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ABSTRACT

Prepayment plays a critical role in the valuation and performance of mortgage-backed securities.
For this reason, market participants have devoted substantial resources to developing formal
mathematical models of mortgage prepayment. This paper investigates the structure of the
prepayment function.  We demonstrate that the prepayment function is nonlinear and
heteroskedastic, that is, prepayments are increasingly more volatile at higher interest rate
spreads. Our analysis suggests that these unusual properties of pool prepayments are inherently
caused by statistical aggregation. 

JEL Classification: G13

Keywords:  Mortgage-backed Securities; Prepayment Function; OAS Pricing
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MODELING THE INSTABILITY OF MORTGAGE-BACKED PREPAYMENTS

1.  INTRODUCTION

The U.S. mortgage market is the largest debt market in the world. As of the second

quarter 2002, residential mortgage debt outstanding was close to $6.5 trillion. Today, almost half

of the debt is securitized and resold as mortgage-backed securities (MBS) by governmental,

quasi-governmental institutions and private mortgage originators. Mortgage securitization has

greatly enhanced liquidity in the mortgage market. The mortgage market has also benefited from

an expanding secondary market facilitated by the increased participation of loan brokers and

private insurance mortgage companies.  These entities provide a wide variety of services that

allow mortgage originators and other investors to trade large portfolios of conforming or

nonconforming loans in the secondary market (whole loan market). 

In many respects, a mortgage security is similar to an ordinary bond. Like bonds,

mortgage securities promise their holders a stream of payments over a number of periods. 

Mortgage passthroughs, however, are different from a typical government bond because the

promised cash payments depend on prepayment.  Mortgage borrowers in United States are given

the right to prepay part or the entire principal without penalty.  This embedded option can

change drastically the expected cash flows from a mortgage security. The adverse effect of

prepayment is particularly exaggerated in more exotic mortgage-backed derivative products such

as collateralized mortgage obligations (CMOs) and stripped MBSs.  

The prepayment experience of mortgage securities in the 1980s and 1990s has been quite

bumpy. During this period, the mortgage market experienced several intense refinancing cycles,

which were prompted by sharp declines in interest rates. Most market participants were not
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surprised by the changes in interest rates. What took Street forecasters by surprise, however, was

the precipitous rise (or fall) and extremely volatile nature of pool prepayments. Some have

attributed the changing intensity of prepayment cycles to the evolving character of the mortgage

market. Mortgage banks and brokers increasingly dominated housing finance in the 1990s. 

These financial institutions are more agile than banks and thrifts because they face fewer

restrictions and regulations. Aided by advances in information technology mortgage bankers and

brokers have expanded geographically by offering more attractive loan products.   

The increased competition among lenders has lowered transaction costs for mortgage

borrowers, which in turn has led to a rise in the propensity to refinance. Bennett et al. (2001)

report that 12 percent of the borrowers in the early 1990s prepaid their loan after 5 years. Under

the same economic conditions, the prepayment rate in 1980s would have only been around 7

percent. A study by Lekkas (1994) provides further support to the changing nature of

refinancings.  The author argues that the high-rate borrowers who reduced their monthly

payments by refinancing into lower-interest loans dominated the 1986-87 experience. By

contrast, during 1992-93 borrowers elected to shift into shorter-maturity mortgages. 

Although borrowers appear to be more responsive to interest rate movements in the

1990s, it is hard to rationalize how such a moderate shift in the incentive to refinance would have

generated so much volatility in mortgage prepayments. Why are MBSs prepayment speeds so

erratic and unpredictable?  In investigating this question, this paper takes a somewhat

unorthodox approach.  Most studies in the literature have analyzed prepayment speeds at the

aggregate (pool) level. We focus instead on the microstructure of the MBS. The prepayment

experience of the passthrough security is simply the sum of all individual prepayment decisions

in the pool.  We will argue that this process of aggregation makes the prepayment function
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inherently unstable.

2. BACKGROUND

To understand the instability in MBS prepayment rates, consider a simple scatter diagram

of prepayment speeds and the relative interest rate differential between the weighted average

coupon (WAC) and the prevailing mortgage rate (Figure 1). The prepayment rates describe the

experience of 30-year conventional Federal National Mortgage Association (FNMA)

passthroughs with coupon rates between 7 and 12 percent from 1982 to 1994.1 The solid curve in

the scatter plot represents an in-sample forecast of PSA prepayment rates.2 The S-shape

configuration of the in-sample prediction illustrates the nonlinear nature of prepayments. 

Homeowners are reluctant to refinance when spreads are negative because their mortgage option

is out of the money. In this negative range, residual prepayments are small, resulting mostly from

life events or other idiosyncratic factors.  

The scatter plot shows that prepayment rates accelerate as interest rate spreads become

more positive. The rising incentive to prepay at higher coupon spreads is best seen by the

steepening slope of the forecast curve. Note, however, that at the same time prepayments become

more dispersed at higher interest rate spreads. Put another way, prepayments are heteroskedastic

with respect to the coupon spread. For example, FNMA prepayment rates range from 100 PSA to

1The Public Securities Administration (PSA) convention assumes pool prepayments rise 0.02
percent per month for the first 30 months of the life of the pool, and then remain constant at 6
percent (per year) from the thirtieth month until maturity.

2We use the penalized least squares (PLS) method to estimate prepayment forecasts. This
smoothing spline approximation technique is based solely on the coupon spread. Our objective
here is to simply demonstrate the nonlinear nature of prepayments. In a later section, however,
we will show that a polynomial specification is also a good approximation for the prepayment
function.
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300 PSA when the interest rate spread is zero. By contrast, prepayments are more dispersed

when the spread is 200 basis points, ranging from 200 PSA to 900 PSA. This large disparity in

prepayment rates is found in individual FNMA coupon cohorts and is also observed in single

pools. Thus, the presence of heteroskedasticity cannot be attributed to the fact that the scatter

plot portrays the prepayment experience of wide class of FNMA securities.

Why is the relationship between prepayment rates and coupon spreads heteroskedastic? 

One possible explanation for this paradox is that it may be the result of “path dependency”.  By

construction, a MBS pool is made up of a finite number of mortgages.  When a mortgage is

prepaid, the servicer returns the principal to investors. Subsequent cash flows of the security are

paid out of the remaining mortgages in the pool.  Prepayment is therefore equivalent to sampling

without replacement. This process introduces path dependency because it changes the

composition of the pool.  Consider, for example, an unseasoned mortgage pool that experiences

consecutively two identical interest rate cycles. In both cycles, assume that the interest rate

spread first rises by 200 basis points but eventually returns back to its original level. In the first

episode, rate-sensitive homeowners will rush to take advantage of favorable interest rates exiting

the pool, pushing prepayments higher.  As mortgage rates decline for the second time around,

however, prepayment rates will be lower because the pool now consists of constrained

mortgagors who are less able to take advantage of the favorable interest rate environment.

This paper will offer a somewhat different interpretation for the heteroskedastic traits of

prepayment.  We will argue that the unusual dispersion in prepayments is not necessarily caused

by path dependency. Rather, we will show that this phenomenon is simply a statistical artifact of

aggregation.  In fact, we will demonstrate that pool-level prepayment rates continue to be

heteroskedastic, even though an exactly identical individual replaces a prepaying mortgage
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holder in the pool.  To be sure, “burn out” is important. But its role is more critical in shaping the

average propensity to prepay, which accounts for the nonlinear S-shape of the prepayment

function.

3. A STATISTICAL MODEL FOR INDIVIDUAL PREPAYMENTS

3.1 Mortgage Mathematics

A traditional mortgage loan is an amortized contract that requires the borrower to pay

interest and repay the principal in equal installments. At the same time, the mortgagor is given

the right to prepay part or the entire principal before maturity without penalty. Like any contract

with standardized payment streams, a mortgage loan obeys a well-developed mathematical

framework (for more details, see Hayre and Mohebbi (1992)). Assume that the ( )i th−

homeowner takes out a conventional fixed-rate mortgage loan at month ( 0)t = . The mortgage

rate is ir  and the loan is amortized over T  periods (typically, T  equals 360 months). Let tiB

represent the remaining balance on the loan at month t (thus, 0iB  represents the original balance

of the loan). The remaining balanced tiB  includes all partial (unscheduled) payments. When tiB

reaches zero, the loan is fully repaid at month t .  In the absence of any prepayment, the

remaining balance of a mortgage is given by 

T t
i i

ti 0i 0i tiT-1
i

(1+ ) - (1- )
= = ,

(1+ )
r r

B B B
r

α× (1)

The term tiα is known as the amortization factor. It follows that the proportion of the scheduled

loan balance outstanding in any month is defined by:

ti
ti = .

 ti

B
q

B
(2)
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A mortgage loan that does not incur any partial payments will always have a tiq ratio equal to

100 percent. The variable tiq is useful for defining the standard measures of prepayment. The

fraction of the outstanding loan balance that is prepaid each month is simply given by

ti
ti

t-1,i
= .

q
p

q
∆

(3)

In the monthly context, tip  becomes the single monthly mortality rate (SMM). The SMM rate

represents the proportion of the outstanding balance of mortgage i  prepaid at month t .

Typically, SMM, or its annualized version conditional prepayment rate (CPR), are used to

measure pool-level prepayments.  However, these prepayment measures are also applicable to a

single mortgage, although at this micro level prepayment rates are lumpy.

3.2 A Simple Econometric Model for Mortgage Prepayment

Mortgage prepayments can occur because of three basic reasons: (1) refinancings, (2)

property sale, and (3) default.  Refinancings represent prepayment by nonmover occupants.  The

rational prepayment literature stipulates a mortgagor would refinance when the intrinsic value of

the loan, defined as the immediate benefit from refinancing measured in present value terms, is

greater than the benefit from waiting to refinance in a subsequent period (the “time value” of the

option plus transaction costs).  The decision to terminate a mortgage by moving or defaulting

also depends on the moneyness of the mortgage option, however, one would expect that personal

characteristics (income, education) and other idiosyncratic events (job loss, death, divorce) to

play also an important role.

Recent studies have taken a more direct approach to modeling the cross sectional

heterogeneity in prepayment behavior.  The rational prepayment model is characterized by an

empirical specification that employs loan-level information on mortgage terminations (see
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Cunningham and Capone (1990), Caplin et al. (1996), and Peristiani et al. (1997)).  These

empirical studies find strong evidence that prepayments are driven by two particular factors:

post-origination home equity and homeowner creditworthiness. 

The empirical methodology is also useful for defining a general stochastic model of

individual prepayments. The decision to prepay can be simply expressed as 

*
ti 0 t 1i ti=  +  x  +  ,ip β β ε (4.1)

where

*
ti

* *
ti

ti

= 100  if  100

=  if  0< < 100;
= 0 if otherwise.

ti

ti ti

p p

p p p
p

≥

(4.2)

As before, the variable tip denotes a broad measure of actual prepayment (e.g., the SMM rate or

the annualized conditional prepayment rate).  For simplicity, we assume that is bounded above

by 100 percent (full prepayment) and below by zero (no prepayment). The variable *
tip

represents the unobservable notional desire to prepay. In contrast to actual prepayment, the

notional desire is a continuous variable that can be negative or exceed 100 percent. If the

notional desire to prepay is positive but less than 100 percent, the homeowner will partially

prepay the loan.3

The willingness to prepay is determined by a systematic factor tx , representing market

3The contribution of partial prepayments (or curtailments) to overall prepayment is generally
quite small. For fixed-rate mortgages, partial prepayments contribute on average around 0.2
percent to conditional prepayment rates. As with partial prepayments, defaults make up a small
portion of total prepayment.  Usually, the homeowner default on fixed-rate mortgages is less
than 0.5 percent per year.  Since most passthroughs are insured against credit risk, we do not
consider this option in the censored regression model.  However, one can explicitly include this
outcome by using a more generalized version of the censored model.
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conditions.  For simplicity, here we let tx  be a scalar factor representing the spread between the

coupon rate and the prevailing market rate. The parameters, 1iβ and 0iβ , capture homeowner or

loan characteristics. Credit- or collateral-constrained borrowers, on average, are expected to have

small positive slope coefficients 1iβ  because they are less sensitive to economic conditions. In

other words, a constrained borrower is less responsive to a rise in the interest rate spread tx .4

The term tiε  denotes the random error that accounts for all unexplained variation in the

decision to prepay. We assume that the error of the model is drawn from a normal distribution

with zero mean and variance 2σ .  Equation (4) defines a two-limit censored regression model

(see Maddala (1983)). In contrast to the ordinary regression model, the distribution of monthly

prepayment in the two-limit model is determined by a mixture of discrete (unobserved) and

continuous (observed) variables.  The probabilities of the three distinct outcomes of prepayment

are given by

u
ti

P(i-th  homeowner prepays fully in month t) = 1 - ( ),

P(i-th  homeowner partially prepays in month t)  = ( ) - (- ),
P(i-th homeowner does not prepay in month t)  = 1 - ( ),

u
ti

ti

ti

λ

λ λ
λ

Φ

Φ Φ
Φ

(5)

where ti 0 1i= ( + )i txλ β β σ  and u
ti ti=(100 )-λ σ λ . The function ( )λΦ  is the standard normal

cumulative distribution integrated between λ  and ∞ .  Note that all three probability outcomes in

(5) sum to one. 

In the censored regression model, the likelihood of prepayment is still determined by the

4Peristiani et al. (1997) and Caplin et al. (1997) find evidence that strongly supports this premise.
Using a large sample of homeowners, these studies estimate a qualitative model for the decision
to refinance.  Their empirical findings suggest that credit quality and collateral value have a
significant effect on the probability of refinancing.
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homeowner’s characteristics and interest rate conditions. However, the censored nature of

individual prepayments complicates the error structure.  We can show that:

u
ti ti

ti 0i 1 tiu
ti

 ( ) - ( )
E( ) =  = ( , , ) = ( ),

( ) - ( ) i t
ti

h x h
ϕ λ ϕ λε σ σ β β σ λ

λ λΦ Φ
(6.1)

u
2 2 2 2ti

ti ti 0i 1i tiu
ti ti

(- )
Var( ) =   [1-h( )  + 100  ] = ( , , ) = ( ).

( )- ( ) tx
ϕ λε σ λ σ υ β β σ υ λ

λ λΦ Φ
(6.2)

The error in the mortgage prepayment model has therefore a nonzero mean and its

variance is heteroskedastic (that is, tiVar( )ε  is a function of tx ).  The significance of these

statistical properties of individual prepayments would become more apparent in the next section.

Nonetheless, it is not difficult to understand why these unusual characteristics of individual

prepayments are extremely important.  A MBS comprises a finite number of borrowers.  Since a

borrower's decision function is heteroskedastic, then this property would also transfer to the

MBS prepayment function.  

4. THE MBS PREPAYMENT FUNCTION

Consider a typical mortgage passthrough security consisting of number of conventional

mortgage loans. At origination ( 0)t = , the mortgage pool contains 0n  fixed-rate mortgages with

maturity T . After the MBS is issued, the number of mortgages in the pool may decline, (e.g.,

t+ 0tn n n≤ ≤ ).  The overall size of the pool at origination equals 0B .  Each loan in the pool

contributes 0iB , such that 0 0= iB B∑ . At origination, the WAC of the MBS is 0i= ir rω∑ , and

the weighted average maturity (WAM) isT months. The scaling factor 0iω  represents the

relative weight of each mortgage loan at ( 0)t = (or more generally, ti t=ti B Bω ).

At its inception, the steam of payments of the MBS is the cash flows of 0n  mortgage
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loans. Ultimately, the cash flows of the security are determined by the prepayment experience of

the pool. To complete the model, we assume that individual prepayment process is defined by

equation (4).  The prepayment experience of the pool at any given month is the sum of all

individual prepayments.  Algebraically, we can express this aggregate pool prepayment rate as

t 0t 1t t t= + x +P β β ε (7)

such that *
t ti=  tiP pω∑ ,  ti= ( 0,1)kt ik kβ ω β =∑ , and t ti= tiε ω ε∑ . We should note the

parameters 0tβ  and 1tβ  are time varying, meaning that the slope and intercept of the prepayment

function change over time.  Since mortgagors are not replaced when they exit the pool, the

composition of pool changes over time with prepayment. In our simple framework, where

prepayment rates are determined by a single factor tx  (the coupon spread), the slope of the

prepayment function will be fairly flat at negative values of the spread.  In this range, we observe

small residual prepayments resulting from idiosyncratic events. The slope of prepayment

function steepens as coupon differentials become positive and widen.  Large positive spreads

trigger rapid refinancing as borrowers with a higher propensity to prepay (those with high

positive 1iβ ) are now in the money. Eventually, the slope of prepayment function flattens at very

high values of spread because the pool is “burned out”, meaning that the pool now contains

mostly constrained borrowers (low-beta homeowners) who are unable to refinance at any rate.5

Since individual prepayments are heteroskedastic and have a nonzero mean, pool-level

5Another way to look at path-dependency in prepayments is by examining the stochastic
properties of tn  the number of mortgagors remaining in the pool at time t . Because loans are not
replaced in the pool, the conditional expectation of tn  depends on 1tn − . In turn, this means that
the conditional expectation of tn  depends on lagged values of tx .
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prepayments have also a similar structure.  We can show that

t ti ti
1

= h( )
t

i

n
ε σ ω λ

=
∑ (8)

t
2

t ti ti
i=1

n
Var( ) =    ( ).ε σ ω υ λ∑ (9)

The error structure of pool prepayments is again heteroskedastic in the sense that the variance

depends on the level of coupon spread tx . Equations (8)-(9) can be simplified by linearizing the

functions *
ti tih ( , )= h( )ti tiω λ ω λ  and *

ti ti ti ti( , )= ( )υ ω λ ω υ λ . Using a multivariate Taylor

approximation rule, we can modify these functions to 

2 k
t 0 1 t 2 t k tE( ) [  +  +  +  +   ] = ( ),tx x x h xε σ α α α α σ≅ … (10)

2 2 k 2
t 0 t t 2 t k t tVar( ) [ + + +  + ] = ( ),x x x xε σ γ γ γ γ σ υ≅ … (11)

where k  represents the polynomial order of the Taylor expansion. Thus, an additive form of

heteroskedasticity, which depends on the scalar exogenous factor, can approximate the error

structure of the prepayment function tx . 

Equation (11) reveals an interesting finding. The variance of the prepayment errors also

depends on tx . This relationship suggests that statistical inference is more uncertain at larger

values of coupon spread as the confidence interval for the prepayment forecast is wider. We can

also use the Taylor approximation in same manner to specify the theoretical structure of the

prepayment function.  The aggregate prepayment rate can be expressed as  

2 k
t 0 1 t 2 t k tE(P ) [  +  +  +   +  ].x x xβ β β β≅ … (12)

The aggregate prepayment function is therefore nonlinear. But more important, this nonlinear

function can be easily approximated by polynomial regression model, assuming that tx  is fully
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known.

These findings can be easily generalized to the case where a borrower's decision to

prepay is influenced by several variables represented by the row vector t t1 t2 tp=(1, , , , )x x x x• … .

In this multivariate case, we can show that prepayment errors would still be heteroskedastic,

albeit the functional form of additive heteroskedasticity is more complicated.

4.1 Simulation Examples

An alternative way of illustrating the effects of aggregation in prepayments is through

simulation. The premise of the simulation examples presented in this section is straightforward. 

We construct artificial pools of mortgages.  The decision to prepay is determined by the interest

rate spread defined by equation (4). For simplicity, however, we assume that borrowers do not

partially prepay their loans.  In each period, mortgage holders are exposed to a different interest

rate spread plus a random shock. The simulation example asserts that individuals in the pool

have completely different prepayment functions. Each mortgagor has a different propensity to

prepay (that is, they have unique 0iβ  and 1iβ ).  

We perform two distinct simulation experiments.  The first simulation experiment

assumes that the mortgage holder exits the pool when the willingness to prepay *
tip  is greater

than zero; otherwise, the borrower does not prepay (remember, there are no curtailments). The

second simulation experiment assumes again that a borrower would prepay when * 0tip > ;

however, now the prepaying mortgage holder is replaced in the pool by an exactly identical

borrower. In this way, we maintain the size of the pool constant.6  The results of the two

6Borrowers are heterogeneous in the sense that i= (1+ ), =0,1 i iβ β ρζ , where iβ  is the
predetermined value for the intercept and slope, ρ  is a small constant (usually, 0.05) and iζ  is a
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simulation examples are graphically presented in Figure 2. Essentially, we observe two distinct

scatter plots in the figure.  Observations marked by the symbol ( )×  represent the prepayment

experience of pools that prepay with replacement. The symbol ( )  denotes pools that prepay

without replacement. The solid curves in the figure represent again in-sample predictions for

aggregate prepayments, which were estimated from a simple polynomial regression. Prepayment

rates are unstable for large values of interest rate spread, indicating the heteroskedastic nature of

the prepayment function. Note, however, that prepayments are heteroskedastic in both cases.

This is an important finding because it helps to demonstrate that burnout (prepayment without

replacement) alone cannot explain the heteroskedastic nature of prepayments. The pattern in

prepayments is still heteroskedastic, even though individuals that prepay are replaced in the

pool.7

What clearly distinguishes these two simulation examples is the shape of the average

prepayment function.  Pool prepayment rates are, on average, much larger when prepaying

borrowers are replaced in the pool.  This outcome is not surprising because in this case the

composition of the pool is unchanged. At negative spreads, only a small fraction of these

individuals wish to prepay. But as spreads become positive and widen, an increasing number of

mortgage holders are willing to prepay because the pool does not burn out.  In contrast, when

borrowers are not replaced in the pool, aggregate prepayments tend to level off after a point,

giving rise to the distinct S-shape.  In summary, our simulation findings suggest that pool

burnout does not necessarily account for the phenomenon of heteroskedasticity in MBS

random shock generated from a standard normal distribution.
7A simple F-test shows that the error sum of squares for the two experiments is not statistically
significantly different from each other.
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prepayment rates.  However, burnout is solely responsible for the nonlinear S-shape structure

found in most pool prepayment functions.

5. IMPLICATIONS

Our analysis provides a compelling theoretical argument that the MBS prepayment

function is inherently heteroskedastic. As shown above, prepayments are more likely to be

scattered at large positive coupon spreads. The unusual nature of prepayments raises a number of

interesting questions. Should we be concerned with the heteroskedastic structure of the

prepayment function?  Can this distinctive error structure in prepayments distort pricing?

Broadly speaking, heteroskedastic errors diminish the power of statistical inference

because the least-squares regression estimator is inefficient. The impact of heteroskedasticity is

quite evident in the wide discrepancy of published forecasts available from Bloomberg.  Figure 3

summarizes the prepayment forecasts made by 8 firms for new FNMA 8s 30-year conventional

passthroughs.  The figure clearly shows that forecast uncertainty (here measured by the range of

the PSA forecasts) is significantly higher for large interest rate shifts. 

5.1 The Effect on Pricing

The prepayment function is an indispensable part of any MBS pricing methodology. 

Prepayment assumptions allow investors to figure out cash flows and determine the price of the

security. In theory, we expect that the value of a MBS would be influenced by interest rate

dynamics and prepayment behavior.  We can formally define the price of a mortgage security

( )j at time ( )t  as

tj j t j t tV = V[ , ,P( ,x , )],β ε•Ω ℜ (14)

where tℜ  represents the interest rate process at time (t) and jΩ  is a vector of security-specific
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attributes. We also assume that the exogenous vector tx •  and individual characteristics jβ drive

prepayments. As shown previously, prepayment errors are not identically distributed but are

instead heteroskedastic (e.g., 2
t tVar( )= (x )ε σ υ • ).  

The large dispersion in prepayment errors introduces the potential for greater disparity in

MBS prices. Thus, two MBSs may end up having very different price realizations, although ex

ante the securities were fundamentally similar. The magnitude of the price distortion depends

essentially on the importance of the underlying prepayment assumptions.  In some instances, the

value of mortgage securities is extremely vulnerable to changes in prepayment projections.  To

illustrate the sensitivity of prices to prepayment assumptions consider again the prepayment

forecasts in Figure 3 and assume that interest rate increase by 50 basis.  For this shift,

prepayment forecasts range from a low of 434 PSA (forecast by First Boston) to a high of 868

PSA (forecast by Salomon).  Using a Bloomberg pricing algorithm, we computed the OAS cost

of a January-1998 TBA comparable passthrough under the different prepayment scenarios.

When interest rates are unchanged (zero interest shift), the median OAS costs for the FNMA 8

percent passthrough is 75 basis points. Given the wide confidence bounds on prepayments,

however, OAS values can range from 23 basis points to 112 basis points. Thus, a mere 50 basis

points shift in interest rates has produced a large disparity in prices. 

6. CONCLUSION

This study has shown that mortgage prepayments become extremely unstable when the

spread between the WAC and the mortgage rate prevailing in the market is large and positive.

The customary view attributes this trait to path dependency or burnout. According to this

premise, prepayments are more dispersed (heteroskedastic) because often after a few bouts of



18

refinancing the pool is made up of mostly constrained mortgagors. In this paper we provide an

alternative interpretation for this phenomenon. Although burnout is an important determinant of

prepayment, its role is more evident in the nonlinear shape of the prepayment function. We

demonstrate that the large dispersion in prepayments is not necessarily related to burnout, but is

caused instead by statistical aggregation.  

Our findings highlight the unstable nature of the prepayment function.  We observe little

dispersion in prepayments for negative or for small positive interest spreads.  Prepayments,

however, become increasingly more volatile when interest rate spreads cross a certain threshold.

Consequently, the task of forecasting MBS prepayments becomes more arduous in an economic

environment marred by unanticipated interest rate movements. Even a moderate shift in interest

rates could alter cash flows in a way that would adversely affect the value of the mortgage

security.
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Figure 1. Prepayment Experience of FNMA 6s-12s 30-Year Passthroughs,1982-1994
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Figure 2. Simulated Pool Prepayments With and Without Replacement
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Figure 3. Dealer Prepayment Forecasts for FNMA 8s,(as of January 1998)
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Source: Bloomberg Financial.
Note: FBC = First Boston Corporation, DLJ = Donalson Lufkin Jenrette, PW = Paine Webber, BS = Bear
Stearns, PRU = Prudential, ML = Merrill Lynch, LB = Lehman Brothers, SAL = Salomon.


