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1. INTRODUCTION

Two-step semiparametric m-estimators are an important and versatile class of estimators
whose conventional large-sample properties are by now well understood. These procedures
are constructed by first choosing a preliminary nonparametric estimator, which is then
“plugged in” in a second step to form the semiparametric estimator of the finite-dimensional
parameter of interest. Although the precise nature of the high-level assumptions used in
conventional approximations varies slightly, it is possible to formulate sufficient conditions
so that the semiparametric estimator is /n-consistent (where n denotes the sample size)
and asymptotically linear (i.e., asymptotically equivalent to a sample average based on the
influence function). These results lead to a Gaussian distributional approximation for the
semiparametric estimator that, together with valid standard-error estimators, theoretically
justify classical inference procedures, at least in large samples. Newey and McFadden (1994,
Section 8), Ichimura and Todd (2007, Section 7) and Chen (2007, Section 4), among oth-
ers, give detailed surveys on semiparametric inference in econometric theory, and further
references in statistics and econometrics.

A widespread concern with these conventional asymptotic results is that the (finite sam-
ple) distributional properties of semiparametric estimators are widely believed to be much
more sensitive to the implementational details of its nonparametric ingredient (e.g., band-
width choice when the nonparametric estimator is kernel-based) than predicted by conven-
tional asymptotic theory, according to which semiparametric estimators are asymptotically
linear with influence functions that are invariant with respect to the choice of nonpara-
metric estimator (e.g., Newey (1994a, Proposition 1)). Conventional approximations rely
on sufficient conditions carefully tailored to achieve asymptotic linearity, thereby assuming
away additional approximation errors that may be important in samples of moderate size.
In particular, whenever the preliminary nonparametric estimator enters nonlinearly in the

construction of the semiparametric procedure, a common approach is to linearly approx-
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imate the underlying estimating equation in order to characterize the contribution of the
nonparametric ingredient to the distributional approximation. This approach leads to the
familiar sufficient condition that requires the nonparametric ingredient to converge at a rate

1/4 " effectively allowing one to proceed “as if’ the semiparametric estimator

faster than n
depends linearly on its nonparametric ingredient, which in turn guarantees an asymptotic
linear representation of the semiparametric estimator under appropriate sufficient conditions.

In this paper we study the large-sample properties of a kernel-based estimator of weighted
average derivatives (Stoker (1986), Newey and Stoker (1993)), and propose a new first-order
asymptotic approximation for the semiparametric estimator based on a quadratic expansion
of the underlying estimating equation. The key idea is to relax the requirement that the
convergence rate of the nonparametric estimator be faster than n'/4, and to rely instead on a
quadratic expansion to tease out further information about the dependence of the semipara-
metric estimator on its nonparametric ingredient, thereby improving upon the conventional
(first-order) distributional approximation available in the literature. Although our idea leads
to an improved understanding of the differences between linear and nonlinear functionals of
nonparametric estimators in some generality, we focus attention on weighted average deriva-
tives to keep the results as interpretable as possible, and because this estimand is popular in
theoretical and empirical work. Indeed, it should be conceptually straightforward to apply
the methodology employed herein to other kernel-based semiparametric m-estimators at the
expense of considerable more notation and technicalities.

We obtain several new results for the kernel-based weighted average derivatives estimator.
First, under standard kernel and bandwidth conditions we establish asymptotic linearity of
the estimator and consistency of its associated “plug-in” variance estimator under a weaker-
than-usual moment condition on the dependent variable. Indeed, the moment condition
imposed would appear to be (close to) minimal, suggesting that these results may be of in-

dependent theoretical interest in the specific context of weighted average derivatives. More
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broadly, the results (and their derivation) may be of interest as they are achieved by judi-
cial choice of estimator, and by employing a new uniform law of large numbers specifically
designed with consistency proofs in mind.

Second, we also establish asymptotic linearity of the weighted average derivative estimator
under weaker-than-usual bandwidth conditions. This relaxation of bandwidth conditions is
of practical usefulness because it permits the employment of kernels of lower-than-usual order
(and, relatedly, enables us to accommodate unknown functions of lower-than-usual degree
of smoothness). More generally, the derivation of these results may be of interest because of
its “generic” nature and because of its ability to deliver an improved understanding of the
distributional properties of other semiparametric estimators that depend nonlinearly on a
nonparametric component.

These results are based on a stochastic expansion retaining a “quadratic” term that is
treated as a “remainder” term in conventional derivations. Retaining this term not only
permits the relaxation of sufficient (bandwidth) conditions for asymptotic linearity, but also
enables us to establish necessity of these sufficient conditions in some cases and, most im-
portantly, to characterize the consequences of further relaxing the bandwidth conditions.
Indeed, the third (and possibly most important) type of result we obtain shows that in gen-
eral the nonlinear dependence on a nonparametric estimator gives rise to a nontrivial “bias”
term in the stochastic expansion of the semiparametric estimator. Being a manifestation of
the well known curse of dimensionality of nonparametric estimators, this “nonlinearity bias”
is a generic feature of nonlinear functionals of nonparametric estimators whose presence can
have an important impact on distributional properties of such functionals.

Because the “nonlinearity bias” is due to the (large) variance of nonparametric estimators,
attempting to remove it by means of conventional bias reduction methods aimed at reducing
“smoothing” bias, such as increasing the order of the kernel, does not work. Nevertheless, it

turns out that this “nonlinearity bias” admits a polynomial expansion (in the bandwidth),
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suggesting that it should be amenable to elimination by means of the method of generalized
jackknifing (Schucany and Sommers (1977)). Making this intuition precise is the purpose
of the final type of result presented herein. Although some details of this result are specific
to our weighted average derivative estimator, the main message is of much more general
validity. Indeed, an inspection of the derivation of the result suggests that the fact that
removal of “nonlinearity bias” can be accomplished by means of generalized jackknifing is a
property shared by most (if not all) kernel-based semiparametric two-step estimators.

The paper proceeds as follows. After briefly discussing the related literature in the re-
maining of this section, Section 2 introduces the model and estimator(s) under study. Our
main theoretical results are presented in Section 3, including implementational recommenda-
tions for the estimators. Numerical results from a Monte Carlo and an empirical illustration
are given in Section 4. Section 5 offers concluding remarks. Appendix A contains proofs of
the theoretical results, while Appendix B contains some auxiliary results (of possibly inde-
pendent interest) about uniform convergence of kernel estimators. The online supplemental
material includes details on the theoretical proofs and other analytic derivations, and further

results from the simulation study.

1.1. Related Literature. Our results are closely related and contribute to the impor-
tant literature on semiparametric averaged derivatives (Stoker (1986); see also, e.g., Hardle
and Stoker (1989), Hardle, Hart, Marron, and Tsybakov (1992) and Horowitz and Hérdle
(1996)), in particular shedding new light on the problem of semiparametric weighted aver-
age derivative estimation (Newey and Stoker (1993)). This problem has wide applicability
in statistics and econometrics, as we further discuss in the following section. This problem is
conceptually and analytically different from the problem of semiparametric density-weighted
average derivatives because a kernel-based density-weighted average derivative estimator de-

pends on the nonparametric ingredient in a linear way (Powell, Stock, and Stoker (1989)),
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while the kernel-based weighted average derivative estimator has a nonlinear dependence
on a nonparametric estimator. As a consequence, the alternative first-order distributional
approximation obtained in Cattaneo, Crump and Jansson (2010, 2011) for a kernel-based
density-weighted average derivatives estimator is not applicable to the estimator studied
herein and our main findings are qualitatively different from those obtained in our earlier
work. Indeed, a crucial finding in this paper is that considering “small bandwidth asymp-
totics” for the kernel-based weighted average derivative estimator leads to a first-order bias
contribution to the distributional approximation (rather than a first-order variance contribu-
tion, as in the case of the kernel-based density-weighted average derivative estimator), which
in turn requires bias-correction of the estimator (rather than adjustment of the standard-error
estimates, as in the case of the kernel-based density-weighted average derivative estimator).

From a more general perspective, our findings are also connected to other results in the
semiparametric literature. Mammen (1989) studies the large sample properties of a nonlin-
ear least-squares estimator when the (effective) dimension of the parameter space is allowed
to increase rapidly, and finds a first-order bias effect qualitatively similar to the one char-
acterized herein. The “nonlinearity bias” we encounter is also analogous in source to the
so-called “degrees of freedom bias” discussed by Ichimura and Linton (2005) for the case
of a univariate semiparametric estimation problem, but due to the different nature of our
asymptotic experiment its presence has first-order consequences herein. Non-negligible bi-
ases in models with covariates of large dimension (i.e., “curse of dimensionality” effects of
first order) were also found by Abadie and Imbens (2006), but in the case of their matching
estimator the bias in question does not seem to be attributable to nonlinearities. Finally,
the recent work of Robins, Li, Tchetgen, and van der Vaart (2008) on higher-order influence
functions is also related to our results insofar as it relaxes the underlying convergence rate
requirement for the nonparametric estimator. Whereas Robins, Li, Tchetgen, and van der

Vaart (2008) are motivated by a concern about the plausibility of the smoothness condi-
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tions needed to guarantee existence of n'/%-consistent nonparametric estimators in models
with large-dimensional covariates, our work seeks to relax this underlying convergence rate
requirement for the nonparametric estimator in order to improve the accuracy of the distrib-
utional approximation even in cases where lots of smoothness is assumed. Indeed, our results
highlight the presence of a leading, first-order bias term that is unrelated to the amount of

smoothness assumed (but clearly related to the dimensionality of the covariates).

2. PRELIMINARIES
2.1. Model and Estimand. We assume that z; = (y;,x})’, i« = 1,--- ,n, are ii.d.
observed copies of a vector z = (y,x’), where y € R is a dependent variable and x =
(w1, 79, -+ ,24) € R is a continuous explanatory variable with density f(-). A weighted

average derivative of the regression function g(x) = E[y|x] is defined as

0
0= [ux) o) 1)
where w(-) is a known scalar weight function. (Further restrictions on w(-) will be imposed
below.) As illustrated by the following examples, 6 is an estimand which has been widely

considered in both theoretical and empirical work.

Example 1: Semi-linear Single-Index Models. Let x = (x},x}) and g(x) = G(x}8, X2)
with G(-) unknown and 3 the parameter of interest. Partition 6 conformably with x

as 8 = (0,0,). Under appropriate assumptions, (3 is proportional to 8; because
. . 0
01 =FE w(X)Gl(XIIB,X2> ﬂ, Gl(u, X2) = a—uG(u, Xg).

This setup covers several problems of interest. For example, single-index limited depen-
dent variable models (e.g., discrete choice, censored and truncated models) are included

with x; = x and G(-) the so-called link function. Another class of problems fitting in
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this example are partially linear models of the form G(x}3,x2) = ¢; (X8 + ¢5(x2))
with ¢,(-) a link function and ¢,(-) another unknown function. For further discus-
sion on these and related examples see, e.g., Stoker (1986), Hirdle and Stoker (1989),
Newey and Stoker (1993) and Powell (1994). O

Example 2: Non-Separable Models. Let x = (x},x5)" and y = m(x;,¢) with m(-) un-
known and £ an unobserved random variable. Under appropriate assumptions, includ-

ing x; 1 ]| x2, a population parameter of interest is given by

61 = B |uwlx)gm(1,5)] = B o) g1 )]

which captures the (weighted) average marginal effect of x; on m(-) over the popula-

tion (x7,¢)’.

As in the previous example, 8, is the first component of the weighted
average derivative @ partitioned conformably with x. The parameter 6, is of interest
in policy analysis and treatment effect models. A canonical example is given by the
linear random coefficients model y = 3,(¢) + x1 8, (¢), where the parameter of interest
reduces to 0; = E [w(x)3,(¢)] under appropriate assumptions. For further discussion

on averaged derivatives in non-separable models see, e.g., Matzkin (2007), Imbens and

Newey (2009) and Altonji, Ichimura, and Otsu (2012). O

Example 3: Applications in Economics. In addition to the examples discussed above,
weighted average derivatives have also been employed in several specific economic ap-
plications that do not necessarily fit the previous setups. Some examples are: (i)
Stoker (1989) proposed several tests statistics based on averaged derivatives obtained
from economic-theory restrictions such as homogeneity or symmetry of cost functions,
(74) Hardle, Hildenbrand, and Jerison (1991) developed a test for the law of demand

using weighted average derivatives, (iii) Deaton and Ng (1998) employed averaged
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derivatives to estimate the effect of a tax and subsidy policy change on individuals’
behavior, (iv) Coppejans and Sieg (2005) developed a test for non-linear pricing in
labor markets based on averaged derivatives obtained from utility maximization, and
(v) Campbell (2011) used averaged derivatives to evaluate empirically the simplifying

assumption of large market competition without strategic interactions. 0]

2.2. Estimator and Known Results. Newey and Stoker (1993) studied estimands of
the form (1) and gave conditions under which the semiparametric variance bound for 6 is

3 = E[y(z)y(z)'], where 9(-), the pathwise derivative of 0, is given by

(z) = w(x) 2 g(x) — 0+ [y — 9(x)]s(x),

0 _ Of(x)/ox
s(x) = —aw(x) + w(x)l(x), U(x) = )

The following assumption, which we make throughout the paper, guarantees existence of

the parameter @ and semiparametrically efficient estimators thereof.
Assumption 1. (a) For some S > 2, E[|y|°] < oo and E|[|y|®|x]f(x) is bounded.

b) ¥ = E[v(z)1(z)'] is positive definite.

(
(c) w is continuously differentiable, and w and its first derivative are bounded.
(d) infxew f(x) > 0, where W = {x € R? : w(x) > 0}.

(

e) For some Py > 2, f is (P + 1) times differentiable, and f and its first (Pr+1)
derivatives are bounded and continuous.
(f) g is continuously differentiable, and e and its first derivative are bounded, where

(g) limyx||—oo [f(x) + |e(x)]] = 0, where || - || is the Euclidean norm.

The restrictions imposed by Assumption 1 are fairly standard and relatively mild, with
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the possible exception of the “fixed trimming” condition in part (d). This condition simplifies
the exposition in our paper, allowing us to avoid tedious technical arguments. It may be
relaxed to allow for non-random asymptotic trimming, but we decided not to pursue this
extension to avoid cumbersome notation and other associated technical distractions.

Under Assumption 1 it follows from integration by parts that @ = E[ys(x)]. A kernel-

based analog estimator of @ is therefore given by

0 0fn(x; H,)/0x

. 1~ . 5
On(Hn):ﬁ;?JiSn(Xi?Hn)’ Sulxis ) = = wb) =)= )

)

where

fubs L) = -3 K (x=x), Ka(x) = [H]™ K (H ),

for some kernel K : R? — R and some sequence H, of diagonal, positive definite d x d
(bandwidth) matrices. By not requiring H,, o< I; our results allow for different bandwidth
sequences for each coordinate of the covariates x € R%. (We thank the Associate Editor for
encouraging us relax the restriction H,, o I; imposed in an earlier version of the paper.)

As defined, 0, = 9n(Hn) depends on the user-chosen objects K and H,,, but because our
main interest is in the sensitivity of the properties of 0, with respect to the bandwidth matrix
H,,, we suppress the dependence of 8,, on K in the notation (and make the dependence on
H,, explicit).

The following assumption about the kernel K will be assumed to hold. [In Assumption
2(c), and elsewhere in the paper, we use the notational convention that if 1 = (I3,1s,--- ,l4)" €

: I
Z4 and if u = (uy, u, - -+ ,ug)’ € R then u' denotes ul'uf? - - - ulf']

Assumption 2. (a) K is even, bounded and twice differentiable, and its first two derivatives

are bounded.

(b) Sz K (u)||(1 + |[u][?)du < oo, where K(u) = 0K (u)/du.
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(c) For some Px > 2, [o. |[K(w)|(1+ [[u]|”*™)du < oo and for 1 = (Iy,--- ,1;) € Z,

1 iflh=--=10=0
/ulK(u)du:
R4

0 f0<h+---+1;<Px

(d) [ K(u)du < oo, where K (u) = SUD|jp|>u [|[O(K (1), K(r))/or].

With the possible exception of Assumption 2(d), the restrictions imposed on the kernel
are fairly standard. Assumption 2(d) is inspired by Hansen (2008) and holds if K has
bounded support or if K is a Gaussian density-based higher-order kernel.

If Assumptions 1 and 2 hold (with Py and Pk large enough) it is easy to give condi-
tions on the bandwidth vector H,, under which 8, is asymptotically linear with influence
function ¥ (-). For instance, proceeding as in Newey (1994a, 1994b) it can be shown that if

Assumptions 1 and 2 hold and if

PAnax(H2F) =0, P = min (Py, Py) 2)
and )
4
then
0,(H,) 0 = 1 Y up(a) 0, (n17). )
i=1

where in conditions (3) and (2), and elsewhere in the paper, Apin(+) and Apax(+) denote the
smallest and largest eigenvalue, respectively, of the argument. Moreover, under the same

conditions the variance ¥ is consistently estimable, as we discuss in more detail in Section

3.4.
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The lower bound on (the diagonal elements of) H,, implied by condition (3) helps ensure
that the estimation error of the nonparametric estimator fn is op(n_l/ 1) in an appropriate
(Sobolev) norm, which in turn is a high-level assumption featuring prominently in Newey’s
(1994a) work on asymptotic normality of semiparametric m-estimators and in more recent
refinements thereof (see, e.g., Chen (2007) for references).

This paper explores the consequences of employing bandwidths that are “small” in the
sense that (3) is violated. Three main results will be derived. The first result, given in
Theorem 1 below, gives sufficient conditions for (4) that involve a weaker lower bound on
H, than (3). For d > 3, the weaker lower bound takes the form n|H,|?> — oco. The second
result, given in Theorem 2 below, shows that n|H,,|?> — oo is also necessary for (4) to hold
(if d > 3). More specifically, Theorem 2 finds that if d > 3, then 0., has a non-negligible
bias when n|H,|?> -+ oo. The third result, given in Theorem 3 below, shows that while
n|H,|> — oo is necessary for asymptotic linearity of 6, (when d > 3), a bias-corrected

version of 6, enjoys the property of asymptotic linearity under the weaker condition

n ’Hn’% Amin(Hn)
(logn)3/2

— 00. (5)

In addition, we provide some implementational recommendations. First, in Section 3.3
we derive an “optimal” choice of H,, based on an asymptotic expansion of the (approximate)
mean squared error of 9n(Hn) and used this bandwidth choice to construct a feasible im-
plementation of the bias-corrected version of 0., proposed in Theorem 3. Second, in Section
3.4, Theorem 4 shows that a modest strengthening of Assumption 1(a) is sufficient to obtain
consistency of the conventional plug-in standard-error estimator even when the lower bound

on the bandwidth is given by (5).

Remarks. (i) Most statements involving H,, can be simplified somewhat in the important

special case when H,, oc Iy, as |[H,| = h¢ and A\pin(H?) = Apax(H?) = h2 (for any
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p € R) when H,, = h,I;. For instance, conditions (2) and (5) become nh? — 0 and
nh3Y*! / (logn)*?* = oo, respectively, when H,, = h,I,.

(ii) Imposing (2) and (3), and making assumptions similar to Assumptions 1 and 2,
Newey and McFadden (1994, pp. 2212-2214) establish asymptotic linearity of the

alternative kernel-based estimator
< 1 n 0 . R 1 n A
O = D) G5 ) = S K, (< =)0/ FL).
, <

Their analysis (assumes H,, = h,,I; and) requires S > 4 in order to handle the presence
of g,. The fact that 6,, does not involve Jn enables us to develop distribution theory

for it under the seemingly minimal condition S = 2.

3. THEORETICAL RESULTS

Validity of the stochastic expansion (4) can be established by exhibiting an approximation

A~

0, (say) to 0,, satisfying the following trio of conditions:

~A

6,(H,) -0, =0, (n'?), (6)
0 — B0 = = S ) + o, (07, @)
E[0,] — 0 =o(n ). (8)

Variations of this approach have been used in numerous papers, the typical choice being
to obtain 9: by “linearizing” 0,, with respect to the nonparametric estimator fn and then
establishing (6) by showing in particular that the estimation error of fo is Op (nil/ 4) in a
suitable norm. This general approach is now well-established in semiparametrics; see, e.g.,

Newey and McFadden (1994, Section 8), Ichimura and Todd (2007, Section 7), Chen (2007,
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Section 4), and references therein.

3.1. Asymptotic Linearity: Linear vs. Quadratic Approximations. In the con-

A A
text of averaged derivatives, “linearization” amounts to setting 0, equal to

A N
=1

where

S*(x; —sx—M QAX‘ x) f. (x:
5106 H,) = 50 = 5 | A6 HL) G0 06 H)

is obtained by linearizing §, with respect to f,. With this choice of 9:, conditions (6) — (8)
will hold if Assumptions 1 and 2 are satisfied and if (2) and (3) hold. In particular, (3) serves
as part of what would appear to be the best known sufficient condition for the estimation
error of f, (and its derivative) to be o,(n~/%), a property which in turn is used to establish
(6) when 8" = 8" (H,,).

In an attempt to establish (6) under a bandwidth condition weaker than (3), we set 9:

equal to a “quadratic” approximation to 0, (H,,) given by
1 n
A kK Ak
i=1

where

ol ) = F00] | ol )+ 000 i)

The use of a quadratic approximation to 0, gives rise to a “cubic” remainder in (6),
suggesting that it suffices to require that the estimation error of fn (and its derivative)
be 0,(n"/%). In fact, the proof of the following result shows that the somewhat special

structure of the estimator (i.c., §, is linear in the derivative of f,) can be exploited to
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establish sufficiency of a slightly weaker condition.

Theorem 1. Suppose Assumptions 1 and 2 are satisfied and suppose (2) holds. Then (4)
is true if either of the following conditions is satisfied:

(i) d =1 and n|H,,|> — oo,

(i) d = 2 and n|H,|?/(logn)*? — oo, or

(iii) d > 3 and n|H,|* — .

The proof of Theorem 1 verifies (6) — (8) for 9: — 6 (H,). Because the lower bounds on
H,, imposed in cases (i) through (iii) are weaker than (3) in all cases, working with 8 when
analyzing 6, has the advantage that it enables us to weaken the sufficient conditions for
asymptotic linearity to hold on the part of 0,,. Notably, existence of a bandwidth sequence
satisfying the assumptions of Theorem 1 holds whenever P > d, a weaker requirement than
the restriction P > d 4 2 implied by the conventional conditions (2) — (3). In other words,
Theorem 1 justifies the use of kernels of lower order, and thus requires less smoothness on
the part of the density f, than do analogous results obtained using 9: = 9Z(Hn) Moreover,

. . A kK . . . .
working with 6, enables us to derive necessary conditions for (4) in some cases.

Theorem 2. Suppose Assumptions 1 and 2 are satisfied and suppose (2) and (5) hold.
(a) Small bandwidth bias:

E[6, (H,)] — 6 = By + o(1)] + 0 (n7"/?), (9)
where

By = (—K(Od)Id + /}Rd [K(u)QId + K(u)K(u)u’] du> /Rd g(r)w(r)l(r)dr.
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(b) Asymptotic Linearity: If either (i) d = 1 and n|H,|* — oo or (ii) d > 2, then

A~ Kk

9n(Hn) —E[6, (H,)] = % Z Y(zi) + o, (n—l/z) .

The first part of Theorem 2 is based on an asymptotic expansion of the approximate bias

~ Kk

E[6, (H,)] — 0 and shows that, in general, the condition n|H,,|* — oo is necessary for (8) to
hold when @: = 6. (H,). (We know of no “popular” kernels and/or “plausible” examples
of g(+), w(+), and ¢(-) for which By = 0.) The second part of Theorem 2 verifies (6) — (7) for
9: = @;* (H,,) and can be combined with the first part to yield the result that the sufficient
condition n|H,|* — oo obtained in Theorem 1(iii) is also necessary (in general) when d > 3.

To interpret the matrix By in the (approximate) bias expression (9), it is instructive to

decompose it as By = B + Bj*, where

and

o= ([ Kt gR@w] ) [ g

The term B is a “leave in” bias term arising because each §,(x;; H,,) employs a nonpara-
metric estimator §,, which uses the own observation x;. The other bias term, B*, is a
“nonlinearity” bias term reflecting the fact that §’* involves a nonlinear function of fa. The
magnitude of this nonlinearity bias is n~*|H,,|~'. This magnitude is exactly the magnitude
of the pointwise variance of fn, which is no coincidence because §* involves a term which is
“quadratic” in fn (The approximation §%* also involves a cross-product term in fn and its
derivative which, as shown in the proof of Lemma A-3, gives rise to a bias term of magnitude

n~'H, | when K is even.)

Remarks. (i) The leave-in-bias can be avoided simply by employing a “leave-one-out” es-
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timator of f when forming §,,.

(ii) Merely removing leave-in-bias does not automatically render 0, asymptotically lin-
ear unless n|H,,|*> — oo, however, as the nonlinearity bias of the leave-one-out version
of én is identical to that of 9n itself.

(iii) Manipulating the order of the kernel (Pg) does not eliminate the nonlinearity bias
either, as the magnitude, n~!|H,| ™!, of the bias is invariant with respect to the order

of the kernel.

3.2. Asymptotic Linearity under Non-standard Conditions. The second part of
Theorem 2 suggests that if d > 3, then a bias-corrected version of 0, might be asymptotically
linear even if the condition n|H,|*> — oo is violated. Indeed, the method of generalized
jackknifing can be used to arrive at an estimator 8, (say) whose (approximate) bias is
sufficiently small also when n|H,,|> -+ oo. This approach is based on the following refinement

of Theorem 2(a).

Lemma 1. Suppose the assumptions of Theorem 2 hold. Then, for any ¢ > 0,

o L(P-1)/2]
ot _ 2j 12 -1/2
E[f, ((H,)) ~0 = g | Bo + ; AB;(H,) | +o(n'/?), (10)

where {B;(-) : 1 < j < [(P —1)/2|} are functions depending only on the kernel function and

the data generating process. (The {B;(-)} are defined in Lemma A-3 in the Appendix.)
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Accordingly, let J be a positive integer with J < 1+d/2, let ¢ = (cy, ..., c;) € R/ be

a vector of distinct constants with ¢g = 1, and define

wo(c) 11 1 1
wi(c) 1 ey e ¢’ 0
wy(c) 1 Cf(kl)fd e ci(‘]fl)fd 0

It follows from (10) that if the assumptions of Theorem 2 hold and if J > (d — 2)/8, then
ij(c)E[éz*(chn)] —-0=o0 (n_l/Q) :

As a consequence, we have the following result about the (generalized jackknife) estimator

0,(H,,c) =) w;(c)f,(c;H,).

=0

Theorem 3. Suppose Assumptions 1 and 2 are satisfied and suppose (2) and (5) hold. If
(d—2)/8 <J<1+d/2, then

Gn(Hn, C) —0 = %iz/)(zz) + Op(n—l/Q)
=1

if either (i) d =1 and n|H,,|> — oo or (ii) d > 2.

Theorem 3 gives a simple recipe for constructing an estimator of 8 which is semipara-
metrically efficient under relatively mild restrictions on the rate at which the bandwidth H,,

vanishes.
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Remarks. (i) An alternative, and perhaps more conventional, method of bias correction
would employ (nonparametric) estimators of By and {B;(-)} and subtract an estimator
of E[@Z*(Hn)] — 6 from 6,,(H,,). In our view, generalized jackknifing is attractive from

a practical point of view precisely because there is no need to explicitly (characterize

and) estimate complicated functionals such as By and {B;(-)}.

(ii) Our results demonstrate by example that a more nuanced understanding of the
bias properties of 8, can be achieved by working with a “quadratic” (as opposed to
“linear”) approximation to it. It is conceptually straightforward to go further and
work with a “cubic” approximation (say) to 8,. Doing so would enable a further
relaxation of the bandwidth condition at the expense of a more complicated “bias”
expression, but would not alter the fact that generalized jackknifing could be used to
eliminate also the bias terms that become non-negligible under the relaxed bandwidth
conditions. The simulation evidence presented in Section 4 suggests that eliminating
the biases characterized in (10) suffices for the purposes of rendering the bias of the
estimator negligible relative to its standard deviation in many cases, so for brevity we

omit results based on a “cubic” approximation to 9,,.

3.3. Tuning Parameters Choices. We briefly discuss an implementation approach for
the point estimators 0, (H,) and én(Hn, c), focusing in particular on choosing H,, and c.
First we discuss the choice of bandwidth H,,. With minor additional effort, the derivations
upon which our results are based may be used to obtain an asymptotic expansion of the mean
squared error (MSE) of 8 (H,,), the “quadratic” approximation to 8,(H,,). [In turn, this
approximation can be used to justify a second-order stochastic expansion of the estimator
6,(H,).] It follows from Lemmas A-2 and A-3 in the appendix that the bias and variance
of 8 (H,) satisfy, respectively, V[0, (H,)] ~ n~'S and E[0, (H,,)] — 6 ~ n~'|H,| "By +
S(H,), where S(H,,) = O (Amax(HY)) is the “smoothing” bias of 6 (H,) (see Lemma A-
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3(a) for the exact formula of S()). In these approximations only leading terms have been
retained on the right hand side, and the corresponding remainder terms are of smaller order
than the square of the leading term(s) in the bias expansion. As a consequence, choosing
the bandwidth H,, in an attempt to make (approximate) MSE small amounts to selecting
a value of H,, for which the outer product of the leading terms of E[@) (H,,)] — 6 is small:
ming, AMSE[@ (H,,)], where

AMSE[6 (H,)] = (n|lf€([)n| + S(Hn)) (n|lf{°n| + S(Hn))/. (11)

Unfortunately, this problem does not have a closed-form solution in general, but may be
easily solved numerically.

If the same bandwidth A, is used for each coordinate, then H,, = h,I; and the approxi-
mate bias expression becomes n~1h, By + hl’S(1;). Minimizing the asymptotic order of this
expression requires h, o< n~YF+d) g rate of decay that is permitted by our main results.
(Bandwidth sequences of this type violate the conventional condition (3) unless P is large
enough.) For example, when the object of main interest is a linear combination of the form
a'f (for some a € RY), and a’By # 0 and a'S(I,) # 0, then AMSE[a’8, (h,1,)] is minimized

by setting

|a’Bo| 1> Ptd if Sgn(a/Bo) # sgn(a/S(Id»

<% la/Bo| ;) Prd if sgn(a’By) = sgn(a’S(1,))

Implementation of the “optimal” bandwidth choice(s) based on minimizing AMSE[@Z* (H,)]
(or some variant thereof) requires knowledge or estimation of the constants underlying B,
and S(I,,). A natural approach is to estimate these constants nonparametrically, using some
preliminary choices of tuning parameters to construct the corresponding nonparametric esti-

mators. This approach is standard and readily applicable, but requires constructing several
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(preliminary) nonparametric estimators.

A simpler alternative is to construct a Silverman-style rule-of-thumb (ROT) bandwidth
estimator of H,,. We derive three ROT bandwidth choices under the following assump-
tions: (1) K(u) = [], k(u;) and P even, (i) f(x) = [[, ¢(x;/0,)/0; with é(z) the
standard Gaussian density, (iii) g(x) = x’8, and (iv) w(x) = f(x). The supplemental ap-
pendix includes all the derivations, and a few additional technical assumptions not listed
here. Using these assumptions, we find simple expressions for By and S(I;), which de-
pend only on the unknown but easy-to-estimate constants (oq,09,---,04) and 8. We
then employ these expressions to describe ROT bandwidth choices based on the follow-
ing three problems: (i) miny,, AMSE[@’8 (h,L,)], (i) min,, tr(AMSE[@. (h,1,)]), and (iii)
ming, tr(AMSE[@, (H,)]). [We did not characterize the case ming, AMSE[a’@, (H,,)] be-

cause some of the associated constants are zero.| For example, the ROT bandwidth choice

based on AMSE[a’'@. (h,1,)] with a = (1,0,0,--- ,0)" € R? is

(P TIL fh2) ™ i sgn(C) # sen(Cin)

* JR—
hROT—ld,n - )

1
(af T, oL |\Ciz;|| %> Prd if sgn(Cp) = sgn(Csx)

where Cgy, = (—1)3F/221=4"Pr=d/2 [ 4Pk (u)du/T (P/2) and Cg = —k(0)4+1 ([, l{:(u)Qdu)d.

~1/(P+d) " The supplemental

If, in addition, 0 = 0y = - -+ = 04, then we obtain hzor 14, X on
appendix provides details on the ROT bandwidth choices mentioned before. We explore the

performance of all three ROT choices in our simulations in Section 4.

Next, we discuss the choice of ¢, which requires selecting J and the constants ¢y, co, - - - , ¢;.
Constructing “optimal” choices for the tuning parameters of a generalized jackknifing pro-
cedure is a hard problem, which has only been solved in special simple cases (e.g., Schucany

(1988)). Although it is beyond the scope of this paper to derived “optimal” choices, we
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may still offer some heuristic recommendations based on our derivations and our simulation
evidence. First, we recommend to choose J = [(d — 2) /8], which amounts to remove only
the first few leading bias terms characterized in Lemma 1. This recommendation is based on
the observation that increasing J is likely to increase the variability of the resulting jackknife
estimator 92* (H,,), a fact confirmed in our simulation study. Second, having chosen J, a sim-
ple implementation approach to choose the constants ¢y, ¢, - -+ , ¢; is to construct an evenly-
spaced grid starting from the value selected for H,,. Because our results offer robustness prop-
erties for “small” bandwidths we recommend toselect c; < cj_1 < - << <c=1.1In
our simulations, for instance, 5% reductions in bandwidth (i.e., co = 1, ¢; = 0.95, ¢5 = 0.90,

etc.) led to generalized jackknife estimators that performed well in all the designs considered.

3.4. Standard Errors. The emphasis so far has been on demonstrating approximate
normality of 9n(Hn) even when the classical conditions imposed in the literature are not
satisfied. For inference purposes it is important to also have a consistent standard-error

estimator. The purpose of the following result is to give conditions under which

. . 1 = - 5 )
Y, =3%,.(H,) = n Z@bn(Z; H,)v,(z H,) —;, %, (12)
i=1
where
- 0 . A . N
P (2 Hy) = w(x) 500 (% Hn) = 0(Ha) + [y — g (3 Ha)] 80 (x; Ha),
) o (x; H,,) . 1 ¢
W(xH,) = ———=, éen(x;H,) = — Ky, (x —x,)y;.
9n( ) 7 H,) ( ) "le H, (X — X;)y;

Theorem 4. Suppose Assumptions 1 and 2 are satisfied and suppose (2) and (5) hold. Then
(12) is true if either (i) S = 2 and n|H,|*A\min(H2)/(logn)? — oo, (ii) d = 1, n|H,|* — oo
and S > 3, or (iii) S >3+ 2/d.
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Part (i) of the theorem shows that even under the (seemingly) minimal moment require-
ment S = 2, consistency of 3, holds under conditions on H,, that are slightly weaker than
the conventional conditions (2) — (3). Perhaps more importantly, parts (ii) and (iii) gives
conditions (on S) for consistency of 3, to hold under the assumptions of Theorem 3.

The proof of Theorem 4 utilizes a (seemingly) novel uniform consistency result kernel
estimators (and their derivatives), given in Appendix B. It does not seem possible to establish
part (i) using existing uniform consistency results for kernel estimators, as we are unaware
of any such results (for objects like g,) that require only S = 2. For instance, assuming
H,, = h,1,, a proof of (12) based on Newey (1994b, Lemma B.1) requires S > 4 — 4/(d + 2)
when the lower bound on the bandwidth is of the form nh2?*2/(logn)? — oco. (When the
lower bound on the bandwidth is of the form (5), Newey (1994b, Lemma B.1) can be applied
ifd>2and S >6—8/(d+2).)

4. NUMERICAL RESULTS
We report the main findings from a simulation study and an empirical illustration employing
the conventional estimator @, (H,) and the generalized jackknife estimator 8,,(H,,c). The

supplemental appendix includes a complete set of results from our simulation study.

4.1. Simulation Setup. The Monte Carlo study is based on a Tobit model y; = ¢;1 {g; > 0}
with §; = x/8 + ¢;, so that 8 = 8 E[w(x)®(x'3)] with ®(-) the standard normal cdf. We
set d =3 and B = (1,1,1)’, and assume that ¢; ~; ;4 N(0,1), 7 =1,2,---  n, are indepen-
dent of the covariates. We report results for three models, which depend on the distribution

assumed on the vector of covariates. Specifically, for i = 1,2,--- ,n, we consider:

Model 1 :  x; ~;;:a N(03, V1), V, =1,
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1 1/4 1/4

Model 2 x; ~;;.q. N(03, V), V, = 1/4 2/3 1/4 |

1/4 1/4 1

(G~ 4)/VB 2/3 1/4
Model 3 : x; ~;ia ) V3 )

N(0s, V) 1/4 1

with z;; independent of (xq;,x3;). Consequently, Model 1 corresponds to independent,
equal variance regressors, Model 2 corresponds to correlated, non-equal variance regressors,
and Model 3 corresponds to asymmetric, partially correlated, non-equal variance regressors.
We investigated many other configurations of data generating processes, and in all cases we
found qualitative similar results to those reported here (and in the supplemental appendix).

As for the choice of weight function, we use

J $J

d 2K
T4
’LU(X;")/, H’) = HeXp [_ % (7‘2'3— 2H)] 1{’1']‘ < Tj}'

The parameter x governs the degree of approximation between w (-) and the rectangular
function, the approximation becoming more precise as k grows. (Being discontinuous, w (-)
violates Assumption 1(c), so strictly speaking our theory does not cover the chosen weight
function.) For specificity, we set k = 2. When the covariates are jointly standard normal
(Model 1), the trimming parameter 7; = 7 (7) is given by 7(7) = ®7' (1 — (1 — T —17)/2),
where v is the (symmetric) nominal amount of trimming (i.e., v = 0.15 implies a nominal
trimming of 15% of the observations). Thus, for Model 1 we set 7; = 7 () with v = 0.15,
while for the other models we chose (71, 72, 73)" so that approximately 15% of the observations

were trimmed.
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We construct the estimators using a Gaussian density-based multiplicative kernel with
P = 4. (Note that since d = 3, choice of P = 4 not would not be available under the
conventional conditions (2) — (3).) The sample size is set to n = 700 for each replication,

and the number of simulations is set to 5, 000.

4.2. Simulation Results. We investigate the performance of the estimators 9n(Hn)
and én(Hn, c) for a variety of bandwidths choices, assuming both a common bandwidth
(H,, = h,I3) as well as different bandwidths (H,, = diag(hy,, k3 n, hs,)). For each case, we
consider a grid of fixed (infeasible) bandwidths and the three ROT (data-driven, feasible)
bandwidth choices introduced in Section 3.3.

The grid of bandwidth choices was constructed as follows. First, we computed the
MSE “optimal” bandwidth choice for each model in each case, H, = h,I3 and H, =
diag(h1,n, h3,n, h3n), which we denote (abusing notation) Hy, = h; I3 or Hy, = diag(hj ., h5 ., h3 ),
respectively. Second, we constructed a grid of bandwidths by setting H,, = ¢ - H} with
¥ € {.50,.55,.60,---,1.45,1.50}. Thus, ¥ = 1 corresponds to using the infeasible, MSE
optimal bandwidth choice for each of the 6 cases considered (3 models for either common
bandwidth or different bandwidths).

The ROT bandwidth choices were constructed as follows. First, we compute the scale of
each covariate by §; = min {S;, IQR;/1.349} with 532 and /QR; denoting, respectively, the
sample variance and interquartile range of the j-th covariate (j = 1,2, 3). We also estimated
3 by least-squares when needed. We report results for three feasible bandwidth choices: ROT
bandwidth choice for (i) the first element of the AMSE (ROT-1d) with common bandwidth,
(ii) the trace of the AMSE (ROT-tr) with common bandwidth, and (iii) the trace of the
AMSE (ROT-tr) with different bandwidths. Abusing notation, we let H, denote any of
these ROT bandwidth estimates.

The estimators 6, (H,) and 3,,(H,,) are computed for each point in the bandwidths grid
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and for the estimated ROT bandwidths. The generalized jackknife estimator 8,,(H,, c) was
constructed as follows. First, for the bandwidths on the grid, én(Hn, c) was computed by
employing the adjacent bandwidth(s) to H,, on the grid, depending on the specific implemen-
tation (discussed next). [This approach implies that the actual constants ¢ = (¢g, ¢1, -+, ¢y)’
are slightly different along the grid.] Second, for the ROT estimated bandwidths, we con-
structed a five-point grid J - H, with 9 € {.90,.95,1,1.05,1.10}, and then implemented the
estimator 8,,(H,,, ¢) at ¥ = 1 according to the specific implementation (discussed next).

As for the actual implementation of 4‘97~L(Hm c), for a given H,,, we consider five distinct
approaches depending on the choice of ¢, € {0,1,2} and ¢y € {0,1,2}. Specifically, ¢,
and cy determine, respectively, how many grid points below and above the specific value
H,, are used to construct 8,(H,,c). (Hence J = ¢z, 4+ ¢p.) In this section we only report
results for ¢;, = 1 and ¢y = 0, but in the supplemental appendix we include four other cases:
(cr,cv) = (2,0), (cp,cv) = (0,1), (cp,cr) = (1,1) and (¢, cy) = (0, 2).

Once the estimators 9n(Hn) and én(Hn, c) are constructed for each bandwidth value H,
(either on the grid or estimated using the ROT procedures), we computed MSE, squared-bias,
variance, absolute-bias/square-root-variance, and coverage rates of 95% confidence intervals
for each simulation design (Models 1-3, with either common or different bandwidths). In
this section, for brevity and to facilitate the comparison between the two estimators, we only
report two standardized measures: (i) MSE relative to MSE when employing the optimal
common bandwidth, and (ii) absolute-bias divided by square-root of variance. Thus, we
only include 3 short tables in the paper, but the supplemental appendix includes all the
results (30 long tables).

The results are presented in Tables 1-3 for Models 1-3, respectively. In all cases we
found that the generalized jackknife estimator én(Hn, c) leads to noticeable reductions in
standardized bias, especially for “small” bandwidths (i.e., for smaller bandwidths than the

MSE-optimal ones). This finding is consistent with our theory. In addition, we also found
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that the MSE of 8,,(H,,, c) was also reduced in most cases relative to the MSE of 8,,(H,,),
suggesting that in our simulations employing generalized jackknifing does not increase the
variability of the resulting estimator much (relative to the gains in bias-reduction). These
findings highlight the potential sensitivity of the conventional estimator to perturbations
of the bandwidth choice, which in the case of the weighted average derivatives leads to a
non-trivial bias for “small” bandwidths, and therefore a need for bias correction.

Our simulations also suggest that the rule-of-thumb bandwidth selectors perform rel-
atively well, providing a simple and easy-to-implement bandwidth choice. Although it is
important to also consider consistent nonparametric bandwidth choices, our rule-of-thumbs
seem to provide a natural and simple first bandwidth choice to employ.

We also explored the quality of the normal approximation to the distribution of the t-
statistic (we do not report result here to conserve space). We found that the distribution
of both 9n(Hn) and én(Hn, c) were close to Gaussian, although the classical estimator ex-
hibited a non-trivial bias. In contrast, the generalized estimator 8, (H,,, c) was found to be
approximately centered correctly, especially for “small” bandwidths.

Finally, we also explored the empirical coverage rates of the conventional and bias-
corrected t-statistics. We found that neither the conventional nor the jackknife estimator
succeeded in achieving empirical coverage rates near the nominal rate. This finding, to-
gether with the results reported above, suggests that the lack of good empirical coverage
of the associated confidence intervals for the generalized jackknife procedure is due to the
poor performance of the classical variance estimator commonly employed in the literature.
Indeed, in the case of the conventional procedure, we found that both the bias properties and
the performance of this variance estimator seem to be at fault for the disappointing empir-
ical coverage rates found in the simulations. Further investigation into alternative variance

estimation procedures, although beyond the scope of this paper, is underway.
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4.3. Empirical Illustration. To complement the simulation evidence reported above,
we undertake a small empirical illustration that shows how our methods perform using
real data. We focus on estimating the average marginal return to ability, employing a
subset of the dataset constructed by Lang and Manove (2011). [The dataset is available at
http://www.aeaweb.org/articles.php?doi=10.1257/aer.101.4.1467.].

The data comes from the National Longitudinal Survey of Youth (NLSY79), which fol-
lows individuals born in 1957-1964. This (panel) data set provides not only demographic,
economic and educational information, but also includes a well-known proxy for ability (be-
yond schooling and work experience) for the individuals in the sample. Specifically, this data
includes the results from the Armed Forces Qualification Test (AFQT) for those individuals
who took the test in 1980, which provides a close-to-continuous measure that may be under-
stood as a proxy for their intrinsic “ability”. This data has been used repeatedly to either
control for or estimate the effects of “ability” in empirical studies in economics and related
fields. For more details on this data and a discussion on the related literature see Lang and
Manove (2011) and references therein.

In our empirical illustration we focus on estimating the (weighted) average marginal
effect of an increase in AFQT on earnings while controlling for two other observed charac-
teristics. In particular, we let y; = log(W AGE;) where W AGE; denotes the mean adjusted
hourly wages in 1996-2000 for individual i, and x; = (AFQT;, SCHSZ;, TEACHW;)" where
AFQT; denotes the (adjusted) standardized AFQT score for individual i, SCHSZ; denotes
the school size that individual ¢ attended to, and TEAC HW; denotes the average teacher

salary in the school that individual ¢ attended to. Our parameter of interest is

0

b =B )5 araT

g(AFQT;, SCHSZ;, TEACHW;)| ,

where ¢ (x;) = Bly;|x;]. To conduct the estimation, we restrict our sample to the subset
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Figure 1: Smoothing splines estimates for univariate conditional expectations.

of 15-19 year-old white males with 12-16 years of schooling in 1979. The final sample size
is n = 802 individuals. Figure 1 plots nonparametric smoothing splines estimates of the
univariate conditional expectations for each of the three covariates included in our sample,
computed using the command gam() in R (http://www.r-project.org).

Figure 1 exhibits a non-linear relationship between wages and ability, suggesting that
different levels of ability will have differential effects on earnings for the individuals in this
sample. The average derivative #; provides an overall (weighted, averaged) marginal-effect
measure for these individuals, after controlling for the other covariates.

Table 4 presents the empirical estimates of both the classical estimator 8,,(H,,) and the
generalized jackknife estimator 6, (H,,, c). We employ the same weighting function intro-
duced in the simulation section. To implement these estimators, we centered and scaled the
covariates SCHSZ; and TEACHW, (without loss of generality), and then selected a trim-
ming parameter for each dimension of x; such that at least 1% of the sample was trimmed
along each dimension. Based on our simulations, we selected ¢ = (1,0.95) to implement the
generalized jackknife estimator. As for the bandwidth choice, we report results for all three

ROT alternatives discussed previously.
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Table 4: Average Marginal Effect of Ability on Earnings (c = (1,0.95)).

Coef. Std. Err.
6,.(H,) 6,(H,,c) 3, (H,)
Common Bandwidth: ROT-1d
H, =048 13 0.536 0.484 0.023
H,=09-048" 13 0.560 0.432 0.024
Common Bandwidth: ROT-tr
H, =0.483 13 0.535 0.487 0.023
H, =09-0483 13 0.559 0.433 0.024
Different Bandwidths: ROT-tr
H, = diag(0.48,0.48,0.48) 0.536 0.484 0.023
H, = 0.9 - diag(0.48,0.48,0.48) 0.560 0.432 0.024

Our empirical results suggest that in this illustration bias may be important. Indeed,
while the point estimator én(Hn) gives an average marginal return to ability of about 0.535,
the generalized jackknife estimator én(Hn7 c) gives a point estimate of about 0.485. Inter-
estingly, the 95% confidence interval based on 0, (H,,, ¢) does not include the point estimate
6,(H,). (As shown in the table, a 10% undersmoothing leads to even larger differences
between the conventional and the generalized jackknife estimators.) As a consequence, this
empirical illustration provides a simple empirical example where our procedure leads to a

quantitatively different estimate than the conventional one.

5. CONCLUSION
This paper has revisited the large-sample properties of a kernel-based weighted average deriv-
ative estimator. In important respects this estimator can be viewed as a representative mem-
ber of the much larger class of (kernel-based) semiparametric m-estimators. In particular, the
“nonlinearity bias” highlighted by our development of asymptotics with smaller-than-usual
bandwidths (i.e., larger-than-usual undersmoothing) is a generic feature of nonlinear func-
tionals of nonparametric estimators and is likely to be quantitatively important in samples

of moderate size also for estimators other than the one studied in this paper.
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To remove this “nonlinearity bias”, we have employed the method of generalized jackknif-
ing. Being “semi-automatic” in the sense that it requires knowledge only of the magnitudes
of the terms in an asymptotic expansion of the “nonlinearity bias”, that same method should
be easily applicable whenever the nonparametric ingredient is a kernel estimator, as the vari-
ance properties of kernel estimators are very well understood. Partly because certain popu-
lar nonparametric estimators (notably series estimators) have variance properties that seem
harder to analyze than those of kernel estimators, it would be useful to know if the validity
of certain “fully automatic” bias correction methods and/or distributional approximations

can be established under assumptions similar to those entertained in this paper.

6. APPENDIX A: PROOFS
This appendix gives the proofs of Theorems 1-3. We first state four lemmas, the proofs of
which are available in the supplemental appendix. We then employ these lemmas, together
with the results for kernel-based estimators outlined in Appendix B, to prove the main

theorems.

6.1. Useful lemmas. The first lemma gives sufficient conditions for (6) in terms of
the magnitudes of Ag,(H,) = supyepy [ fo(xH,) — f(x)] and Ay, (H,) = max{Aq,(H,),
SuPsewy 110 (3 Ha) /0% — O f (x) /0x]|}.

Lemma A-1. Suppose Assumption 1 is satisfied and suppose A, = 0,(1). Then (6) is
true if either (i) é: =0 (H,) and Ao (H,)%A, . (H,) = 0,(n~Y?) or (ii) é: =6 (H,) and
AO,n(Hn>A1,n(Hn) = Op(nil/z).

The next result gives sufficient conditions for (7).

Lemma A-2. Suppose Assumptions 1 and 2 are satisfied and suppose Amax(H,) — 0 and
n|H, [Amin(H2) — oo. Then (7) is true for @: =6 (H,) and @: =6 (H,).
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9.

Lemma 1 is a corollary of the following result, which can be used to evaluate E[én

To state the result succinctly, let f(x) = 8f(x)/dx, let diag(h,) = H,, (i.e., let h, € R,
collect the diagonal elements of H,), and for any multi-index 1 = (I3, 15, ,l3)’ € Z% and

any sufficiently smooth function f(-) (not necessarily equal to the density of x), let

ohtlat+la

l1 l2 la
O0xy'0zy - - - Oxy

I! :llilglld', Glf(x) = f(l’l,l'g,"' ,.Qid).

Also, for any k € Z, define Z4 (k) = {(ly,- -+ ,la) € ZL : ly + - + 14 = k}.

Lemma A-3. Suppose Assumptions 1 and 2 are satisfied and suppose Amax(H,) — 0.
(a) Bias of 8, (H,,):

~ %

E[0,(H,)] — 0 = n~"[H,|7'B; + S(H,) + 0 (Auax(HY)) ,

where
1
SH,) = (- Y % { / w(r)g(r) (9'F(x) + ()8 (x)) dr] { / ulK(u)du] .
ezt (p) R Re

(b) Nonlinearity bias:

y (P-1)/2)
El6, (H,) - 6,(H,)] =n"'[H,| By + Z B;(H,)| + O(n™?[H,|7* + /\maX(Hip)):

=1

where

BH) = Y SBB) - Y TBMH B,

1€74 (25) 1€74 (2j+1)
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with

Br(l) = /]R wK(WK(u)de,  B(1) = - /R dg(r)‘;((:))al f(r)dr.

The last lemma collects basic results about kernels-based integrals. Let KH(X) = 0Kgu(x)/0x.

Lemma A-4. If Assumptions 1 and 2 are satisfied and if Ayax(H,) — 0, then

(a) Uniformly in x € W,

W) = [ K, (x =0 (s = ()
= (-1)” Z %@f(x) (/Rd ulK(u)du> + 0 (Amax(HY))

1€z (P)

= 0 ()\max(Hﬁ)) )

b(x;H,) = » K, (x — 1) f(r)dr — 0f(x)/0x
1 .
= (-7 ) %alf(x) ( / dulK(u)du) + 0 (Amax(HL))
1€Z4 (P) R

= 0 ()\max(Hg)) .

(b) For any function F with B[F(z)?] < oo,

i. B[F(z1)*Ku, (x1 — x2)*] = O(|H,|™),

ii. BIF(21)?| K, (x1 — %2)[%] = O(Hu| ™ Amax (H, ).

iii. B[F(z1)2 Ky, (x1 — %2)2Kg, (x1 — x3)%] = O(|H,,|~2),

iv. B[F(21)*Ka, (x1 — %2)?| Kn, (x1 — x3)[|2] = O(|Ho| "2 Amax(H;?)).
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6.2. Proof of Theorems 1-3. Under the assumptions of the theorems, (6)—(7) hold for
é: =6 (H,). Validity of (7) follows from Lemma A-2, while (6) follows from Lemma A-1

because it can be shown that

;o B logn
Sup | fa (3 Hy) — f(X)) =0Op <Amax(Hff) + n\Hnl) (A-1)
and
d ., 0 B logn
o [ e ) = s | <0 <Amax<H5 )+ J nyHnummmz)) -

Specifically, (A-1) holds because sup, o,y [B[fn(x; Hy,))] = £(%X)| = O(Amax(HE)) by Lemma
A-4 (a) and because supycyy | fn(x; Hy) — B[fo(x; H,)| = O,(VIogn/+/n|H,|) by Lemma
B-1 with (Y, X) = (1,x), k = K, and &,, = W. Similarly, (A-2) can be shown by applying
Lemma A-4 (a) and Lemma B-1 (with x(u) equal to an element of H,0K (u)/0u).

Theorem 1 is a special case of Theorem 2. To complete the proof of Theorem 2, use
Lemma A-3 to verify (8). Similarly, the proof of Theorem 3 can be completed by using
Lemma A-3 to verify (10). |

6.3. Proof of Theorem 4. Tt suffices to show that 37 ||, (z;; H,,) —4(2)||> = 0,(n).
To do so, it suffices to show that: (i) 8,(H,) — 8 = o, (1), (ii) sup,oy ||8.(x; H,) —
SGOI| = 0p(1), (i) supery 195 Ha) = g()[| = 0,(1), and (iv) supscry 93 (x; H,) /0 —
09(x)/0x]| = 0,(1).

It follows from Theorem 2 and its proof that (i) and (ii) hold. Also, Lemma B-1 (with
(V,X") = (y,x), s = 5, k = K and &, = W) and routine arguments can be used to
show that if Assumptions 1 and 2 are satisfied and if (2) and (5) hold, then (iii) will be
implied by n'~*/*|H,|/logn — oc. Similarly, (iv) can be established under the condition

'~V H,, | Amin (H,)/logn — oo. The latter holds if condition (i), (i), or (iii) in the state-
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ment of the theorem is satisfied. [ |

7. ApPPENDIX B: UNIFORM CONVERGENCE RATES FOR KERNEL ESTIMATORS
This Appendix derives uniform convergence rates for kernel estimators. Lemma B-1 is used
in the proofs of the main results of this paper. Because this result may be of independent
interest, it is stated at a (slightly) greater level of generality than needed in the proofs of
the other results in this paper.

Suppose (Y;, X%), i = 1,...,n, are i.i.d. copies of (Y, X'), where X € R? is continuous

with density fx (-). Consider the nonparametric estimator
N 1 — -1
V,(x)=— - X,)Y;, =|H H 'x),
(x) =~ ;21 ra, (x = X;)Y), ke (x) = [H] 7 £(H %)

where H,, is a sequence of diagonal, positive definite d x d bandwidth matrices and x : R — R
is a kernel-like function. To obtain uniform convergence rates for ¥,,, we make the following

assumptions.
Assumption B1. For some s > 2, E[|Y|*] 4+ supycra E[|Y]*|X = x] fx(x) < 00.

Assumption B2. (a) sup,cgs [£(u)] + [pa [£(1)|du < oco.
(b) x admits a d,, > 0 and a function £* : R — Ry with sup,ecpa £* (1) + [, £*(u)du <

00, such that |x(u) — k(u*)| < |[lu — u*||x*(u*) whenever ||lu — u*|| < d,.

Remark. Assumption B2(b) is adapted from Hansen (2008). It holds if « is differentiable

with 7 (0) 4 [; F(u)du < oo, where R(u) = sup, s, [[0k(r)/0r]|.

The first result gives an upper bound on the convergence rate of ¥, on (possibly) ex-
panding sets of the form X, = {x € R?: ||x|| < Cx,}, where Cx, is a positive sequence

satisfying
— log(Cx )
———— <0

lim,,
logn

(B-1)
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Lemma B-1. Suppose Assumptions B1 and B2 are satisfied and suppose (B-1) holds. If

Amax(H,) — 0 and n*=Y*|H,|/logn — oo, then

- logn logn
v,(x)—Vv, =0 , = 1, \| =2 (
xsél}()n (X) (X) P (pn) Pn, 7’L|Hn| INax { n1—2/s|Hn| }

where U, (x) = B[, (x)].

Remark. The natural “s = 00” analog of Lemma B-1 holds if Y is bounded (e.g., if Y =1,
as in the case of density estimation). In other words, the lower bound n|H,,|/logn — oo

suffices and p,, can be set equal to y/logn/+/n|H,| when Y is bounded.

Lemma B-1 generalizes Newey (1994b, Lemma B.1) in three respects. First, we obtain
results allowing for matrix bandwidths as opposed to a scalar, common bandwidth for all
the covariates. Second, by borrowing ideas from Hansen (2008) we are able to accommodate
kernels with unbounded support and to establish uniform convergence over certain types
of expanding sets. Finally, and more importantly (for our purposes at least), Lemma B-1
relaxes the condition n'~%/*|H,,|/logn — oo imposed by Newey (1994b, Lemma B.1), when
assuming H,, = h,I;. In typical applications of Newey (1994b, Lemma B.1), a condition
like s > 4 is imposed in order to ensure that n'=2/*h¢/logn — oo is implied by “natural”
conditions on h,, such as nh?!/(logn)? — oo (e.g., Newey (1994b, Theorem 4.2), Newey
and McFadden (1994, Theorem 8.11)). In contrast, only s > 2 is required for the condi-
tion imposed in Lemma B-1 to be implied by nh2?/(logn)? — oo (or its matrix analogue
Al L2/ (log n)? — o).

If n'=%/*|H,,|/logn — 0, then the uniform rate obtained in Lemma B-1 falls short of

the “usual” rate \/n|H,|/logn. This is potentially problematic if Lemma B-1 is used to

4 6

establish uniform convergence with a certain rate (e.g., n'/* or n'/%, as in proofs of results

such as (6)). On the other hand, the slower rate of convergence is of no concern when any
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rate of convergence will do (as in proofs of consistency results such as (12)).

Because of their ability to control bias in some cases, leave one out estimators of the form

n

Y km,(x—X)Y;

=1,

. 1
\I]nﬂ' (X) =

n—1
are sometimes of interest. The next result extends Lemma B-1 to such estimators.

Lemma B-2. Suppose Assumptions B1 and B2 are satisfied and suppose (B-1) holds. If

Amax (Hp) — 0 and n*~/*|H,|/logn — oo, then

max sup |U,;(x) — U,5(x)| = 0, (p,),  Uni(x) = B[, (x)].

1<i<n xeX,

Another corollary of Lemma B-1 is the following result, which can be useful when uniform

convergence on the support of the empirical distribution of X suffices.

Lemma B-3. Suppose E[||X||**] < oo for some sx > 0 and suppose Assumptions B1 and

B2 are satisfied. If Apax(H,,) — 0 and n'~Y/*|H,|/logn — oo, then

max |0 (Xy) — 0(X3)| = Oy ()
and
max (W i(Xq) = Uni(Xs)| = Op (pn) -

Remark. Lemmas B-2 and B-3 are not used elsewhere in the paper. We have included

them because they may be of independent interest.
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