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Abstract

We study the connections between determinacy of rational expec-
tations equilibrium, and expectational stability or learnability of that
equilibrium, in a relatively general New Keynesian model. Adop-
tion of policies that induce both determinacy and learnability of equi-
librium has been considered fundamental to successful policy in the
literature. We ask what types of economic assumptions drive differ-
ences in the necessary and sufficient conditions for the two criteria.
Our framework is sufficiently flexible to encompass lags in informa-
tion, alternative pricing assumptions, a cost channel for monetary
policy, and either Euler equation or infinite horizon approaches to
learning. We are able to isolate conditions under which determinacy
does and does not imply learnability, and also conditions under which
long horizon forecasts make a clear difference to conclusions about ex-
pectational stability. The sharpest result is that informational delays
break equivalence connections between determinacy and learnability.
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1 Introduction

1.1 Overview

In the recent literature on monetary economics and optimal monetary pol-

icy, there has been considerable interest in the promotion of policies that

can deliver both a determinate, or unique, rational expectations equilib-

rium, and also learnability, or stability, of that equilibrium. Policies that

generate equilibria which are both unique and stable are viewed as prefer-

able to those that might allow either a multiplicity of equilibria, or insta-

bility, or both. The determinacy criterion is defined according to Blanchard

and Kahn (1980), and the learnability, or expectational stability,1 criterion

is defined according to Evans and Honkapohja (2001).

In some parts of this literature, there appears to be a tight connection

between determinacy and learnability. The discussion in Woodford (2003a,

2003b) as well as in Bullard and Mitra (2002) highlights cases where the

conditions for determinacy of equilibrium are the same as the conditions

for expectational stability. Woodford (2003a, p. 1180) states, “Thus both

criteria ... amount in this case to a property of the eigenvalues of [a matrix]

A, and the conditions required for satisfaction of both criteria are related,

though not identical.” McCallum (2007a) presents results suggesting that,

for a large class of models of interest for macroeconomists, expressed as

linear systems of expectational difference equations, determinacy implies

E-stability.2 Yet, an examination of the “general linear model” case in Evans

and Honkapohja (2001) makes it plain that determinacy does not imply

learnability. And, all of the above authors stress that there is no general

presumption that determinacy implies learnability.3 Still, there seems to

1We use the terms expectational stability, E-stability, and learnability interchangably in this
paper. The connections between the expectational stability condition and local conver-
gence of systems under real time recursive learning are discussed extensively in Evans and
Honkapohja (2001).

2Recently, McCallum (2007b) has argued that “well-formulated” models, which meet
a certain technical condition, the learnable rational expectations equilibrium is always
unique, even when the rational expectations equilibrium itself may not be unique.

3Bullard and Mitra (2002) in particular provide one example where the conditions re-

1



be a close relationship between the criteria in many applications, and this

is a puzzle we would like to help resolve. In particular, we would like to

better understand the nature of the relationship between determinacy and

learnability in economic terms.

Meanwhile, Preston (2005, 2006) and Woodford (2003b) have suggested

that introducing learning into certain microfounded environments creates

situations where long-horizon forecasts can matter for learning dynamics.4

In the infinite horizon approach to learning,5 the fundamental equations de-

scribing the evolution of the state of the economy are altered under learn-

ing relative to the case under rational expectations. Appropriately taking

those changes in the dynamic system into account can, but does not al-

ways, change the conclusions one would draw concerning the learnability

of a particular rational expectations equilibrium. For the baseline Bullard

and Mitra (2002) findings, the infinite horizon approach yields the same

conclusions, and Preston (2005, p. 86) notes, “That these results concur

with the results [under the infinite horizon approach] is not necessarily

to be expected.” Indeed, in subsequent work, such as Preston (2006), the

learnability conditions differ under the two approaches. We would like

to understand more about the economics of the relationship between de-

terminacy and learnability in the infinite horizon learning environment as

well.

The theme of this paper, then, is to try to understand the sense in which

meaningful economic additions to a standard and widely-studied macro-

economic model might cause learnability and determinacy to be governed

by differing conditions. We allow for both Euler equation and infinite hori-

zon approaches to learning. It is already known that determinacy does not

imply E-stability in general; what is not well understood is the nature of

economic models in which the two sets of conditions diverge. To under-

stand the economic aspects we need to perform our analysis inside of a

quired for the two criteria do not coincide.
4Also see Marcet and Sargent (1989).
5Contrasting with the one-step-ahead (a.k.a, Euler equation) approach to learning standard

in Evans and Honkapohja (2001).
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known model framework, which is why we commit to using a fairly gen-

eral version of the New Keynesian (NK) macroeconomic model. This also

facilitates our inclusion of the infinite horizon approach, which is inher-

ently an issue that depends on the microfoundations.

1.2 What we do

We study a generalized NK macroeconomic model which includes certain

features which will help us delineate between the conditions for determi-

nacy and those for learnability in a variety of circumstances. We allow for

informational delays, as explained below, and also we allow for the cost

channel of monetary policy as analyzed recently by Ravenna and Walsh

(2006). Another feature of the model is that we nest two possible pricing

models, which depend on the information available to producers when set-

ting their prices. With the model environment in place, we turn to calcu-

lating determinacy and expectational stability conditions. We characterize

situations in which determinacy implies E-stability and situations in which

it does not, under both Euler equation and infinite horizon learning.

1.3 Main findings

We first present two propositions. Proposition 1 isolates conditions under

which the Euler equation and infinite horizon approaches to learning yield

the same expectational stability conditions. Proposition 2 provides condi-

tions under which determinacy implies expectational stability. Armed with

these two results, we proceed to illustrate four example economies, each of

which are special cases of the general framework, and each of which illus-

trates a different aspect of the determinacy-learnability nexus.

Proposition 3 restricts attention to one specific pricing assumption (which

includes some elements of rational expectations) and assumes that the par-

ticipants in the economy know the monetary policy rule in place. In this

baseline case, the expectational stability conditions for the Euler equation

approach and the infinite horizon approach are identical, independently
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of the monetary policy rule and independently of any information lags. If

in addition there are no information delays, then determinacy implies E-

stability. This is an important result, as it means that in a very interesting

baseline class of models, determinacy implies E-stability and the nature of

the learning analysis does not matter for E-stability conditions.

Proposition 4 constructs a case in which differences between Euler equa-

tion learning and infinite horizon learning become apparent. To obtain this

case, we consider a model with no cost channel and no informational lags.

In this environment, if the policy rule includes expectations of variables for

the next period, then determinacy implies expectational stability in the case

of Euler equation learning, but not in the case of infinite horizon learning.

This is the case is considered in Preston (2007). This class of models, again

certainly quite plausible in the context of current research, provides one

clear cut case where the nature of the learning analysis will make a differ-

ence for the conclusions one draws from the E-stability analysis of unique

equilibria. The key aspect of this example is that the agents must indepen-

dently forecast the interest rate.

In Proposition 5, we do not require the participants in the economy to

independently forecast the interest rate—instead, they know the interest

rate rule in place. We assume that the cost channel is operative, that there

are no informational delays, that the policy rule is forward-looking, and in

addition that the policymaker is a strict inflation targeter. In this situation

determinacy again implies expectational stability, regardless of the whether

one adopts the Euler equation approach or the infinite horizon approach to

the analysis of learning. In the indeterminate region, however, there can

still be differences between the two approaches to learning. Under certain

conditions made explicit in the statement of the proposition, the indeter-

minate (MSV) equilibria are always expectationally unstable under Euler

equation learning but may be expectationally stable under infinite horizon

learning. Hence, the E-stability and determinacy criteria select different

classes of equilibria.

So far, we have not said too much about the role of informational de-
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lays. In the second class of models analyzed in Bullard and Mitra (2002),

determinacy did not imply E-stability, and this case involved a certain in-

formation lag. Propositions 6 and 7 establish that if the policy rule calls

for the monetary authority to react to contemporaneous information, then

determinacy implies E-stability when there are no information delays, but

determinacy does not imply E-stability when there are information delays.

Furthermore, Euler and infinite horizon learning yield different stability

conditions. This sharp result suggests that for models that have some type

of informational delay, a wedge will be driven between the determinacy

conditions and the learnability conditions. Since information delays of

some type are probably the most realistic case, this is the most general con-

clusion of the paper.

1.4 Organization

In the next section we develop the New Keynesian model we wish to study,

which is standard but which also encompasses a variety of features that

have been discussed in the literature. We then turn to calculations indicat-

ing when determinacy and learnability conditions will coincide, and when

they will not. We summarize our findings in the concluding section; there

are also two appendices to the paper which contain some of the develop-

ment of the model.

2 Environment

2.1 Informational delays

A key aspect of our approach is that we allow for differing information sets

to be available to agents at the time expectations are formed and decisions

are made as we consider the microfoundations of the model. This means

that date t expectations may be formed either with information available at

date t, or with information available at date t� 1, and that the equations we

derive to represent the equilibrium dynamics will be equally valid in either
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case. To accomplish this, we use the operator Êt�`, where ` 2 f0, 1g , which

we think of as an information lag or a “delay” when ` = 1, and which is

just the standard Êt when ` = 0. The hat indicates that expectations may

not initially be rational.

Many models in macroeconomics assume rational expectations and have

t�dating of the expectations operator, Et, and this has come to be thought

of as the standard case. For many purposes under the rational expectations

assumption it may not be too important, although it is rarely analyzed in

the literature. In an environment with learning, the dating of the expec-

tations operator may be more critical, and Evans and Honkapohja (2001)

have suggested that the t � 1 dating of the expectations operator may be

more natural when learning is explicitly considered. This is because the

general equilibrium has date t quantities and prices being determined at

date t, but the agents are supposed to be forming expectations using the

date t� 1 data in their recursive algorithms. This type of simultaneity is a

constant companion in standard economic theory but does not make very

much sense if we think more explicitly about the microfoundations of how

the expectations are being formed. Even under the rational expectations as-

sumption, the case for information lags has been made. McCallum (1999)

has argued that actual policymakers rarely have contemporaneous infor-

mation available when making decisions, especially concerning variables

like GDP, and that operational interest rate rules would involve a reaction

to readings on endogenous variables at least one period in the past. In

an influential paper, Rotemberg and Woodford (1999) estimated a DSGE

model with rational expectations but dated their expectations operator at

t� 2 to provide a better fit to the data.

2.2 Households

There is a continuum of household that consume, save and supply labor

in a homogeneous labor market. A household i maximizes utility over an
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infinite horizon

Êi
t�`

∞

∑
T=t

βT�t
h
U
�

Ci
T

�
�V

�
hi

T

�i
, (1)

where the parameter β 2 (0, 1) is the discount factor and the period utility

functions U (Ct) and V (ht) have standard properties. For tractability we

assume that in the case of delays, ` = 1, only consumption decisions are prede-
termined. This means that labor supply decisions and saving decisions are

taken with date t information, independently of the value of `. Consump-

tion Ct is given as a composite of all goods produced in the economy,

Ci
t �

�Z 1

0
ci

t (j) dj
� θ

θ�1

(2)

and has an associated price index

Pt �
�Z 1

0
pt (j)

1�θ dj
� 1

1�θ

. (3)

Households hold money that can be used to purchase the consumption

good and can also be deposited at a financial intermediary. The budget

constraint of household i is given by

Mi
t+1 + PtCi

t � Mi
t � Di

t + (1+ it)Di
t +Wthi

t + Pt

Z
φ

f
t (j)dj+ Ptφ

M, (4)

where Mi
t denotes money holdings at the beginning of the period and Dt

denotes the amount on deposit at the financial intermediary, which pays

the gross nominal interest rate (1+ it).6 The variable Wt is the economy-

wide nominal wage determined in a perfectly competitive labor market,

and φt(j) and φM denote real profits from firms and the financial interme-

diary. Each agent i is assumed to have an equal share of each firm j. These

assumptions guarantee that the households income profiles are identical,

even in the case of incomplete markets. The household also faces the cash-

in-advance constraint

PtCi
t � Mi

t +Wthi
t � Dt, (5)

6We assume that money bears no interest.
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which takes this form because households receive their wages at the begin-

ning of the period.

The first order condition for consumption yields

Uc

�
Ci

t

�
= βÊt�`

"
(1+ it)Uc

�
Ci

t+1

�
Πt+1

#
. (6)

Log-linearizing equation (6) and solving backward we obtain

Ĉi
t = Êt�`Ĉi

T + σÊi
t�`

T�1

∑
T=t
(it � πt+1). (7)

Assuming initial net wealth equal to zero, the intertemporal budget con-

straint of the household can be expressed in terms of log-deviations from

the deterministic steady state,

Êi
t�`

∞

∑
T=t

βT�tĈi
T = Êi

t�`

∞

∑
T=t

βT�tŶi
T, (8)

and substituting for Êi
t�`ĈT yields the optimal consumption rule for each

agent i,

Ĉi
t = Êi

t�`

∞

∑
T=t

βT�t
h
(1� β)Ŷi

T � βσ(iT � πT+1)
i

, (9)

where Ŷt denotes real income.7 In an equilibrium with a positive nominal

interest rate, the cash in advance constraint will bind as

PtCi
t = Mi

t +Wthi
t � Dt. (10)

2.3 Firms

2.3.1 Nature of the firms’ problem

Each firm j produces a differentiated good and has market power. They

face a demand for their output given by

YD
t (j) =

�
pt (j)

Pt

��θ

Ct (11)

7Following Preston (2002), for simplicity we assume that each agent forecasts her entire
income and not its single components. More details are available in the Appendix.
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where Ct denotes aggregate consumption. Labor is the only input in the

production function, which is assumed to be linear in order to simplify the

analysis,

Yt(j) = Atht (j) . (12)

The labor market is viewed as economywide and perfectly competitive.

Firms are subject to a cash constraint, which gives rise to a cost channel for

monetary policy.8 They have to anticipate their wage bill to the workers

and therefore have to borrow funds from the financial intermediary in the

amount corresponding to ht (j)Wt.

We study a standard model of nominal pricing rigidities a là Calvo.

Firms maximize their expected profits,9

Êt�`
∞

∑
T=t

αT�tQt,TφT(j), (13)

where Qt,T is the stochastic discount factor and where real flow profits are

φt(j) =
pt (j)

Pt
YD

t (j)� (1+ it)
wt

Pt
ht(j).

Financial intermediaries operate in a perfectly competitive markets for funds.

Therefore the cost of borrowing for each firm is

it
Wt

Pt
ht(j). (14)

Finally, financial intermediaries make a profit of

Ptφ
M
t = (1+ it)

Z
Wth(j)dj� (1+ it)

Z
Di

tdi = (1+ it) Tt (15)

where Tt is a cash injection from the government to be defined below.

8For more detailed discussion of the cost channel of monetary policy, see Ravenna and
Walsh (2006), Schmitt-Grohe and Uribe (2006), and Woodford (2003b).

9Discounted with the average household stochastic discount factor, which turns out to
be the correct way of discounting the future stream of profits because agents are identical.
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2.3.2 Optimal pricing

In order to simplify the analysis we assume that, independently of infor-

mational delays, firms can observe the current aggregate price level when

deciding their optimal price.10 When there are informational delays the

optimal relative price depends on the expected current and future mar-

ginal cost. Similarly to households, firms choose their labor input (and the

amount of funds to borrow) using current information—delays can occur

only at the pricing stage. The first order condition for the optimal price

becomes

Êt�`
∞

∑
T=t

αT�tQt,TYD
T (PT)

θ
�

P�t (j)�
θ � 1

θ
PTsT

�
= 0, (16)

where

st =
wt

Pt At
(1+ it) , (17)

denotes the real marginal cost of production, which is a function of the real

wage and the opportunity cost of holding cash. Log-linearization leads to

p̂�t (j) = Êt�`
∞

∑
T=t
(αβ)T�t [(1� αβ) ŝT + αβπT+1] (18)

where p̂�t = ln (P�t /Pt). Given homogeneous factor markets implies that

each firm that chooses the optimal price will choose the same price p̂�t (j) =
p̂�t . While Calvo pricing implies a distribution of prices across firms, never-

theless the model specification leads to a simple log-linear relation between

the optimal price and inflation

πt =
1� α

α
p̂�t . (19)

10The instability results in this paper do not depend on this assumption. Eusepi and
Preston (2007a) consider the case where firms no not observe the current price level when
deciding their price, in a simpler model.
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2.4 Marginal cost and the output gap

From the households’ first order conditions, the labor supply is11

Vh
�
hi

t
�

uc
�
Ci

t
� = wt

Pt
. (20)

Log-linearizing (20) and (17) and combining them gives a relation between

output and the real marginal cost as

ŝt =
�

σ�1 + γ
�

ŷt � (1+ γ)ât + ı̂t, (21)

where γ is the inverse of the elasticity of the labor supply, which depends

on the disutility of hours worked, and σ is the intertemporal elasticity of

substitution in consumption. The marginal cost also depends on the nom-

inal interest rate, depending on the wage bill that needs to be anticipated

by the firm.

Next, we define ŷn
t as the natural level of output, that is, the equilibrium

level of output under flexible prices and no information delays, which can

be shown to be

yn
t =

(1+ γ)

(σ�1 + γ)
ât �

�
σ�1 + γ

��1
ı̂n
t . (22)

Using this expression we can rearrange the marginal cost equation to obtain

ŝt = (σ
�1 + γ) (yt � yn

t ) + (ı̂t � ı̂n
t ) . (23)

We assume that in the flexible price equilibrium the nominal interest rate

is set to zero, eliminating the labor supply distortion, as in Ravenna and

Walsh (2006). Hence in the remainder of the paper we set ı̂n
t = 0.

2.5 Equilibrium

Equilibrium in the goods market requires

yt(j) =
�

pt (j)
Pt

��θ

Ct (24)

11We stress the assumption that households take their labor supply decisions using cur-
rent information about real wages.
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for every j, and equilibrium in the labor market givesZ
hidi = ht =

Z
h(j)dj, (25)

where hi
t = ht. We also have a market clearing condition for loanable funds

of financial intermediaries,

Wt

Z
h(j)dj =

Z
Di

tdi+ Tt, (26)

where Tt denotes a cash injection from the government which is equal to

Tt = Mt+1 � Mt. (27)

2.6 Monetary and fiscal policies

We assume that the fiscal authority operates a zero debt, zero spending

fiscal policy. Monetary policy is described by a simple Taylor-type rule of

the (log-linear) form

ı̂t = ı̂�t + φ
�
Êt�`πt+j + λ̄Êt�`xt+j

�
(28)

for j = 0, 1, where the monetary authority reacts to private sector expecta-

tions in the case of information delays or in the case of a forward-looking

policy rule. For generality, the intercept ı̂�t is time-varying.12 The term in

brackets defines the linear combination between expected output and in-

flation corresponding to the optimal discretionary targeting rule under ra-

tional expectations, where the coefficient λ̄ on the output gap can be in-

terpreted as a function of the central bank’s relative preference for output

stabilization.13

12Under optimal discretionary policy ı̂�t is a linear combination of the underlying shocks.
Alternatively, it can be interpreted as a monetary policy shock. The specific form of the
intercept does not affect the stability and determinacy results.

13Details are provided in the appendix.
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2.7 Evolution of aggregate variables

2.7.1 The output gap

Combining the consumption decision rule (9), the equilibrium conditions,

and the definition of natural output we obtain

xt = Êt�`
∞

∑
T=t

βT�t [(1� β)xT � σβ(ı̂T � πT+1) + βσrn
T] , (29)

where xt is the output gap, it is the deviation of the one-period nominal

interest rate from the value consistent with inflation at target and output at

potential, πt is the deviation of inflation from target, and rn
t is a disturbance

term14 describing the natural rate of interest in the economy. We assume

this term is governed by the stochastic process

rn
t = ρrn

t�1 + εt

where 0 < ρ < 1 and εt � N (0, σε) . We normalize the inflation target to

zero. The parameter β is the discount factor of the representative household

and, again, the parameter σ is the intertemporal elasticity of substitution

in consumption. Quasi-differencing this expression we obtain the familiar

forward-looking IS curve, including one extra term

xt = (1� β)Êt�`xt � βσÊt�` (it + πt+1 � r̂n
t ) + βÊt�`xt+1. (30)

2.7.2 Inflation

We can express the inflation equation as

πt = Êt�`
∞

∑
T=t
(αβ)T�t

n
ξ
h
(σ�1 + γ)xT + ı̂T

i
+ β(1� α)πT+1

o
. (31)

where ξ = (1�αβ)(1�α)
α > 0. Quasi-differencing and imposing rational ex-

pectations we obtain

πt = βÊt�`πt+1 + ξÊt�`
h�

σ�1 + γ
�

xt + ı̂t

i
, (32)

14This is a function of the only exogenous shock At.
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which depends only on one-period-ahead forecasts. We also consider a

third specification, which we define as the long horizon (LH) pricing speci-

fication.15 This is obtained by iterating forward equation (32) and imposing

a transversality condition, which yields

πt = Êt�`
∞

∑
T=t

βT�t
n

ξ
h
(σ�1 + γ)xT + ı̂T

io
. (33)

We stress that this formulation also uses rational expectations since it is de-

rived from (32). Firms do not have to forecast the expected evolution of

prices when setting prices. We can express the inflation equation in a nested

form, which includes both the Calvo and the LH specifications, as

πt = Êt�`
∞

∑
T=t
(ϑβ)T�t

n
ξ
h
(σ�1 + γ)xT + ı̂T

i
+ β(1� ϑ)πT+1

o
. (34)

Here we define a new parameter, ϑ 2 fα, 1g . If ϑ = α, we obtain Calvo

pricing, and if ϑ = 1 we obtain the LH pricing. By quasi-differencing (34)

we obtain (32) independently of the pricing assumptions (for any admiss-

able ϑ). Hence, Euler learning delivers the same result, independently of

the pricing assumptions. We stress that, crucially, the main difference between
Calvo and LH pricing is that firms are effectively assumed to discount the future
at different rates. With Calvo pricing firms discount the future more heavily

as indicated by the effective discount factor ϑβ = αβ in equation (31) for

that case, while with LH pricing ϑβ = β.

In much of the remainder of the analysis we assume that the agents

know the monetary policy rule, so that, knowing the relation between the

nominal interest, the output gap and inflation, in order to take consump-

tion and pricing decisions they only need to forecast the future evolution

of inflation and output. There is one exception to this assumption which is

discussed below.
15We adopt this terminology to keep the label for this pricing assumption, “long-

horizon,” distinct from the label for alternative approach to learning, “infinite-horizon.”

14



2.8 Matrix notation

The general class of models we have described can be expressed in matrix

notation as

A0Yt = A1Êt�`Yt +
N

∑
J=1

A2,J Êt�`
∞

∑
T=t

βT�t
J YT+1 + A3Xt, (35)

where Yt denotes a n�dimensional vector of endogenous variables, βJ de-

notes discount factors associated with different decision rules, Xt denotes

a k�dimensional vector of shocks which are assumed to be AR(1), with

normally distributed disturbances, and all matrices A are conformable. Fi-

nally, the matrix H denotes a diagonal matrix containing the aucorrelation

coefficients of the shocks, assumed to be between zero and one.

3 Learning dynamics

3.1 Local stability under infinite horizon decision rules

We begin our discussion of learning dynamics with the infinite horizon

approach. In the analysis below we relate the quantities obtained under

this approach to those obtained under Euler equation learning.

We begin with the assignment of a perceived law of motion, or PLM,

which is consistent with the actual law of motion in the rational expecta-

tions equilibrium. The PLM is

Yt = a+ bXT�`, (36)

where a denotes the intercept vector and b denotes a n� k matrix of coeffi-

cients. The discounted infinite sum in equation (35) can then be expressed

as

Êt�`
∞

∑
T=t

βT�t
J YT+1 =

∞

∑
T=t

βT�t
J a+

∞

∑
T=t

bβT�t
J H(T�t+1)XT�` (37)

=
1

1� βJ
a+ b

�
1� βJ H

��1
HXt�`. (38)
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This perceived law of motion induces an actual law of motion, or ALM,

given by

Yt = Ã1 (a+ bXt�`)

+
N

∑
J=1

Ã2,J

 
1

1� βJ
a+ b

�
1� βJ H

��1
HXt�`

!
+ Ã3Xt, (39)

where Ãi = A�1
0 Ai for i = 1, 2, and 3. The associated ordinary differential

equation is given by, for the intercept vector,

ȧ = T(a)� a (40)

where

T(a) =

"
Ã1 +

N

∑
J=1

Ã2,J
1

1� βJ

#
a, (41)

and for the coefficient matrix,

ḃ = T(b)� b, (42)

where

T(b) = Ã1b+
N

∑
J=1

Ã2,Jb
�

1� βJ H
��1

H. (43)

Under the infinite horizon approach to learning, the intercept matrix

governing expectational stability can be written as

MIH(a) = Ã1 +
N

∑
J=1

Ã2,J
1

1� βJ
� In. (44)

Considering the coefficients b, after vectorizing T(b) we obtain

MIH (b) =
�

Ik 
 Ã1
�
+

N

∑
J=1

(��
Ik � βJ H

��1
H
�0

 Ã2,J

)
� Ik 
 In. (45)

We stress that to obtain the case of contemporaneous expectations all that

is needed is to re-define the matrix A0 and set Ã1 = 0. In the next section

we use (45) to establish that E-Stability conditions need not be the same as

determinacy conditions.
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3.2 An equivalence result

We first consider the connections between infinite horizon (IH) and finite

horizon (FH) (a.k.a. one-period-ahead or Euler equation learning). The fol-

lowing proposition states the sufficient condition to have equivalence in the

E-stability conditions under different learning approaches.

Proposition 1 Consider the model (35) with J = 1. Then finite horizon and
infinite horizon learning approaches deliver the same expectational stability condi-
tions.

Proof. The model in matrix representation becomes

Yt = Ã1Êt�`Yt + Ã2,1Êt�`
∞

∑
T=t

βT�tYT+1 + Ã3Xt (46)

where it is assumed that all decision rules use the same16 discount rate. We

now proceed to quasi-difference (46). First we forward (46) one period and

taking expectations

Et�`Yt+1 = Ã1Êt�`Yt+1 + Ã2,1Êt�`
∞

∑
T=t+1

βT�t�1YT+1 + Êt�` Ã3Xt+1. (47)

Second, we rewrite (46) as

Yt = Ã1Êt�`Yt + Ã2,1Êt�`YT+1 + Ã2,1Êt�`
∞

∑
T=t+1

βT�tYT+1 + Ã3Xt (48)

and combining the two expressions we get,

Yt = Ã1Êt�`Yt + Ã2,1Êt�`Yt+1 + βÊt�`Yt+1

� βÃ1Êt�`Yt+1 + Ã3 (H � Ik)Xt. (49)

Re-arranging yields

Yt = Ã1Êt�`Yt +
�
Ã2,1 + β

�
In � Ã1

��
Êt�`Yt+1 + Ã3 (H � Ik)Xt, (50)

16This implies that every row in Ã2,1 must constain at least one non-zero element. Other-
wise, the corresponding equation would imply β = 0.
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which defines the finite horizon representation of the model. E-stability

can be evaluated following Evans and Honkapohja (2001), which gives the

following ALM maps

TFH(a) =
�
Ã1 + Ã2,1 + β

�
In � Ã1

��
a (51)

=
�
(1� β) Ã1 + Ã2,1 + βIn

�
a (52)

TFH(b) = Ã1b+
�
Ã2,1 + β

�
In � Ã1

��
bH (53)

= Ã1b� Ã1bβH + Ã2,1bH + βbH (54)

and the following associated Jacobian matrices, for the constant

MFH(a) = (1� β)Ã1 + Ã2,1 � (1� β) In (55)

MFH(a) = (1� β)MIH (56)

where the last equality follows from (44), imposing J = 1. For the distur-

bance coefficients we obtain (after vectorization)

MFH(b) = Ik 
 Ã1 � βH 
 Ã1 + βH 
 In � Ik 
 In (57)

= (Ik � βH)
 Ã1 + H 
 Ã2,1 � (Ik � βH)
 In (58)

MFH(b) = (Ik � βH)
 MIH (59)

where the first equality follows from the properties of the Kroneker product

and the second equality follows from setting J = 1 in (45) and again using

the properties of the Kroneker product (see for example Dhrymes (2000)).

3.3 When determinacy implies E-stability

The next proposition states the sufficient conditions under which determi-

nacy implies expectational stability.

Proposition 2 Consider the model (35) with J = 1. If Ã1 = 0 determinacy
implies E-stability.

18



Proof. By setting Ã1 = 0 local determinacy depends on the eigenvalues

of the matrix

MD = Ã2,1 + βIn. (60)

In order to yield local determinacy all eigenvalues of MD must be inside

the unit circle. We have

MD � I = MFH (c) = MIH (c) (61)

where the second equality comes from Proposition 1. Hence, if the eigen-

values of MD are inside the unit circle, E-Stability is verified. Concerning

the Jacobian for the shock coefficients, we have

eig
�

MFH(s)
�
= eig

�
H 
 Ã2,1 � (Ik � βH)
 In

�
(62)

= eig
�

H 
 Ã2,1
�
� eig ((Ik � βH)
 In) (63)

which implies that MFH (s) has eigenvalues with real parts less than one if

MFH (c) has real eigenvalues less than one.

4 Four economies

4.1 Baseline case

We now consider the monetary model described in Section 2. The first

proposition states the conditions for determinacy to imply learnability.

Proposition 3 Consider the model with long-horizon pricing (ϑ = 1) and assume
the agents understand the policy rule (28).

1) The E-stability conditions under infinite horizon and finite horizon learning
are identical, independently of the timing assumptions and the monetary policy
rule.

2) In the case of no delays (` = 0), determinacy implies E-stability.

Proof. Set ϑ = 1 and substitute the policy rule (28) for the nominal in-

terest rate in both the consumption and the pricing decision rules. Then

the model can be expressed in form (46). In the case of contemporaneous

19



expectations set A0 =
�

I � Ã1
��1. The result then follows by direct appli-

cation of the first two propositions.

This result demonstrates that, in this specific class of models, checking

for determinacy is sufficient to determine whether the equilibrium is locally

expectationally stable under a process of recursive learning.

4.2 Interest rate forecasts and learnability

We now consider the case where agents also forecast the nominal interest

rate, as in Preston (2006, 2007) and Eusepi and Preston (2007a,b). Here we

consider the example in Preston (2007), where the policy rule considered is

forward-looking. This model does not satisfy the conditions of the first two

propositions, as we explain below.

Proposition 4 Preston (2007). Consider the model with no cost channel, no de-
lays (` = 0) and the forward-looking policy rule (j = 1). Then determinacy im-
plies E-stability under finite horizon learning but not under infinite horizon learn-
ing.

It is easy to see how this version of the model violates the conditions in

Proposition 1. The model can be written in matrix notation as

A0Ỹt = A1Êt�`Ỹt +
3

∑
J=1

A2,J Êt�`
∞

∑
T=t

βT�t
J ỸT+1 + A3Xt. (64)

where Ỹt = (xt, πt, ı̂t)
0. Given that the policy rule does not respond to

infinite horizon forecasts, the discount rate associated with the policy rule

is β3 = 0. In fact, Preston (2007) shows that E-Stability conditions are more

stringent than the determinacy conditions, while Bullard and Mitra (2002)

show that in the case of FH learning determinacy implies E-stability. This

example illustrates that even in the simplest environment determinacy and

E-Stability need not coincide.17

The next example shows how different discount factors can matter.
17Eusepi and Preston (2007b) also show that in an economy with non-zero government

bonds with long average maturity determinacy does not imply learnability, even in the case
where the policy rule is perfectly understood by the public.
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4.3 Indeterminacy and long-horizon forecasts

Here, as in the rest of the paper, we assume that agents do not have to

independently forecast the nominal interest rate. The following proposi-

tion shows that different versions of the model can have different implica-

tions in terms of E-stability, depending on the agent’s decision rules and

the learning approach. In order to simplify the analysis in this particular

example we assume σ = 1 and γ = 0.

Proposition 5 Consider the model with strict inflation targeting
�
λ̄ = 0

�
, no

delays (` = 0) , and the forward-looking policy rule (j = 1). Then
1) Determinacy implies E-stability.
Assume in addition that ξ > 1� β:
2) Under FH learning and IH learning with ϑ = 1 indeterminate equilibria

are E-unstable.
3) Under IH learning with Calvo pricing (ϑ = α), indeterminate equilibria

can be E-stable.

Proof. Llosa and Tuesta (2007) show that determinacy18 obtains for this

model if and only if

1 < φ <
1� β

ξ
. (65)

The E-stability conditions for infinite horizon learning imply the following

restrictions on the parameters

φ > 1 (66)

and19

�1� ξ(φ� 1)
(1� β)

+
(β(1� ϑ) + ξφ)

(1� ϑβ)
< 0. (67)

First, simple algebra shows that for any ϑ 2 (0, 1], inequality (65) implies

the restrictions are verified, and hence determinacy implies expectational

18See Llosa and Tuesta (2007), Proposition 3, pp 11-12.
19The first retraction requires that the determinat of the relevant matrix is positive, while

the second restriction requires that the trace is negative. Details about the matrix and the
computation can be obtained by inspecting the file analytic_current.m.
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stability. Second, imposing ϑ = 1, it can be shown that ξ > 1� β is the

condition to have expectational instability. From Proposition 1 it follows

that under IH learning with the LH pricing rule and under FH learning

ξ > 1� β implies instability. Third, in the case of ϑ = α < 1 it is possible to

find parameter values for which the equilibrium is expectationally stable

under the assumption ξ > 1� β.

As an example, consider the standard parameter values β = 0.99, ξ =

0.024 and φ = 1.5. Then REE are indeterminate and E-unstable in the case

of FH learning and in the case of LH pricing, but REE are E-stable under

IH learning with Calvo pricing. This example and the last example in the

next section show that under learning, the specification of pricing behavior

matters for stability analysis.

4.4 The role of information delays

We now consider the crucial role of information delays. We first consider

the model with contemporaneous information and a standard Taylor rule

and compare the results with the case of information delays. In the case of

contemporaneous expectations we obtain the following proposition.

Proposition 6 In the model with contemporaneous expectations (` = 0, j = 0)

determinacy implies E-stability.

Proof. Part 1. We first show the parameter restrictions that ensure ex-

pectational stability under infinite horizon learning. E-stability in this case

depends on the eigenvalues of the matrix

MIH(a) = (1� β)�1 �I2 � Ã1
��1 Ã2,1 + (1� ϑβ)�1 �I2 � Ã1

��1 Ã2,2 � I2.

(68)

where ϑ 2 (0, 1]. Local stability obtains if the trace of the matrix is negative

and the determinant is positive. Consider the determinant: stability obtains

if
[(φ� 1) + (φ� 1) γσ] ξ + σφλ̄ [(1� β)� ξ]�

1+ φγσξ + σφλ̄
�
(β� 1) (ϑβ� 1)

> 0. (69)
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If (1� β)� ξ > 0, this condition is satisfied for any other parameter values.

If (1� β)� ξ < 0, the determinant is positive provided

0 � λ̄ < λ̄
�
=

φ� 1
φ

ξ
�
σ�1 + γ

�
ξ � 1+ β

. (70)

Now consider the trace. We can write it as

Tr(ϑ, β)�
1+ φγσξ + σφλ̄

�
(β� 1) (ϑβ� 1)

(71)

where

Tr(ϑ, β) = �1� φξ � 2σφλ̄� ξγσϑβ� ξϑβ+

φξϑβγσ+ φξγσβ� β2 + σφλ̄ϑβ+�
�σφλ̄β2

�
� ξϑβλ̄φσ+ ξ � 2φξγσ+

ξφλ̄σ+ 2β+ 2βσφλ̄+ ξγσ+ φξϑβ. (72)

First, it is straightforward to show that

Tr(1, β) =

�
�
ξφγσ+ (1� β) + (φ� 1) ξ + (φ� 1) ξγσ+ ((2� β)� ξ) σφλ̄

�
< 0

(73)

provided the conditions for a positive determinant are satisfied. Second,

consider

Tr(0, β) = �1� φξγσ (1� β)� 2 (1� β) σφλ̄+Ψ (β) (74)

where

Ψ (β) � �
�
1+ σφλ̄

�
β2 + 2β+ ξφ(1� β)

� [(φ� 1) + (φ� 1) γσ] ξ + ξφλ̄σ. (75)

It is easy to verify that Ψ (0) < 0 and Ψ (1) < 0 (provided the conditions

for a positive determinant are satisfied). This implies Ψ (β) < 0. Finally,

given that Tr(ϑ, β) is linear in ϑ, we can conclude that Tr(ϑ, β) < 0 8ϑ 2
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(0, 1]. The above results imply that both the Calvo and LH pricing model

are consistent with E-Stability if and only if (70) is satisfied.

Part 2. Using Proposition 1, under the FH approach to learning we ob-

tain the same stability conditions as under the LH pricing approach.

Part 3. Using Proposition 2, we conclude that local determinacy implies

expectational stability. We stress that the reverse does not hold: indetermi-

nate equilibria can be E-stable in this model.20

We now prove the second proposition concerning the model with de-

lays.

Proposition 7 In the model with delays:
1) Local determinacy does not imply expectational stability.
2) Under IH learning, the E-stability conditions depend on the firms’ pricing

rule.

Proof. The determinant of MIH
`=1 is

β([(φ� 1) + (φ� 1) γσ] ξ + σφλ̄ [(1� β)� ξ])

(1� β) (1� ϑβ)
> 0 (76)

provided (70) holds. The trace is

β� 1+ ξφ

1� ϑβ
� βσφλ̄

1� β
, (77)

and it is negative provided

λ̄ > λ̄� =
1� β

1� ϑβ

[ξφ� 1+ β]

βσφ
(78)

which adds an extra restriction on the parameters with respect to the one

that guarantees determinacy. The extra restriction does not vanish once we

set ϑ = 1, but it is clear that the restriction is less stringent in this case. Also,

from Proposition 1, inequality (78) holds also under the Euler approach

20A similar result is also documented by Bullard and Mitra (2002).
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(equivalent to the case where ϑ = 1). Considering the coefficients on the

shocks, the trace is

�β(1+ σφλ̄� ρ)

(1� ρβ)
+
(ξφ+ ρβ� 1)
(1� ϑβρ)

(79)

which is negative if the condition for the constant is satisfied. The determi-

nant is

� β(ξφ+ ρβ� 1+ σφλ̄ρβ� σφλ̄� ξφρ

(1� ρβ)(1� ϑβρ)

�ρ2β+ ρ� ξφγσ� ξφ+ ξργσ+ ξρ+ ξρφλ̄σ)

(1� ρβ)(1� ϑβρ)
(80)

which can be simplified to

β
�
ξ (φ� ρ) + ξγσ (φ� ρ) + σφλ̄ (1� ρβ� ξρ)

�
+ β (1� ρ) (1� βρ� ξφ) > 0 (81)

provided the condition for the constant is verified.

4.5 An Example

We now consider a calibrated version of the simple monetary model, under

differing assumptions concerning the pricing rule imposed on firms. We set

parameters to values that are commonly used in the literature. In particular,

we set β = 0.99, γ = 0 (infinitely elastic labor supply), σ = 1 and φ = 1.5.

We wish to show how determinacy and E-stability conditions change as we

vary the degree of price rigidity. We measure the degree of price rigidity

with α, the probability of not having an opportunity to set the price under

Calvo pricing. We then calibrate ξ consistently with a given value of α.

The parameter λ̄ governs the policymaker response to the output gap

in the monetary policy rule. Figure 1 shows how λ̄
� from (70) and λ̄� from

(78) change as the degree of price rigidity changes. We plot both λ̄
ϑ=1
� ,

for the LH pricing case, and λ̄
ϑ=α
� for the Calvo pricing case. According

to the above discussion, for a given α, expectational stability obtains for

λ̄� < λ̄ < λ̄
�.
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The Figure shows that for the Calvo pricing case, the interval for λ̄ con-

sistent with determinacy and expectational stability is roughly constant as

the degree of price flexibility increases, perhaps with some exception to-

ward the right in the diagram. However, for the LH pricing case, the in-

terval for λ̄ consistent with determinacy and expectational stability is gen-

erally smaller, and there would be no interval at all for a sufficiently high

degree of price stickiness, that is, toward the left in the diagram. The un-

labelled black lines in the diagram indicate the additional area consistent

with expectational stability under Calvo pricing.

5 Conclusions

We have studied a New Keynesian model generalized on certain dimen-

sions in an attempt to delineate the differences between conditions for equi-

librium determinacy and conditions for equilibrium learnability in terms

of meaningful economic assumptions. One of the sharpest findings is that

in models with informational lags, the connections between determinacy

and learnability conditions are broken. In other situations, and certainly in

some interesting baseline cases, we are able to show that determinacy does

imply learnability and thus that in some practical settings, it is not neces-

sary to analyze the two conditions separately. We are also able to illustrate

some interesting cases where there are and are not differences between the

Euler equation and infinite horizon approaches to learnability.

An important caveat to this analysis is that there are no natural lags in

the NK framework as we have analyzed it here, such as those that might

come from time-to-build technologies or related concepts. The baseline NK

model is entirely forward-looking. Given that we have found that informa-

tion lags are one important source of differences in conditions for deter-

minacy versus learnability, one might suspect that in models with more

realistic lag structures, conditions for determinacy will in general not be

the same as conditions for learnability. We leave this as an interesting topic

for future research.
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Figure 1: The relationship between determinacy and E-stability as a func-
tion of the degree of price stickiness α and the policymaker response to the
output gap λ. Expectational stability requires a value of λ between λ� and
λ�. Calvo pricing, ϑ = α, creates a larger region than LH pricing, ϑ = 1.
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APPENDICES

A Derivation of the consumption rule

Combining the household’s budget constraint and the cash-in-advance con-

straint (which holds with equality at a positive nominal interest rate), we

obtain

Mi
t+1 � (1+ it)Mi

t � (1+ it) PtCi
t + (1+ it)Wthi

t +Φi
t, (82)

where Φi
t denotes the household shares in the profits of firms and finan-

cial intermediaries. Solving forward and making use of the tranversality

condition we obtain

Mi
t �

∞

∑
j=0

Rt,t+j

h
Pt+jCt+j +

�
it+j/

�
1+ it+j

��
Mi

t+j+1 � Ti
t+j � Pt+jYi

t+j

i
,

(83)

which must hold in all states and dates, where

Rt,t+j =
j

∏
k=1
(1+ it+k�1)

�1 (84)

and where PtYi
t = Wthi

t + Pt

Z h
φ

f
t (j)dj+ itWtht

i
dj. To obtain the expres-

sion above we use21

(1+ it)Wthi
t +Φi

t
(1+ it)

=264Wthi
t + Pt

Z
φ

f
t (j)dj

1+ it
+ (it/ (1+ it))

Z
PtCtdj+ Tt

375
� (it/ (1+ it))Mi

t+1, (85)

where the second and third terms in brackets take into account that wages

are anticipated by households at the beginning of the period, while rev-

enues are transferred at the end of the period. Furthermore, for simplicity
21The last expression can be simplified by using PtCt = Mt+1 in every period along with

the condition that aggregate sales must be equal to aggregate consumption. Also notice that
Ci

t = Ct and Mi
t = Mt in every period and for every household i.
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we assume each household understands that the present value of govern-

ment tranfers must be equal to the present value of government liabilities

held net of seigniorage,22 so that the intertemporal budget constraint sim-

plifies to

0 =
∞

∑
j=0

Rt,t+j
�
Pt+jCt+j � Pt+jYt+j

�
, (86)

where for simplicity we assume each household has zero initial net wealth.

Log-linearizing the intertemporal budget constraint we obtain

0 =
∞

∑
j=0

βtĈt+j �
∞

∑
j=0

βtŶt+j. (87)

Linearization of the Euler equation yields

Ĉt = Êt�`Ĉt+1 � σÊt�`(ı̂t � πt+1). (88)

Following the same logic as above

Ĉt = Êt�`ĈT + σÊt�`
T�1

∑
T=t
(it � πt+1). (89)

Taking the expectation of the budget constraint yields

Êt�`
∞

∑
T=t

βT�tĈT = Êt�`
∞

∑
T=t

βT�tŶT, (90)

and substituting for Et�1ĈT we obtain

Êt�`
∞

∑
T=t

βT�t

"
Ĉt � σ

T�1

∑
T=t
(it � πt+1)

#
= Êt�`

∞

∑
T=t

βT�tŶT (91)

which implies

Ĉt = Êt�`
∞

∑
T=t

βT�t �(1� β)ŶT � βσ(iT � πT+1)
�

. (92)

22Eusepi and Preston (2007b) relax this assumption and study the implications of learning
when agents have to forecast fiscal variables.
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B Optimal policy under discretion

In this appendix we show that the monetary policy rule in the main text

is of the same form as if the policymaker was pursuing a certain optimal

policy. We consider optimal policy under rational expectations,23 meaning

that the central bank is assuming rational expectations of the private sector

when it is deciding upon an optimal policy. The behavioral equations for

output gap and inflation can be reduced to

xt = �σEt�` (ı̂t � πt+1) + Et�`xt+1 + rn
t (93)

and

πt = βEt�`πt+1 + Et�`ξ
��

σ�1 + γ
�

xt + ı̂t

�
(94)

where ξ = (1�αβ)(1�α)
α . The central bank maximizes a quadratic loss func-

tion in inflation and output gap

L = π2
t + λx2

t (95)

which is consistent with the model’s microfoundations. We consider the

general case where λ is arbitrary.24 The central bank chooses optimal policy

to maximize

Et�`
∞

∑
t=0

βtLt (96)

Et�`
∞

∑
T=t

βt �π2
T + λx2

T
�

(97)

subject to (93) and (94). The first order conditions are, for xt:

�λxt � ξ
�

σ�1 + γ
�

Et�`ψ2,t + Et�`ψ1,t = 0, (98)

for π:

�πt + Et�`ψ2,t = 0, (99)

23We could do this under learning but it would complicate the analysis a lot without
making any difference for the issues we are discussing.

24This because we are going to show that the instability result is not only obtained in the
case where the central bank maximizes the representative consumer’s welfare function.
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and for it:

�ξζEt�`ψ2,t + σEt�`ψ1,t = 0. (100)

Eliminating the multipliers, we obtain two conditions

�λEt�`xt � ξ (1+ γ) Et�`πt + ξEt�`πt = 0, (101)

λ̄Et�`xt + Et�`πt = 0, (102)

where λ̄ = λ
ξγ . The central bank is responding to private sector forecasts

under the assumption that the private sector forecasts are rational. This

policy rule is of the same form as the one employed in the main text, under

the assumption that the targeting rule is implemented using a Taylor-type

rule.
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