poor performance of the classical variance estimator commonly employed in the literature.

Indeed, in the case of the conventional procedure, we found that both the bias properties and

the performance of this variance estimator seem to be at fault for the disappointing empir-

ical coverage rates found in the simulations. Further investigation into alternative variance

estimation procedures, although beyond the scope of this paper, is underway.
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4.3. Empirical Illustration. To complement the simulation evidence reported above,

we undertake a small empirical illustration that shows how our methods perform using

real data. We focus on estimating the average marginal return to ability, employing a

subset of the dataset constructed by Lang and Manove (2011). [The dataset is available at

http://www.aeaweb.org/articles.php?doi=10.1257/aer.101.4.1467.].

The data comes from the National Longitudinal Survey of Youth (NLSY79), which fol-

lows individuals born in 1957�1964. This (panel) data set provides not only demographic,

economic and educational information, but also includes a well-known proxy for ability (be-

yond schooling and work experience) for the individuals in the sample. Speci�cally, this data

includes the results from the Armed Forces Quali�cation Test (AFQT) for those individuals

who took the test in 1980, which provides a close-to-continuous measure that may be under-

stood as a proxy for their intrinsic �ability�. This data has been used repeatedly to either

control for or estimate the e¤ects of �ability�in empirical studies in economics and related

�elds. For more details on this data and a discussion on the related literature see Lang and

Manove (2011) and references therein.

In our empirical illustration we focus on estimating the (weighted) average marginal

e¤ect of an increase in AFQT on earnings while controlling for two other observed charac-

teristics. In particular, we let yi = log(WAGEi) where WAGEi denotes the mean adjusted

hourly wages in 1996�2000 for individual i, and xi = (AFQTi; SCHSZi; TEACHWi)
0 where

AFQTi denotes the (adjusted) standardized AFQT score for individual i, SCHSZi denotes

the school size that individual i attended to, and TEACHWi denotes the average teacher

salary in the school that individual i attended to. Our parameter of interest is

�1 = E
�
w(xi)

@

@AFQTi
g(AFQTi; SCHSZi; TEACHWi)

�
,

where g (xi) = E[yijxi]. To conduct the estimation, we restrict our sample to the subset
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Figure 1: Smoothing splines estimates for univariate conditional expectations.

of 15�19 year-old white males with 12�16 years of schooling in 1979. The �nal sample size

is n = 802 individuals. Figure 1 plots nonparametric smoothing splines estimates of the

univariate conditional expectations for each of the three covariates included in our sample,

computed using the command gam() in R (http://www.r-project.org).

Figure 1 exhibits a non-linear relationship between wages and ability, suggesting that

di¤erent levels of ability will have di¤erential e¤ects on earnings for the individuals in this

sample. The average derivative �1 provides an overall (weighted, averaged) marginal-e¤ect

measure for these individuals, after controlling for the other covariates.

Table 4 presents the empirical estimates of both the classical estimator �̂n(Hn) and the

generalized jackknife estimator ~�n(Hn; c). We employ the same weighting function intro-

duced in the simulation section. To implement these estimators, we centered and scaled the

covariates SCHSZi and TEACHWi (without loss of generality), and then selected a trim-

ming parameter for each dimension of xi such that at least 1% of the sample was trimmed

along each dimension. Based on our simulations, we selected c = (1; 0:95) to implement the

generalized jackknife estimator. As for the bandwidth choice, we report results for all three

ROT alternatives discussed previously.
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Table 4: Average Marginal E¤ect of Ability on Earnings (c = (1; 0:95)).

Coef. Std. Err.

�̂n(Hn) ~�n(Hn; c) �̂n(Hn)

Common Bandwidth: ROT-1d

Hn = 0:48 � I3 0:536 0:484 0:023

Hn = 0:9 � 0:48 � I3 0:560 0:432 0:024

Common Bandwidth: ROT-tr

Hn = 0:483 � I3 0:535 0:487 0:023

Hn = 0:9 � 0:483 � I3 0:559 0:433 0:024

Di¤erent Bandwidths: ROT-tr

Hn = diag(0:48; 0:48; 0:48) 0:536 0:484 0:023

Hn = 0:9 � diag(0:48; 0:48; 0:48) 0:560 0:432 0:024

Our empirical results suggest that in this illustration bias may be important. Indeed,

while the point estimator �̂n(Hn) gives an average marginal return to ability of about 0:535,

the generalized jackknife estimator ~�n(Hn; c) gives a point estimate of about 0:485. Inter-

estingly, the 95% con�dence interval based on ~�n(Hn; c) does not include the point estimate

�̂n(Hn). (As shown in the table, a 10% undersmoothing leads to even larger di¤erences

between the conventional and the generalized jackknife estimators.) As a consequence, this

empirical illustration provides a simple empirical example where our procedure leads to a

quantitatively di¤erent estimate than the conventional one.

5. Conclusion

This paper has revisited the large-sample properties of a kernel-based weighted average deriv-

ative estimator. In important respects this estimator can be viewed as a representative mem-

ber of the much larger class of (kernel-based) semiparametricm-estimators. In particular, the

�nonlinearity bias�highlighted by our development of asymptotics with smaller-than-usual

bandwidths (i.e., larger-than-usual undersmoothing) is a generic feature of nonlinear func-

tionals of nonparametric estimators and is likely to be quantitatively important in samples

of moderate size also for estimators other than the one studied in this paper.
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To remove this �nonlinearity bias�, we have employed the method of generalized jackknif-

ing. Being �semi-automatic�in the sense that it requires knowledge only of the magnitudes

of the terms in an asymptotic expansion of the �nonlinearity bias�, that same method should

be easily applicable whenever the nonparametric ingredient is a kernel estimator, as the vari-

ance properties of kernel estimators are very well understood. Partly because certain popu-

lar nonparametric estimators (notably series estimators) have variance properties that seem

harder to analyze than those of kernel estimators, it would be useful to know if the validity

of certain �fully automatic�bias correction methods and/or distributional approximations

can be established under assumptions similar to those entertained in this paper.

6. Appendix A: Proofs

This appendix gives the proofs of Theorems 1-3. We �rst state four lemmas, the proofs of

which are available in the supplemental appendix. We then employ these lemmas, together

with the results for kernel-based estimators outlined in Appendix B, to prove the main

theorems.

6.1. Useful lemmas. The �rst lemma gives su¢ cient conditions for (6) in terms of

the magnitudes of �0;n(Hn) = supx2W jf̂n(x;Hn) � f(x)j and �1;n(Hn) = maxf�0;n(Hn),

supx2W k@f̂n(x;Hn)=@x� @f(x)=@xkg.

Lemma A-1. Suppose Assumption 1 is satis�ed and suppose �0;n = op (1). Then (6) is

true if either (i) �̂
A

n = �̂
��
n (Hn) and �0;n(Hn)

2�1;n(Hn) = op(n
�1=2) or (ii) �̂

A

n = �̂
�
n(Hn) and

�0;n(Hn)�1;n(Hn) = op(n
�1=2).

The next result gives su¢ cient conditions for (7).

Lemma A-2. Suppose Assumptions 1 and 2 are satis�ed and suppose �max(Hn) ! 0 and

njHnj�min(H2
n)!1. Then (7) is true for �̂An = �̂

�
n(Hn) and �̂

A

n = �̂
��
n (Hn).
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Lemma 1 is a corollary of the following result, which can be used to evaluate E[�̂
A

n ]� �.

To state the result succinctly, let _f(x) = @f(x)=@x, let diag(hn) = Hn (i.e., let hn 2 Rd++
collect the diagonal elements of Hn), and for any multi-index l = (l1; l2; � � � ; ld)0 2 Zd+ and

any su¢ ciently smooth function f(�) (not necessarily equal to the density of x), let

l! = l1!l2! � � � ld!, @lf(x) =
@l1+l2+���+ld

@xl11 @x
l2
2 � � � @x

ld
d

f(x1; x2; � � � ; xd).

Also, for any k 2 Z+, de�ne Zd+(k) = f(l1; � � � ; ld)0 2 Zd+ : l1 + � � �+ ld = kg.

Lemma A-3. Suppose Assumptions 1 and 2 are satis�ed and suppose �max(Hn)! 0.

(a) Bias of �̂
�
n(Hn):

E[�̂
�
n(Hn)]� � = n�1jHnj�1B�0 + S(Hn) + o

�
�max(H

P
n )
�
,

where

S(Hn) = (�1)P+1
X

l2Zd+(P )

hln
l!

�Z
Rd
w(r)g(r)

�
@l _f(r) + `(r)@lf(r)

�
dr
� �Z

Rd
ulK(u)du

�
.

(b) Nonlinearity bias:

E[�̂
��
n (Hn)� �̂

�
n(Hn)] = n

�1jHnj�1
24B��0 + b(P�1)=2cX

j=1

Bj(Hn)

35+O(n�2jHnj�2 + �max(H2P
n )),

where

Bj(Hn) =
X

l2Zd+(2j)

hln
l!
Bz(l)BK(l) +

X
l2Zd+(2j+1)

hln
l!
_Bz(l)H

�1
n
_BK(l),
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with

BK(l) =

Z
Rd
ulK(u)2du, Bz(l) =

Z
Rd
g(r)

w(r)

f(r)
`(r)@lf(r)dr,

_BK(l) =

Z
Rd
ulK(u) _K(u)du, _Bz(l) = �

Z
Rd
g(r)

w(r)

f(r)
@lf(r)dr.

The last lemma collects basic results about kernels-based integrals. Let _KH(x) = @KH(x)=@x.

Lemma A-4. If Assumptions 1 and 2 are satis�ed and if �max(Hn)! 0, then

(a) Uniformly in x 2 W,

b(x;Hn) =

Z
Rd
KHn(x� r)f(r)dr� f(x)

= (�1)P
X

l2Zd+(P )

hln
l!
@lf(x)

�Z
Rd
ulK(u)du

�
+ o

�
�max(H

P
n )
�

= O
�
�max(H

P
n )
�
,

_b(x;Hn) =

Z
Rd
_KHn(x� r)f(r)dr� @f(x)=@x

= (�1)P+1
X

l2Zd+(P )

hln
l!
@l _f(x)

�Z
Rd
ulK(u)du

�
+ o

�
�max(H

P
n )
�

= O
�
�max(H

P
n )
�
.

(b) For any function F with E[F (z)2] <1,

i. E[F (z1)2KHn(x1 � x2)2] = O(jHnj�1),

ii. E[F (z1)2k _KHn(x1 � x2)k2] = O(jHnj�1�max(H�2
n )).

iii. E[F (z1)2KHn(x1 � x2)2KHn(x1 � x3)2] = O(jHnj�2),

iv. E[F (z1)2KHn(x1 � x2)2k _KHn(x1 � x3)k2] = O(jHnj�2�max(H�2
n )).
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6.2. Proof of Theorems 1-3. Under the assumptions of the theorems, (6)�(7) hold for

�̂
A

n = �̂
��
n (Hn). Validity of (7) follows from Lemma A-2, while (6) follows from Lemma A-1

because it can be shown that

sup
x2W

���f̂n(x;Hn)� f(x)
��� = Op �max(HP

n ) +

s
log n

njHnj

!
(A-1)

and

sup
x2W





 @@x f̂n(x;Hn)�
@

@x
f(x)





 = Op
 
�max(H

P
n ) +

s
log n

njHnj�min(H2
n)

!
, (A-2)

Speci�cally, (A-1) holds because supx2W jE[f̂n(x;Hn)]�f(x)j = O(�max(HP
n )) by Lemma

A-4 (a) and because supx2W jf̂n(x;Hn) � E[f̂n(x;Hn)]j = Op(
p
log n=

p
n jHnj) by Lemma

B-1 with (Y;X) = (1;x), � = K, and Xn = W. Similarly, (A-2) can be shown by applying

Lemma A-4 (a) and Lemma B-1 (with �(u) equal to an element of Hn@K(u)=@u).

Theorem 1 is a special case of Theorem 2. To complete the proof of Theorem 2, use

Lemma A-3 to verify (8). Similarly, the proof of Theorem 3 can be completed by using

Lemma A-3 to verify (10). �

6.3. Proof of Theorem 4. It su¢ ces to show that
Pn

i=1 k ̂n(zi;Hn)� (zi)k2 = op(n).

To do so, it su¢ ces to show that: (i) �̂n(Hn) � � = op (1), (ii) supx2W kŝn(x;Hn) �

s(x)k = op(1), (iii) supx2W kĝn(x;Hn) � g(x)k = op(1), and (iv) supx2W k@ĝn(x;Hn)=@x �

@g(x)=@xk = op(1).

It follows from Theorem 2 and its proof that (i) and (ii) hold. Also, Lemma B-1 (with

(Y;X0) = (y;x0), s = S, � = K and Xn = W) and routine arguments can be used to

show that if Assumptions 1 and 2 are satis�ed and if (2) and (5) hold, then (iii) will be

implied by n1�1=SjHnj= log n ! 1. Similarly, (iv) can be established under the condition

n1�1=SjHnj�min(Hn)= log n ! 1. The latter holds if condition (i), (ii), or (iii) in the state-
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ment of the theorem is satis�ed. �

7. Appendix B: Uniform Convergence Rates for Kernel Estimators

This Appendix derives uniform convergence rates for kernel estimators. Lemma B-1 is used

in the proofs of the main results of this paper. Because this result may be of independent

interest, it is stated at a (slightly) greater level of generality than needed in the proofs of

the other results in this paper.

Suppose (Yi;X0
i)
0, i = 1; : : : ; n, are i.i.d. copies of (Y;X0)0, where X 2 Rd is continuous

with density fX (�). Consider the nonparametric estimator

	̂n(x) =
1

n

nX
j=1

�Hn(x�Xj)Yj, �H (x) = jHj�1 �(H�1x),

whereHn is a sequence of diagonal, positive de�nite d�d bandwidth matrices and � : Rd ! R

is a kernel-like function. To obtain uniform convergence rates for 	̂n, we make the following

assumptions.

Assumption B1. For some s � 2, E[jY js] + supx2Rd E[jY jsjX = x]fX(x) <1.

Assumption B2. (a) supu2Rd j�(u)j+
R
Rd j�(u)jdu <1.

(b) � admits a �� > 0 and a function �� : Rd ! R+ with supu2Rd ��(u)+
R
Rd �

�(u)du <

1, such that j�(u)� �(u�)j � ku� u�k��(u�) whenever ku� u�k � ��.

Remark. Assumption B2(b) is adapted from Hansen (2008). It holds if � is di¤erentiable

with �� (0) +
R
R ��(u)du <1, where ��(u) = supkrk�u k@�(r)=@rk.

The �rst result gives an upper bound on the convergence rate of 	̂n on (possibly) ex-

panding sets of the form Xn =
�
x 2 Rd : kxk � CX;n

	
, where CX;n is a positive sequence

satisfying

limn!1
log(CX;n)

log n
<1. (B-1)
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Lemma B-1. Suppose Assumptions B1 and B2 are satis�ed and suppose (B-1) holds. If

�max(Hn)! 0 and n1�1=sjHnj= log n!1, then

sup
x2Xn

���	̂n(x)�	n(x)��� = Op (�n) , �n =

s
log n

njHnj
max

(
1;

s
log n

n1�2=sjHnj

)
,

where 	n(x) = E[	̂n(x)].

Remark. The natural �s =1�analog of Lemma B-1 holds if Y is bounded (e.g., if Y � 1,

as in the case of density estimation). In other words, the lower bound njHnj= log n!1

su¢ ces and �n can be set equal to
p
log n=

p
njHnj when Y is bounded.

Lemma B-1 generalizes Newey (1994b, Lemma B.1) in three respects. First, we obtain

results allowing for matrix bandwidths as opposed to a scalar, common bandwidth for all

the covariates. Second, by borrowing ideas from Hansen (2008) we are able to accommodate

kernels with unbounded support and to establish uniform convergence over certain types

of expanding sets. Finally, and more importantly (for our purposes at least), Lemma B-1

relaxes the condition n1�2=sjHnj= log n!1 imposed by Newey (1994b, Lemma B.1), when

assuming Hn = hnId. In typical applications of Newey (1994b, Lemma B.1), a condition

like s � 4 is imposed in order to ensure that n1�2=shdn= log n ! 1 is implied by �natural�

conditions on hn, such as nh2dn =(log n)
2 ! 1 (e.g., Newey (1994b, Theorem 4.2), Newey

and McFadden (1994, Theorem 8.11)). In contrast, only s � 2 is required for the condi-

tion imposed in Lemma B-1 to be implied by nh2dn =(log n)
2 ! 1 (or its matrix analogue

njHnj2=(log n)2 !1).

If n1�2=sjHnj= log n ! 0, then the uniform rate obtained in Lemma B-1 falls short of

the �usual� rate
p
njHnj= log n. This is potentially problematic if Lemma B-1 is used to

establish uniform convergence with a certain rate (e.g., n1=4 or n1=6, as in proofs of results

such as (6)). On the other hand, the slower rate of convergence is of no concern when any
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rate of convergence will do (as in proofs of consistency results such as (12)).

Because of their ability to control bias in some cases, leave one out estimators of the form

	̂n;i(x) =
1

n� 1

nX
j=1;j 6=i

�Hn(x�Xj)Yj

are sometimes of interest. The next result extends Lemma B-1 to such estimators.

Lemma B-2. Suppose Assumptions B1 and B2 are satis�ed and suppose (B-1) holds. If

�max(Hn)! 0 and n1�1=sjHnj= log n!1, then

max
1�i�n

sup
x2Xn

���	̂n;i(x)�	n;i(x)��� = Op (�n) , 	n;i(x) = E[	̂n;i(x)].

Another corollary of Lemma B-1 is the following result, which can be useful when uniform

convergence on the support of the empirical distribution of X su¢ ces.

Lemma B-3. Suppose E[kXksX ] < 1 for some sX > 0 and suppose Assumptions B1 and

B2 are satis�ed. If �max(Hn)! 0 and n1�1=sjHnj= log n!1, then

max
1�i�n

���	̂n(Xi)�	n(Xi)
��� = Op (�n)

and

max
1�i�n

���	̂n;i(Xi)�	n;i(Xi)
��� = Op (�n) .

Remark. Lemmas B-2 and B-3 are not used elsewhere in the paper. We have included

them because they may be of independent interest.
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