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1 Equilibrium
This section presents the results of the optimization problems faced by households and firms and the
optimal policy problem for a benevolent authority that chooses fiscal and monetary policy for the
currency union as a whole.

1.1 Demand

The allocation of total consumption among different varieties can be derived by solving the standard
expenditure minimization problems. The implied GDP deflators are

PH,t =

∙
1

n

Z n

0

pt (h)
1−σ

dh

¸ 1
1−σ

, PF,t =

∙
1

1− n

Z 1

n

pt (f)
1−σ

df

¸ 1
1−σ

. (1)

Also from expenditure minimization it follows that the consumption price index (CPI) is

Pt =
h
nP 1−θH,t + (1− n)P 1−θF,t

i 1
1−θ

. (2)

Expression [2] can be rewritten as to highlight the relation between the relative price of country i
(pi,t ≡ Pi,t/Pt) and the terms of trade (Tt ≡ PF,t/PH,t)

pθ−1H,t = n+ (1− n)T 1−θt , pθ−1F,t = nT θ−1
t + (1− n) . (3)

The absence of the nominal exchange rate acting as an automatic stabilizer establishes a one to one
link between GDP inflation rate differentials and variations of the terms of trade

Tt
Tt−1

=
ΠF,t
ΠH,t

. (4)

where Πi,t = Pi,t/Pi,t−1 defines GDP inflation. Given the appropriate CES output aggregators, the
total demand for country i goods is

Yi,t = p−θi,t CW,t +Gi,t, (5)

where CW,t ≡
R 1
0
Cj
t dj is total consumption in the currency union and Gi,t represents the exogenous

amount of public spending in country i.
The consumption-saving and labor-leisure decisions can be derived by maximizing the utility func-

tion subject to the sequence of flow budget constraints. The optimality condition for the allocation of
wealth among state-contingent securities at the individual level delivers the standard expression for
the stochastic discount factor

Qt,t+1 = β

µ
Pt
Pt+1

¶Ã
Cj
t+1

Cj
t

!−ρ
. (6)

Idiosyncratic risk is fully shared among households, both within and across countries. For each couple
of households in the currency union, consumption levels are proportional, and the proportionality
term depends on the initial distribution of wealth among households. Assuming that the initial state-
contingent distribution of wealth is such that the life-time budget constraints of all households are
identical, the consumption levels are actually equalized across individuals, that is, Cj

t = Ct, ∀j ∈ (0, n),
Cj
t = C∗t , ∀j ∈ (n, 1) and Ct = C∗t = CW,t. Given the expression of the stochastic discount factor
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[6], no arbitrage implies that the gross return on a one-period risk-free bond Rt satisfies the Euler
equation

1 = βRtEt

(
1

Πt+1

µ
CW,t+1

CW,t

¶−ρ)
, (7)

where Πt ≡ Pt/Pt−1 defines CPI inflation. From [2], CPI inflation can be written as a function of
GDP inflation rates and lagged relative prices

Π1−θt = n (ΠH,tpH,t−1)
1−θ + (1− n) (ΠF,tpF,t−1)

1−θ . (8)

An exogenous country-specific wage markup (μwi,t > 1) introduces a wedge between the real wage
and the marginal rate of substitution between labor and leisure1

wj
t

Pt
= μwi,t

( j
t)
η

C−ρW,t

. (9)

The last first order necessary condition for household’s optimization is the intertemporal budget
constraint which corresponds to the flow budget constraint coupled with the appropriate transversality
condition

lim
T→∞

Et{Qt,TD
j
T } = 0. (10)

1.2 Supply

The program for firm k consists of choosing the price pt (k) that maximizes the present discounted
value of profits subject to the the technology constraint and the demand for its own product

yt,T (k) =

∙
pt (k)

Pi,T

¸−σ
Yi,T , ∀T ≥ t. (11)

The first order condition of the firm’s problem can be arranged as to express the optimal relative price
p̃t (k) /Pi,t as a function of aggregate variables only

p̃t (k)

Pi,t
=

µ
Ki,t

Fi,t

¶ 1
1+ση

.

The determinants of the optimal relative price for firm k can be written recursively as

Ki,t =

µ
σ

σ − 1

¶
μwi,t

µ
Yi,t
ai,t

¶1+η
+ αiβEt{Πσ(1+η)i,t+1 Ki,t+1} (12)

and
Fi,t = (1− τ i,t)C

−ρ
W,tpi,tYi,t + αiβEt

©
Πσ−1i,t+1Fi,t+1

ª
. (13)

Expression [12] is the present discounted value of a time-varying gross markup over current and future
(total) marginal costs. The gross markup can be decomposed in a combination of the price markup
(the constant term) and of the distortions in the labor market due to the exogenous wage markup μwi,t.
Expression [13] is the present discounted value of current and future (total) revenues net of taxation.

1This wedge can be thought of as capturing either the monopolistic distortions in input supply or inefficient con-
tracting.
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Differently from the closed economy case, total revenues display a terms of trade correction due to
foreign sales (the term pi,t).
All firms that reset their price in a given period choose the same optimal figure. By the law of large

numbers, the relevant price for all the firms that do not adjust is the GDP deflator of the previous
period. From the definition of the price index [1], the resulting Phillips curve for country i isÃ

1− αiΠ
σ−1
i,t

1− αi

! 1+ση
σ−1

=
Fi,t
Ki,t

. (14)

The presence of nominal rigidities creates price dispersion across firms which is the source of the
inefficient level of output in the model. The index ∆i,t measures the level of price dispersion for
country i

∆H,t ≡
1

n

Z n

0

∙
pt (h)

PH,t

¸−σ(1+η)
dh, ∆F,t ≡

1

1− n

Z 1

n

∙
pt (f)

PF,t

¸−σ(1+η)
df. (15)

The evolution of the index of price dispersion ∆i,t can be derived from the definition of the price index
[1]

∆i,t = αi∆i,t−1Π
σ(1+η)
i,t + (1− αi)

Ã
1− αiΠ

σ−1
i,t

1− αi

!σ(1+η)
σ−1

. (16)

1.3 Government Budget Constraint

The flow government budget constraint for country i can be rewritten more compactly using the
demand for the kth variety [11] with T = t and the definition of the GDP deflator [1]

Bi,t = Rt−1Bi,t−1 − Ptsi,t, (17)

where real per-capita surplus is defined as

si,t ≡ pi,t (τ i,tYi,t −Gi,t)− ςi,t. (18)

In what follows, it will be useful to work with an alternative expression for government liabilities. In
particular, I define the real value of debt at maturity as

bi,t ≡
RtBi,t

Pt
(19)

Exploiting the definition of the stochastic discount factor, expression [17] can be rewritten as

C−ρW,tbi,t−1

Πt
= C−ρW,tpi,t (τ i,tYi,t −Gi,t − ςi,t) + βEt

(
C−ρW,t+1bi,t

Πt+1

)
. (20)

In an open economy, the household’s transversality condition does not necessarily imply a correspon-
dent restriction on the value of debt issued by each national government. Indeed, the only constraint
brought about by the transversality conditions of the private sector is a correspondent transversality
condition on the sum of the asset positions of the two governments (i.e., on consolidated debt)

lim
T→∞

Et

(
βT−t

C−ρW,T

ΠT
[nbH,T−1 + (1− n) bF,T−1]

)
= 0. (21)
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The resulting consolidated intertemporal budget constraint is then

C−ρW,t

Πt
[nbH,t−1 + (1− n) bF,t−1] = Et

( ∞X
T=t

βT−tC−ρW,T [nsH,T + (1− n) sF,T ]

)
. (22)

2 The Steady State
This section shows that there exists an optimal policy plan that supports a symmetric steady state
with zero inflation and constant values for all variables.
The proof is by construction. I need to find a system of prices and quantities that a benevolent

policymaker would implement to maximize aggregate welfare at the union level for a given constant
vector of exogenous disturbances, equal across countries (āi,t = ā, μ̄wi,t = μ̄w > 1, Ḡi,t = Ḡ ≥ 0 and
ς̄i,t = ς̄).
The steady state is indexed by per-capita debt, the terms of trade and price dispersion. I focus on

a steady state with positive debt (b̄i,t = b̄ > 0), terms of trade equal to one (T−1 = 1) and no price
dispersion (∆i,−1 = 1). While the value of b̄ is arbitrary, I will discuss below how it is nonetheless
subject to an upper bound.
Given a set of initial commitments X0 that make policy optimal from a timeless perspective, I

wish to find a solution that involves a constant policy plus a constant set of commitments, debt levels,
terms of trade and price dispersions equal to the initial ones.
The centralized policymaker chooses the sequence

{Yi,t,∆i,t,Ki,t, Fi,t,Πi,t, pi,t, bi,t, τ i,t, CW,t, Tt,Πt}∞t=0 , i = {H,F}

that maximizes

uW,0 =
∞X
t=0

βt

"
C1−ρW,t

1− ρ
− n∆H,t

(YH,t/aH,t)
1+η

1 + η
− (1− n)∆F,t

(YF,t/aF,t)
1+η

1 + η

#
,

subject to

Ki,t

Ã
1− αiΠ

σ−1
i,t

1− αi

! 1+ση
σ−1

= Fi,t,

Ki,t =

µ
σ

σ − 1

¶
μwi,t

µ
Yi,t
ai,t

¶1+η
+ αiβΠ

σ(1+η)
i,t+1 Ki,t+1,

Fi,t = (1− τ i,t)C
−ρ
W,tpi,tYi,t + αiβEtΠ

σ−1
i,t+1Fi,t+1,

C−ρW,tbi,t−1

Πt
= C−ρW,tpi,t

¡
τ i,tYi,t − Ḡ− ς̄

¢
+ β

C−ρW,t+1bi,t

Πt+1
,

∆i,t = αi∆i,t−1Π
σ(1+η)
i,t + (1− αi)

Ã
1− αiΠ

σ−1
i,t

1− αi

!σ(1+η)
σ−1

,

Yi,t = p−θi,t CW,t + Ḡ,
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pθ−1H,t = n+ (1− n)T 1−θt , pθ−1F,t = nT θ−1
t + (1− n) ,

Tt
Tt−1

=
ΠF,t
ΠH,t

,

Π1−θt = nΠ1−θH,t p
1−θ
H,t−1 + (1− n)Π1−θF,t p

1−θ
F,t−1,

given the initial conditions X0, ∆i,−1, bi,−1 and T−1. Notice that the relative price for country i has
been defined as pi,t ≡ Pi,t/Pt.
I attach Lagrange multipliers φi1,t through φ

i
7,t to the constraints of the country i,

2 and multipliers
φW8,t and φ

W
9,t to the last two union-wide constraints. In order to impose constant commitmentsX0 = X̄,

the initial conditions X0 require additional Lagrange multipliers. These multipliers are normalized
in such a way that the first order conditions for t = 0 look the same as the first order conditions at
a generic period t > 0. Since the stationarity constraints for fiscal policy can only be imposed on
the consolidated real value of debt at maturity, this additional multiplier is denoted by φW4,−1 and in
principle differs from φH4,t and φF4,t.
Before formally proving the existence of the steady state characterized so far, I take a step back

and discuss the upper bound implicit on steady state debt. The government budget constraint is

(1− β) b̄ = τ̄ Ȳ −
¡
Ḡ+ ς̄

¢
.

Assuming that lump-sum transfers alone do not compensate for debt (assumed to be positive) and
spending (assumed to be non-negative), the steady state tax rate must be positive. Substituting the
resource constraint into the pricing equation gives

(1− τ̄)

µ
1− Ḡ

Ȳ

¶−ρ
=

µ
σ

σ − 1

¶
μ̄w

Ȳ ρ+η

ā1+η
,

which determines steady state output as as a negative function of the steady state tax rate and the
steady state markup and a positive function of steady state government purchases and productivity,
where the fraction of steady state spending to output is taken as exogenous from the benchmark
calibration. In any solution, the steady state tax rate τ̄ must then be less than unity, otherwise
output would be zero and so would be revenues for the government. Hence, over the (0, 1) interval,
revenues are bounded above (as in a standard Laffer curve argument) and so must be b̄ for a steady
state to exist consistent.
In order to verify the existence of the proposed steady state, I need to check that the first order

conditions of the optimal policy problem above are satisfied for time-invariant Lagrange multipliers.
The first order condition for price dispersion determines the solution for φi5

φH5 =
n
¡
Ȳ/ā

¢1+η
(1− αHβ)

, φF5 =
(1− n)

¡
Ȳ/ā

¢1+η
(1− αFβ)

.

The optimality conditions for debt give φi4,t = φi4,t−1 ∀t. Here, it is important to stress that the
above condition holds at time zero as well, so that φi4 = φW4 . This result combined with the first order
condition for CPI inflation then implies φW9 = 0.

2The Lagrange multiplier on each country’s government budget constraint is normalized by the size of its country,
which is equivalent to write the government budget constraint in terms of total rather than per-capita levels.
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The first order conditions for the tax rates give φH3 = nφW4 and φF3 = (1− n)φW4 . The first order
conditions for Ki and Fi yield

φi1 = − (1− αi)φ
i
2

and
φi1 = (1− αi)φ

i
3,

which clearly imply φi2 = −φi3. These results, together with the previous finding for φW9 , can be
substituted into one of the first order conditions for GDP inflation to show that φW8 = 0.
The set of first order conditions sufficient to determine the steady state value of remaining Lagrange

multipliers (φW4 plus φi6, φ
i
7) finally consists of (i) the first order condition for consumption

−ρC̄−ρφW4 +
³
φH6 + φF6

´
= C̄−ρ; (23)

(ii) The two first order conditions for output

−nC̄−ρτ̄φW4 + φH6 =
nȲ η

ā1+η
(24)

and

− (1− n) C̄−ρτ̄φW4 + φF6 =
(1− n) Ȳ η

ā1+η
; (25)

(iii) The two first order conditions for relative prices

−nC̄1−ρφW4 + θC̄φH6 + (θ − 1)φH7 = 0 (26)

and
− (1− n) C̄1−ρφW4 + θC̄φF6 + (θ − 1)φF7 = 0; (27)

(iv) The first order condition for the terms of trade

(1− n)φH7 = nφF7 . (28)

Hence, there are six conditions left to pin down five Lagrange multipliers. I will show that one
condition is redundant so that the system is in fact uniquely determined. To this extent, I add [24]
and [25] to obtain

−C̄−ρτ̄φW4 +
³
φH6 + φF6

´
=

Ȳ η

ā1+η
.

I solve for φH6 + φF6 and substitute into [23] to derive the value of φ
W
4

φW4 =
1− μ̄−1

τ̄ − ρ
,

where

μ̄ ≡
µ

σ

σ − 1

¶µ
μ̄w

1− τ̄

¶
=

Ȳ η/ā1+η

C̄−ρ
.

It then follows that φH6 and φF6 can be expressed as a function of the solution for φW4 and, most
importantly, that the solution for their values satisfies

(1− n)φH6 = nφF6 . (29)
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Now, I multiply [26] by (1− n) and [27] by n. I subtract one from the other and obtain

θC̄
h
(1− n)φH6 − nφF6

i
+ (θ − 1)

h
(1− n)φH7 − nφF7

i
= 0.

Since the first term of the last equation is zero because of [29], it follows that [28] is indeed redundant.
This argument completes the proof of the existence of a well-defined symmetric steady state with zero
inflation and positive debt.
The solution for the remaining multipliers is

φH1 = n (1− αH)

µ
1− μ̄−1

τ̄ − ρ

¶
, φF1 = (1− n) (1− αF )

µ
1− μ̄−1

τ̄ − ρ

¶

φH2 = n

µ
μ̄−1 − 1
τ̄ − ρ

¶
, φF2 = (1− n)

µ
μ̄−1 − 1
τ̄ − ρ

¶
φH3 = n

µ
1− μ̄−1

τ̄ − ρ

¶
, φF3 = (1− n)

µ
1− μ̄−1

τ̄ − ρ

¶
φH6 = nC̄−ρ

µ
τ̄ − ρμ̄−1

τ̄ − ρ

¶
, φF6 = (1− n) C̄−ρ

µ
τ̄ − ρμ̄−1

τ̄ − ρ

¶
.

φH7 =
nC̄1−ρ

θ − 1

"
(1− τ̄)

¡
1− μ̄−1

¢
τ̄ − ρ

− θμ̄−1

#
, φF7 =

(1− n) C̄1−ρ

θ − 1

"
(1− τ̄)

¡
1− μ̄−1

¢
τ̄ − ρ

− θμ̄−1

#
.

3 Second Order Approximation of the Utility Function
The second order approximation of the utility function is fairly standard and follows along the lines
of Woodford (2003). Up to the second order, the total welfare for country i is

ui,t = C̄1−ρEt

( ∞X
s=t

βs−t
∙
ĈW,s +

1

2
(1− ρ) Ĉ2W,s (30)

− (scμ̄)−1
µ
Ŷi,s +

1

2
(1 + η) Ŷ 2

i,s − (1 + η) âi,tŶi,s +
1

2
σκ−1i π2i,s

¶¸¾
+ t.i.p.+O

µ°°°ξ̂i,t°°°3¶ ,

where

κi ≡
(1− αi) (1− αiβ)

αi (1 + ση)

and sc ≡ C̄/Ȳ .
Although consumption is perfectly insured across countries, along the derivation of the approximate

policy problem, it will be useful to exploit the symmetry of the model and distinguish consumption
in country H (Ĉt = ĈW,t) from consumption in country F (Ĉ∗t = ĈW,t). The vector of endogenous
variables in deviations from the steady state can then be defined as

x0t ≡
£
ŶH,t Ĉt p̂H,t τ̂H,t ŶF,t Ĉ∗t p̂F,t τ̂F,t T̂t

¤0
.

The single vector of exogenous shocks can be denoted by ξt =
h
ξ̂H,t ξ̂F,t

i
. The six entries are

ξ0t ≡
h
âH,t μ̂wH,t ĜH,t ς̂H,t âF,t μ̂wF,t ĜF,t ς̂F,t

i0
.
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In matrix notation, welfare for country H is

uH,t = C̄1−ρEt

( ∞X
s=t

βs−t
∙
z0H,xxs −

1

2
x0sZH,xxs − x0sZH,ξξs −

1

2
zπHπ

2
H,s

¸)
+ t.i.p.+O

³
kξtk

3
´
,

where
z0H,x ≡

£
− (scμ̄)−1 1 0 0 0 0 0 0 0

¤
,

ZH,x ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(scμ̄)
−1 (1 + η) 0 0 0 0 0 0 0 0
0 − (1− ρ) 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

ZH,ξ ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− (scμ̄)−1 (1 + η) 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and
zπH ≡ σ (scμ̄κH)

−1
.

The Foreign counterpart is

uF,t = C̄1−ρEt

( ∞X
s=t

βs−t
∙
z0F,xxs −

1

2
x0sZF,xxs − x0sZF,ξξs −

1

2
zπF π

2
F,s

¸)
+ t.i.p.+O

³
kξtk

3
´
,

where
z0F,x ≡

£
0 0 0 0 − (scμ̄)−1 1 0 0 0

¤
,

ZF,x ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 (scμ̄)
−1
(1 + η) 0 0 0 0

0 0 0 0 0 − (1− ρ) 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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ZF,ξ ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 − (scμ̄)−1 (1 + η) 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and
zπF ≡ σ (scμ̄κF )

−1 .

3.1 Second Order Approximation of the Equilibrium Relations

The second order approximation of the utility function [30] displays non-zero linear terms in consump-
tion and output. As discussed by Woodford (2003) and Benigno and Woodford (2003), in this case
a log-linear approximation of the equilibrium conditions might not deliver the correct approximation
of the optimal plan and might lead to an incorrect welfare ranking of alternative policies. The idea is
that a linear approximation to the equilibrium conditions implies errors of second order which matter
for welfare if linear terms in the objective function are non-zero. In the absence of alternative correc-
tions that eliminate the linear terms from the objective functions,3 Benigno and Woodford (2006b)
propose a methodology which (i) derives a second order approximation of the equilibrium conditions
and (ii) exploits the relation between those conditions and the coefficients of the linear terms in the
second order approximation of the welfare criterion from the deterministic non-linear optimal policy
problem. This appendix applies the methodology of Benigno and Woodford (2006b) to the case of a
currency union. For simplicity, I will show the derivations only for the Home country.

3.1.1 Optimal Price Setting

The non-linear Phillips curve admits an exact log-linear approximationµ
1 + ση

σ − 1

¶
V̂H,t = F̂H,t − K̂H,t, (31)

where

VH,t ≡
1− αHΠ

σ−1
H,t

1− αH
.

A second order approximation of VH,t yields

V̂H,t = −
µ

αH
1− αH

¶
(σ − 1)

∙
πH,t +

1

2

µ
σ − 1
1− αH

¶
π2H,t

¸
+O

³
kξtk

3
´
. (32)

3 In the current example, the coefficients on linear terms depend on the steady state total markup. Differently
from the previous literature (see Rotemberg and Woodford, 1997), a steady state subsidy that offsets the monopolistic
distortions is not a feasible device to reduce the welfare objective to a purely quadratic criterion. The reason is that
the presence of either positive debt or public spending requires the steady state tax rate to be positive to satisfy the
government budget constraint, provided lump-sum taxes do not cover entirely the fiscal deficit.
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A second order approximation of FH,t and KH,t gives

F̂H,t +
1

2
F̂ 2H,t = (1− αHβ)Et

( ∞X
s=t

(αHβ)
s−t

µ
f̂H,s +

1

2
f̂2H,s

¶)
+O

³
kξtk

3
´

and

K̂H,t +
1

2
K̂2
H,t = (1− αHβ)Et

( ∞X
s=t

(αHβ)
s−t

µ
k̂H,s +

1

2
k̂2H,s

¶)
+O

³
kξtk

3
´
,

where fH,s and kH,s are the forcing terms of FH,t and KH,t whose difference and sum give

f̂H,s − k̂H,s = −μ̂wH,s − ηŶH,s + (1 + η) âH,s − (1 + ση)πtH,s + p̂H,s + ŜH,s − ρĈs

and

f̂H,s + k̂H,s = μ̂wH,s + (2 + η) ŶH,s − (1 + η) âH,s + [σ (1 + η) + (σ − 1)]πtH,s + p̂H,s + ŜH,s − ρĈs.

In the previous expressions, the GDP inflation rate between time t and time s is defined as

πtH,s ≡ ln
µ
PH,s
PH,t

¶
,

whereas

ŜH,t ≡ ln
µ
1− τH,t
1− τ̄

¶
. (33)

Substituting the approximations of FH,t and KH,t into [31] givesµ
1 + ση

σ − 1

¶
V̂H,t = (1− αHβ)Et

( ∞X
s=t

(αHβ)
s−t

∙³
f̂H,s − k̂H,s

´
+
1

2

³
f̂2H,s − k̂2H,s

´¸)
+

− 1
2

³
F̂ 2H,t − K̂2

H,t

´
+O

³
kξtk

3
´
.

I further define

X̂H,t ≡ (2 + η) ŶH,t − (1 + η) âH,t − ρĈt + p̂H,t + μ̂wH,t + ŜH,t,

which implies
f̂H,s + k̂H,s = X̂H,s + [σ (1 + η) + (σ − 1)]πtH,s.

I can then replace in the expression for V̂H,t to obtainµ
1 + ση

σ − 1

¶
V̂H,t = (1− αHβ)Et

( ∞X
s=t

(αHβ)
s−t

³
f̂H,s − k̂H,s

´)
− 1
2

³
F̂ 2H,t − K̂2

H,t

´
+

µ
1− αHβ

2

¶
Et

( ∞X
s=t

(αHβ)
s−t

h
−μ̂wH,s + ŜH,s − ηŶH,s + (1 + η) âH,s − (1 + ση)πtH,s + p̂H,s − ρĈs

i
·
h
X̂H,s + (2σ + ση − 1)πtH,s

io
+O

³
kξtk

3
´
.
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From the approximation of FH,t and KH,t, one can then observe that

F̂H,t + K̂H,t = (1− αHβ)Et

( ∞X
s=t

(αHβ)
s−t

∙³
f̂H,s + k̂H,s

´
+
1

2

³
f̂2H,s + k̂2H,s

´¸)
− 1
2

³
F̂ 2H,t + K̂2

H,t

´
+O

³
kξtk

3
´
.

I multiply the last expression by [31] and I have that

F̂ 2H,t − K̂2
H,t =

µ
1 + ση

σ − 1

¶
V̂H,t ·Et

( ∞X
s=t

(αHβ)
s−t

³
f̂H,s + k̂H,s

´)
+O

³
kξtk

3
´
.

Substituting back into the expression for V̂H,t above, I getµ
1 + ση

σ − 1

¶
V̂H,t = (1− αHβ)Et

( ∞X
s=t

(αHβ)
s−t

³
f̂H,s − k̂H,s

´)

+

µ
1− αHβ

2

¶
Et

( ∞X
s=t

(αHβ)
s−t

³
f̂H,s − k̂H,s

´h
X̂H,s + (2σ + ση − 1)πtH,s

i)

− 1
2
(1− αHβ)

µ
1 + ση

σ − 1

¶
V̂H,t ·Et

( ∞X
s=t

(αHβ)
s−t

h
X̂H,s + (2σ + ση − 1)πtH,s

i)
+O

³
kξtk

3
´
.

I define

ZH,t ≡ Et

( ∞X
s=t

(αHβ)
s−t

h
X̂H,s + (2σ + ση − 1)πtH,s

i)
. (34)

I can then rewrite

(1 + ση)

(1− αHβ) (σ − 1)
V̂H,t = −

1

2

µ
1 + ση

σ − 1

¶
V̂H,tZH,t +Et

( ∞X
s=t

(αHβ)
s−t

³
f̂H,s − k̂H,s

´)
(35)

+
1

2
Et

( ∞X
s=t

(αHβ)
s−t

³
f̂H,s − k̂H,s

´ h
X̂H,s + (2σ + ση − 1)πtH,s

i)
+O

³
kξtk

3
´
.

I update [35] one period, multiply by αHβ and take expectations at time t. I subtract the resulting
expression from the time t version as to obtain

(1 + ση)

(1− αHβ) (σ − 1)
h
V̂H,t − (αHβ)EtV̂H,t+1

i
= −1

2

µ
1 + ση

σ − 1

¶h
V̂H,tZH,t − (αHβ)EtV̂H,t+1ZH,t+1

i
+Et

( ∞X
s=t

(αHβ)
s−t

³
f̂H,s − k̂H,s

´)
− (αHβ)Et

( ∞X
s=t+1

(αHβ)
s−t−1

³
f̂H,s − k̂H,s

´)

+
1

2
Et

( ∞X
s=t

(αHβ)
s−t

³
f̂H,s − k̂H,s

´ h
X̂H,s + (2σ + ση − 1)πtH,s

i)

− 1
2
(αHβ)Et

( ∞X
s=t+1

(αHβ)
s−t−1

³
f̂H,s − k̂H,s

´ h
X̂H,s + (2σ + ση − 1)πt+1H,s

i)
+O

³
kξtk

3
´
.
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I define

zH,s ≡ f̂H,s − k̂H,s + (1 + ση)πtH,s = −μ̂wH,s + ŜH,s − ηŶH,s + (1 + η) âH,s + p̂H,s − ρĈs. (36)

I can then rewrite the previous expression as

(1 + ση)

(1− αHβ) (σ − 1)
h
V̂H,t − (αHβ)EtV̂H,t+1

i
= −1

2

µ
1 + ση

σ − 1

¶h
V̂H,tZH,t − (αHβ)EtV̂H,t+1ZH,t+1

i
+Et

( ∞X
s=t

(αHβ)
s−t £zH,s − (1 + ση)πtH,s

¤)
− (αHβ)Et

( ∞X
s=t+1

(αHβ)
s−t−1

h
zH,s − (1 + ση)πt+1H,s

i)

+
1

2
Et

( ∞X
s=t

(αHβ)
s−t £

zH,s − (1 + ση)πtH,s
¤ h
X̂H,s + (2σ + ση − 1)πtH,s

i)

−1
2
(αHβ)Et

( ∞X
s=t+1

(αHβ)
s−t−1

h
zH,s − (1 + ση)πt+1H,s

i h
X̂H,s + (2σ + ση − 1)πt+1H,s

i)
+O

³
kξtk

3
´
.

I use the discount factors in the sums and the fact that πtH,t = 0 and that, ∀s, πtH,s−πt+1H,s = πtH,t+1 =
πH,t+1 to rewrite

(1 + ση)

(1− αHβ) (σ − 1)
h
V̂H,t − (αHβ)EtV̂H,t+1

i
= −1

2

µ
1 + ση

σ − 1

¶h
V̂H,tZH,t − (αHβ)EtV̂H,t+1ZH,t+1

i
+ zH,t +

1

2
zH,tXH,t −

(αHβ) (1 + ση)

(1− αHβ)
EtπH,t+1

+

µ
αHβ

2

¶
Et

( ∞X
s=t+1

(αHβ)
s−t−1

h
(2σ + ση − 1)πH,t+1zH,s − (1 + ση)πH,t+1X̂H,s

− (1 + ση) (2σ + ση − 1)
³
π2H,t+1 + 2πH,t+1π

t+1
H,s

´io
+O

³
kξtk

3
´
.

Observe that πH,t+1 + πt+1H,s = πtH,s. Using the previous definition of ZH,t, I can readjust to get

(1 + ση)

(1− αHβ) (σ − 1)
h
V̂H,t − (αHβ)EtV̂H,t+1

i
= −1

2

µ
1 + ση

σ − 1

¶h
V̂H,tZH,t − (αHβ)EtV̂H,t+1ZH,t+1

i
+ zH,t +

1

2
zH,tXH,t −

(αHβ) (1 + ση)

(1− αHβ)
EtπH,t+1 −

(αHβ) (1 + ση) (2σ + ση − 1)
(1− αHβ)

Etπ
2
H,t+1

+

µ
αHβ

2

¶
Et

(
πH,t+1

∞X
s=t+1

(αHβ)
s−t−1

(2σ + ση − 1)
h
zH,s − (1 + ση)πt+1H,s

i)

−
µ
αHβ

2

¶
(1 + ση)Et (πH,t+1ZH,t+1) .

From the definition of zH,t [36] and [35] it follows that

Et

(
πH,t+1

∞X
s=t+1

(αHβ)
s−t−1

h
zH,s − (1 + ση)πt+1H,s

i)
=

(1 + ση)

(1− αHβ) (σ − 1)
Et

³
V̂H,t+1πH,t+1

´
+O

³
kξtk

3
´
.

14



I substitute back to obtain

(1 + ση)

(1− αHβ) (σ − 1)
h
V̂H,t − (αHβ)EtV̂H,t+1

i
= −1

2

µ
1 + ση

σ − 1

¶h
V̂H,tZH,t − (αHβ)EtV̂H,t+1ZH,t+1

i
+ zH,t +

1

2
zH,tXH,t −

(αHβ) (1 + ση)

(1− αHβ)
EtπH,t+1 −

(αHβ) (1 + ση) (2σ + ση − 1)
(1− αHβ)

Etπ
2
H,t+1

+
(αHβ) (1 + ση)

2 (1− αHβ) (σ − 1)
Et

³
V̂H,t+1πH,t+1

´
−
µ
αHβ

2

¶
(1 + ση)Et (πH,t+1ZH,t+1) .

Next, I use the expression for V̂H,t in [32] together with the definition of κH

πH,t+

∙
(σ − 1)
2 (1− αH)

¸
π2H,t+

µ
1− αHβ

2

¶
πH,tZH,t = βEtπH,t+1+

∙
β (1− αHβ)

2

¸
Et (πH,t+1ZH,t+1)

−κH
µ
zH,t +

1

2
zH,tXH,t

¶
+

∙
(αHβ) (σ − 1)
2 (1− αH)

¸
Etπ

2
H,t+1+

∙
β (2σ + ση − 1)

2

¸
Etπ

2
H,t+1+O

³
kξtk

3
´
.

I define

ṼH,t ≡ πH,t +

∙
(σ − 1)
2 (1− αH)

¸
π2H,t +

µ
1− αHβ

2

¶
πH,tZH,t +

∙
σ (1 + η)

2

¸
π2H,t.

Notice that
αH (σ − 1)
1− αH

+ (2σ + ση − 1) = σ − 1
1− αH

+ σ (1 + η) .

I further define the parameters

vπH ≡ σ (1 + η) +
σ − 1
1− αH

, vzH ≡
1− αHβ

2
.

Then, it is straightforward to see that

ṼH,t = πH,t +
1

2
vπHπ

2
H,t + vzHπH,tZH,t.

It then follows that

ṼH,t = β

½
EtπH,t+1 +

µ
1− αHβ

2

¶
Et (πH,t+1ZH,t+1) +

1

2

∙
αH (σ − 1)
2 (1− αH)

+
(2σ + ση − 1)

2

¸
Etπ

2
H,t+1

¾
− κH

µ
zH,t +

1

2
zH,tXH,t

¶
+

∙
σ (1 + η)

2

¸
π2H,t +O

³
kξtk

3
´
.

Using again the definition of ṼH,t and the identity of the coefficients above, a recursive representation
of the previous expression is

ṼH,t = −κH
µ
zH,t +

1

2
zH,tXH,t

¶
+

∙
σ (1 + η)

2

¸
π2H,t + βEtṼH,t+1 +O

³
kξtk

3
´
.

Integrating forward the last equation gives

ṼH,t = Et

( ∞X
s=t

βs−t
∙
−κH

µ
zH,s +

1

2
zH,sXH,s

¶
+

σ (1 + η)

2
π2H,s

¸)
+O

³
kξtk

3
´
.
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For simplicity, I redefine VH,t = κ−1H ṼH,t. The previous expression becomes

VH,t = Et

( ∞X
s=t

βs−t
∙
−
µ
zH,s +

1

2
zH,sXH,s

¶
+

σ (1 + η)

2κH
π2H,s

¸)
+O

³
kξtk

3
´
.

From definition [33], I take a second order approximation as to obtain

ŜH,t = −ωτ τ̂H,t −
1

2

µ
ωτ
1− τ̄

¶
τ̂2H,t +O

³
kξtk

3
´
,

where
ωτ ≡

τ̄

1− τ̄
.

I can then substitute into the expression for VH,t using also the definitions of X̂H,t and zH,t. The
result is

VH,t = Et

( ∞X
s=t

βs−t
∙
ηŶH,s − (1 + η) âH,s + ρĈs − p̂H,s + ωτ τ̂H,s +

1

2
ωτ (1 + ωτ ) τ̂

2
H,s + μ̂wH,s

¸
+
1

2

h
ηŶH,s − (1 + η) âH,s + ρĈs − p̂H,s + ωτ τ̂H,s + μ̂wH,s

i
h
(2 + η) ŶH,s − (1 + η) âH,s − ρĈs + p̂H,s + μ̂wH,s − ωτ τ̂H,s

i
+

σ (1 + η)

2κH
π2H,s

¾
+s.o.t.i.p.+O

³
kξtk

3
´
,

where s.o.t.i.p. stands for “second order terms independent of policy”. I can rewrite the aggregate
supply relation in matrix form using the vectors defined in the previous section as

VH,t = Et

( ∞X
s=t

βs−t
∙
a0H,xxs + a0H,ξξs +

1

2
x0sAH,xxs + x0sAH,ξξs +

1

2
aπHπ

2
H,s

¸)
+s.o.t.i.p.+O

³
kξtk

3
´
,

where
a0H,x ≡

£
η ρ −1 ωτ 0 0 0 0 0

¤
,

a0H,ξ ≡
£
− (1 + η) 1 0 0 0 0 0 0

¤
,

AH,x ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

η (2 + η) ρ −1 ωτ 0 0 0 0 0
ρ −ρ2 ρ −ρωτ 0 0 0 0 0
−1 ρ −1 ωτ 0 0 0 0 0
ωτ −ρωτ ωτ ωτ 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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AH,ξ ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− (1 + η)
2
1 + η 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and
aπH ≡ σ (1 + η)κ−1H .

Analogously, the Foreign aggregate supply equation in matrix notation is

VF,t = Et

( ∞X
s=t

βs−t
∙
a0F,xxs + a0F,ξξs +

1

2
x0sAF,xxs + x0sAF,ξξs +

1

2
aπF π

2
F,s

¸)
+s.o.t.i.p.+O

³
kξtk

3
´
,

where
a0F,x ≡

£
0 0 0 0 η ρ −1 ωτ 0

¤
,

a0F,ξ ≡
£
0 0 0 0 − (1 + η) 1 0 0

¤
,

AF,x ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 η (2 + η) ρ −1 ωτ 0
0 0 0 0 ρ −ρ2 ρ −ρωτ 0
0 0 0 0 −1 ρ −1 ωτ 0
0 0 0 0 ωτ −ρωτ ωτ ωτ 0
0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

AF,ξ ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 − (1 + η)2 1 + η 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and
aπF ≡ σ (1 + η)κ−1F .
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3.1.2 Intertemporal Government Budget Constraint

In the global problem, the national government budget constraints can be written recursively but not
necessarily in intertemporal form. The reason is that in an open economy the only restriction implied
by the households’ transversality condition concerns the sum of debt issued by the two governments,
not the stock issued by the single fiscal authorities. Nonetheless, the existence of a symmetric steady
state with finite debt and the equilibrium concept adopted in this paper rule out equilibria in which
(i) one fiscal authority issues an infinite amount of liabilities, (ii) one fiscal authority indefinitely
accumulates government securities issued by the other country, (iii) the transversality condition is
never violated. Hence, the focus will be on the case in which the intertemporal government budget
constraint actually holds at the country level, at least locally. This section derives a second order
approximation of the intertemporal government budget constraint for country H.
The flow government budget constraint can be cast as

R−1t bH,t =
bH,t−1
Πt

− sH,t.

From the definition of the nominal interest rate and the fact that bt belongs to the information set at
time t, the previous expression can be written alternatively as

WH,t = C−ρt sH,t + βEtWH,t+1, (37)

where, WH,t ≡ C−ρt bH,t−1/Πt. A second order approximation of [37] gives

WH,t − W̄

W̄
= (1− β)

∙
−ρĈt +

1

2
ρ2Ĉ2t +

µ
sH,t − s̄

s̄

¶
− ρĈt

µ
sH,t − s̄

s̄

¶¸
(38)

+βEt

½
WH,t − W̄

W̄

¾
+O

³
kξtk

3
´
.

The definition of per-capita surplus is

sH,t = pH,t (τH,tYH,t −GH,t)− ςH,t.

Therefore, a second order approximation can be derived as

sH,t − s̄

s̄
= (1 + ωg) ŶH,t + p̂H,t + (1 + ωg) τ̂H,t − sd

³
ĜH,t + ς̂H,t

´
+
1

2

h
(1 + ωg) Ŷ

2
H,t + p̂2H,t + (1 + ωg) τ̂

2
H,t

i
+(1 + ωg) ŶH,tp̂H,t + (1 + ωg) ŶH,tτ̂H,t

+(1 + ωg) p̂H,tτ̂H,t − sdp̂H,t

³
ĜH,t + ς̂H,t

´
+ s.o.t.i.p.+O

³
kξtk

3
´
, (39)

where, in steady state, s̄ = τ̄ Ȳ −
¡
Ḡ+ ς̄

¢
and I have defined sd ≡ Ȳ/s̄ and ωg ≡ sgsd . Let W̃H,t ≡¡

WH,t − W̄
¢
/W̄ . Up to a second order approximation, it follows that

W̃H,t = ŴH,t +
1

2
Ŵ 2

H,t +O
³
kξtk

3
´
,

where ŴH,t stands for the percentage deviations of WH,t from the steady state value in per-capita
terms W̄ . It then follows that

W̃H,t = b̂H,t−1 − ρĈt − πt +
1

2

³
b̂H,t−1 − ρĈt − πt

´2
+O

³
kξtk

3
´
.
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Combining [39] and [38] gives

W̃H,t = (1− β)
n
(1 + ωg) ŶH,t − ρĈt + p̂H,t + (1 + ωg) τ̂H,t (40)

+
1

2

h
(1 + ωg) Ŷ

2
H,t + ρ2Ĉ2t + p̂2H,t + (1 + ωg) τ̂

2
H,t

i
−ρ (1 + ωg) ŶH,tĈt + (1 + ωg) ŶH,tp̂H,t + (1 + ωg) ŶH,tτ̂H,t

−ρĈtp̂H,t − ρ (1 + ωg) Ĉtτ̂H,t + (1 + ωg) p̂H,tτ̂H,t

+sd

³
ρĈt − p̂H,t − 1

´³
ĜH,t + ς̂H,t

´o
+ βEtW̃H,t+1 + s.o.t.i.p.+O

³
kξtk

3
´
,

Expression [40] is now “local”, in the sense that it involves small deviations of variables from their
steady state values. Since it has been proved that such a steady state is not characterized by explosive
paths for the real value of debt at maturity, I can safely integrate the previous expression forward to
get

W̃H,t = (1− β)Et

( ∞X
s=t

βs−t
h
(1 + ωg) ŶH,s − ρĈs + p̂H,s + (1 + ωg) τ̂H,s

+
1

2

³
(1 + ωg) Ŷ

2
H,s + ρ2Ĉ2s + p̂2H,s + (1 + ωg) τ̂

2
H,s

´
−ρ (1 + ωg) ŶH,sĈs + (1 + ωg) ŶH,sp̂H,s + (1 + ωg) ŶH,sτ̂H,s

−ρĈsp̂H,s − ρ (1 + ωg) Ĉsτ̂H,s + (1 + ωg) p̂H,sτ̂H,s

+sd

³
ρĈs − p̂H,s − 1

´³
ĜH,s + ς̂H,s

´io
+ s.o.t.i.p. +O

³
kξtk

3
´
. (41)

I rewrite the previous expression in matrix notation as

W̃H,t = (1− β)Et

( ∞X
s=t

βs−t
∙
ω0H,xxs + ω0H,ξξs +

1

2
x0sWH,xxs + x0sWH,ξξs

¸)
+ s.o.t.i.p.+O

³
kξtk

3
´
,

where I have defined

ω0H,x ≡
£
1 + ωg −ρ 1 1 + ωg 0 0 0 0 0

¤
,

ω0H,ξ ≡
£
0 0 −sd −sd 0 0 0 0

¤
,

WH,x ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + ωg −ρ (1 + ωg) 1 + ωg 1 + ωg 0 0 0 0 0
−ρ (1 + ωg) ρ2 −ρ −ρ (1 + ωg) 0 0 0 0 0
1 + ωg −ρ 1 1 + ωg 0 0 0 0 0
1 + ωg −ρ (1 + ωg) 1 + ωg 1 + ωg 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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and

WH,ξ ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 ρsd ρsd 0 0 0 0
0 0 −sd −sd 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The Foreign equation is

W̃F,t = (1− β)Et

( ∞X
s=t

βs−t
∙
ω0F,xxs + ω0F,ξξs +

1

2
x0sWF,xxs + x0sWF,ξξs

¸)
+ s.o.t.i.p.+O

³
kξtk

3
´
,

where
ω0F,x ≡

£
0 0 0 0 1 + ωg −ρ 1 1 + ωg 0

¤
,

ω0F,ξ ≡
£
0 0 0 0 0 0 −sd −sd

¤
,

WF,x ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 + ωg −ρ (1 + ωg) 1 + ωg 1 + ωg 0
0 0 0 0 −ρ (1 + ωg) ρ2 −ρ −ρ (1 + ωg) 0
0 0 0 0 1 + ωg −ρ 1 1 + ωg 0
0 0 0 0 1 + ωg −ρ (1 + ωg) 1 + ωg 1 + ωg 0
0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and

WF,ξ ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 ρsd ρsd
0 0 0 0 0 0 −sd −sd
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

3.1.3 Aggregate Demand

The equilibrium in the goods market for country H is

YH,t = p−θH,tCW,t +GH,t.
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I can write total (average) consumption as

CW,t = nCt + (1− n)C∗t .

Combining the previous two expressions and taking a second order approximation gives

ŶH,t = nscĈt − θscp̂H,t + (1− n) scĈ
∗
t + ĜH,t+

+
1

2

∙
nsc (1− nsc) Ĉ

2
t + θ2sc (1− sc) p̂

2
H,t + (1− n) sc (1− (1− n) sc)

³
Ĉ∗t

´2¸
− n (1− n) s2cĈtĈ

∗
t − θnsc (1− sc) Ĉtp̂H,t − θ (1− n) sc (1− sc) p̂H,tĈ

∗
t

− nscĈtĜH,t + θscp̂H,tĜH,t − (1− n) scĈ
∗
t ĜH,t +O

³
kξtk

3
´
.

In vector notation, the present discounted value of the previous expression is

0 =
∞X
s=t

βs−t
∙
d0H,xxs + d0H,ξξs +

1

2
x0sDH,xxs + x0sDH,ξξs

¸
+O

³
kξtk

3
´
,

where
d0H,x ≡

£
−1 nsc −θsc 0 0 (1− n) sc 0 0 0

¤
,

d0H,ξ ≡
£
0 0 1 0 0 0 0 0

¤
,

DH,x ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
0 nsc (1− nsc) −nθsc (1− sc) 0 0 −n (1− n) s2c 0 0 0

0 −nθsc (1− sc) θ2sc (1− sc) 0 0 − (1− n) θsc (1− sc) 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 −n (1− n) s2c − (1− n) θsc (1− sc) 0 0 (1− n) sc (1− (1− n) sc) 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and

DH,ξ ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 −nsc 0 0 0 0 0
0 0 θsc 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 − (1− n) sc 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The Foreign aggregate demand can be represented as

0 =
∞X
s=t

βs−t
∙
d0F,xxs + d0F,ξξs +

1

2
x0sDF,xxs + x0sDF,ξξs

¸
+O

³
kξtk

3
´
,
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where
d0F,x ≡

£
0 nsc 0 0 −1 (1− n) sc −θsc 0 0

¤
,

d0F,ξ ≡
£
0 0 0 0 0 0 1 0

¤
,

DF,x ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
0 nsc (1− nsc) 0 0 0 −n (1− n) s2c −nθsc (1− sc) 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 −n (1− n) s2c 0 0 0 (1− n) sc (1− (1− n) sc) − (1− n) θsc (1− sc) 0 0

0 −nθsc (1− sc) 0 0 0 − (1− n) θsc (1− sc) θ2sc (1− sc) 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and

DF,ξ ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 −nsc 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 − (1− n) sc 0
0 0 0 0 0 0 θsc 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

3.1.4 The Terms of Trade

The relation between the terms of trade and the Home relative price is

pθ−1H,t = n+ (1− n)T 1−θt .

A second order approximation of this equation yields

p̂H,t = − (1− n) T̂t −
1

2
n (1− n) (1− θ) T̂ 2t +O

³
kξtk

3
´
.

The matrix form present discounted value is then

0 =
∞X
s=t

βs−t
∙
h0H,xxs +

1

2
x0sHH,xxs

¸
+O

³
kξtk

3
´
,

where
h0H,x ≡

£
0 0 −1 0 0 0 0 0 − (1− n)

¤
,
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and

HH,x ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −n (1− n) (1− θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The Foreign counterpart is

0 =
∞X
s=t

βs−t
∙
h0F,xxs +

1

2
x0sHF,xxs

¸
+O

³
kξtk

3
´
,

where
h0F,x ≡

£
0 0 0 0 0 0 −1 0 n

¤
,

and

HF,x ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −n (1− n) (1− θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

3.1.5 Risk Sharing

The risk sharing equation gives
Ĉt − Ĉ∗t = 0,

which can be written as ∞X
s=t

βs−t
¡
m0
W,xxs

¢
= 0,

where
m0
W,x ≡

£
0 1 0 0 0 −1 0 0 0

¤
.

3.2 Elimination of First Order Terms and Aggregate Welfare

This section shows how to eliminate the first order terms in the second order approximation of the
aggregate welfare function [30]. The procedure consists of two steps. First, I need to find the steady
state Lagrange multipliers of the optimal policy problem. These multipliers relate the coefficients in
front of the first order terms of the objective function with the coefficients in front of the first order
terms of the equilibrium relations. Second, I need to express the first order terms of the equilibrium
relations as a function of the second order terms. In this second step, the weights in front of the linear
terms coincide with the weights in front of the second order terms.
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To this extent, I construct the (9× 9) matrix Γ defined as

Γ ≡
£
aH,x aF,x ωH,x ωF,x dH,x dF,x hH,x hF,x mW,x

¤
.

The matrix Γ collects the vectors that multiply the linear terms in the endogenous variables of the
second order approximation of the structural equilibrium conditions

Γ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

η 0 1 + ωg 0 −1 0 0 0 0
ρ 0 −ρ 0 nsc nsc 0 0 1
−1 0 1 0 −θsc 0 −1 0 0
ωτ 0 1 + ωg 0 0 0 0 0 0
0 η 0 1 + ωg 0 −1 0 0 0
0 ρ 0 −ρ (1− n) sc (1− n) sc 0 0 −1
0 −1 0 1 0 −θsc 0 −1 0
0 ωτ 0 1 + ωg 0 0 0 0 0
0 0 0 0 0 0 − (1− n) n 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The steady state Lagrange multipliers that are sought are the solution of the linear system

Γζi = zi,x,

where ζi is a (9× 1) vectors of weights for country i.
The resulting quadratic criterion for country i becomes

ui,0 = −
1

2
C̄1−ρE0

( ∞X
t=0

βt
£
x0tQi,xxt + 2x

0
tQi,ξξt + qi,πHπ

2
H,t + qi,πF π

2
F,t

¤)
+Ji,0+ t.i.p.+O

³
kξtk

3
´
,

where

Qi,x ≡ Zi,x + ζi,1AH,x + ζi,2AF,x + ζi,3WH,x + ζi,4WF,x + ζi,5DH,x + ζi,6DF,x + ζi,7HH,x + ζi,8HF,x

Qi,ξ ≡ Zi,ξ + ζi,1AH,ξ + ζi,2AF,ξ + ζi,3WH,ξ + ζi,4WF,ξ + ζi,5DH,ξ + ζi,6DF,ξ,

qH,πH ≡ zπH + ζH,1aπH , qH,πF ≡ ζH,2aπF
qF,πH ≡ ζF,1aπH , qF,πF ≡ zπF + ζF,2aπF

Ji,0 ≡ C̄1−ρ
∙
ζi,1VH,0 + ζi,2VF,0 +

µ
1

1− β

¶³
ζi,3W̃H,0 + ζi,4W̃F,0

´¸
.

3.2.1 Further Simplifications

The dimension of the vector of endogenous variables xt can actually be reduced by appropriately using
the first order approximation of some equilibrium relations. The objective functions ui,0 can then be
expressed in terms of quadratic deviations of the remaining control variables from their targets, to be
defined as linear combinations of the exogenous shocks.
Up to a first order approximation, the aggregate demand equations in the two countries can be

written as
ŶH,t = scĈW,t − θscp̂H,t + ĜH,t +O

³
kξtk

2
´
,

ŶF,t = scĈW,t − θscp̂F,t + ĜF,t +O
³
kξtk

2
´
.
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The relation between relative prices and the terms of trade is

p̂H,t = − (1− n) T̂t +O
³
kξtk

2
´
, p̂F,t = nT̂t +O

³
kξtk

2
´
. (42)

Combining the previous two relationships gives

ŶH,t = scĈW,t + (1− n) θscT̂t + ĜH,t +O
³
kξtk

2
´
,

ŶF,t = scĈW,t − nθscT̂t + ĜF,t +O
³
kξtk

2
´
.

I define average output as the population-weighted linear combination of national GDP

ŶW,t ≡ nŶH,t + (1− n) ŶF,t.

The equilibrium in the goods market at the currency union level in log-linear form requires that

ŶW,t = scĈW,t + nĜH,t + (1− n) ĜF,t +O
³
kξtk

2
´
. (43)

I can then replace average consumption by average output and get

ŶH,t = ŶW,t + (1− n) θscT̂t + (1− n) ĜH,t − (1− n) ĜF,t +O
³
kξtk

2
´
,

ŶF,t = ŶW,t − nθscT̂t − nĜH,t + nĜF,t +O
³
kξtk

2
´
. (44)

I define a reduced vector of endogenous variables as

ŷ0t ≡
£
ŶW,t τ̂H τ̂F T̂t

¤
.

The relation between the previous vector of endogenous variables xt and the newly defined reduced
vector is described by the two relations in [42], equation [43] applied to consumption in each country
(using the risk sharing condition Ĉt = Ĉ∗t = ĈW,t) and the two relations in [44], plus three identities
(one for the terms of trade and one for each of the two tax rates). In vector notation, the previous
system of equation can be written compactly as

xt = Nxŷt +Nξξt +O
³
kξtk

2
´
,

where

Nx ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 (1− n) θsc
s−1c 0 0 0
0 0 0 − (1− n)
0 1 0 0
1 0 0 −nθsc
s−1c 0 0 0
0 0 0 n
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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and

Nξ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1− n 0 0 0 − (1− n) 0
0 0 −ns−1c 0 0 0 − (1− n) s−1c 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 −n 0 0 0 n 0
0 0 −ns−1c 0 0 0 − (1− n) s−1c 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The relation between the reduced and the original vector can be substituted back into the welfare
criterion to obtain

ui,0 = −
1

2
C̄1−ρE0

( ∞X
t=0

βt
h
ŷ0tQ̃i,xŷt + 2ŷ

0
tQ̃i,ξξt + qi,πHπ

2
H,t + qi,πF π

2
F,t

i)
+ Ji,0+ t.i.p.+O

³
kξtk

3
´
,

where
Q̃i,x ≡ N 0

xQi,xNx, Q̃i,ξ ≡ N 0
xQi,xNξ +N 0

xQi,ξ.

Since this paper is concerned with the optimal policy from a centralized perspective, the welfare
criterion for the currency union as a whole is the population weighted average of the national welfare
criteria

uW,0 ≡ nuH,0 + (1− n)uF,0.

From the results derived above, this corresponds to

uW,0 = −
1

2
C̄1−ρE0

( ∞X
t=0

βt
h
ŷ0tQ̃W,xŷt + 2ŷ

0
tQ̃W,ξξt + qW,πHπ

2
H,t + qW,πF π

2
F,t

i)
+JW,0+t.i.p.+O

³
kξtk

3
´
,

(45)
where

Q̃W,x ≡ nQ̃H,x + (1− n) Q̃H,x = N 0
xQW,xNx

Q̃W,ξ ≡ nQ̃H,ξ + (1− n) Q̃F,ξ = N 0
xQW,xNξ +N 0

xQW,ξ

qW,πH ≡ nqH,πH + (1− n) qF,πH
qW,πF ≡ nqH,πF + (1− n) qF,πF

and

JW,0 ≡ C̄1−ρ
∙
ζW,1VH,0 + ζW,2VF,0 +

µ
1

1− β

¶³
ζW,3W̃H,0 + ζW,4W̃F,0

´¸
.

It is actually convenient to compute the relevant objects for the currency union welfare objective
without deriving the national welfare objectives. In other words, I will compute only the relevant
matrices for expression [45]. To this extent, it suffices deriving the three objects ZW,x = nZH,x +
(1− n)ZF,x, ZW,ξ = nZH,ξ + (1− n)ZF,ξ and ζW = nζH + (1− n) ζF . The first two matrices are
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easy to calculate from the quadratic approximation of utility

ZW,x ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n (scμ̄)
−1 (1 + η) 0 0 0 0 0 0 0 0
0 −n (1− ρ) 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 (1− n) (scμ̄)
−1 (1 + η) 0 0 0 0

0 0 0 0 0 − (1− n) (1− ρ) 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and

ZW,ξ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−n (scμ̄)−1 (1 + η) 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 − (1− n) (scμ̄)
−1 (1 + η) 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The third vector is the solution of the linear system

ΓζW = zW,x,

where zW,x ≡ nzH,x + (1− n) zF,x.
Given these three objects, I can then solve for QW,x, QW,ξ, qW,πH and qW,πF by observing that

QW,x = ZW,x + ζW,1AH,x + ζW,2AF,x + ζW,3WH,x + ζW,4WF,x + ζW,5DH,x + ζW,6DF,x + ζW,7HH,x + ζW,8HF,x

QW,ξ = ZW,ξ + ζW,1AH,ξ + ζW,2AF,ξ + ζW,3WH,ξ + ζW,4WF,ξ + ζW,5DH,ξ + ζW,6DH,ξ

qW,πH = nzπH + ζW,1aπH
qW,πF = (1− n) zπF + ζW,2aπF .

It is possible to show that the quadratic terms in the tax rates are equal to zero, that is³
Q̃W,x

´
2i
=
³
Q̃W,x

´
3i
=
³
Q̃W,x

´
j2
=
³
Q̃W,x

´
j3
= 0,

∀i, j = 1, ..., 4. Moreover, the matrix Q̃W,x is diagonal³
Q̃W,x

´
14
=
³
Q̃W,x

´
41
= 0

and the coefficients of the cross terms that involve taxes and the exogenous shocks in the matrix Q̃W,ξ

are also all equal to zero, that is ³
Q̃W,ξ

´
i2
=
³
Q̃W,ξ

´
i3
= 0.

It follows that the tax rates do not enter directly the average welfare objective for the currency union.
While distortionary taxation does imply welfare costs to the extent that it contributes to create a
wedge between actual and desired output levels, tax rates do not appear as an explicit term in the
welfare objective4.

4The results about tax rates are consistent with the correspondent closed economy case in Benigno and Woodford
(2003).
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4 Coefficients and Targets in the Objective Function
The elimination of first order terms in the second order approximation of total welfare requires the
computation of the steady state Lagrange multipliers of the optimal policy problem, which are ζW,i,
i = {1, ..., 8}

ζW,1 ≡ n (μ̄− 1) (1 + ωg) (μ̄dζ)
−1 ζW,2 ≡ n−1 (1− n) ζW,1

ζW,3 ≡ −ωτ (μ̄− 1) (μ̄dζ)
−1

ζW,4 ≡ n−1 (1− n) ζW,3

ζW,5 ≡ ϕ (scμ̄dζ)
−1

ζW,6 ≡ n−1 (1− n) ζW,5

ζW,7 ≡ −ϑ (μ̄dζ)
−1 ζW,8 ≡ n−1 (1− n) ζW,7

where

μ̄ ≡ σμ̄w/ [(σ − 1) (1− τ̄)]

ωg ≡ sg/ (τ̄ − sg)

sg ≡
¡
Ḡ+ ς̄

¢
/Ȳ

ωτ ≡ (1− τ̄) /τ̄

sc ≡ C̄/Ȳ

dζ ≡ sc (1 + ωg)
¡
ρs−1c + η − ωτ

¢
+ ρωτ

ϕ ≡ μ̄sc (1 + ωg) (η − ωτ ) + ρ (1 + ωg + ωτ )

ϑ ≡ (μ̄− 1) (1 + ωg + ωτ ) + θϕ.

The weights in the purely quadratic second order approximation of the welfare function are combina-
tions of these Lagrange multipliers and of other structural parameters.
The weight on the output gap is

λy ≡
³
Q̃W,x

´
11
,

where ³
Q̃W,x

´
11
≡ Q1w,x + s−2c Q2w,x + 2s

−1
c Q3w,x

and

Q1w,x ≡ (scμ̄)
−1 (1 + η) + η (2 + η)

¡
ζW,1 + ζW,2

¢
+ (1 + ωg)

¡
ζW,3 + ζW,4

¢
Q2w,x ≡ − (1− ρ)− ρ2

£¡
ζW,1 + ζW,2

¢
−
¡
ζW,3 + ζW,4

¢¤
+ sc (1− sc)

¡
ζW,5 + ζW,6

¢
Q3w,x ≡ ρ

£¡
ζW,1 + ζW,2

¢
− (1 + ωg)

¡
ζW,3 + ζW,4

¢¤
.

The weight on the terms of trade gap is

λq ≡ n−1 (1− n)
−1
³
Q̃W,x

´
44
,

where ³
Q̃W,x

´
44
≡ (θsc)2Q4w,x +Q5w,x +Q6w,x − 2θscQ7w,x

and

Q4w,x ≡ n (1− n)Q1w,x

Q5w,x ≡ n (1− n)
£
−
¡
ζW,1 + ζW,2

¢
+
¡
ζW,3 + ζW,4

¢
+ θ2sc (1− sc)

¡
ζW,5 + ζW,6

¢¤
Q6w,x ≡ n (1− n) (θ − 1)

¡
ζW,7 + ζW,8

¢
Q7w,x ≡ −n (1− n) ρ−1Q3w,x.
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The weight on the GDP inflation rate for country i is

λπi ≡ (κiμ̄)
−1 σ

h
s−1c + (μ̄− 1) (1 + ωg) (1 + η) d−1ζ

i
,

where

κi ≡
(1− αi) (1− αiβ)

αi (1 + ση)
.

It is easy to check that the weights on GDP inflation rates are always positive. On the other hand,
it is generally not obvious to find conditions that guarantee the weights on the output and terms of
trade gap to be positive too. The example presented in section 3.3 in the paper satisfies the conditions
for strict concavity for any calibration. In the quantitative experiments of section 4, I check concavity
numerically for the baseline calibration and find that λy and λq are both strictly positive.
In order to allow for government spending and lump-sum fiscal transfers to be zero in steady state,

the deviations of those variables from their steady state values are defined in percentage of output,
that is, up to the first order, Ĝi,t ≡

¡
Gi,t − Ḡ

¢
/Ȳ and ς̂i,t ≡ (ςi,t − ς̄) /Ȳ . The vector of exogenous

shocks ξt collects Home and Foreign disturbances

ξt =
h
ξ̂H,t ξ̂F,t

i
,

where
ξ̂0i,t ≡

h
âi,t μ̂wi,t Ĝi,t ς̂i,t

i
.

In what follows, average and relative disturbances will be referred to as

ξW,t ≡ nξH,t + (1− n) ξF,t, ξR,t ≡ ξF,t − ξH,t.

The welfare-relevant target level for the output gap is

ỸW,t ≡ − (nλy)−1
h³
Q̃W,ξ

´
11
âW,t +

³
Q̃W,ξ

´
12
μ̂wW,t +

³
Q̃W,ξ

´
13
ĜW,t +

³
Q̃W,ξ

´
14
ς̂W,t

i
,

where ³
Q̃W,ξ

´
11
≡ −n (scμ̄)−1 (1 + η)− (1 + η)2 ζW,1³

Q̃W,ξ

´
12
≡ (1 + η) ζW,1³

Q̃W,ξ

´
13
≡ s−1c Q1w,ξ − ns−2c Q2w,x − 2ns−1c Q3w,x³

Q̃W,ξ

´
14
≡ ρs−1c sdζW,3

and

Q1w,ξ ≡ ρsdζW,3 − scζW,5

sd ≡ ωg/sg.

The welfare-relevant target for the terms of trade gap is

T̃t ≡ (λq)−1
h³
Q̃W,ξ

´
41
âR,t +

³
Q̃W,ξ

´
42
μ̂wR,t +

³
Q̃W,ξ

´
43
ĜR,t +

³
Q̃W,ξ

´
44
ς̂R,t

i
,
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where ³
Q̃W,ξ

´
41
≡ (1− n) θsc

³
Q̃W,ξ

´
11³

Q̃W,ξ

´
42
≡ (1− n) θsc

³
Q̃W,ξ

´
12³

Q̃W,ξ

´
43
≡ − (1− n)Q2w,ξ + θscQ

1
w,x −Q7w,x³

Q̃W,ξ

´
44
≡ (1− n) ρ−1sc

³
Q̃W,ξ

´
14

and
Q2w,ξ ≡ −sdζW,3 + θscζW,5.

Given the definition of the target levels for average output and the terms of trade, it is then possible
to define the target levels also for Home and Foreign output as

ỸH,t ≡ ỸW,t + (1− n) θscT̃t + (1− n) ĜR,t

and
ỸF,t ≡ ỸW,t − nθscT̃t − nĜR,t.

Subtracting the target levels from their actual counterparts, the Home and Foreign output gaps are

yH,t = yt + (1− n) θscqt

and
yF,t = yt − nθscqt,

where yi,t ≡ Ŷi,t−Ỹi,t. Substituting the Home and Foreign output gap into the per-period loss function
provides a rationale for the definition of the welfare-relevant targets for national output

LW,t = nλyy
2
H,t + (1− n)λyy

2
F,t + n (1− n) λ̃qq

2
t + nλπHπ

2
H,t + (1− n)λπF π

2
F,t,

where λ̃q ≡ λq − (θsc)2 λy.
The target for the tax rates are

τ̃H,t ≡ −ω−1τ
h
δyỸW,t + (1− n) δqT̃t − (1 + η) âH,t + μ̂wH,t − (1− n) ηĜR,t − ρs−1c ĜW,t

i
and

τ̃F,t ≡ −ω−1τ
h
δyỸW,t − nδqT̃t − (1 + η) âF,t + μ̂wF,t + nηĜR,t − ρs−1c ĜW,t

i
,

where δy ≡ η + ρs−1c and δq ≡ 1 + ηθsc.
The fiscal stress terms for country i is

ψi,t ≡ −ρs−1c
³
ỸW,t − ĜW,t

´
− (1− β)Et

( ∞X
s=t

βs−tvi,s

)
,

where

vH,t ≡ byỸW,t + (1− n) bqT̃t + (1 + ωg) τ̃H,t − sd

³
ĜH,t + ς̂H,t

´
+ ρs−1c ĜW,t − (1− n) (1 + ωg) ĜR,t,

vF,t ≡ byỸW,t − nbqT̃t + (1 + ωg) τ̃F,t − sd

³
ĜF,t + ς̂F,t

´
+ ρs−1c ĜW,t + n (1 + ωg) ĜR,t

and by ≡ (1 + ωg)− ρs−1c and bq ≡ (1 + ωg) θsc − 1.
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5 Determinacy
This section studies analytically the determinacy properties of the optimal policy under the assump-
tion that the degree of price rigidity is the same across countries (αH = αF ) and the additional
simplifications on the parameters such that ρ = θ = 1 and Ḡ = ς̄ = 0. I begin by proving Lemma 3
and Proposition 5 in the text.

5.1 Proof of Lemma 3

Lemma 3 If the degree of price rigidity is the same across countries, the currency union can be
represented in terms of an average and a relative block. The optimal policy plan for each block can be
determined independently.

Proof. Since the degree of price rigidity is the same, the per-period loss function can be written as

LW,t ≡ λy2t + n (1− n)λq2t + π2t + n (1− n)π2R,t, (46)

where λ ≡ (1 + η)κσ−1 and πR,t ≡ πF,t − πH,t.
Average Block. Taking the average, with weights n and (1− n) respectively, of the country-

specific Phillips curves gives

πt = σλ [ω̃ (τ̂W,t − τ̃W,t) + yt] + βEtπt+1. (47)

Similarly, the average of the two national government budget constraints is

b̂W,t−1 − yt − πt + ψW,t = (1− β) (τ̂W,t − τ̃W,t) + βEt(b̂W,t − yt+1 − πt + ψW,t+1). (48)

Equations [47] and [48] represent the average block of the currency union. The optimal policy for the
average block is the sequence {yt, πt, τ̂W,t, b̂W,t}∞t=0 that maximizes the present discounted value of
[46] subject to [59] and [60] and the additional constraints for the timeless perspective.
Relative Block. Taking the difference between the country-specific aggregate supply equations

yields the relative Phillips curve

πR,t = σλ [ω̃ (τ̂R,t − τ̃R,t)− qt] + βEtπR,t+1. (49)

Similarly, the difference between the national government budget constraints gives

b̂R,t−1 + ψR,t = (1− β) (τ̂R,t − τ̃R,t) + βEt(b̂R,t + ψR,t+1). (50)

The law of motion of the terms of trade is already expressed in terms of relative variables

qt = qt−1 + πR,t −∆T̃t. (51)

Equations [49], [50] and [51] represent the relative block of the currency union. The optimal policy
for the relative block is the sequence {qt, πR,t, τ̂R,t, b̂R,t}∞t=0 that maximizes the present discounted
value of [46] subject to [49], [50] and [51] and the additional constraints for the timeless perspective.
The two problems are independent, hence completing the proof of the claim.
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5.2 Proof of Proposition 5

Proposition 5 If the degree of price rigidity is the same across countries, the optimal policy for the
relative block can be represented by a flexible tax targeting rule adjusted for the terms of trade.

Proof. The first order conditions for optimal policy in the relative block are given by

λqt = σλϕR1,t + ϕ3,t − βEtϕ3,t+1, (52)

πR,t =
¡
ϕR1,t − ϕR1,t−1

¢
− ϕ3,t, (53)

Etϕ
R
1,t+1 = ϕR1,t (54)

and by the constraints [49]—[51]. From [53], I solve for ϕ3,t and substitute into [52]. After using [54]
and [49], I obtain a solution for ϕR1,t as a function of the equilibrium values of the terms of trade gap
and of the relative tax gap

ϕR1,t = ρϕϕ
R
1,t−1 +

¡
1− ρϕ

¢
Tt,

where ρϕ and Tt have been defined in the text. Since [54] implies that ϕR1,t must follow a random
walk, the previous expression can be rewritten as

EtTt+1 = ρϕEt−1Tt +
¡
1− ρϕ

¢
Tt,

which corresponds to the optimal targeting rule reported in the text.

5.3 Determinacy under Optimal Targeting Rules

The following proposition characterizes the sign and magnitude of the eigenvalues of a system of two
difference equations using the characteristic equation and will be used extensively below to study the
determinacy properties of the model.

Proposition 6 Let P (λ) ≡ λ2 + A1λ+ A0 = 0 and let λ1 and λ2 be the roots of P (λ). Then, the
absolute values of λ1 and λ2 split across the unit circle if and only if P (1) > 0 and P (−1) < 0 or
viceversa.

Proof. First, notice that one can always rewrite the polynomial P (λ) as

P (λ) = (λ− λ1) (λ− λ2) (55)

1. I first show that P (1) > 0 and P (−1) < 0 imply that the absolute values of the two roots λ1
and λ2 split across the unit circle. From the right hand side of [55], it is easy to see that

P (1) = (1− λ1) (1− λ2) > 0, (56)

and
P (−1) = (1 + λ1) (1 + λ2) < 0. (57)

If P (1) > 0, it means that λ1 and λ2 are on the same side of 1. Similarly, if P (−1) < 0, it means
that λ1 and λ2 are on opposite sides of −1. It then follows that one root must lie inside the unit circle
and the other outside. The case P (1) < 0 and P (−1) > 0 is totally symmetric.
2. Next, I show that if |λ1| and |λ2| lie on opposite sides of 1, it must be the case that P (1) and

P (−1) lie on opposite sides of 0. Without loss of generality, suppose |λ1| > 1 and |λ2| < 1. There
are two cases two be considered. First, if λ1 > 1, then, one can see from [56] that P (1) < 0 and from
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[57] that P (−1) > 0, which confirms the claim. Second, if λ1 < −1, then, again from [56] and [57],
P (1) > 0 and P (−1) < 0. The case |λ1| < 1 and |λ2| > 1 is symmetric.

Proposition 6 complements Proposition C.1 in Woodford (2003) which gives necessary and sufficient
conditions for the two roots of P (λ) to be both outside the unit circle.

Proposition 7 The optimal policy plan brings about a determinate equilibrium.

Proof. Given Lemma 3, I will analyze the determinacy properties of the average and relative block
separately. The equilibrium will be determinate if only if both blocks admit a determinate solution.
Average Block. Proposition 4 in the text implies that the determinacy properties of the average

block coincide with the closed economy case of Benigno and Woodford (2003) (section 7.11). Hence,
as in their model, the optimal policy brings about a determinate equilibrium for the average block.
Relative Block. The dynamics of the relative block under the optimal policy are described by

the system
MEtzt+1 = Nzzt +Nεεt, (58)

where the vector of endogenous variables is

zt ≡
£
πR,t τ̂R,t − τ̃R,t qt−1 xt−1 b̂R,t−1

¤
,

and xt ≡ EtTt+1. The matrixes of coefficients relevant for the determinacy properties are

M ≡

⎡⎢⎢⎢⎢⎣
β 0 −σλ 0 0

− (σ − 1)σ−1 ω̃ − (σ − 1)σ−1 −1 0
0 0 0 0 β
0 0 1 0 0
0 0

¡
1− ρϕ

¢
(σ − 1)σ−1 1 0

⎤⎥⎥⎥⎥⎦
and

Nz ≡

⎡⎢⎢⎢⎢⎣
1 −ω̃σλ 0 0 0
0 0 0 0 0
0 − (1− β) 0 0 1
1 0 1 0 0
0
¡
1− ρϕ

¢
ω̃ 0 ρϕ 0

⎤⎥⎥⎥⎥⎦ .
The vector of shocks εt and the matrix of coefficientsNε are irrelevant for the determinacy of properties
of the system [58] and hence not reported here. The determinacy properties of the relative block
depend instead on the eigenvalues of the matrix M−1Nz. First, notice that the determinant of M is
given by β2ω̃ and hence M is always invertible. Second, it is easy to check that three eigenvalues of
M−1Nz are 0, 1 and β−1. The remaining two eigenvalues are the roots v1 and v2 of the polynomial

P (v) = v2 −
∙
1 + β−1 + β−1σλ

µ
μ− 1
μ

¶¸
v + β−1.

It then follows that

P (1) = −β−1σλ
µ
μ− 1
μ

¶
< 0

and

P (−1) = 2
¡
1 + β−1

¢
+ β−1σλ

µ
μ− 1
μ

¶
> 0.

Since P (1) and P (−1) have opposite sign, Proposition 6 ensures that the absolute value of the two
roots of P (v) split across the unit circle. Since the system has three predetermined variables, the
solution is determinate although it possesses a unit root.
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5.4 Determinacy under Simple Rules

This section studies the determinacy properties of the model under simple rules assuming the same
degree of price rigidity across countries (αH = αF = α) but relaxing all the other restrictions on the
parameters imposed in the previous section. Therefore, Lemma 3 still applies and the aggregate and
relative block can be treated independently. For convenience, I report the equations that characterize
the average and relative block.

Average Block. The average Phillips curve is

πt = κ
£
δyyt + ωτ (τ̂W,t − τ̃W,t)t

¤
+ βEtπt+1. (59)

The average government budget constraint can be written as

b̂W,t−1−ρs−1c yt−πt+ψW,t = (1− β) [(1 + ωg) (τ̂W,t − τ̃W,t) + byyt]+βEt(b̂W,t−ρs−1c yt+1−πt+ψW,t+1).
(60)

The analysis of simple rules requires also the specification of the log-linear approximation of the
Euler equation

rt = r̃t +Etπt+1 + ρs−1c (Etyt+1 − yt) , (61)

where
r̃t ≡ ρs−1c

h³
EtỸW,t+1 − ỸW,t

´
− (EtĜW,t+1 + ĜW,t)

i
.

Relative Block. The relative Phillips curve is

πR,t = κ [ωτ (τ̂R,t − τ̃R,t)− δqqt] + βEtπR,t+1. (62)

The relative government budget constraint is

b̂R,t−1 + ψR,t = (1− β) [(1 + ωg) (τ̂R,t − τ̃R,t)− bqqt] + βEt(b̂R,t + ψR,t+1). (63)

The terms of trade evolves according to

qt = qt−1 + πR,t −∆T̃t. (64)

5.4.1 Determinacy under Simple Strict Rules

Average Block. The monetary rule for the average block is

πt = 0. (65)

The fiscal rule is
b̂W,t = rt. (66)

From [59], the tax gap simply becomes a linear function of the output gap

τ̂W,t − τ̃W,t = −
δy
ωτ

yt.

I substitute the result into [60], together with [65] and get

b̂W,t−1 + ufW,t = ωf (ωτ − δy) yt + βb̂W,t − βρs−1c (Etyt+1 − yt) ,
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where I have exploited the definition of by to simplify terms and I have defined ωf ≡ (1− β) (1 + ωg)ω
−1
τ

and ufW,t ≡ ψW,t − βEtψW,t+1. I can then substitute for the innovation in the output gap from [61]
to eliminate the last term in the previous expression and finally apply the fiscal policy rule [66]. The
result is a closed form solution for the output gap as a function of the existing stock of liabilities and
the exogenous shocks of the form

yt =
1

ωf (ωτ − δy)

³
b̂W,t−1 + ufW,t − βr̃t

´
. (67)

From [67] and [61], I can then derive the dynamic evolution of debt using the fiscal rule [66]. The
resulting expression is

b̂W,t = δsb b̂W,t−1 + W,t, (68)

where

δsb ≡
ρs−1c

ρs−1c − ωf (ωτ − δy)

and W,t is a composite shock whose definition is immaterial for the determinacy properties. A
determinate solution requires |δsb| < 1. Under the baseline calibration, δsb = 0.7724, thus ensuring
determinacy.5

Relative Block. The relative block is characterized by the fiscal rule

b̂R,t = 0. (69)

I can solve for the tax gap from [62] and plug the result into the government budget constraint. I
can also eliminate debt using [69] and inflation rate differentials from [64]. The outcome is a second
order linear difference equation in the terms of trade given by

Etqt+1 −
µ
1 +

1

β
+

κωq
βωf

¶
qt +

1

β
qt−1 =

κ

βωf
uψR,t +

1

β
uT̃1,t,

where ωq ≡ ωfδq − νq, νq ≡ (1− β) bq, u
ψ
R,t ≡ ψR,t − βEtψR,t+1 and uT̃1,t ≡ ∆T̃t − βEt∆T̃t+1.

The associated characteristic equation is

P (λ) = λ2 −
µ
1 +

1

β
+

κωq
βωf

¶
λ+

1

β
= 0.

One can easily see that

P (1) = − κωq
βωf

, P (−1) = 1

β

∙
2 (1 + β) +

κωq
ωf

¸
.

From the definition of the parameters, it is easy to see that ωf is always positive. Under the baseline
calibration, ωq > 0, hence, P (1) < 0 and P (−1) > 0. From Proposition ??, it follows that the relative
block is determinate under the baseline calibration.

5Robustness exercises to different parameters configurations are available upon request.
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5.4.2 Determinacy under Simple Flexible Rules

Average Block. The monetary policy rule is

πt + γ∆yt = 0. (70)

The flexible fiscal rule is
b̂W,t + φyt = rt. (71)

As in the case of strict simple rules, I eliminate taxes from the average Phillips curve [59]. Since
now CPI inflation is different from zero, I use the monetary rule [70] to obtain

τ̂W,t − τ̃W,t = −
γ

κωτ
(∆yt − βEt∆yt+1)−

δy
ωτ

yt.

I replace the result into the average government budget constraint, together with the monetary rule
[70] to eliminate CPI inflation

b̂W,t−1 + γ∆yt + uψW,t = ωf (ωτ − δy) yt −
ωfγ

κ
(∆yt − βEt∆yt+1)

+ βb̂W,t − βρs−1c Et∆yt+1 + βγEt∆yt+1.

I can collect terms and express the last expression as

βb̂W,t + β
h
γ
³
1 +

ωf
κ

´
− ρs−1c

i
Et∆yt+1 + ωf (ωτ − δy) yt = (72)

b̂W,t−1 + γ
³
1 +

ωf
κ

´
∆yt + uψW,t.

I can also substitute the Euler equation [61] and the monetary rule [70] into the fiscal rule [71] to
get

b̂W,t +
¡
γ − ρs−1c

¢
Et∆yt+1 + φyt = r̃t. (73)

The determinacy properties of the average block depend upon the system constituted by expres-
sions [73] and [72], together with the definition

yt ≡ ∆yt + yt−1. (74)

The system can be written in the form

AEtzt+1 = Bzt + CεW,t,

where the vector of endogenous variables is

zt ≡
£
b̂W,t−1 ∆yt yt−1

¤0
,

the vector of exogenous shocks is

εW,t ≡
h
uψW,t r̃t

i
and the matrices of the system are

A ≡

⎡⎣ 1 a12 φ
β a22 a23
0 0 1

⎤⎦ , B ≡

⎡⎣ 0 0 0
1 b22 0
0 1 1

⎤⎦ , C ≡

⎡⎢⎢⎣
0 0 0
1 −ωf/κ 0
0 0 0
0 0 1

⎤⎥⎥⎦ ,
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with

a12 ≡ γ − ρs−1c
a22 ≡ β

¡
b22 − ρs−1c

¢
a23 ≡ ωf (ωτ − δy)

b22 ≡ γ (1 + ωf/κ) .

The determinant of the matrix A is

det (A) ≡ d = a22 − βa12 = βγ (ωf/κ) > 0.

It is then possible to show that

A−1B =

⎡⎣ c11 c11b22 + c13 c13
c21 c21b22 + c23 c23
0 1 1

⎤⎦ ,
where

c11 = −a12/d
c13 = (a12a23 − φa22) /d

c21 = 1/d

c23 = (βφ− a23) /d.

Since at least one eigenvalue of A−1B is equal to zero,6 determinacy requires that the two remaining
eigenvalues lie on different sides of 1. The other two eigenvalues are the solution of the characteristic
equation

P (λ) = λ2 − (1 + c11 + b22c11 + c23)λ+ (c11 + b22c11 + c11c23 − c21c13) = 0.

When φ = 0 and γ > 0 (flexibility is granted to monetary policy only), little algebra leads to

P (1) = a23/d

and

P (−1) = 2
µ
1− a12

d
+

b22
d

¶
− a23

d
.

From the definitions of the parameters, one can see that under the baseline calibration P (1) < 0 and
P (−1) > 0 ∀γ > 0. It follows that in this case the average block has always a determinate solution.
On the other hand, when φ > 0 and γ = 0 (flexibility is granted to fiscal policy only), it is possible

to obtain a closed form solution for output similar to [67] and derive an expression for the evolution
of debt analogous to [68]. The autoregressive coefficient that governs the dynamics of debt is

δfb ≡
ρs−1c − φ

ρs−1c + βφ− ωf (ωτ − δy)
.

Since φ > 0, δfb < δsb. Hence, the inequality δ
f
b > −1 gives the relevant restriction on φ for this case

φ <
2ρs−1c − a23
1− β

= 950.794. (75)

6The difference of the second and third column is equal to the first column multiplied by b22. Hence, A−1B is
singular and must have at least one null eigenvalue
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In the more general situation in which both flexibility parameters are positive, the evaluation of
the characteristic equation yields

P (1) = −c23 (1− c11)− c21c13

and
P (−1) = 2 (1 + c11 + b22c21) + c23 (1 + c11)− c21c13.

I solve numerically for these two conditions to find the set of values for γ and φ that guarantee
P (1) > 0 and P (−1) < 0 or viceversa.

Relative Block. The fiscal rule for the relative block is

b̂R,t + θscφqt = 0. (76)

As in the previous section, one can derive a second order difference equation in the terms of trade
gap, which in this case reads as

Etqt+1 −
µ
1 +

1

β
+

κωq
βωf

+
κθscφ

ωf

¶
qt +

1

β

µ
1 +

κθscφ

ωf

¶
+ qt−1 =

κ

βωf
uψR,t +

1

β
uT̃1,t.

From the associated characteristic polynomial P (λ), it follows that

P (1) =
κ

βωf
[(1− β) θscφ− ωq]

and

P (−1) = (1 + β) θscκ

βωf
+
2 (1 + β)

β
+

κωq
βωf

.

Given that under the baseline calibration ωq and ωf are positive, P (−1) > 0, ∀φ > 0. Therefore, a
necessary condition for determinacy under flexible rules is given by P (1) < 0 which can be solved for
φ as to yield

φ <
ωq

(1− β) θsc
= 10.4676. (77)

Clearly, condition [77] is stronger than [75]. Condition [77] continues to bind also with flexible
monetary rules (γ > 0), thus representing the relevant upper bound for the feedback coefficient in the
flexible formulation of simple fiscal rules.

6 Welfare Analysis
This section shows an analytical method to derive the value of welfare under a given policy rule and
provides a second order approximation of the consumption equivalent proposed by Lucas (1987).

6.1 The Welfare Objective

The welfare objective is assumed to be

L (y−1) ≡ (1− β)E0

( ∞X
t=0

βtLt

)
,
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where Lt ≡ y0tQyt is the per-period quadratic loss function. The vector yt has dimension (n× 1) and
contains all the endogenous variables and Q is a given (n× n) symmetric matrix. The solution of the
model is written in vector auto-regression representation

yt = Ayt−1 +Bεt, (78)

for initial conditions y−1 = 0 and i.i.d. innovations εt with mean zero and variance-covariance matrix
Ω.
Substituting the solution [78], the per-period loss function can then be rewritten as

Lt = (Ayt−1 +Bεt)
0Q (Ayt−1 +Bεt)

= y0t−1A
0QAyt−1 + 2ε

0
tB

0QAyt−1 + ε0tB
0QBεt.

Hence, the welfare objective becomes

L (y−1) = (1− β)E0

( ∞X
t=0

βt
¡
y0t−1A

0QAyt−1 + ε0tB
0QBεt

¢)
, (79)

where the expectation of the cross-product simplifies to zero because of the i.i.d. property of the
shocks.
The evaluation of welfare from an ex-ante perspective requires to integrate over the distribution of

shocks at time 0. I denote with E {·} the expectation operator over the initial distribution of shocks.
I analyze the two components of the welfare objective [79] separately.
For the second element of [79], it is straightforward to see that

(1− β)E

( ∞X
t=0

βt (ε0tB
0QBεt)

)
= tr (B0QBΩ) .

The first component of [79] can again be written as

(1− β)E

( ∞X
t=0

βt
¡
y0t−1A

0QAyt−1
¢)

= (1− β)E

( ∞X
t=0

βt
£
tr
¡
A0QAyt−1y

0
t−1
¢¤)

= (1− β) tr

( ∞X
t=0

βt
£
A0QAE

¡
yt−1y

0
t−1
¢¤)

= tr (A0QAJ) ,

where

J = J (y−1) ≡ E

(
(1− β)

∞X
t=0

βtyt−1y
0
t−1

)
.

The variable J can be rewritten in recursive form using the initial condition y−1 = 0 as

J = (1− β) y−1y
0
−1 + βE

(
(1− β)

∞X
t=0

βtyty
0
t

)

= βE

(
(1− β)

∞X
t=0

βt (Ayt−1 +Bεt) (Ayt−1 +Bεt)
0
)

= β (AJA0 +BΩB0) .
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The last expression can be solved for the matrix J using a two-step procedure. First, one can solve
for vec (J) from the last equality

vec (J) = [In2 − β (A⊗A)]
−1

vec (βBΩB0) .

Second, one can retrieve the matrix J by “reshaping” vec (J).7

The value of welfare is then given by

E {L (y−1)} = tr (A0QAJ) + tr (B0QBΩ) .

Expression E {L (y−1)} constitute the basis for the welfare analysis conducted in the text.

6.2 The Consumption Equivalent

The objective is to compute the number λ such that

E0

( ∞X
t=0

βt
£
u
¡
(1− λ)Copt

t

¢
− v

¡ opt
t

¢¤)
= E0

( ∞X
t=0

βt
£
u
¡
Calt
t

¢
− v

¡
alt
t

¢¤)
, (80)

where

u (Ct) =
C1−ρt

1− ρ
.

The present discounted value of welfare under the optimal policy is

V opt
0 ≡ E0

( ∞X
t=0

βt
£
u
¡
Copt
t

¢
− v

¡ opt
t

¢¤)
,

whereas the present discounted value of welfare under an alternative policy is

V alt
0 ≡ E0

( ∞X
t=0

βt
£
u
¡
Calt
t

¢
− v

¡
alt
t

¢¤)
.

It follows that [80] can be rewritten ash
(1− λ)1−ρ − 1

i
W opt
0 = V alt

0 − V opt
0 , (81)

where

W opt
0 ≡ E0

( ∞X
t=0

βtu
¡
Copt
t

¢)
. (82)

In equilibrium,W opt
0 , V alt

0 and V opt
0 are a function of the initial state vector x0 and of the parameter

σε scaling the standard deviation of the exogenous shocks. Therefore, in what follows, I adopt the
following notation

W opt
0 =W opt (x0, σε) , V alt

0 = V alt (x0, σε) , V opt
0 = V opt (x0, σε) .

This implies that also λ will be a function of x0 and σε

λ = Λ (x0, σε) .

7This operation can be performed, for example, using the command “reshape” in Matlab.
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I want to consider a second order approximation of Λ around the vector (x0, σε) = (x, 0) where
x represents the optimal deterministic steady state. Since the approximation is characterized for the
initial state being the deterministic steady state, only the first and second order derivatives with
respect to σε shall be considered

λ = Λ (x, 0) + Λσε (x, 0)σε +
1

2
Λσεσε (x, 0)σ

2
ε (83)

Because all policies are assumed to deliver the same level of welfare in steady state, it follows that

Λ (x, 0) = 0.

Furthermore, because the first derivatives of the policy functions with respect to σε, evaluated
(x0, σε) = (x, 0), are zero (see Schmitt-Grohé and Uribe, 2004), also the first derivatives of the
value functions evaluated at that point are zero (V alt (x, 0) = 0 and V opt (x, 0) = 0). From a first
order approximation of [81], it follows that

Λσε (x, 0) = 0.

Hence, a second order approximation of [81] gives

Λσεσε (x, 0) = −
"
V alt
σεσε (x, 0)− V opt

σεσε (x, 0)

(1− ρ)W opt (x, 0)

#

Substituting into [83] yields

λ = −
"
V alt
σεσε (x, 0)− V opt

σεσε (x, 0)

(1− ρ)W opt (x, 0)

#
σ2ε
2
.

From the definition [82] it follows

(1− ρ)W opt (x, 0) =
C̄1−ρ

1− β
,

where C̄ is the steady state level of consumption. Plugging back into the expression for λ gives the
second order approximation of the consumption equivalent

λ = −(1− β)σ2ε
2C̄1−ρ

£
V alt
σεσε (x, 0)− V opt

σεσε (x, 0)
¤
.
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