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This paper develops a theory of expectations-driven business cycles based
on learning. Agents have incomplete knowledge about how market prices
are determined and shifts in expectations of future prices affect dynam-
ics. Learning breaks the tight link between fundamentals and equilibrium
prices, inducing periods of erroneous optimism or pessimism about future
returns to capital and wages which are partially validated by subsequent
data. In a real business cycle model, the theoretical framework amplifies
and propagates technology shocks. Moreover, it produces agents’ forecast
errors that are consistent with business cycle properties of forecast errors
for a wide range of variables from the Survey of Professional Forecasters.
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Recently there has been renewed interest in shifting expectations as a source of busi-
ness cycle fluctuation. A range of models have been explored that rely variously on
multiple equilibria, exogenous news about future productivity and imperfect information
— see, for example, Jess Benhabib and Roger Farmer (1994), Paul Beaudry and Frank
Portier (2007), Nir Jaimovich and Sergio T. Rebelo (2008) and Guido Lorenzoni (2008).
These frameworks seek not only to explain business cycle fluctuations with changes in
expectations but also to resolve comovement problems that arise in real business cycle
theory.

This paper explores an alternative theory based on learning dynamics. In the context
of an otherwise standard stochastic growth model, we consider an environment in which
households and firms have an incomplete model of the macroeconomy, knowing only their
own objectives, constraints and beliefs. Agents are optimizing, have a completely specified
belief system but do not know the equilibrium mapping between primitive disturbances,
the aggregate state of the economy and market clearing prices. By extrapolating from
historical patterns in observed data they approximate this mapping to forecast variables
that are exogenous to their decision problems, such as the rental rate of capital and
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the real wage. This belief structure has the property that beliefs affect the true data
generating process of the economy which in turn affects belief formation. The economy is
therefore self-referential: shifts in beliefs about future returns to labor and capital affect
current market clearing prices which in turn can reinforce beliefs. In this environment,
current prices can become less informative about future economic conditions generating
fluctuations in real activity.

This kind of mechanism driving business cycle fluctuations is found in early writings
on macroeconomic dynamics. For example, Alfred C. Pigou (1927), on page 122, writes:

"[...] a rise in prices, however brought about, by creating some actual and
some counterfeit prosperity for business man, is liable to promote an error of
optimism, and a fall in prices an error of pessimism, and this mutual stimu-
lation of errors and price movements may continue in a vicious spiral until it
is checked by some interference from outside."

Shifts in expectations, whether in part due to changes in fundamentals or in part due to
error, are a source of business cycle fluctuation that may be self-fulfilling. We introduce
learning into a canonical real business cycle model to generate expectations dynamics of
this kind.! Learning breaks the tight link between fundamentals and, through expec-
tations formation, equilibrium prices and allocations. This model property engenders
periods of erroneous optimism or pessimism about future returns to capital and wages
which are in part validated by subsequent data. An appealing feature is that agents’
forecast errors of real wage and interest rates display similar business cycle properties as
forecast errors for a wide range of variables from the Survey of Professional Forecasters.
For example, in both the model and data, market participants under-predict interest rates
during expansions and contrariwise during contractions.” A rational expectations version
of the model is unable to explain such data. These mechanisms have the added benefit
of generating additional amplification and propagation of technology shocks relative to a
rational expectations version of the model.

The model is calibrated to match properties of post-war US quarterly data. One
novel feature of the calibration is the use of survey data on forecasts to discipline the
learning mechanism. Learning introduces one new parameter called the gain, which is
restricted to a set of values such that the model replicates business cycle patterns observed
in survey data on expectations. Given this restriction, the learning model in general
provides a superior characterization of second-order moments of observed data than does
the model under rational expectations. Additional specific results on amplification and
propagation are as follows. First, learning amplifies technology shocks. Relative to a
rational expectations analysis of the model, a 10 - 20 percent smaller standard deviation
of technology shocks is required to match the standard deviation of HP-filtered output
data.® Moreover, the volatility of investment and hours relative to output is roughly 10 -
25 and 20 - 40 percent greater than under rational expectations. Second, the persistence
properties of our model bear much closer resemblance to observed data. The first-order
autocorrelation properties of output, hours and investment growth are well matched
despite shocks being identically and independently distributed over time — hump-shaped
impulse responses are observed. These features of the data are typically problematic for
real business cycle theory as documented by Timothy Cogley and James Nason (1993)
and Julio J. Rotemberg and Michael Woodford (1996).

IThe model will not have the property of “vicious spirals”.

2This is also consistent with Monika Piazzesi and Martin Schneider (2008) which studies the role of
subjective beliefs in bond pricing.

3 Amplification is monotonic in the gain, and the range corresponds to the minimal and maximal
values considered for this parameter.
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The improvement in fit can be traced to shifting beliefs amplifying intertemporal sub-
stitution of consumption and leisure. The only source of exogenous variation are tech-
nology shocks, which have two effects. First, as in standard real business cycle theory, a
technology improvement shifts the production frontier with well-understood implications.
Second, in subsequent periods, households revise their beliefs in response to changed mar-
ket opportunities. In particular, relative to rational expectations, households are more
optimistic about the future path of returns to capital and more pessimistic about future
returns to labor. The former leads to substitution of current for future consumption and
a high marginal utility of income, an effect reinforced by the latter. Combined, these
expectations effects induce a smaller increase in consumption, and, consequently, a larger
shift in labor supply and investment in the period after the shock. This amplification
of substitution effects in response to a technology shock relative to rational expectations
explains the increased volatility in these variables. The delayed adjustment in beliefs
explains the persistence.

Earlier analyses have explored learning as a source of amplification and propagation.
Noah Williams (2003) examines a standard real business cycle model, concluding that
adaptive learning is unlikely to help improve the performance of such models. Repro-
ducing that analysis in the context of our model shows that this is indeed the case. The
difference in conclusions stems from the failure to model optimal decisions conditional on
maintained beliefs as done in Albert Marcet and Thomas J. Sargent (1989) and Bruce
Preston (2005). Our paper relates to other recent contributions in the learning litera-
ture by Fabio Milani (2007), Eva Carceles-Poveda and Chryssi Giannitsarou (2007) and
Kevin Huang and Zheng Liu and Tao Zha (2008). These papers are discussed later, but
like Williams (2003), they consider models in which only one-period-ahead forecasts mat-
ter for 4household and firm behavior — decisions are not optimal given the maintained
beliefs.

This paper belongs to a long literature reconciling the predictions of real business cy-
cle theory with observed data — see, inter alia, Gary Hansen (1985), Richard Rogerson
(1988), Lawrence Christiano and Martin Eichenbaum (1992), Jess Benhabib and Roger
Farmer (1994), David Andolfatto (1996), Craig Burnside and Martin Eichenbaum (1996),
Charles T. Carlstrom and Timothy S. Fuerst (1997) and Stephanie Schmitt-Grohe (2000).
These papers introduce various frictions, including indeterminacy of rational expectations
equilibrium, to benchmark theory to improve the amplification and propagation of tech-
nology shocks. Our paper furthers this line of inquiry by considering learning dynamics
as an alternative friction.

The introduction of imperfect information and learning in the real business cycle frame-
work dates back to Finn E. Kydland and Edward C. Prescott (1982). In their model, the
stochastic process for technology is composed of two unobserved shocks with different
persistence. Agents face a signal extraction problem when predicting future productivity.
More recently, Rochelle Edge and Thomas Laubach and John Williams (2007) show in a
similar model that learning has important effects in the response of the economy to a per-
sistent shift in productivity growth. In these models learning is not an endogenous source
of propagation because changes in endogenous variables do not affect the agents’ learning
process. On the contrary, gradual recognition of the productivity changes generates a
gradual response to the shock — a property determined by the specified signal-to-noise
ratio in the exogenous process.

4These papers are similarly pessimistic about the potential of learning dynamics to resolve empirical
questions. The exception is Milani (2007) which makes some progress in a New Keynesian model.
Differing conclusions likely emerge from the role of initial conditions which do not play a role in our
analysis.
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I. A Simple Model

The following section details a stochastic growth model similar in spirit to Kydland
and Prescott (1982), Edward C. Prescott (1986) and Robert G. King and Charles I.
Plosser and Sergio T. Rebelo (1988). The major difference to this earlier literature is the
incorporation of near-rational beliefs, delivering an anticipated utility model of the kind
discussed by David Kreps (1998) and Thomas I Sargent (1999). The analysis follows
Albert Marcet and Thomas J. Sargent (1989) and Bruce Preston (2005), solving for
optimal decisions conditional on current beliefs.

A. Microfoundations

Firms. There is a continuum of identical competitive firms of mass one. Each firm i
produces the economy’s only good using capital K; and labor H} as inputs according to
the production function

l—«a

(1) Y = (K})® (X.H])

where 0 < a < 1. The stochastic trend X; is labor-augmenting technical progress,
identical for each firm, evolving according to In (X;y1/X:) = v, = In¥ 4 az11 where a;
is an independent, identically distributed random variable with zero mean and standard
deviation o4 and 4 > 0. Each firm chooses labor and capital inputs to maximize profits
I} =Y — REK] — W,H] taking factor prices as given. The first-order conditions to a
firm’s optimization problem provide

[0

2) W, = (1—a) (K})" (X)) (H)"
3) RE = (k)™ (X)) "

which equate factor prices with their real marginal products. RX is the rental rate of
capital and W, is the real wage.

Households. Households maximize their intertemporal utility derived from consump-
tion and leisure

(4) E] i 87" [meg v (H7)]

T=t

subject to the flow budget constraint
(5) C} + K], = REK] + W,H] + (1 -6) K]

where Cf denotes household j's consumption, Ktj the holdings of the aggregate capital

stock available at the beginning of period ¢, with K > 0 given; and Hj represents
the fraction of the available time (normalized to one unit per period) spent on non-
leisure activities. The function v (+) is convex. The functional forms are chosen to be
consistent with a balanced growth path. Households supply labor and capital in perfectly
competitive markets. The household’s discount factor and the depreciation rate of capital
satisfy 0 < 3, § < 1.

The expectation operator E‘tj denotes agent j’s subjective beliefs. In forming expecta-
tions, households and firms observe only their own objectives, constraints and realizations
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of aggregate variables that are exogenous to their decision problems and beyond their
control. The agent’s problem is to choose sequences of consumption, hours worked, and
capital in order to maximize (4) subject to (5), taking as given prices and the capital
stock available at the beginning of the period. Beliefs are specified in the next section.

Household optimization yields the well-known conditions for expected consumption
growth and hours worked

, . . c! X
Wi =Clvy (H]) and Ef B (B +(1-0)| =1

t+1

The paper’s primary goal is the quantitative evaluation of the model. Following Finn E.
Kydland and Edward C. Prescott (1982), employ a log-linear approximation of the model
around a balanced growth path. For any variable G; define g, = G;/ X} as the correspond-
ing normalized variable. Households observe the stochastic trend X; and its distribution.
This assumption is necessary to obtain stationary decision rules. However, households do
not know what determines the evolution of X;: that is, firms’ technology. This is further
discussed in section 3 of the paper. Balanced growth requires consumption, investment,
output, the capital stock and real wages to grow at the rate of the stochastic trend so

that
Yt Ct . It Wt dk Kt
Y= 0= =+ W= and fy =
Xt Xt Xt Xt thl
are stationary. Hours and the rental rate of capital are stationary on the balanced growth
path. Details of the steady state and the log-linear approximation are confined to the
online appendix.
Log-linearizing, solving the flow budget constraint forward, imposing the transversality
condition and substituting for hours gives the intertemporal budget constraint

Bl S BT = g H A B Y AT [ewior + RRE — 5747

T=t T=t

The coefficients €. and €, are constants that are composites of model primitives and
R > 0. This relation states the expected present value of consumption must be equal
to the capital stock available at the beginning of the period plus the expected present
value of wage and rental income. These latter variables are outside the control of the
household, given the assumption of competitive markets.

To determine optimal consumption decisions, combine the intertemporal budget con-
straint with a log-linear approximation to the consumption Euler equation to yield

d = L[ (M- 4) + RRE + ey
) w873 0" | U0 ] srii 4 81 Y o B D peir,
T=t ¢ T=t €

The consumption decision rule comprises three terms. The first shows the impact that
the current level of the capital stock and current prices have on consumption. The
second and third terms show how expected variations in permanent income affect current
consumption. The former has two parts corresponding to the positive income effect and
the negative substitution effect of higher returns to capital on current consumption. The
latter has only one part as the income and substitution effects of a wage increase both
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raise current consumption.
B.  Market clearing and aggregate dynamics
As households have the same preferences and constraints; firms the same technology;

and beliefs are assumed homogeneous across all agents (although they are assumed not to
be aware of that) the analysis considers a symmetric equilibrium in which ki = k] = ky;

ﬁg = I;TZ = Hy; it = @] = 4 for all 4,5,t. Integrating over the continuum provides
aggregate consumption demand
1-— A — A
¢ = c b [5_1kt + RRE — 5714, + ewﬁ)t}
f e Tt [ (1= — A s (1= )
(7) +E, Tz_tﬁ {(65) - 5] BRRE,, + E, thﬁT t%ﬁewaﬂ

where [ E’f dj = E, denotes average expectations in the population. Aggregate consump-
tion dynamics inherit the properties of individual decision rules. This is the only model
equation that depends on expectations, and therefore of central focus. If near-rational
expectations are to be a source of amplification and propagation of shocks, the effects
must originate here.

A log-linear approximation to relations (1), (2), (3), (5) and labor-leisure condition
yields the remaining model equations.

II. Beliefs

Optimal decisions require households to forecast the evolution of future wages and
returns to capital. They are assumed to use a simple econometric model, relating wages in
efficiency units and the capital rental rate to the aggregate stock of capital also expressed
in efficiency units. That is

(8) RE = wy + wike +¢f,
(9) Wy = Wl + Wk + e
and

(10) ]%H-l = wg + wlfl%t + ef

where e}, efand e; are regression errors. The beliefs contain the same variables that
appear in the minimum-state-variable rational expectations solution to the model. And,
while the rational expectations solution does not contain a constant, it has the natural
interpretation under learning of capturing uncertainty about the steady state.
Rational Expectations. The model solution under rational expectations implies (to
a first-order approximation) that labor and capital prices and the next-period capital
stock expressed in efficiency units are linearly related to aggregate capital, with time-
invariant coefficients wf = w¥ = w§ = 0 and W] = @7, WY = @, W¥ = OF. The
agents’ forecasting model nests beliefs that would be observed in a rational expectations
equilibrium. Under rational expectations e} = @}4,, e = w¥4, and ef = @k4,.
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Perpetual learning. Agents estimate equations (8) — (10), updating their coefficient
estimates every period as new data become available. Following recent literature, house-
holds update their estimates using a discounted least-squares estimator, assigning lower
weight to older observations to protect against structural change.® Letting w’ = (wg,w1),

2y = (RtK, Wy, lActH) and ;1 = (1, I%t), the algorithm can be written in recursive terms
as

(11) Gy = 1+ gRz g1 (2 — & yqe-1)
(12) Ry = Ri1+9(q-1q,_1 — Re—1)

where @; denotes the current-period’s coefficient estimate and g € (0,1) denotes the
constant gain, determining the rate at which older observations are discounted. The
constant gain assumption delivers perpetual learning, as market participants ‘forget’ the
past.

This learning rule is motivated by the assumption that agents perceive factor prices and
capital to be non-stationary. Observed changes in prices are in part attributed to shifts
in the model parameters w; and in part to the idiosyncratic disturbances e}, e¥’and ef.
Therefore, any change in factor prices and capital is partially interpreted as a permanent
change in the long-run equilibrium values of the variables they forecast. The constant
gain ¢ regulates how much weight agents attribute to these permanent changes. The
model nests rational expectations: as g — 0, agents perceive all changes as temporary
and their model converges to the true data generating process of the economy.® One
advantage of this simple model is that departure from rational expectations is regulated
by a single parameter. In the on-line appendix we offer a Kalman filter interpretation to
the simple econometric model discussed here.

Information. It is assumed the innovation, 4,, is not used in equations (8) — (10).
This does not imply 9, is unobserved — indeed, (6) implies consumption decisions are in
part determined by these innovations. If the innovation was used in forecasting, agents
would not face an inference problem and learn quickly given that the only disturbance
in the model is the technology shock.” Not including this disturbance in the econo-
metric model is justifiable because, while individual households and firms observe these
disturbances, they do not how they are mapped into market clearing prices in general
equilibrium. This is a natural implication of the maintained assumptions. Agents do not
know individual preferences and technologies of other market participants. Households
understand that there is a stochastic trend but know neither its determinants nor that
firms are identical. Wherefore, they cannot infer either an aggregate production function
or the precise relationship between factor prices, aggregate capital and technology shocks.

50f course we consider an otherwise stationary model environment with a single shock so as to clearly
isolate the role of expectations in generating business cycle fluctuations. Adding structural change would
generate further volatility.

6The convergence properties of this class of model are discussed in George W. Evans and Seppo
Honkapohja (2001).

"Formally, including the disturbance would generate a singularity in the regression if initial beliefs
coincide with the rational expectations equilibrium. When initial beliefs differ from the rational expecta-
tions equilibrium, the regression is well defined, but because there is no uncertainty about the forecasting
model, beliefs quickly converge to the predictions of a rational expectations analysis where the singular-
ity would again emerge given infinite data. And with a small gain, as in our analysis, the regression’s
variance-covariance martix would still be close to singular.
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Suppose the process X; is in fact determined by

N .
X, =[]z
i=1

where each Z} is random walk with drift unobserved by agents. These individual processes
possibly reflect population growth, technology growth in other sectors of the economy,
or long-term shifts in the aggregate labor supply. Because agents can not distinguish
primitive processes they can not estimate each disturbance’s contribution to the deter-
mination of prices. Under rational expectations, the equilibrium return to capital would
be determined by

N
DK _ —x — %7 —% 22,0
Ry = wg + wike + E W47t
i=1

with obvious notation. Our assumption is a reduced-form representation of a more com-
plicated model in which agents make inferences in the presence of multiple imperfectly
observed disturbances.

Recourse to what some may view as a stark assumption is solely due to the lack
of meaningful heterogeneity in the model. Indeed, this assumption is similar to the
imperfect common knowledge literature where heterogeneity in information is explicitly
modelled but where it is often assumed that only certain kinds of aggregate data are
public knowledge or only certain markets are available to trade state-contingent claims.
Absent these assumptions prices would fully reveal information about which agents are
assumed to have only imperfect understanding — there is no inference problem. For
example, see Lorenzoni (2008).

Timing. In any period ¢ agents inherit belief parameters determined by period ¢ — 1
data. While the forecast function is predetermined, expectations themselves are not.
Agents observe the same variables that a ‘rational’ agent would observe. The only dif-
ference is that their learning shifts the forecast function over time. For example, the

one-period-ahead forecast of R is
E ]%K AT + AT ];:
tftgp] = Wop—1 T W1 Re+1

where &g, ; and &7, ; are the previous-period’s estimates of belief parameters that

define the period ¢ forecast function. As ];3t+1 is predetermined in period ¢ it is observed,
while future levels of the capital stock must be forecast. Finally in forecasting over
the decision horizon agents do not take into account that they update their beliefs in
subsequent periods. The model is one of anticipated utility — see Sargent (1999).

True Data Generating Process. Using (8) — (10) to substitute for expectations in
7) and solving delivers the actual data generating process

(

(13) ze = Ti(Wi—1)qe—1 + T2 (@e-1) Y,

(14) o = W1+ 9B g ([(Th (@em1) — &y_y) -1 + T (04—1) 'AYt])/
(15) Ry = Ri1+9(¢14i1— Rio1)

and

(16) [ & 4 M ]/ = Wz,



VOL. VOL NO. ISSUFE LEARNING AND BUSINESS CYCLES 9

where T () and T (&) are nonlinear functions of the previous-period’s estimates of
beliefs and V¥ is a matrix comprised of composites of primitive model parameters. The
actual evolution of z; is determined by a time-varying coefficient equation in the state
variables k; and 4,, where the coefficients evolve according to (14) and (15). The model
given by relations (13) - (16) has a unique non-stochastic steady state corresponding to
the steady state under rational expectations.® George W. Evans and Seppo Honkapohja
(2001) show that for a gain sufficiently close to zero the distribution of the estimates @,
is normal and centered around the time-invariant coefficients of the rational expectations
equilibrium.

Forecast Errors. The evolution of z; depends on w;_1, while at the same time @,
depends on z;. Learning induces self-referential behavior. Comparing (8) — (10) and
(13) - (16) it is immediate that market participants have a mis-specified model of the
economy: that is w # Tj(w). In particular, the economy exhibits time variation in
the coefficients T3 (0;—1) and T (w;—1) but their evolution differs to the agents’ model.
The mis-specification stems from the fact that individuals fail to internalize the impact of
updating their model on the aggregate economy. Each market participant views structural
change as exogenous, ignorant that every other agent is using the same updating rule.’
In fact, the time variation in the coefficients T3 (&;—1) and T (Wy—1) is endogenously
generated by the agents’ learning process. Model mis-specification is the source of the
systematic forecast errors discussed next.

III. Calibration

The sample characteristics we seek to match are for US data, 1948:Q1 to 2007:Q4. A
short description of each series is contained in the Appendix. We set the discount rate
to B = 0.99. We assume separable preferences between consumption and leisure, with
log-utility for consumption and close-to-linear disutility of labor.'® Firms’ technology is
specified by a capital share a = 0.34 and steady-state growth rate of labor augmenting
technical progress equal to 4 = 1.0053, consistent with the quarterly mean output growth
over the sample.

Two parameters are left to calibrate: the standard deviation of the shock, o 4, and the
constant gain, g. The former is calibrated by minimizing the sum-of-squared distances
between the model-implied volatility of HP-detrended output and the corresponding data
moment.'! The latter parameter requires further discussion. Households require forecasts
of future wages and rental rates to make current spending decisions. The gain parameter
regulates the properties of these expectations. Ideally it would be disciplined by data on
these forecasts. Unfortunately, mapping the model concepts of wage and interest rates to
measured data concepts is problematic. There are scarce survey forecast data on wages
and certainly no data on wages normalized by the level of technology, the object that is
actually forecast by households in our model. And while survey expectations of nominal
interest rates at various maturities and inflation permit inferences about forecasted real

8 Although the agents’ model assumes a non-stationary environment, the actual evolution of the
economy is a stationary process with time-varying parameters.

91n the on-line appendix we show that according the Kalman filter interpretation of agents updating
algorithm, the coefficients w¢ are assumed to be evolving according to a random walk.

10 Accordingly, the inverse Frisch elasticity of labor supply satisfies ey — 0. This approximates the
labor supply properties of a model of indivisible labor — see Hanson (1985) and Rogerson (1988).

11 The time series are generated by simulating the model for 2000 + 7" periods. The first 2000 periods
guarantee convergence to the model stationary distribution and are discarded. The simulation is repeated
5000 times. The time of the simulation is set to 7" = 160 quarters which corresponds to the sample size
for US data.
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interest rates, they are not necessarily directly related to the marginal product of capital
— see Robert E. Hall (1988) and Mulligan (2002).

Given these limitations, the choice of gain parameter is disciplined indirectly using
survey data on expectations. Table 1, Panel A, documents properties of the forecast er-
rors from the Survey of Professional Forecasters for measures of economic activity, goods
prices and nominal interest rates. The data are described in the Appendix. Columns 1
and 3 give the autocorrelation of forecasts errors at a quarterly and annual frequency,
while columns 2 and 4 give the predictable movements in these same errors conditional
on lagged real GDP growth.'?

Table 1 Forecast Properties

Statistic
(P FEE) (PR Av) (PR EES) (PR Ay, )

Panel A: Survey of Professional Forecast Data
Economic activity

Real. RGDP! 0.11 —0.26 - - -
Nominal GDP 0.14 — 0.1 —
Real GDP? 0.37 - 0.18 —
Industrial prod. 0.44 — 0.10 —
Unemp. rate 0.58 0.38 0.14 0.37

Interest rates

Thill 0.27 —-0.17 0.10 —0.43
Thond (10yrs) 0.32 —0.32 —0.45 —0.20
Corporate bond 0.40 —0.20 —0.21 —0.22
Real (ex post) 0.38 —0.05 — —

Prices (inflation)
GDP Deflator 0.56 0.04 0.53 —0.2
CPI 0.14 —0.24 —0.08 —0.27

Panel B: Model Predictions

Learning
Sample: 162 Q
RF forecast 0.36 (0.19) —0.09 (0.11) +0.03 (0.15) —0.02 (0.09)
wy forecast 0.36 (0.19) 0.09 (0.11) —0.03 (0.15) 0.02 (0.09)
Sample: 110 Q
RF forecast 0.31 (0.21) —0.09 (0.12) +0.01 (0.17) 0.00 (0.11)
wy forecast 0.31 (0.21) 0.09 (0.12) -0.01 (0.17) 0.00 (0.11)
REE
Sample: 110 Q
RF forecast —0.01 (0.08) 0.00 (0.09) +0.03 (0.13) —0.02 (0.09)
wy forecast —0.01 (0.08) 0.00 (0.09) —0.03 (0.13) 0.02 (0.09)

Note: data from Survey of Professional Forecasters. We use the median one- and four-quarters ahead
forecasts. The variable Real GDP! is obtained as the difference between the forecast of nominal GDP

12Forecast errors for any variable Z; are defined as FEtlQ = EiyZiy1 — Zi41 for one-quarter-ahead
forecasts and FE?Q = FtZty4 — Zi44 for four-quarter-ahead forecasts.



VOL. VOL NO. ISSUFE LEARNING AND BUSINESS CYCLES 11

and the forecast of the GDP deflator. For robustness, we computed the one-quarter-ahead forecast errors
using alternative data vintages available to forecasters. The autocorrelation of one-period-ahead forecast
errors is 0.26 for the first vintage, 0.16 for the second vintage, 0.22 for the fifth vintage, 0.19 for
the ninth vintage and 0.12 for the latest available vintage. The variable Real GDP? is the forecast
for real GDP from the survey, which is available for a smaller sample period. The forecast for the ex-
post real rate is obtained by subtracting the two-periods-ahead forecast for the GDP deflator from the
one-period-ahead forecast of the 3-months Thill.

At a quarterly frequency, forecast errors are positively autocorrelated, a pattern for the
most part reflected in the data at annual frequencies — exceptions being for two forecast
measures of interest rates which display negative autocorrelation and the CPI.'® Forecast
errors also show a systematic pattern over the business cycle. For example, market par-
ticipants under-predict interest rates and over-predict unemployment during expansions
and contrariwise during contractions. Counter cyclicality in interest rate forecast errors
has also been documented by Monika Piazzesi and Martin Schneider (2008).

We use the above evidence to impose discipline on the choice of gain. The benchmark
model assumes a gain of 0.002. While the discussion gives focus to this particular value,
later robustness exercises gauge the sensitivity of this calibration. It is shown that a
range of gain parameters engender learning dynamics that have the property that their
implied forecast errors are consistent with both the above evidence and amplification and
propagation of technology shocks. In this sense, the Survey of Professional Forecast data
restricts the gain parameter to a set of values.

Our calibrated gain is considerably smaller than values found in the literature, which
range from 0.007 — 0.05 — see, for example, William A. Branch and George W. Evans
(2006) and Fabio Milani (2007), which estimate the gain, and Athanasios Orphanides and
John C. Williams (2005). Finally, to interpret this magnitude, note the gain indexes the
weight assigned to past data. This value of the gain implies that observations that are
50 years old receive a weight of (1 — 0.002)200 ~ (.67, implying agents do not discount
past data too heavily.!*

IV. Central Results

A.  Inspecting the Mechanism: the Effects of a Technology Shock

To develop intuition on the role of learning in business cycle fluctuations, consider the
model’s impulse response functions to a unit technology shock. For stationary variables,
the impulse response functions are expressed in percentage deviations from steady state.
For non-stationary series, the impulse responses are reported in percentage deviations
from the balanced growth path. We plot the dynamics of these series relative to their
paths in absence of the shock. A unit positive technology shock leads to a unit increase
in the level of these series. In the model with learning the effects of a disturbance depend
on the precise beliefs maintained by households at the time of the shock.!® In each

13Several papers have documented that survey forecasts as measured by surveys like Michigan, Liv-
ingston and SPF fail to be consistent the ‘rational’ expectations in terms of unbiasedness and serially
uncorrelated forecast errors. Most studies focus on inflation expectations — see, for example, Lloyd B.
Thomas (1999) and John M. Roberts (1997) and references therein.

M For this value of g, agents would give approximately zero weight to observations that are 500 years
old.

15 Impulse response functions for the learning model are generated by simulating the model twice for
2000 + T periods. The first 2000 periods guarantee convergence to the model stationary distribution
and are discarded. The second simulation includes a unit shock in period 2001. The T-period impulse
response to a unit technology shock is then given by the difference between these two trajectories. The
simulation is repeated 5000 times. A projection facility is employed to ensure beliefs are not explosive.
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plot the solid lines correspond to the median point-wise impulse response function, while
the dotted lines provide the interquartile range of the simulated impulse responses. The
dashed line gives the corresponding impulse response predicted by a rational expectations
analysis of the model.

Figure 1 reports the impulse response functions for output, consumption, investment
and hours. That learning amplifies disturbances relative to rational expectations is im-
mediate. Output, hours and investment display a hump-shaped profile in response to a
technology shock. The precise quantitative implications are documented below. An in-
teresting feature of the model concerns dynamics in the period after the technology shock
dissipates. In a rational expectations equilibrium, all model variables, appropriately nor-
malized, are a linear function of the capital stock and the disturbance to the growth rate
of technology. As the disturbance is assumed to be i.i.d., the observed dynamics one
period after the shock are entirely determined by adjustment in the capital stock. Under
learning, this is not the case. The technology shock leads to revisions in beliefs that
commence the period after the disturbance. Subsequent dynamics are largely driven by
revisions to beliefs. The following describes the sequential response of the economy in
greater detail.

Impact For all series the impact effects of a technology shock are almost identical when
comparing the median impulse response under learning and the impulse response
under rational expectations. This is because agents’ beliefs are distributed around
the rational expectations prediction function, as shown in the next section. How-
ever, in the case of learning, there is variation in the impact effects. Depending on
the precise beliefs of households and firms at the time of the shock, which along
with the capital stock determine the state of the economy, the impact effect of the
technology shock could be larger or smaller.

Individual forecasts In the period after the disturbance, agents revise upwards their
beliefs about the returns to investment and downwards their beliefs about wages. A
positive disturbance leads to an increase in the coefficients of (9) and a decrease in
the coefficients of (8). The observed rise and fall of real interest rates and efficiency
wages is in part attributed to the idiosyncratic shocks and in part to both changes
in their long-run equilibrium returns and the elasticity of each rate with respect to
capital. Consequently, the present discounted value of the returns to capital rise
and the present discounted value of labor returns in efficiency units fall relative to
the previous period, as indicated in Figure 2 which plots these infinite sums.!

Individual consumption and labor supply According to the optimal decision rule
(7), optimism about future returns to capital tilts the consumption profile towards
greater future consumption. This and the flatter expected wage path serve to
increase the marginal utility of income, inducing intertemporal substitution of con-
sumption and leisure. Consequently, individual investment and labor supply in-
crease.

In practice this is invoked extremely rarely, reflecting the remarkable stability of the real business cycle
model under learning and the maintained parameter assumption. This is also reflected in the ergodic
distribution of beliefs in figure 4. Our results are not driven by explosive beliefs. As an additional check,
we confirm that the mean and median of reported statistics are comparable.

16This does not imply that expected wages are lower than before the technology improvement. This
can be inferred from the impulse response to consumption which under the current calibration is the
same as the real wage. An analogous plot to figure 3 for efficiency wages reveals that the expected fall
in efficiency wages is less than the realized fall, implying that the expected and actual level of wages are
above the pre-shock level. See also the discussion of figure 3.
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FIGURE 1. IMPULSE RESPONSES FOR CONSUMPTION, OUTPUT, INVESTMENT AND HOURS TO A 1% CHANGE
IN TECHNOLOGY. THE SOLID LINE DENOTES THE MEDIAN IMPULSE RESPONSES FOR THE MODEL UNDER
LEARNING. THE DASHED LINE SHOWS THE IMPULSE RESPONSE UNDER RATIONAL EXPECTATIONS. THE
DOTTED LINE INDICATE THE 25TH AND 75H5TH PERCENTILE IMPULSE RESPONSE UNDER LEARNING.

Aggregate response The increase in aggregate labor supply lowers equilibrium wages,
increasing the amount of hours worked and boosting the marginal productivity of
capital. The realized return to capital turns out to be higher than agents’ forecasts,
as shown in the top panel of Figure 3. Similarly, higher aggregate labor supply
induces lower efficiency wages than expected. This “inertia” in the forecasts arises
because individual agents fail to internalize the effects of their beliefs revision on
the aggregate economy.'” However, agents’ predictions are in part realized in equi-
librium outcomes in the period after the shock: the model generates dynamics that
are broadly consistent with those described by Pigou (1927).

Convergence In subsequent periods agents revise their beliefs about the future evolution
of the returns to capital and labor: estimated coefficients in (8) and (9) converge
monotonically to their long-run values and the model converges to its unique steady
state given no further shocks.!®

Figure 3 presents a final set of impulse response functions that further elucidate the
mechanics of the model. The top panel gives the dynamics of the difference between
output under learning and rational expectations (dashed line) — revealing the additional
amplification and propagation — and the model-implied forecast error of the rental rate.
The forecast error for efficiency wages is the mirror image, with opposite sign. Together
they underscore some important properties of the model. Even though households are
optimistic about returns to capital relative to rational expectations, in equilibrium they

17This is captured by the fact that, under learning, Th (w) # w in (13).
18 This monotonic convergence is related to the convergence properties of agents’ beliefs. The stability
properties of the model imply real eigenvalues — see appendix.
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FIGURE 3. IMPULSE RESPONSE TO A 1% INCREASE IN TECHNOLOGY. THE TOP PANEL SHOW THE MEDIAN
RESPONSE OF THE ONE-QUARTER AHEAD FORECAST ERROR FOR Fi’C (SOLID LINE) AND ITS INTERQUARTILE
RANGE (DOTTED LINE) AND THE DIFFERENCE BETWEEN THE OUTPUT RESPONSE UNDER LEARNING AND
UNDER RATIONAL EXPECTATIONS (DASHED LINE). THE BOTTOM PANEL SHOWS THE FORECASTED PATH OF
Rk AT DIFFERENT FORECASTING HORIZONS, ON THE PERIOD AFTER THE TECHNOLOGY SHOCK. THE SOLID
LINE REPRESENTS THE MODEL UNDER LEARNING AND THE DASHED LINE THE MODEL UNDER RATIONAL
EXPECTATIONS.
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still under-predict actual interest rates. The model displays a systematic relationship be-
tween forecast errors and the business cycle which is in line with the empirical evidence
presented in the previous section. The bottom panel shows the forecasted path for R*
in the period after the shock, that is after agents’ update the regression coefficients in
equations (8) — (10). The forecast path under learning (solid line) and rational expecta-
tions (dashed line) are significantly different only at longer forecast horizons (more than
20 quarters). Under rational expectations agents’ forecasting models have fixed coeffi-
cients while under learning the coefficients fluctuate over time. This important difference
emerges at longer forecasting horizons because variation in the belief coefficients become
the most important determinant of expectations (as model variables are expected to be
close to steady state levels).

B. Statistical Properties

Model-implied forecast errors. Panel B, Table 1, shows forecast error statistics for
each of three models: the learning model simulated for T' = 162 quarters; the learning
model simulated for T = 110 quarters; and the rational expectations model simulated for
T = 110 quarters.!? These sample periods correspond to the two most frequent samples
for which forecasts are available from the Survey of Professional Forecasters. The number
reported in brackets is the standard deviation arising from sampling variability. Our
baseline calibration implies serial correlation in agents’ one-period-ahead forecast errors
which is comparable to the Survey of Professional Forecast data reported in section 4.
Moreover, the sampling variability easily encompasses these latter values. In contrast,
the rational expectations model generates no persistence in forecast errors, even in small
sample.

Several additional points are worthy of comment. First, longer model-simulated sam-
ples generate greater persistence in forecasts errors. This is because the low frequency
movement in beliefs becomes a more dominant source of variation as the sample size
increases. With a single technology shock, the serial correlation becomes highly persis-
tent. Second, forecast errors of both wages and rental rates display correlation with past
output growth. Again, the rational expectations model finds little predictable movement.
Third, agents’ four-quarter-ahead forecast errors display no pattern; at longer horizons
model predictions are closer to rational expectations than to survey data.

Business cycle statistics. Table 2 reports summary statistics on the cyclical proper-
ties of various US data series and the model under both rational expectations and learning
dynamics. The sample length of the simulations is 7' = 162. For each variable, Panel A
reports the relative standard deviation and correlation with output for HP-filtered series
(facilitating comparison to earlier studies based on filtered data). Panel B reports corre-
sponding statistics for the growth rates of each series (which is more natural given the
assumed stochastic trend). It also gives first-order serial correlation of growth rates along
with the standard deviation arising from sampling variability in parenthesis.

Panel A shows learning dynamics amplify the effects of technology shocks. To match
the variance of output, the learning model requires a technology disturbance with a
standard deviation that is about 14 percent smaller than required under rational expec-
tations. Moreover, the relative volatility of hours and investment is 16 and 29 percent
higher respectively, bearing closer resemblance to data-implied moments than the rational
expectations model. The former represents a significant success, being problematic for
standard real business cycle theory — see Hansen (1985) and Rogerson (1988). In regards
to consumption, wages and labor productivity, the model performs less well. Given the

19The model is simulated for 2000+T periods. The first 2000 observations are discarded and the
statistics are computed using the remaining T observations. See footnote 16.
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high elasticity of labor supply and the assumption of perfectly competitive markets the
model predicts C’t Wy = Yt — ﬁt and is therefore too stylized to capture the different
dynamics of these variables. The high substitution effects imparted by learning dynamics
implies a lower relative standard deviation than in the data.

Table 2: Business Cycle Statistics

Model
Data REE Learning

Panel A: HP Filtered Data

Relative Std Dev

oA - 1.21 1.04
ocloy 0.55 0.54 (0.01) 0.43 (0.05)
or/oy 2.88 2.43 (0.02) 2.83 (0.20)
on/oy 0.92 0.49 (0.01) 0.63 (0.07)
opr/oy 0.52 0.54 (0.01) 0.43 (0.05)
Correlation

Pe.y 0.78 0.97 (0.01) 0.91 (0.05)
PrY 0.90 0.99 (0.00) 0.98 (0.00)
PHY 0.85 0.97 (0.01) 0.96 (0.01)
PPry 0.40 0.97 (0.00) 0.91 (0.05)
PPrH —0.12 0.88 (0.02) 0.77 (0.08)

Panel B: Growth Rates

Relative Std Dev

O4.AY 3.96 4.76 (0.26) 4.06 (0.41)
onc/oAy 0.55 0.51 (0.01) 0.53 (0.08)
OAI/OAY 2.56 2.46 (0.02) 2.60 (0.20)
oAN/oAY 0.80 0.50 (0.00) 0.57 (0.07)
OAPr/OAY 0.74 0.51 (0.01) 0.53 (0.08)
Correlation

PAC,AY 0.5 0.99 (0.00) 0.90 (0.03)
PAIAY 0.74 0.99 (0.00) 0.96 (0.01)
PAN,AY 0.68 0.98 (0.01) 0.91 (0.05)
PAPFAY 0.62 0.99 (0.01) 0.90 (0.03)
PAPT.AN ~0.16 0.94 (0.02) 0.65 (0.07)

Serial Correlation

AC 0.27 0.07 (0.09)  —0.10 (0.10)
Al 0.35 —0.03 (0.08)  0.35 (0.07)
AY 0.30 —0.00 (0.08)  0.19 (0.08)
AH 0.41 —0.03 (0.08)  0.41 (0.07)
APr —0.06 0.07 (0.09)  —0.10 (0.10)

Note: Pr denotes labor productivity

Panel B shows the same set of statistics in terms of growth rates, underscoring that
the model under learning delivers a better fit. In particular, the model does not display
the counter factually large output growth volatility which occurs under rational expec-
tations.?’ Turning to the correlations between each series and output, all moments are

20The rational expectations model over-predicts the standard deviation of output growth by some 20
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closer to the data than are those under rational expectations. Of particular note are the
weaker correlations of consumption, wages and labor productivity with output, which are
the result of endogenous shifts in the labor supply in response to revisions in beliefs.

Since Cogley and Nason (1993, 1995) and Julio Rotemberg and Michael Woodford
(1996), the internal propagation mechanisms of technology shocks have been a central
preoccupation of real business cycle theory. The final block of Table 2 reports the au-
tocorrelation properties of the growth rate of key model variables. Investment, output
and hours growth are remarkably well matched, even before taking into account the non-
negligible sampling error.?! As expected, the predictions of the model under rational
expectations reveal no internal propagation.

That wages, labor productivity and consumption are counter factually predicted to have
negative serial autocorrelation stems from the well-known comovement problem in real
business cycle theory emphasized by Robert Barro and Robert G. King (1984) and more
recently by Beaudry and Portier (2007). While the impact effect of technology shocks
does induce positive comovement, subsequent dynamics under learning are driven by
revisions to beliefs which impart positive serial autocorrelation in hours and concomitant
negative serial autocorrelation in consumption (statistically different for the reported
sampling error). Section 5.4 introduces an extension to the baseline model that resolves
these counter factual predictions.

C. Distributions of Beliefs

Because beliefs are central to our story it is useful to study their properties further.
Consider the following thought experiment. An econometrician observes an economy with
data generated according to the real business cycle model under rational expectations.
For each observed sample, the econometrician runs the exact regressions that comprise
the beliefs in the learning model — equations (8) — (10) — calibrated with a gain equal
to g = 0.002. The coefficients are recorded for many simulations.??

The dashed line in Figure 4 plots a kernel estimate of the implied distribution of
the resulting parameter estimates. Six distributions are reported corresponding to the
intercept and slope coefficient in each of the three forecasting equations. Because the
econometrician is outside the model — equivalently, the econometrician is small relative
to the population of rational expectation agents — the distribution reflects pure sampling
error: there is no feedback of this sampling error on the true data generating process. The
distributions are centered on the rational expectations equilibrium, exhibit negligible bias,
and have a fairly small variance. This variance would go to zero as the gain parameter
goes to zero, as this would imply that all data are given equal weight. But with the
chosen positive gain it is evident that the econometrician has fairly accurate estimates
of the parameters characterizing the true data generating process, and would therefore
make comparably good forecasts of future returns as the rational agent.

Now imagine a world where all agents modeled by our real business cycle theory actually
construct forecasts based on these estimated models. This is precisely the model discussed
in this paper. The kernel estimate of the resulting ergodic distribution of the estimated
parameters is given by the solid lines. The distribution of the estimated coefficients on
capital is not centered on the rational expectations parameters. The distributions are re-
centered around the rational expectations coefficients to facilitate comparison with the

percent in contrast to 3 percent for the learning model.

2l However, higher-order autocorrelations coincide with rational expectations.

22To compute the distribution of beliefs, the model is simulated 2250 periods and agents’ estimates
are recorded after discarding the first 2000 observations. The simulation is repeated 250,000 times.
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FIGURE 4. DISTRIBUTION OF AGENTS’ REGRESSION COEFFICIETS IN THE MODEL WITH FEEDBACKS (SOLID
LINE) AND WITHOUT FEEDBACKS (DOTTED LINE).

non-feedback case.?? However the median impact impulse responses shown in the previous
section indicate that agents’ median forecast is in line with rational expectations.

The variation in possible beliefs that can be held by agents is substantially higher
than in the previous thought experiment. This dispersion is what leads to the nonlinear
impulse response functions and the associated uncertainty of their paths. This in turn
generates the increased volatility in the learning model. The figures show that the bulk
of the dispersion in agents’ beliefs is endogenously determined by the interaction between
observed prices and updating of agents’ beliefs. This model feature is further manifesta-
tion of shifting expectations as a source of business cycle fluctuations that is very much
in the spirit of Pigou and Keynes.

D. Generating Comovement

These dynamics relate to a number of recent papers on news shocks and business cycle
dynamics — see for example Paul Beaudry and Franck Portier (2007) and Nir Jaimovich
and Sergio Rebelo (2008). The present analysis is distinct in the sense that there is
only a single source of disturbance — technology shocks. Nonetheless, the negative
comovement problem between consumption and hours is manifestation of a common
difficulty. Both class of models predict for a given production frontier and separable
preferences that non-TFP disturbances engender negative comovement. However, the
precise mechanisms are distinct. In the news literature, signals about future productivity
generate strong wealth effects that lead to higher consumption and lower labor supply. In

23The “bias” in the estimates, a product of the nonlinearity of beliefs and linear regression methods,
is about 4% for each coefficient. The estimates for the intercept have no bias. As the gain goes to zero
this bias vanishes.
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the model with learning, the negative correlation between consumption and hours growth
stems from strong intertemporal substitution effects. Following Stefano Eusepi and Bruce
Preston (2009), this problem is resolved by adopting preferences that are non-separable
but consistent with a long-run balanced growth path. We consider an utility function of
the form

) "v(1-1L)

1—o0

U(C,L)= ,v',0" >0, and o > 1.
Nonseparability induces a rise the marginal utility of consumption when labor supply is
high, delivering tighter comovement between these variables. As shown in Florin Bilbiie
(2009), comovement under this preference specification is obtained only by assuming that
consumption is an inferior good. The appendix describes microfoundations with costly
labor market participation in which individual household preferences have consumption
and leisure being normal goods but in which aggregate dynamics are the same as in this
simple representative agent model. Stefano Eusepi and Bruce Preston (2009) develop
theoretical implications of a related model in detail.

Following Beaudry and Portier (2007) and Stefano Eusepi (2008), a production tech-
nology with variable capacity utilization and a small degree of increasing returns is in-
troduced. The production technology becomes

n
Y, = U, (UK (X Hy)' ™ where ¥, = [(Uth)“ (X H)' ™ X,

The term ¥; denotes the external effects of aggregate capital, indexed by the constant
n > 0. The term X, " guarantees that a balanced growth path exists in this model. Uy
is the utilization rate of capital in any period ¢t. Capital depreciation is now assumed to
increase with capacity utilization according to the function ¢ (U;) = 8~ 'U¢. These model
features affect firms’ labor demand in different ways. Capacity utilization mitigates the
decreasing returns to labor, producing a more elastic labor demand, while production
externalities induce endogenous labor-demand shifts in response to a changes in expec-
tations. Capacity utilization and increasing returns to scale alone are neither necessary
nor sufficient for obtaining comovement in hours and consumption, but they improve the
empirical fit of the model and, given the assumed preferences, induce tighter comovement
through two channels. First, by amplifying intertemporal substitution of consumption
and labor they mute the counter factual increase in consumption volatility implied by
nonseparable preferences. Second, they induce a stronger response of labor demand to
shifts in expectations, strengthening comovement.

The assumptions ¢ = 1, n = 0 and U; = 1 for all ¢ delivers our benchmark model.
Further details are found in the on-line appendix. There are two extra parameters with
respect to the benchmark model. The first parameter, measuring the aggregate external-
ity, is set as 7 = 0.1, consistent with the lowest estimate in Marianne Baxter and Robert
King (1991). This value implies a “small” degree of externality and a locally determinate
equilibrium under rational expectations.?* The second parameter is the household’s in-
tertemporal elasticity of substitution, o, which is chosen to make the ratio of the standard
deviations of consumption and output in the model close to the HP-filtered data. This
gives 0 = 1.5. The parameter o4 is again calibrated to match the standard deviation
of output in the filtered data. The gain is now g = 0.001, half that in the benchmark
model. The appendix shows the parameter, 6, indexing variable depreciation, is pinned
down by the steady-state return on capital and the steady-state depreciation rate.

24The parameter implies a downward-sloping demand for labor. For the connection between externality
and indeterminacy, see Benhabib and Farmer (1994).
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Table 3: Business Cycle Statistics

TA
oc/oy
or/oy
ocH/oy
opr/oy

Pcy
PrY
PH,Y
PPrYy
PpPr .H

O4.AY
oac/oay
oAI/oAY
oaN/oAy
OAPr/OAY

Pac,Ay
PAI,AY
PAN,AY
PAPr,AY
PAPr,AN

AC
AT
AY
AH
APr

Nonseparable Preferences Benchmark
Data REE Learning Learning
Panel A: HP Filtered Data
Relative Standard Deviation
0.71 0.59 1.04
0.55 0.66 (0.00) 0.55 (0.03) 0.43 (0.05)
2.88 2.15 (0.00) 2.32 (0.09) 2.83 (0.20)
0.92 0.56 (0.00) 0.64 (0.04) 0.63 (0.07)
0.52 0.45 (0.00) 0.37 (0.04) 0.43 (0.05)
Correlation
0.78 0.99 (0.00) 0.99 (0.00) 0.91 (0.05)
0.90 0.99 (0.00) 0.99 (0.00) 0.98 (0.00)
0.85 0.99 (0.00) 0.99 (0.00) 0.96 (0.01)
0.40 0.97 (0.00) 0.97 (0.01) 0.91 (0.05)
—0.12 0.95 (0.01) 0.92 (0.02) 0.77 (0.08)
Panel B: Growth Rates

Relative Standard Deviation
3.96 4.84 (0.27) 4.26 (0.54) 4.06 (0.41)
0.55 0.61 (0.00) 0.59 (0.04) 0.53 (0.08)
2.56 2.16 (0.00) 2.23 (0.11) 2.60 (0.20)
0.80 0.56 (0.00) 0.6 (0.05) 0.57 (0.07)
0.74 0.45 (0.00) 0.43 (0.06) 0.53 (0.08)

Correlation
0.5 0.99 (0.00) 0.99 (0.00) 0.90 (0.03)
0.74 0.99 (0.00) 0.99 (0.00) 0.96 (0.01)
0.68 0.99 (0.00) 0.98 (0.00) 0.91 (0.05)
0.62 0.96 (0.00) 0.96 (0.01) 0.90 (0.03)
—0.16 0.98 (0.01) 0.89 (0.03) 0.65 (0.07)
Serial Correlation

0.27 —0.01 (0.08) 0.08 (0.08) —0.10 (0.10)
0.35 —0.03 (0.08) 0.25 (0.08) 0.35 (0.07)
0.30 —0.03 (0.08) 0.17 (0.08) 0.19 (0.08)
0.41 —0.03 (0.08) 0.30 (0.08) 0.41 (0.07)
—0.06 0.01 (0.08) —0.01 (0.08) —0.10 (0.10)

Note: Pr denotes labor productivity

Table 3 reports an analogous set of statistics to table 2 for the separable preferences
model. Space constraints prohibit an exhaustive discussion, but the following are per-
tinent. The model does well in most dimensions. It generates a 16% increase in output
volatility compared to rational expectations. Non-separable preferences achieve a stronger
correlation between consumption and hours, reflected in the positive autocorrelation of
the former. This comes at the cost of slightly lower volatility of investment relative to
the benchmark model. These results address some of the concerns regarding predictable
movements laid out in Rotemberg and Woodford (1996). Finally, the model continues to
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generate forecast errors consistent with the documented patterns implied by data from
the Survey of Professional Forecasters.

V. Robustness

This section provides two additional robustness exercises. Unless otherwise noted, pa-
rameters are held fixed at benchmark values for the model under learning. The standard
deviation of technology shocks remains unchanged across simulations.

Alternative gain parameters. Table 4 reports statistics on amplification, propa-
gation and serial correlation in model-implied forecast errors as the gain parameter is
varied. In addition to our benchmark model, which is reproduced in column 4, six new
gains are considered spanning the interval (0.0013, 0.003). Amplification is judged by
the difference between the output standard deviations in the learning and rational ex-
pectations models. We also report the volatility of investment and hours (relative to
output) that is due to learning. Propagation is judged by the serial correlation in output
growth in the learning model. The final row, Forecast errors, gives the serial correlation
in the model one-period-ahead forecast errors for both interest rates and wages. A single
number is reported as the statistics are identical under maintained parametric assump-
tions. For this range of gain parameters the model continues to produce amplification
and propagation of technology shocks, while also being consistent with the documented
patterns of forecast errors in survey expectations data. Smaller gains render predictions
closer to rational expectations; but even the smallest gain provides some amplification of
technology shocks, 10 percent, and persistence in forecast errors of 0.22. Larger gains pro-
vide non-trivial amplification, propagation and serial correlation. The largest gain, which
remains conservative, produces amplification in output, investment and hours volatility
of 20, 25 and 43 percent respectively and persistence in forecast errors of 0.52 — slightly
below the largest statistic in the Survey of Professional Forecast data for unemployment
rates of 0.58.

Table 4 (Benchamark Model, sample:162Q)

Gain
0.0013 0.0015 0.0017 0.002 0.0025 0.0027 0.003

Amplification:
oy 9.7% 11% 12% 14% 17% 18% 20%
or/oy 11% 12% 14% 17% 21% 23% 25%
ox/oy 18% 21% 24% 28% 36% 39% 43%
Propagation 0.12 0.14 0.16 0.19 0.23 0.25 0.27
Forecast errors 0.22 0.26 0.3 0.36 0.45 0.48 0.52

Note: the table shows the properties of the benchmark model under different values of the constant
gain g. The first three rows show the excess volatility in HP detrended output, investment and hours with
respect rational expectations. The fourth row shows the first order autocorrelation of output growth.
The final row displays the autocorrelation of one-quarter-ahead forecast errors. The reported statistics
from the model are mean values over 5000 simulations of length 162 quarters (excluding 2000 quarters
of initial simulated data that are discarded). The numbers in parenthesis denote the standard deviation
across simulations.

Alternative models. This section considers alternative model assumptions. Results
are collated in table 5. Models 1 and 2 show the benchmark results for the rational
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expectations and learning models. The latter reiterates earlier results for ease of com-
parison while the former gives the results under rational expectations assuming the same
standard deviation of technology shocks as model 2. The improved amplification is again
immediate. Models 3 and 4 show the cases of a lower elasticity of labor supply (e = 0.5).
Under both rational expectations and learning, the volatility of output falls for a given
standard deviation technology shock. Concomitantly, the relative volatility of investment
and hours also decline, while the relative volatility of consumption increases. The serial
correlation properties adjust accordingly. These results underscore the centrality of the
elasticity of labor supply in generating plausible volatility in real business cycle models.

Table 5: Alternative model specifications.

Statistics
oy oc/oy orfoy om/oy Ac Ay Ar (FEtlQ,FEtlgl)

Data 1.54 0.52 2.82 0.91 0.16 0.34 0.27 -
1. Baseline RE 1.31 0.54 2.43 0.49 0.07 —0.00 —0.03 —0.01 (0.08)
2. Baseline Learn 1.54 0.43 2.83 0.63 —0.1 0.19 0.35 0.36 (0.19)
3. Low Elast. RE 0.9 0.58 2.29 0.3 0.07 0.00 —0.02 —0.01 (0.08)
4. Low Elast. Learn  1.13 0.51 2.56 0.36 —0.13 0.11 0.30 0.09 (0.14)
5. Inv. Adj. costs:
¢"”" =0.5 1.06 0.68 2.09 0.39 —0.04 0.16 0.56 —0.01 (0.08)
6. Euler Equation:

v = 0.002 1.31 0.54 2.43 0.49 0.08 —0.01 —0.03 0.00 (0.08)

v =0.04 1.31 0.54 2.43 0.49 0.08 0.00 —0.02 0.09 (0.07)

Model 5 presents a model under rational expectations with investment adjustment
costs. This permits a comparison of learning dynamics with one popular friction employed
in the real business cycle literature. A more exhaustive comparative exercise is beyond
the scope of this paper. Introducing investment adjustment costs of the form

I
f =1t 1= (755
t—

)] +a-om

with ¢(¥) = ¢'() = 0 and ¢”(§) > 0 in the rational expectations model certainly
improves correspondence of model predictions with data on some dimensions — the first-
order serial correlation properties of output and investment are much improved and out-
put is more volatile.?® But remaining moments are, if anything, further from the data.
In particular, the relative volatility of investment is considerably dampened.

The final rows report statistics for an alternative model with learning. Many recent
papers have proposed analyses of learning dynamics in the context of models where agents
solve infinite-horizon decision problems, but without requiring that agents make forecasts
more than one period into the future. Agents’ decisions depend only on forecasts of
future variables that appear in Euler equations used to characterize rational expectations

251n this experiment ¢’ (5) are chosen to obtain the closest first order autocorrelation of output growth
to the data.
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equilibrium. Key contributions include James Bullard and Kaushik Mitra (2002) and
George W. Evans and Seppo Honkapohja (2003).

Of particular relevance to the present study are the analyses of Noah Williams (2003)
and Eva Carceles-Poveda and Chryssi Giannitsarou (2007). The former studies precisely
the question explored here: can learning be a source of business cycle fluctuations? The
latter is similarly motivated, with specific focus on asset pricing implications of real busi-
ness cycle theory. Both papers make use of models with learning dynamics in which only
one-period-ahead expectations matter to expenditure and production plans of households
and firms. Both conclude that learning of the kind considered here is unpromising in gen-
erating amplification and propagation.?6

The final two rows replicate this kind of analysis in the context of the model developed
here. The two models are differentiated by choice of gain parameter. Williams (2003)
proceeds assuming that the Euler equations predicted by a rational expectations analysis
of the model represent decision rules of agents under learning. The model under learning
then assumes household consumption decisions are determined as

(17) Ct = Etct+1 — Et (,BRjo_l + ’A}/t_,'_l) .

This requires the further assumption that households directly forecast their own future
consumption using regressions of the kind specified in section 2. Preston (2005) shows
that this decision rule leads to suboptimal decisions — see also Marcet and Sargent
(1989).27 All remaining model equations are unchanged as they do not directly depend
on the specification of beliefs.

This approach leads to dramatically different conclusions. Learning dynamics fail to
generate amplification and propagation, for either a model with our benchmark gain
(y = 0.002) or a model with significantly larger gain (y = 0.04). Model-implied mo-
ments are essentially indistinguishable from a rational expectations analysis of the model,
though the large-gain model generates some persistence in expectational errors. That
learning models with only one-period-ahead expectations fail to capture salient features
of data relative to models based on optimal decision rules is also supported by Sophocles
Mavroeidis and Guillaume Chevillon and Michael Massmann (2009).

This negative finding has less to do with learning than it does with the assumed nature
of economic decisions. In real business cycle theory the only intertemporal decision is the
household’s consumption and saving decision. To make this decision households must
forecast the entire future sequence of wages and real interest rates. These beliefs about
future prices determine current market clearing prices, which in turn determine beliefs. A
consequence of the model of household behavior given by (17) is the connection between
market prices that govern future consumption and investment opportunities and current
allocations and prices is severed. The economic structure of the model is completely
changed and revealed to matter greatly for implied model dynamics. The strength of
the approach followed in this paper is that agents’ decision rules are consistent with the
model’s microfoundations.?®

26 A final related paper is Kevin Huang, Zheng Liu and Tao Zha (2008). It considers the same model
as Williams (2003) where only one-period-ahead expectations matter, but examines a belief structure
that does not nest the rational expectations equilibrium of the model. However, no attempt is made to
calibrate the model to fit observed data and results depend on one specific choice of initial beliefs.

2"That (17) describes optimal decisions under rational expectations and not learning reflects the
property under rational expectations of equilibrium probability laws embedding information about all
relevant constraints, including transversality conditions and intertemporal budget constraints. This is
not true once beliefs are exogenously specified as in the learning model contemplated here.

28The two models also differ in their local stability properties under learning dynamics. Consistently
with James Bullard and Stefano Eusepi (2008), models with infinite-horizon decisions imply larger eigen-
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More specifically, the on-line appendix demonstrates that in the period after a tech-
nology shock, revised beliefs are identical under the optimal decision and Euler equation
models — recall that in either case beliefs are centered on the rational expectations equi-
librium on average, and that under our benchmark calibration consumption and wages
are essentially identical; the forecasting models in each case are therefore also identical.
Moreover, revised beliefs imply forecasts at short horizons that are almost identical to
rational expectations forecasts. However, they are different at long horizons. This reflects
the fact that variation in capital dominates forecasts at short horizons but not long hori-
zons due to reversion to steady state. At long horizons it is variations in belief parameters
that cause departures from rational expectation forecasts. Because the Euler equation
approach does not depend on these forecasts it fails to give predictions that differ much
from rational expectations equilibrium.

VI. Conclusion

In the spirit of Pigou (1927) a model with learning dynamics is developed in which
self-fulfilling expectations are possible in response to technology shocks. The benchmark
model delivers volatility in output comparable to a rational expectations analysis with a
standard deviation of technology shock that is 10 - 20 percent smaller, and has substan-
tially more volatility in investment and hours. The model captures persistence in these
series, unlike standard models. The improvement in fit stems from shifting beliefs am-
plifying standard income and substitution effects operative in real business cycle theory.
An important feature of the model is its ability to replicate patterns in forecast errors
over the business cycle implied by data from the Survey of Professional Forecasters.

Data Appendix

We use data for the US economy, 1948:Q1 to 2007:Q4. The variables are constructed
as follows (DLX codes in parenthesis). Output is Real Gross Domestic Product (GDPH);
nominal consumption is computed as the sum of nondurable goods (CN), services (CS)
and government expenditures (G); nominal investment is the sum of private nonresi-
dential investment structures (FNS), Equipment and software (FNE), private residential
investment (FR) and consumption durable goods (CD). Consumption and investment
are converted in real terms by using the GDP deflator (GDP/GDPH). For total hours
we use the measure by Francis and Ramey (2008). All variables are transformed in per
capita terms by using the civilian non-institutional population between 22 and 64 years
old, also from Francis and Ramey (2008). Productivity is measured as real GDP divided
by total hours worked.

Survey forecast data is from the Survey of Professional Forecasters, collected by the
Federal Reserve Bank of Philadelphia. The median one- and four-quarter-ahead fore-
casts are used for a range of macroeconomic variables. The survey is quarterly; it is
sent out to participants at the end of the first month of each quarter and response
deadlines are the middle month of each quarter. A detailed description of the data
set can be found at the web site: http://www.phil.frb.org/research-and-data/real-time-
center/survey-of-professional-forecasters/. The available forecasts cover sample periods
of variable lengths. Forecasts for Nominal GDP, Industrial Production, the unemploy-
ment rate and GDP deflator are available for 1968Q4-2009Q1. Forecasts for Real GDP,
the T-Bill (3 month), Corporate Bond and CPI are available for 1981Q3-2009Q1. The
Tbond (10 years) is available for 1992Q1-2009Q1. We consider two additional series. The

values than models under one-period-ahead decisions, affecting the convergence properties of the model
under learning.
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first is a longer series for real GDP which is obtained by combining forecasts of nominal
GDP with forecast of the GDP deflator (both available starting in 1968Q4). The second
series is a forecast of the expected (ex-post) real interest rate, obtained by subtracting
the two-period-ahead forecast of GDP deflator from the one-period ahead forecast of the
Thill nominal interest rate. With the exception of the (ex-post) real interest rate, we
consider one- and four-period-ahead forecasts. We compute forecast errors as the differ-
ence between forecasts and the realized variable. The realized variable corresponds to the
latest available vintage of the data. For robustness, for real GDP (extended sample) we
compute the one-quarter-ahead forecast errors using alternative data vintages available
to forecasters. In particular we used the first, second, fifth and ninth vintage available.
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