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Abstract

Liquidity Spillovers and Cross-Autocorrelations

We investigate the persistence of liquidity spillovers and their interaction with return

and volatility spillovers across market-capitalization-based stock portfolios. Liquidity

innovations in either the large- or small-cap sector are informative in predicting liquidity

shifts in the other. Moreover, the liquidity spillovers persist for at least 10 days. Granger-

causality results indicate that return and volatility spillovers exist even after accounting

for cross-sector liquidity shifts. Small cap volatility predicts large cap volatility more

strongly when small cap stocks are more liquid, suggesting that retail investors create

both volatility and liquidity in small caps, and their activity then spills over to large

caps. Order flows in large-cap stocks significantly predict returns of small-cap stocks

when large-cap spreads are high. This is consistent with the notion that trading on

common information in large-cap stocks is transmitted to other stocks with a lag.



1 Introduction

Recent years have witnessed a surge of interest in financial market liquidity and its

relation to asset prices. Since the seminal work of Amihud and Mendelson (1986), studies

such as Brennan and Subrahmanyam (1996), Brennan, Chordia and Subrahmanyam

(1998), Jacoby, Fowler, and Gottesman (2000), Jones (2001), and Amihud (2002) have

documented the role of liquidity as a determinant of expected returns. Further, Pástor

and Stambaugh (2003) and Acharya and Pedersen (2005) relate liquidity risk to expected

stock returns.1

Since the literature suggests that stock returns and, hence, firms’ cost of capital are

influenced by levels of as well as fluctuations in liquidity, understanding its cross-sectional

and time-series variation is of fundamental relevance, and much research has focused on

this issue. While early studies of the determinants of liquidity focused principally on the

cross-section (e.g., Benston and Hagerman, 1974, and Stoll, 1978), recent work has shifted

its focus towards studying the time-series properties of liquidity. Chordia, Roll and Sub-

rahmanyam (2000, 2001), Hasbrouck and Seppi (2001) and Huberman and Halka (2001)

consider co-movements in trading activity and liquidity in the equity markets. Chordia,

Sarkar, and Subrahmanyam (2005) study commonalities in daily aggregate spreads and

depths in equity and U.S. Treasury bond markets over an extended period.

In this paper, we consider two aspects of dynamics of liquidity that have not yet

been addressed by the literature. The first issue is whether there are persistent liquidity

“spillovers” across different sectors of the stock market. For example, does a shock to the

liquidity of one sector in the stock market have a lasting effect on another?2 The issue

of whether such cross-effects exist is important for building a complete understanding of

liquidity fluctuations, which, in turn, have been shown to affect asset prices. Economic

1Two recent theoretical papers attempt to endogenize liquidity in asset-pricing settings. Eisfeldt
(2004) relates liquidity to the real sector and finds that productivity, by affecting income, feeds into
liquidity. Johnson (2005) models liquidity as arising from the price discounts demanded by risk-averse
agents to change their optimal portfolio holdings. He shows that such a measure may dynamically
vary with market returns and, hence, help provide a rationale for liquidity dynamics documented in the
literature.

2While the related paper by Chordia, Shivakumar, and Subrahmanyam (2004) does explore cross-
sectional variation in the contemporaneous relation between liquidity and absolute returns, it does not
consider persistent spillovers.
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rationales for persistent liquidity spillovers are suggested by the previous literature. For

example, liquidity shifts in one sector may lead to those in another because trades based

on common information may be reflected in some stocks with a lag (Brennan, Jegadeesh,

and Swaminathan, 1993). Since liquidity is intimately linked to price moves and volatility

(Chordia, Roll, and Subrahmanyam, 2001), this observation leads us to the second issue

that we investigate: How is liquidity dynamically related to return and volatility spillovers

across different equity market sectors? This issue is important because understanding

and predicting return and volatility movements is fundamental to asset allocation.

We attempt to answer the preceding questions by studying the joint dynamics of

liquidity, returns, and volatility for common stocks using 15 years of daily data. To par-

simoniously capture liquidity spillovers across stocks, we study size-sorted NYSE decile

portfolios. We mostly present results for the extreme NYSE deciles but, for robustness,

we also show results for the remaining NYSE deciles as well as for Nasdaq stocks. Why

do we study stocks stratified by market capitalization? Our work can be motivated by

that of Lo and MacKinlay (1990) and Conrad, Gultekin, and Kaul (1991), who study

volatility and cross-autocorrelations across small and large firms. The former study shows

that there are differences in stock price dynamics across small and large firms, while the

latter work demonstrates the existence of volatility spillovers across such firms.3 Im-

plicitly relying on the notion that the market-wide (e.g., macroeconomic) information

shocks impact all stocks, Brennan, Jegadeesh and Swaminathan (1993) and Chordia and

Swaminathan (2000) attribute the Lo and MacKinlay (1990) results to the differential

adjustment speeds of large and small-cap stocks to such information. We shed new light

on the economic causes of leads and lags in returns and volatility by investigating their

linkages with liquidity.

Our impulse response functions show that large-cap bid-ask spreads respond to or-

thogonalized shocks to spreads, volatility and returns in the small-cap sector with the

response to volatility and returns persisting for at least 10 days. In the reverse direction,

shocks to large-cap spreads, volatility and returns have a persistent impact on small-cap

3It also is worth noting that a number of practitioners have been attracted to small-cap stocks owing
to academic research (e.g., Keim, 1983, and, more recently, Fama and French, 1993) which provides
evidence that expected returns of small-cap stocks are systematically different from those of large-cap
stocks.
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spreads with the response peaking after one or two days. The persistence of spillovers in

liquidity suggests that informational shocks which influence liquidity movements in one

sector may have lasting impacts on another. This observation leads us to our subsequent

analysis of the interaction between liquidity shocks and spillovers in returns as well as

volatility.

Our vector autoregression results indicate that, consistent with Lo and MacKinlay

(1990), the returns of large stocks lead those of small stocks. We find that such cross-

autocorrelation patterns in returns are strongest when large-cap bid-ask spreads are high.

Further, order flows in the large-cap sector play an important role in predicting small-cap

returns when large-cap spreads widen. These results hold after using mid-quote returns

for the post-1993 period, demonstrating that they are not due to stale transaction prices

or a particular sample period. The results accord with our hypothesis that common

information is first traded upon in the large-cap sector, causing spreads there to widen,

and is subsequently incorporated into prices of small-cap stocks with a lag.

We also find that small-cap volatility is useful in forecasting large-cap volatility. We

then provide evidence that volatility spillovers from small to large-cap stocks are stronger

when spreads in small-cap stocks are lower. We suggest an explanation for this result by

first observing that retail investors are likely to be dominant in small-cap stocks (e.g.,

Lee, Shleifer, and Thaler, 1991). Assuming these agents are uninformed, their differen-

tial reaction to public signals may increase liquidity as well as volatility. Subsequently,

this volatility shift may spill over to the large-cap sector where retail investors are less

dominant relative to institutions. Overall, our results indicate that at the daily horizon,

price discovery appears to take place in large caps, but volatility discovery is more likely

to happen in the small cap sector. This is consistent with the notions that price discov-

ery is driven by the informational trades of sophisticated institutions who dominate the

clientele in large caps, whereas a key driver of volatility is the trading activity of retail

investors who are dominant in small caps.

Our analysis also reports some hitherto undocumented cross-sectional heterogeneities

in calendar regularities. For example, the January effect in small firm returns (e.g., Roz-

eff and Kinney, 1976, Keim, 1983) has been attributed partially to window-dressing by

portfolio managers at the turn of the year (Haugen and Lakonishok, 1987). There is
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a statistically significant increase in large-cap spreads in January that is not strongly

evident for small firms. This increase is consistent with the notion that portfolio man-

agers’ withdrawal from the large-cap sector after end-of-the-year window dressing affects

large-cap liquidity at the beginning of the year. We also shed light on the relation be-

tween liquidity and the day-of-the-week effect in stock returns (French, 1980, Gibbons

and Hess, 1981). Specifically, spreads of large-cap stocks are lowest at the beginning

of the week, but those of small-cap stocks appear to be highest at this time. Further,

small-cap order imbalances are tilted towards the sell side at the beginning of the week.

Coupled with the finding that there is upward pressure on small-cap returns at the end

of the week, this pattern accords with the notion that arbitrageurs indulge in net selling

activity in small-cap stocks at the beginning of the week to reverse the end-of-the week

upward pressure on small-cap returns.

We conduct a robustness check using a comprehensive sample of the relatively smaller

Nasdaq stocks, whose liquidity indicators are obtained by using closing bid and ask quotes

available from CRSP data.4 This analysis indicates that the broad thrust of our spillover

results obtains for Nasdaq stocks as well. Notably, bid-ask spreads of NYSE large-cap

stocks are informative in forecasting Nasdaq spreads, and large-cap order flows predict

Nasdaq returns when large-cap spreads are high.

The rest of the paper is organized as follows. Section 2 describes how the liquidity

data is generated, while Section 3 presents basic time-series properties of the data and

describes the adjustment process to stationarize the series. Section 4 presents the vec-

tor autoregressions involving liquidity, returns, and volatility across large and small-cap

stocks. Section 5 considers the role of liquidity in the lead-lag relation between large

and small-cap returns. Section 6 discusses robustness checks using a holdout sample of

Nasdaq stocks and section 7 concludes.

4Closing bid and ask quotes are not available on CRSP for NYSE stocks, so we use intradaily averages.
Since the spread computation procedure is different across NYSE and Nasdaq stocks, we do not use
Nasdaq stocks in the main analysis from the outset.
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2 Liquidity and Trading Activity Data for NYSE

Stocks

Stock liquidity data were obtained for the period January 1, 1988 to December 31, 2002

(the data extends the sample of Chordia, Roll, and Subrahmanyam, 2001, by four ad-

ditional years). The data sources are the Institute for the Study of Securities Markets

(ISSM) and the New York Stock Exchange TAQ (trades and automated quotations).

The ISSM data cover 1988-1992, inclusive, while the TAQ data are for 1993-2002.

This paper considers stock liquidity indicators that the previous literature has fo-

cused upon (viz., quoted spreads and market depth for both large and small-cap stocks).

Motivated by earlier research (e.g., Benston and Hagerman, 1974) on the determinants of

liquidity, we analyze the persistence of return, volatility, and liquidity spillovers after ac-

counting for the effects of trading activity. We use order imbalances, rather than volume,

as measures of trading activity because imbalances bear a stronger relation to trading

costs by representing the aggregate pressure on the inventories of market makers. These

imbalances are calculated using the Lee and Ready (1991) algorithm, and, as such, are

estimates of the true imbalances. Since imbalances are intimately related to returns (see

Chordia, Roll, and Subrahmanyam, 2002), the use of returns (in addition to imbalances)

allows us to pick up any imbalance-related effects that may be attenuated by the use of

an imperfect proxy for the imbalance variable.

We follow the filter rules and selection criteria in Chordia, Roll and Subrahmanyam

(2001) to extract transaction-based measures of liquidity and order imbalances from

transactions data.5 The measures we extract are: (i) quoted spread (QSPR), measured

as the difference between the inside bid and ask quote; (ii) relative or proportional quoted

spread (RQSPR), measured as the quoted spread divided by the midpoint of the bid-

ask spread; and (iii) depth (DEP), measured as the average of the posted bid and ask

dollar amounts offered for trade at the inside quotes.6 The transactions based liquidity

5The following securities were not included in the sample since their trading characteristics might
differ from ordinary equities: ADRs, shares of beneficial interest, units, companies incorporated outside
the U.S., Americus Trust components, closed-end funds, preferred stocks and REITs.

6We have also performed alternative analyses using effective spreads, defined as twice the absolute
difference between the transaction price and the mid-point of the prevailing quote. The results are
largely unchanged from those for quoted spreads and so, for brevity, we do not report them in the paper.
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measures are averaged over the day to obtain daily liquidity measures for each stock.

The daily order imbalance (OIB) is defined as the dollar value of shares bought less the

dollar value of shares sold divided by the total dollar value of shares traded.

Once the individual stock liquidity data is assembled, in each calendar year the stocks

are divided into deciles by their market capitalization on the last trading day of the

previous year (obtained from CRSP). Value-weighted daily averages of liquidity are then

obtained for each decile, and daily time-series of liquidity are constructed for the entire

sample period. The largest firm group is denoted decile 9, while decile 0 denotes the

smallest firm group. The average market capitalizations across the deciles ranges from

about $26 billion for the largest decile to about $47 million for the smallest one.7 As we

mentioned in the introduction, since any cross-sectional differences in liquidity dynamics

would be most manifest in the extreme deciles, we mainly present results for deciles 9

and 0, allowing us to present our analysis parsimoniously. When relevant, however, we

also discuss results for other deciles.

3 Basic Properties of the Data: NYSE stocks

3.1 Summary Statistics

In Table 1, we present summary statistics associated with liquidity measures, together

with information on the daily number of transactions for the two size deciles. Since previ-

ous studies such as Chordia, Roll, and Subrahmanyam (2001) suggest that the reduction

in tick sizes likely had a major impact on bid-ask spreads, we provide separate statistics

for the periods before and after the two changes to sixteenths and decimalization.8 We

find that spreads for large and small stocks are very close to each other (18.6 and 19.1

cents, respectively) before the shift to sixteenths, but they diverge considerably after

the shift. Indeed, the average spread for large stocks is half that of small stocks (5.0

versus 10.2 cents) in the period following decimalization. While we have verified that

7For the middle eight deciles, the average market capitalizations (in billions of dollars) are 5.05, 2.56,
1.48, 0.94, 0.61, 0.39, 0.24, and 0.13.

8Chordia, Shivakumar, and Subrahmanyam (2004) provide similar statistics for size-based quartiles,
but they do not present statistics for the post-decimalization period, since their sample ends in 1998.
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both of these differences are statistically significant,9 the point estimates indicate that

decimalization has been accompanied by a substantial reduction in the spreads of large

stocks, which is consistent with the prediction of Ball and Chordia (2001). The use of

exchange-traded funds (ETFs), rising fast in popularity, would likely result in still lower

spreads for broad portfolios (Subrahmanyam, 1991).

The difference in mean inside depths of large and small stocks has narrowed in recent

times, and the differences are statistically distinguishable from zero. The depth of large

stocks is on average double that of small ones in the pre-sixteenths period, but it is about

50% higher than depth in the small-cap sector in the post-decimalization period. Depths

have decreased after decimalization relative to the eighths regime. This is consistent with

the prediction of Harris (1994), and an unreported t-test indicates that these decreases

are also statistically significant for both small and large-cap stocks.

In view of the recent interest in liquidity fluctuations (Pástor and Stambaugh, 2003,

Acharya and Pedersen, 2005), we also present statistics on the absolute daily proportional

change in quoted spreads and depth. This measure is also of practical significance since

agents splitting their orders over time would presumably be interested in ascertaining the

degree to which the spread moves from day to day. We find that the average absolute

value of daily proportional changes in spreads, somewhat counterintuitively, is greater

for larger firms than for smaller ones. For example, daily changes in depth were about

50% larger in large-cap firms before the shift to sixteenths. While the differential has

decreased in recent times, it is still substantive (about 25%).10 We conjecture that

significant fluctuations in order imbalances created by institutional demand within the

large-cap sector may cause greater fluctuations in liquidity.

The standard deviation of large-cap spreads is double that of small-cap spreads in the

pre-sixteenth period, but the difference in dispersion across small- and large-cap spreads

reverses sign and is much smaller in the post-decimalization period. A similar narrowing

in recent months is evident in the difference in the standard deviation of depths for

the small- and large-cap sectors. The average daily number of transactions has increased

9Unless otherwise stated, “significant” is construed as “significant at the 5% level or less” throughout
the paper.
10Again, differences in liquidity fluctuation measures across small and large firms are all statistically

significant in every subperiod.
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substantially in recent years for both large and small-cap stocks. For example, the average

daily number of transactions increased from 580 in the first subperiod (before the shift

to sixteenths) to 3,984 in the last subperiod (post decimalization), and this difference,

not surprisingly, is statistically significant.

Figure 1, Panel A plots the time-series for quoted spreads for the largest and smallest

deciles. The figure clearly documents the declines caused by two changes in the tick size

and also demonstrates how large stock spreads have diverged from those of small stocks

towards the end of the sample period. In Panel B, we plot the proportional spreads

for the large and small stocks. Proportional spreads in small stocks tend to be much

larger than those in the large-cap stocks, though both series demonstrate a decrease over

time, especially after the changes in tick size. In the remainder of the paper, we focus

primarily on spreads that are not scaled by price because we do not want to contaminate

our inferences by attributing movements in stock prices to movements in liquidity. We

have ascertained, however, that our principal results are robust to using the proportional

spread series as opposed to the one involving raw spreads.

3.2 Adjustment of Time-Series Data on Liquidity, Imbalances
Returns, and Volatility

Our goal is to explore the dynamic relationships between liquidity, price formation, and

trading activity across the small- and large-cap sectors at the daily horizon. Principally,

we seek to ascertain the extent to which day-to-day movements in liquidity are caused

by returns and return volatility. Following Schwert, 1990, Jones, Kaul, and Lipson, 1994,

Chan and Fong, 2000, and Chordia, Sarkar, and Subrahmanyam (2005), return volatility

(VOL) is obtained as the absolute value of the residual from the following regression for

decile i on day t :

Rit = a1 +
4

j=1

a2jDj +
12

j=1

a3jRit−j + eit, (1)

where Dj is a dummy variable for the day of the week and Rit (also the variable RET

used below) represents the value-weighted average of individual stock CRSP returns for

a particular decile.
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Liquidity across stocks may be subject to deterministic movements such as time trends

and calendar regularities. Since we do not wish to pick up such predictable effects in

our time-series analysis, we adjust the raw data for deterministic time-series variations.

All the series, returns, order imbalance, spreads, depths, and volatility are transformed

by the method of Chordia, Sarkar, and Subrahmanyam (2005), who, in turn, adopt the

procedure used by Gallant, Rossi, and Tauchen (1992). Details of the adjustment process

are available in the appendix.

Table 2 presents selected regression coefficients for liquidity measures from the ad-

justed series. For the sake of brevity, we only present the coefficients for the calendar

regularities. We do not present results for order imbalances, nor for the variance equation

(3). These results are available upon request.

We are interested in differences in the adjustment regression coefficients between the

different size sectors. A readily noticeable finding is that the nature of calendar regular-

ities in liquidity is different across large and small stocks. For example, January spreads

are higher for large stocks than spreads in other months (all dummy coefficients from

February to December are negative and significant for large-cap stocks). This regular-

ity is much less apparent for small-cap stocks since only the November and December

coefficients are negative and significant in the regressions. To confirm a January effect

in large-cap spreads, we compare the mean difference in January spreads across the two

sectors and find that large-cap spreads are significantly higher than small-cap spreads at

the 5% level. In addition, omitting all of the monthly dummy coefficients and including

only the January dummy, we find that this dummy is not significant for small-cap stocks.

However, it is significant with a t statistic of 12.17 for large-cap stocks. Thus, overall

the evidence indicates that large-cap spreads are significantly higher in January, but the

same is not true for small-cap stocks.11

We also note that, relative to Friday, Monday spreads are low for large stocks but high

for small stocks; however, depths are lower on Mondays for both sectors. The January

behavior may be due to the fact that portfolio managers shift out of the large-cap sector

following window-dressing in December. The differential Monday effect is a puzzle that

11Clark, McConnell, and Singh (1992) document a decline in spreads from end of December through
end of January, but do not compare seasonals for large and small-cap stocks explicitly.
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we discuss further after we present the return adjustment results. In addition, there

has been a strong negative trend in spreads since decimalization for both small and

large companies. The results for stock depths (also in Panel A of Table 2) are generally

consistent with those for spreads.

Next, we briefly discuss the results for returns and volatility, presented in Table 3.

Since day-of-the-week effects are incorporated when computing volatility in equation (3),

these effects are omitted from the adjustment regressions. It can be seen that large-cap

stock returns display little systematic time-series variation. However, small-cap returns

are high on Fridays relative to the rest of the week and in January relative to other

months; these results are consistent with early studies of return regularities such as

Gibbons and Hess (1981) and Keim (1983). Relative to other months, stock volatility

is high from October to January for small-cap stocks and in October and January for

large-cap stocks; this result deserves further analysis in follow-up research.

The higher spreads on Mondays for small-cap stocks are to be understood in con-

junction with the day-of-the-week effect in returns. In unreported results, we find that

order flow is tilted significantly to the sell-side for small stocks on Mondays (relative to

Fridays). Thus, agents appear to trade in order to countervail the buying pressure on

Fridays. This “rebound” selling on Mondays following high returns towards the end of

the week can contribute to increased spreads, as market makers struggle to offload the

increased inventory.12

To examine the presence of unit roots in the adjusted series, we conduct augmented

Dickey-Fuller and Phillips-Perron tests. We allow for an intercept under the alternative

hypothesis, and we use information criteria to guide selection of the augmentation lags.

We easily reject the unit-root hypothesis for every series (including those for return,

volatility, and imbalances), generally with p values less than 0.01. For the remainder of

the paper, we analyze these adjusted series, and all references to the original variables

refer to the adjusted time-series of the variables.

12Chordia, Roll, and Subrahmanyam (2001, 2002) show that down markets and high levels of absolute
order imbalances are accompanied by decreased liquidity.
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4 Vector Autoregresssion: NYSE Stocks

4.1 Economic Motivation for the VAR

Our goal is to explore intertemporal associations between market liquidity, returns,

volatility, and order imbalances. In earlier literature, such as Benston and Hagerman

(1974) and Branch and Freed (1977), the latter three variables have been treated as de-

terminants of liquidity (i.e., as independent variables). However, as Hasbrouck (1991) and

Chordia, Sarkar, and Subrahmanyam (2005) point out, bi-directional causalities across

these variables are economically plausible. In particular, liquidity can affect volatility by

attracting more trading, and can affect prices through the traditional channel of Amihud

and Mendelson (1986). However, returns may also influence future trading behavior,

which may, in turn, affect liquidity. In particular, both standard portfolio rebalancing

arguments (Merton, 1973) as well as loss aversion (Odean, 1988) imply return-dependent

investing behavior that, by creating an order imbalance, may affect liquidity. In addition,

volatility may affect liquidity by affecting the inventory risk borne by market makers.

Evidence also suggests that cross-stock effects may be significant. Return and volatil-

ity predictability and spillovers at short horizons are documented by Lehmann (1988),

Lo and MacKinlay (1990), and Conrad, Gultekin, and Kaul (1991). Since imbalances are

intimately linked to returns (Chan and Fong, 2000, Chordia, Roll, and Subrahmanyam,

2002), spillovers may exist in this variable as well. Furthermore, if there are leads and

lags in trading activity in response to systematic wealth or informational shocks between

liquid and illiquid sectors, then liquidity in the large-cap sector may predict trading

activity, and, in turn, liquidity in the small-cap sector. Moreover, if any of the above

variables in one sector forecast liquidity in the other, the arguments in the previous two

paragraphs carry over to cross-market effects on liquidity.

Given that there are reasons to expect cross-sector effects and bi-directional causali-

ties, in the spirit of Hasbrouck (1991) and Chordia, Sarkar, and Subrahmanyam (2005)

we adopt an eight-equation vector autoregression (VAR) that incorporates eight vari-

ables, (four each - i.e., measures of liquidity, returns, volatility, and order flows - from

large and small-cap stocks). We choose the number of lags in the VAR on the basis of
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the Akaike Information Criterion (AIC) and the Schwarz Information Criterion (SIC).13

We now provide estimates from this VAR mode.

4.2 VAR Estimation Results

The VAR includes the endogenous variables OIB0, OIB9, VOL0, VOL9, RET0, RET9,

QSPR0, and QSPR9, whose suffixes 0 and 9 denote the size deciles with 0 representing

the smallest size decile and 9 the largest. The VAR is estimated with two lags and a

constant term and uses 3782 observations. Since the key contribution of our study is to

examine persistent spillovers across different stock market sectors, we first present Chi-

square statistics for the null hypothesis that variable i does not Granger-cause variable

j. Specifically, in Table 4 we test whether the lag coefficients of i are jointly zero when j

is the dependent variable in the VAR. The cell associated with the ith row variable and

the jth column variable shows the statistic associated with this test.

Within each market, there is two-way Granger causation between quoted spreads and

volatility. Spreads and volatility also Granger-cause each other across markets, except

that small-cap spreads do not Granger-cause large-cap volatility. Spreads do not Granger-

cause returns. While large-cap returns do Granger-cause large-cap spreads, small-cap

spreads are not Granger-caused by either large- or small-cap returns. An economic

interpretation is that order flow shocks have larger magnitudes in the large-cap sector

than in the small-cap sector, possibly because of more herding (and thus more extreme

imbalances) in large-cap stocks, that tend to be owned more often by institutions (Sias

and Starks, 1997, Dennis and Strickland, 2003). Hence, price movements induced by

inventory imbalances may have a greater persistent effect on large-cap liquidity than on

small-cap liquidity.

Overall, there is compelling evidence that both own- and cross-volatilities are relevant

in forecasting liquidity in a given sector so that volatility shifts in either sector play

a key role in liquidity dynamics in both sectors. Among other results not involving

spreads, it is particularly interesting that large-cap returns cause small-cap returns but

13Where these two criteria indicate different lag lengths, we choose the lesser lag length for the sake of
parsimony. Typically, the slope of the information criterion (as a function of lags) is quite flat for larger
lag lengths, so the choice of smaller lag lengths is justified.
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the reverse is not true; thus, large-cap returns lead small-cap returns. Also, small-cap

volatility Granger-causes large-cap returns but large-cap volatility does not predict large-

cap returns. Section 5 further explores these findings.

For completeness, we also examine the cross-correlations of innovations obtained from

the VAR estimation in Table 5. Cross-sector liquidities and volatilities are positively and

significantly correlated. Also, small-cap volatility innovations bear strong correlations

with large-cap volatility as well as spread innovations. Interestingly, the latter correlation

is much larger than the own-sector correlation between small-cap spreads and volatility

(again, the difference is significantly different from zero).14 Overall, these results point

to the importance of the large-cap sector in the determination of liquidity and volatility

in the small-cap sector.

We now estimate the impulse response functions (IRFs) in order to examine the joint

dynamics of liquidity, volatility and returns implied by the full VAR system. An IRF

traces the impact of a one standard deviation innovation to a specific variable on the

current and future values of the chosen endogenous variable. Since the innovations are

correlated (as shown in Table 4), we use the inverse of the Cholesky decomposition of

the residual covariance matrix to orthogonalize the impulses. Results from the IRFs are

generally sensitive to the specific ordering of the endogenous variables.15 Since prices are

formed after observing order flow, we place imbalance first in our ordering. Thus, in our

base IRFs, we fix the ordering for endogenous variables as follows: OIB0, OIB9, VOL0,

VOL9, RET0, RET9, QSPR0 and QSPR9. While the rationale for the relative ordering

of returns, volatility and liquidity is ambiguous, we find that the impulse response results

are robust to the ordering of these three variables. Also, our qualitative results remain

mostly unchanged if we reverse the ordering of small and large-cap stocks; we note

instances when this is not the case. Since OIB generally has relatively weak effects on

14The greater correlation of small-cap volatility with large-cap spreads than with small-cap spreads
can be interpreted in the context of the price experimentation literature (viz. Glosten, 1989, and Leach
and Madhavan, 1993). These authors suggest that a specialist with greater monopoly power will smooth
out liquidity across periods of high and low adverse selection, thus reducing the sensitivity of liquidity to
the extent of information asymmetry. Under the plausible premise that volatility partially proxies for the
degree of information asymmetry (Kyle, 1985), and that specialists in large stocks face more competition
from the trading floor, we would expect a smaller correlation between liquidity and volatility in large
stocks relative to small ones. The result in Table 4 is consistent with this argument.
15However, the VAR coefficient estimates (and, hence, the Granger causality tests) are unaffected by

the ordering of variables.
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liquidity and volatility, we omit its IRFs for brevity; these are available upon request

from the authors.

Figure 2 (Panel A) illustrates the response of endogenous variables in the large-cap

sector to a unit standard deviation orthogonalized shock in the endogenous variables

within the small-cap sector for a period of 10 days. Monte Carlo two-standard-error

bands are provided to gauge the statistical significance of the responses. Period 1 in the

impulse response functions represents the contemporaneous response, and the units on

the vertical axis are in actual units of the response variable (e.g., dollars in the case of

spreads). Consider the response of the quoted bid-ask spread of large-cap stocks to the

small-cap market. The large-cap spread responds negatively to an innovation in small-cap

stock returns and positively to a shock to small-cap volatility. In both cases, the response

persists for at least 10 days, illustrating the strength of the cross-market effects. These

results are consistent with models of microstructure which argue that increased volatility,

by increasing inventory risk, tends to decrease liquidity. Volatility spillovers persist even

after accounting for liquidity. There is clear evidence that shocks to small-cap volatility

are useful in forecasting large-cap volatility.

Panel B of Figure 2 shows the response of the small-cap sector to unit shocks in

the large-cap sector. First, while large-cap returns respond to small-cap returns only

contemporaneously, small-cap returns respond to large-cap stock return shocks after a

lag of one day (this finding is explored further in Section 5). There is reliable evidence

that small-cap spreads respond to large-cap spreads, as well as to large-cap volatility and

returns. It can also be seen that small-cap volatility responds to large-cap spreads. In

all cases, there is evidence that the response persists and is strongest after the event day.

Are these results robust to the relative ordering of the small and large-cap sectors?

We reestimate the IRFs after reversing the VAR ordering as follows: OIB9, OIB0, VOL9,

VOL0, RET9, RET0, QSPR9 and QSPR0. The results are unchanged except that the

response of large-cap spreads to small-cap spreads persists beyond the contemporary

period and the response of small-cap returns to large-cap returns persists for at least 10

days. Overall, cross-market IRFs show that the biggest response of the large-cap sector

to shocks in the small-cap market tends to be contemporaneous, whereas the small-cap

market appears to have a more delayed response to the large-cap sector. These results
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are consistent with the interpretation that informational events are first incorporated

into the large-cap sector and then are transmitted to the small-cap sector with a lag. We

will provide additional evidence in support of this hypothesis in section 5.

In unreported own-sector impulse response functions, we find that volatility shocks

in a sector result in a persistent decline in liquidity in that sector, as in Stoll (1978).

Furthermore, liquidity decreases for several days in response to a negative return shock

in either sector, likely because during periods of declining prices market makers require

more time to recover from strained inventories. For robustness, in unreported analysis, we

also examine the impulse responses of large-cap or decile 9 stocks to other deciles (e.g.

decile 5) and find that the results are qualitatively similar to the previously reported

responses of large-cap stocks to decile 0 stocks.

4.3 Summary of VAR Results

Volatility and return shifts in both large and small-cap sectors are informative in fore-

casting liquidity shifts in the other sector. This evidence is consistent with the notion

that volatility and return spillovers, by affecting the risk of carrying inventory as well

as order imbalances, affect liquidity in either sector. In addition, liquidity shocks in one

market predict liquidity changes in the other market, demonstrating that liquidity shocks

transmit directly across sectors, in addition to their indirect transmission via volatility

and returns movements.

The transmission of financial market shocks between sectors is in some cases asymmet-

ric, moving from large to small-cap stocks but not in the reverse direction. In particular,

liquidity and returns in the large-cap sector predict volatility and returns, respectively,

in the small-cap sector but the reverse is not true. This asymmetry suggests a relatively

more active role of the large-cap sector in propagating market-wide shocks. In addition to

these cross-influences, own-sector volatility and returns help forecast own-sector liquidity.

The impulse responses show that the response of one market to shocks in the other is

statistically significant and often persists for days. The magnitude of the highest response

(one day after the shock) of small-cap spreads to large-cap volatility, is about 0.002 (from

Figure 2, Panel B). A one-standard deviation shock to large-cap volatility forecasts an
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increased annual trading cost of $50,000 on a 100,000 share round-trip trade per day,

assuming 100 such trading days per year. The forecasting impact of large-cap spreads

on small-cap spreads is about half this amount.

Importantly, unreported analyses indicate that spillovers from large-cap stocks to

deciles higher than 0 have greater economic significance. For example, responses of

decile 8 spreads to decile 9 spreads die out slowly and are significant even after twenty

days. Using a 30 day accumulated response, and about eight (i.e., about 250/30) shocks

in an year, the total impact of a one-standard deviation shock to large-cap (decile 9)

spreads upon decile 8 spreads is about $1.75 per share. For a $100,000 share trade, this

works out to about $175,000, which is substantive. The numbers for decile 7 spreads are

quite similar. Thus, the economic significance of liquidity spillovers is material across

the relatively larger capitalization shocks.

5 The Effect of Liquidity on Return and Volatility

Spillovers

The persistence of return and volatility spillovers documented in the previous section

raises the issue of how liquidity interacts with these spillovers. Economic arguments

suggest that we should expect such interactions. For example, informational shocks

impact liquidity, and if these also influence return spillovers, then we would expect the

strength of spillovers to time-vary with liquidity. Similarly, trading activity influences

liquidity but also has an impact on volatility, so again, we might see a link between the

strength of volatility spillovers and liquidity. We discuss return spillovers in Subsections

5.1 and 5.2 and consider volatility spillovers in Subsection 5.3.

5.1 Impact of Liquidity on Return Cross-Autocorrelations

Of late, there has been interest in the notion that market frictions are related to the effi-

ciency with which financial markets incorporate information (see, for example, Mitchell,

Pulvino, and Stafford, 2002, Avramov, Chordia, and Goyal, 2004, Sadka and Scherbina,

2004, Hou and Moskowitz, 2005, and Chordia, Roll and Subrahmanyam, 2006). We first

consider whether market efficiency in the small-cap sector is influenced by liquidity shifts.
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The Granger-causality results of Section 4 indicate that large-cap returns are infor-

mative in predicting small-cap returns. This is consistent with the analysis of Lo and

MacKinlay (1990) who document that large-cap returns lead small-cap returns at short

horizons. Chordia and Swaminathan (2000) suggest that leads and lags may be caused

by differences in the speed of adjustment to common information. We examine whether

liquidity dynamics are related to the strength of the lead from large firm returns to small

firm returns. We follow Brennan, Jegadeesh and Swaminathan (1993) in conducting the

lead-lag analysis at the daily frequency.16

Why specifically might movements in liquidity be related to the strength of the lead-

lag effect? There are two possible reasons. First, arbitrageurs may choose to trade in

small-cap stocks in order to profit from common information shocks that have already

been incorporated into the prices of large firms. An exogenous widening of small-cap

spreads can possibly create greater frictions for arbitrageurs that seek to close the pricing

gap between large and small firms. This simple argument suggests that the lead and lag

effect would increase when small-cap spreads are high. The reasoning offers little role for

large-cap spreads, since arbitrageurs’ activity is initiated in the small firms whose returns

lag those of the large firms.

Arbitrage, however, is not necessary for closing the lead-lag gap because market

makers in the small-cap sector may directly use price quotes from the large-cap sector to

update their own quotes. This leads us to our second line of argument, which indicates

that large-cap spreads may play a role in determining leads and lags by signaling the

occurrence of informational events.

To understand this second argument, note that price moves occur due to public signals

as well as private information conveyed to the market by way of order flows. Revelation

16In an exploratory investigation, we considered a weekly horizon similar to that used by Lo and
MacKinlay (1990) and subsequently in studies by Mech (1993), Badrinath, Kale, and Noe (1995), Mc-
Queen, Pinegar, and Thorley (1996), and Sias and Starks (1997). We find that the lead-lag relation from
large to small stocks has weakened in recent years. Indeed, a quick check using the CRSP size decile
returns indicates that from July 1962 to December 1988 (defining a week as starting Wednesday and
ending Tuesday), the correlation between weekly small-cap returns and one lag of the weekly large-cap
return is as high as 0.210, whereas from 1988 to 2002, this correlation drops to 0.085. This is perhaps
not surprising; we would expect technological improvements in trading to contribute to greater market
efficiency. Since the baseline lead-lag effect is weak over the weekly horizon within our sample period,
we desist from an analysis of weekly returns and liquidity in this paper.
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of systematic public signals would result in a near-simultaneous updating of quotes by

market makers in all stocks, and thus would not likely cause a significant lead-lag effect.

On the other hand, Brennan, Jegadeesh, and Swaminathan (1993) suggest that lead and

lag effects are caused by differential speeds of adjustment of large and small stocks to

common private information. If agents with information about common factors choose

to exploit their informational advantage in the large-cap sector (which has a higher

baseline level of liquidity than the small-cap sector), then lagged quote updating by

small-cap market makers may cause small stock returns to lag those of large stocks (viz.

Chan, 1993, Chowdhry and Nanda, 1991, Gorton and Pennacchi, 1993, and Kumar and

Seppi, 1994). This argument suggests that during periods when agents receive privileged

information about common factors, lead and lag effects are much more likely.

Since the informed trading that causes the lead-lag in the above line of argument is

expected to reduce liquidity temporarily in the large-cap sector (Glosten and Milgrom,

1985), spread increases in the large-cap sector may portend an increased lag of small

firm returns to large firm returns. Also, if it is the case that the content of private

information-based trades is reflected first in the large-cap sector, we would expect both

large-cap order flows and large-cap returns to play important roles in predicting small-cap

returns.

In the first line of argument, lagged small-cap spreads play a crucial role in determin-

ing the extent of the lead-lag relationship, whereas in the second lagged large-cap spreads

are relevant. Furthermore, the two arguments are not mutually exclusive. In order to

distinguish which of the above lines of argument, if any, is more germane to the lead and

lag relationship, we analyze the link between the extent of the lead-lag relationship and

the levels of large and small-cap spreads.

We capture the influence of liquidity levels and order-flow dynamics on the lead-lag re-

lationship between small and large-cap stocks by adding a number of interaction variables

to the equation for RET0 within the VAR framework. These interaction variables in-

clude the first lags of QRET09, QRET99, and QOIB99, where QRET09=QSPR0*RET9,

QRET99=QSPR9*RET9, and QOIB99= QSPR9*OIB9. Consistent with the discussion

above, wherein information events are assumed to occur exogenously, the interaction

variables are treated as exogenous to the VAR system. With the addition of these inter-
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action terms, the VAR no longer conforms to the standard form and so the OLS method

is no longer efficient. Thus, we use the Seemingly Unrelated Regression (SUR) method

to estimate the system of equations.

In Table 6 we present the results of these regressions. We first consider the coefficient

of lagged return alone (which already is part of the main VAR). This coefficient is statis-

tically significant and positive, supporting the analysis of Lo and MacKinlay (1990). The

second column interacts the spread in large and small-cap stocks with the lagged large-

cap return. The coefficient of the lagged return is considerably reduced and the lagged

large-cap return becomes insignificant after including the interaction variables. The coef-

ficient on QRET99 (large-cap spread interacted with returns) is positive and significant,

suggesting that the lead-lag relation between lagged returns of large-cap stocks and the

current returns of small-cap stocks is strongest when the large-cap sector is illiquid.

Thus, the evidence is consistent with our second line of argument, i.e., with the notion

that a widening of large-cap spreads signals an information event that is transmitted to

small-cap stocks with a lag.

5.2 Is the Lead-Lag Effect due to Informed Trades?

In this section, we further test the notion that information gets transmitted to prices in

either sector by way of informed order flows. We interact order imbalance (OIB) with

spreads in the large-cap market and include the interaction variable in the regression.17

The results, shown in the third column of Table 6, indicate that large-cap order flow

interacted with large-cap spreads is strongly predictive of small-cap returns, whereas the

return interaction variable becomes insignificant and its magnitude diminishes in the

presence of the OIB. We also present the chi-square statistics and p-values associated

with the Wald test for the null hypothesis that the coefficients of all exogenous variables

are jointly zero. We reject the null hypothesis that the coefficients of the imbalance

interaction term OIB99 and the spread-return interaction terms QRET09 and QRET99

are jointly zero at a p-value below 0.001. Overall, the evidence supports the reasoning that

large-cap order flows induced by informational events drive the lead and lag relationship

17Small cap order flow is not significantly related to future large or small cap returns, consistent with
the notion that informational events first occur in large cap stocks and then spillover to small cap stocks,
and not vice versa.
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between large-cap and small-cap firms.

In order to provide additional insight regarding the results in Table 6, we calculate

cross-autocorrelations between small-cap returns on day t and large-cap returns on day

t − 1 for days t − 1 where the quoted large-cap spread is one standard deviation above
and below its sample mean. The estimates obtained for the two cases are 0.20 (p = 0.00)

and 0.05 (p = 0.10). The corresponding correlations when the large-cap order imbalance

is used in place of returns are 0.15 (p = 0.00) and 0.08 (p = 0.06). These correlations

clearly confirm our basic result that the lead from large-cap returns to small-cap returns

is strongest when large-cap spreads are high.

Of course, the information-based trading that causes large-cap spreads to widen may

spill over to small-cap stocks for two reasons. First, some investors may receive in-

formation later than others (Hirshleifer, Subrahmanyam, and Titman, 1994). Second,

small-cap market makers may not be able to update their quotes to fully reflect the in-

formation content of large-cap trades, owing to camouflage provided by liquidity trades

(Kyle, 1985). This would leave some profit potential for late informed traders in small-cap

stocks. If large-cap informed trading does indeed spill over to small-cap stocks with a lag,

we expect small-cap order flows to exhibit an increased correlation with lagged large-cap

order flows when large-cap spreads are high. Additionally, a greater small-cap spread

on day t should be associated with a greater cross auto-correlation between small-cap

returns at time t and large-cap returns at time t− 1.
We investigate the above issue by computing additional correlations. First, we find

that the correlation between OIB0 on day t and OIB9 on day t − 1 is 0.14 (p < 0.01)

when QSPR9 on day t− 1 is one standard deviation above its mean and 0.09 (p = 0.05)
otherwise. Second, we sort the sample by days when the small-cap spread is one standard

deviation above and below its sample mean. The correlation between day t small-cap

returns and day t− 1 large-cap returns is 0.15 (0.05) when the small-cap spread is above
(below) its sample mean on day t. Only the correlation of 0.15 is significantly different

from zero at the 5% level.18 When the order imbalance replaces returns, the corresponding

18To clarify, these correlations document a link between cross-autocorrelations and small cap spreads
at time t. As Table 6 demonstrates, there is no significant link between small cap return predictability
from large caps and small cap spreads at time t− 1. As we discuss, this is consistent with information
events widening spreads first in large caps at time t− 1, and then in small caps at time t.

20



correlations are 0.09 and 0.07, respectively; again, only the first correlation is significantly

different from zero at the 5% level. Thus, the evidence is consistent with leads and lags

being caused by liquidity-straining private informational trading that occurs first in the

large-cap sector and then in the small-cap sector.

Since we consider the above finding on small-cap return predictability to be quite

intriguing, we conduct a robustness check and report results for all other deciles in Ta-

ble 7. We use the same interaction variables as above, except that we replace QRET09

with QRETN9=QRETN*RET9, where N represents the size decile. We make a sim-

ilar replacement for the OIB variable. We find that the large-cap order flow variable

interacted with large-cap spreads is informative in predicting returns in every size decile,

though large-cap returns themselves are useful in predicting returns for only the rela-

tively smaller firms. With the exception of decile 1, the coefficient magnitudes on the

order flow variable generally decline with size decile, and the magnitudes for the four

largest firm deciles is about 40% smaller than for the four smallest ones. Note also that

the p-values associated with the Wald test are below 0.05 in the case of every decile for

the regression results reported in the last two columns of Table 7 that includes the order

flow variables.

Our information-based rationale for leads and lags is based on the notion that trans-

actions in response to informational events occur first in large stocks and then spill over

to small stocks partially in the form of lagged transactions in the small-cap sector and in

the form of lagged quote updates by small-cap market makers. Our return computations

are based on transaction prices and account for transaction-induced lags. However, small

stocks often do not trade for several hours within a day. Thus, if the last transaction

in a stock is at 10:00 am, for instance, then the transaction price would not incorporate

information shocks that occur later in the day.

To address the above issue, we perform an alternative analysis by computing mid-

quote returns using the last available quote for each firm on a given day. We do this for

the 1993-2002 period because access to ISSM for the 1988-1992 period was not available

to any of the paper’s authors. One benefit of using the post-1993 sample is that it

allows us to assess whether the lead-lag relation between small and large firm returns is

particular to the earlier part of our sample. The results appear in Table 8. As can be
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seen, the coefficients of the imbalance interaction variables are positive in every case and

significant at the 5% level in all but one case.19 The coefficient magnitudes are comparable

to those in Table 7. Thus, our transaction price-based results on predictability extend

to mid-quote returns as well, and our earlier results continue to hold for the post-1993

sample.

The results in Table 8 shed additional light on the economic causes of the lead and

lag effect. Specifically, one possible interpretation of Table 7 is that secular decreases

in liquidity can reduce trading activity in small-cap stocks and this reduction can affect

leads and lags. Our results point to the notion that this effect is not the predominant

driver of lead-lag between the large and small-cap sectors. To see this, observe that the

mid-quote series in Table 8 only captures the quote updating activity of market makers.

The frequency of quote updating is not likely to be affected directly by liquidity, because

specialists can continuously update quotes even in the absence of trading. Since our

results are robust to both transaction returns as well as mid-quote returns, they are con-

sistent with the view that market makers’ opportunity costs of continuously monitoring

order flow in other markets play a pivotal role in the lead and lag relationship across

small and large-cap stocks. Overall, our findings underscore the role of order flow in the

lead-lag relationship between the large-cap sector and other stocks.20

5.3 Volatility Spillovers

Recall that the VAR results in Table 4 indicate that small-cap volatility Granger-causes

large-cap volatility, and the impulse responses in Figure 3 also indicate a similar spillover.

To analyze the interaction of this spillover with liquidity, in Table 9 we include inter-

actions of small-cap volatility with large-cap and small-cap spreads as exogenous vari-

19The Wald test is not presented for brevity, but, as before, all p values except the one for decile 7
(where none of the variables are significant) are less than 0.05.
20Mech (1993) tests the hypothesis that the lead from large to small stock returns is greater when the

small-cap spread is high relative to the profit potential (proxied by the absolute return). He does not
find support for this hypothesis. From a conceptual standpoint, in contrast to Mech (1993), we do not
view the spread as an inverse measure of profit potential but as an indicator that private information
traders are active in large-cap stocks. There are two other differences between our study and that of
Mech (1993). First, we consider daily intervals as opposed to the weekly ones considered by Mech (1993).
Second, unlike Mech (1993), we consider the role of large-cap spreads in addition to small-cap spreads in
determining the extent of the lead-lag relationship, and we find that large-cap spreads are most relevant
to the lead from large to small stock returns.
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ables in the equation for large-cap volatility within the VAR (in addition to the re-

turn interaction variables). Specifically, the volatility interaction variables are defined as

QVOL90=QSPR9*VOL0 and QVOL00=QSPR0*VOL0. The reported coefficients indi-

cate that while the return interaction results are not altered by this inclusion, there is

some evidence that the spillover from small-cap to large-cap volatility is stronger when

small-cap spreads are smaller.21 This result is counter-intuitive, and deserves further

analysis. We suspect it occurs because retail investors dominate small-cap stocks (Lee,

Shleifer, and Thaler, 1991, Kumar and Lee, 2005). In this situation, the response of

retail investors to public information or systematic liquidity shocks may occur first in

small-cap stocks. This response would increase liquidity under the assumption that re-

tail investors generally do not have private information. However, it would also increase

volatility (Subrahmanyam, 1994). Subsequently, this response may spill over with a lag

to large-cap stocks, in which proportional holdings of retail investors are smaller than for

small-cap stocks.

Overall, our results indicate that the spillovers in signed price movements run from

large to small caps whereas the reverse is true for volatility shifts. As we discuss, these

results can be explained by observing that the directional price impact due to informa-

tional trades of sophisticated institutions is expressed first in the large cap sector, but

unsigned trading activity from retail investors because of their differential response to

public information (which drives volatility) is expressed first in the small cap sector.

The economic significance of our results is material, though it does not suggest a

gross violation of market efficiency. For example, the standard deviation of the return

and spread-based interaction variable in Table 6 is about 0.002. Based on the relevant

coefficient (0.368) in Table 6, we find that a one standard deviation move in the interac-

tion variable changes small-cap returns by 0.073%. However, assuming 83 such events in

an year (i.e., on about 33% of days forming a typical 250 trading-day year), this works

out to 6.08% on an annual basis. Based on the coefficient of 0.054 (for the smallest firm

decile) in Table 8, a one standard deviation move (equaling about 0.015) in the order-

flow based interaction variable has a daily effect of 0.068%, aggregating to about 6.52%

21For brevity, we do not present the analogs of Table 9 for the other deciles. Unreported analyses
indicate that the volatility spillover from the smaller deciles to the larger ones is confined to deciles 0
and 1.
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across 83 events. Frictions such as brokerage commissions, however, could nullify the

profitability of such strategies to individual investors, though the same may not be true

for floor traders and large institutions.

6 Nasdaq Stocks: A Robustness Check

As a robustness check on our basic results, we now consider spillovers between the liquid-

ity of NYSE stocks and a holdout sample of the relatively smaller Nasdaq stocks.22 Our

analysis also allows us to consider the potential effects of the different market structures

across NYSE and Nasdaq on liquidity spillovers.

We use daily Nasdaq closing bid and ask prices on the CRSP database in order to

compute daily bid-ask spreads for Nasdaq. The Nasdaq spread index is constructed by

using the value-weighted average of the spread in a manner similar to that used for the

NYSE indices described in Section 2; return and volatility measures are also constructed

in the corresponding manner. Due to the potentially more severe problem of stale prices

among the relatively smaller Nasdaq stocks, however, we report results using quote mid-

point return series to compute returns and volatility (though results are substantively

similar for transaction return series).

As before, we adjust the Nasdaq series of spreads, returns, and volatility to account

for regularities as in Tables 2 and 3.23 These adjustment regressions are not presented,

but it is worth mentioning that we find Nasdaq spreads to be statistically higher (at the

5% level) on Mondays and lower in the latter part of the year. These results are similar

to those obtained in the case of NYSE small-cap stocks (viz. Table 2).

We estimate a VAR for which the endogenous variables are returns, volatilities, and

22The average market capitalization of Nasdaq stocks is $0.93 billion, which is comparable to the
average market capitalization of stocks in NYSE decile 5 (about $0.94 billion).
23For Nasdaq stocks, the dummy variable for the change to sixteenths equals 1 for the period June 12,

1997 to March 11, 2001. Further, there are 3 decimalization dummies to reflect the gradual introduction
of decimalization for various subsets of stocks over the following periods: March 12, 2001 to March 25,
2001; March 26, 2001 to April 8, 2001; and from April 9, 2001 to December 31, 2002 (see, for example,
Chung and Chuwonganant, 2003). Consistent with Bessembinder (2003), the value-weighted average
spread on Nasdaq of 44.2 cents in our sample period prior to June 12,1997 drops to 12.5 cents in the
period June 12, 1997 to March 24, 2001, and remains at just 3.6 cents for the remainder of our sample
period. The high spread in the pre-sixteenth period relative to that of NYSE stocks is consistent with
Huang and Stoll (1996).
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quoted spreads for Nasdaq stocks and NYSE decile 9 stocks. The VAR includes 3 lags

and a constant term. The Granger causality results and correlations in VAR innovations

across large-cap NYSE stocks and Nasdaq stocks are presented, respectively, in Panels A

and B of Table 10. Although the correlation between liquidity innovations in Nasdaq and

NYSE stock spreads is small, spreads of large-cap NYSE stocks Granger-cause Nasdaq

spreads, and the reverse is not true. Thus, there is evidence of a liquidity spillover from

NYSE to Nasdaq, but not from Nasdaq to NYSE stocks. Recall that in Table 5, there

is evidence of bivariate causality from large-cap to small-cap stocks and vice-versa. The

Granger causality results indicate that liquidity discovery may take place in the larger

exchange market.

In Figure 3, we present the impulse response functions that document the responses

of the Nasdaq market to NYSE large-cap stocks.24 We find that shocks to large-cap

spreads significantly affect Nasdaq spreads on the day following the shock; moreover,

the response remains strong and statistically significant even after 10 days. In addition,

Nasdaq volatility is forecasted by large-cap spreads. By and large, the impulse response

functions reveal that the spillover effects documented in the previous section are not an

artifact of the market structure of the NYSE since they are preserved for Nasdaq stocks

as well.

In Table 11, we present the analog of the lead-lag regression in Table 6. Specifically,

we examine the response of Nasdaq stock returns to lagged returns of NYSE decile 9

stocks, to the interaction of decile 9 returns with Nasdaq and decile 9 spreads, and to

the interaction of decile 9 order flow with decile 9 spreads. As before, the interaction

terms are treated as exogenous variables in the VAR. It is noteworthy that while there

is no evidence of daily return leads from NYSE to Nasdaq, the large-cap imbalance

interacted with large-cap spreads is significant, and that its magnitude is greater than

the corresponding coefficient magnitude in Table 6.25 Overall, these results confirm the

role of large-cap order flows and liquidity in predicting returns in both small-cap NYSE

24We follow the same VAR ordering as before in computing the impulse responses, with the Nasdaq
portfolio replacing the small-cap NYSE deciles. Thus, the ordering is VARN, VAR9, RETN, RET9,
QSPRN, QSPR9 where the suffixes ”9” and ”N” indicate NYSE decile 9 and the Nasdaq portfolios,
respectively.
25Since we find the role of liquidity in causing Nasdaq volatility spillovers not to be significant, we do

not present the equivalent of Table 9 for Nasdaq stocks.
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firms as well as Nasdaq firms. Thus, our key results continue to obtain even after inclusion

of Nasdaq stocks in our analysis.

7 Concluding Remarks

Our principal aims in this paper are to examine whether there are persistent liquidity

spillovers across different stock market sectors, and to investigate the link between liq-

uidity and spillovers in return and volatility. The topic is particularly important given

that price moves and volatility are fundamental inputs to asset allocation, and that liq-

uidity levels, as well as the risk arising from dynamic liquidity movements, have been

shown to impact firms’ cost of capital. In our analysis, we use vector autoregressions

to examine the joint time-series of liquidity, returns, and volatility for NYSE size decile

portfolios and the value-weighted Nasdaq portfolio over the period 1988 through 2002.

Our analysis of size-based portfolios is motivated by research (Lo and MacKinlay, 1988,

Conrad, Gultekin, and Kaul, 1991) that documents spillovers in returns and volatility,

both of which have been strongly linked to liquidity in earlier literature (Chordia, Roll,

and Subrahmanyam, 2001).

A number of hitherto unknown findings from our analysis indicate that there are

differences as well as similarities in the dynamics of liquidity, returns, and volatility

across big and small firms. First, liquidity innovations in either the large- or small-cap

sector are informative in predicting liquidity shifts in the other, with spillovers persisting

for at least 10 days. Further, the impulse responses indicate that the small-cap market

appears to have a more delayed response to shocks originating in the large-cap sector

than vice-versa, indicating that the liquidity-shifting events that cause persistent shifts

in future liquidity frequently originate in the large-cap sector. We also find that shocks to

returns and volatility in either sector are informative in predicting liquidity in the other

sector. Thus, the evidence is consistent with the notion that cross-effects in volatility

and return, by affecting the risk of carrying inventory as well as order imbalances, inform

the forecasting of liquidity shifts in either sector. Own-sector returns and volatility are

also informative in forecasting dynamic liquidity movements. Finally, liquidity shifts in

the large-cap sector forecast liquidity shifts in Nasdaq stocks.
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Our results also show that order flows in the large-cap sector predict small-cap re-

turns when large-cap spreads are high. This result holds for both transaction returns as

well as mid-quote returns, demonstrating that the finding is not due to stale prices. This

finding is consistent with our hypothesis that informational events impact the large-cap

sector first, causing large-cap spreads to widen, and are subsequently incorporated with

a lag into the prices of small-cap stocks. In addition, we show that volatility spillovers

from small to large-cap stocks are stronger when spreads in small-cap stocks are lower.

We suggest an interpretation of this result by noting that retail investors are likely to

dominate small-cap stocks (Lee, Shleifer, and Thaler, 1991). Their largely uninformed

trading activity in small-caps in response to noisy public signals or endowment shocks

could increase liquidity as well as volatility in the small-cap sector, and this could then

spill over to the large-cap sector, where such investors are less active relative to institu-

tions. Overall, large cap stocks appear to lead small caps in directional price moves, but

small caps lead large caps in the discovery of volatility. These seemingly disparate pieces

of evidence can be reconciled by the notion that informational trades of sophisticated

institutions (who dominate the large cap clientele) are expressed first in the large cap

sector, but unsigned trading activity from retail investors because of their differential

response to public information (which drives volatility) is expressed first in the small cap

sector.

As a by-product of our analysis, we document some interesting differences in calendar

regularities across market cap-based deciles. For instance, within our sample period, there

is a distinct upward pressure on large-cap NYSE spreads in January, relative to other

months, that is not as strongly evident in small-cap stocks. This finding is consistent

with portfolio managers withdrawing from the large-cap sector following window-dressing

at the turn of the year. Spreads of large-cap stocks are lowest at the beginning of the

week but those of small-cap stocks appear to be highest at this time, and small-cap order

imbalances are tilted towards the sell side at the beginning of the week. This pattern

accords with the notion that arbitrageurs indulge in net selling activity in small-cap

stocks at the beginning of the week following the upward pressure on small-cap returns

at the end of the week.

From the standpoint of asset pricing, our results indicate that the liquidity of a
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stock is not an exogenous attribute, but its dynamics are sensitive to movements in

financial market variables, such as returns and volatility, in both its own and other

markets. Developing a general equilibrium model that prices liquidity while recognizing

this endogeneity is a challenging task, but is worthy of future investigation. In particular,

it would be important to tease out the direct impact of volatility on expected returns

through the traditional risk-reward channel as well as to understand its indirect impact

by way of its effect on liquidity.
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Appendix

In this appendix, we provide details about the adjustment process for the different

time series. Specifically, we regress the series on a set of adjustment variables:

w = xIβ + u (mean equation). (2)

In equation (2), w is the series to be adjusted and x contains the adjustment variables.

The residuals are used to construct the following variance equation:

log(u2) = xIγ + v (variance equation). (3)

The variance equation is used to standardize the residuals from the mean equation and

the adjusted w is calculated in the following equation,

wadj = a+ b(û/exp(x
Iγ/2)), (4)

where a and b are chosen so the sample means and variances of the adjusted and the

unadjusted series are the same.

The adjustment variables used are as follows. First, to account for calendar regular-

ities in liquidity, returns, and volatility, we use (i) four dummies for Monday through

Thursday, (ii) 11 month of the year dummies for February through December, and (iii)

a dummy for non-weekend holidays set such that if a holiday falls on a Friday then the

preceding Thursday is set to 1, if the holiday is on a Monday then the following Tuesday

is set to 1, if the holiday is on any other weekday then the day preceding and following

the holiday is set to 1. This captures the fact that trading activity declines substantially

around holidays. We also include (iv) a time trend and the square of the time trend to

remove deterministic trends that we do not seek to explain.

We further consider dummies for financial market events that could affect the liquidity

of both small and large-cap stocks. Specifically, we include (v) 3 crisis dummies, where

the crises are: the Bond Market crisis (March 1 to May 31, 1994), the Asian financial

crisis (July 2 to December 31, 1997) and the Russian default crisis (July 6 to December

31, 1998);26 (vi) dummies for the day of and the two days prior to macroeconomic

26The dates for the bond market crisis are from Borio and McCauley (1996). The starting date for
the Asian crisis is the day that the Thai baht was devalued; dates for the Russian default crisis are from
the Bank for International Settlements (see, “A Review of Financial Market Events in Autumn 1998”,
CGFS Reports No. 12, October 1999, available at http://www.bis.org/publ/cgfspubl.htm).
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announcements about GDP, employment and inflation (intended to capture informed

trading and portfolio balancing around public information releases); (vii) a dummy for

the period between the shift to sixteenths and the shift to decimals, and another for

the period after the shift to decimals; (viii) a dummy for the week after 9/11/01, when

we expect liquidity to be unusually low, and (ix) a dummy for 9/16/91 where, for some

reason (most likely a recording error) only 248 firms were recorded as having been traded

on the ISSM dataset whereas the number of NYSE-listed firms trading on a typical day

in the sample is over 1,100.

30



References

Acharya, V., and L. Pedersen, 2005, Asset pricing with liquidity risk, Journal of Financial

Economics 77, 385-410.

Admati, A. and P. Pfleiderer, 1988, A theory of intraday patterns: Volume and price vari-

ability, Review of Financial Studies 1, 3-40.

Amihud, Y., 2002, Illiquidity and stock returns: Cross-section and time-series effects, Jour-

nal of Financial Markets 5, 31-56.

Amihud, Y., and H. Mendelson, 1986, Asset pricing and the bid-ask spread, Journal of

Financial Economics 17, 223-249.

Avramov, D., T. Chordia, and A. Goyal, 2004, Liquidity and autocorrelations in individual

stock returns, forthcoming, Journal of Finance.

Badrinath, S., J. Kale, and T. Noe, 1995, Of shepherds, sheep, and the cross-autocorrelations

in equity returns, Review of Financial Studies 8, 401-430.

Ball, C., and T. Chordia, 2001, True spreads and equilibrium prices, Journal of Finance 56,

1801-1836.

Benston, G., and R. Hagerman, 1974, Determinants of bid-asked spreads in the over-the-

counter market, Journal of Financial Economics 1, 353-364.

Bessembinder, H., 2003, Trade execution costs and market quality after decimalization,

Journal of Financial and Quantitative Analysis 38, 747-777.

Borio, C., and R. McCauley, 1996, The economics of recent bond yield volatility, BIS

Economic Paper No. 44, Bank for International Settlements, Basel, Switzerland.

Branch, B., andW. Freed, 1977, Bid-asked spreads on the AMEX and the big board, Journal

of Finance 32, 159-163.

Brennan, M., N. Jegadeesh, and B. Swaminathan, 1993, Investment analysis and the ad-

justment of stock prices to common information, Review of Financial Studies 6, 799-824.

Brennan, M., and A. Subrahmanyam, 1996, Market microstructure and asset pricing: On

the compensation for illiquidity in stock returns, Journal of Financial Economics 41,

441-464.

31



Brennan, M., T. Chordia, and A. Subrahmanyam, 1998, Alternative factor specifications,

security characteristics, and the cross-section of expected stock returns, Journal of Fi-

nancial Economics 49, 345-373.

Chan, K., 1993, Imperfect information and cross-autocorrelation among stock prices, Jour-

nal of Finance 48, 1211-1230.

Chan, K., and W. Fong, 2000, Trade size, order imbalance, and the volatility-volume rela-

tion, Journal of Financial Economics 57, 247-273.

Chordia, T., R. Roll, and A. Subrahmanyam, 2000, Commonality in liquidity, Journal of

Financial Economics 56, 3-28.

Chordia, T., R. Roll, and A. Subrahmanyam, 2001, Market liquidity and trading activity,

Journal of Finance 56, 501-530.

Chordia, T., R. Roll, and A. Subrahmanyam, 2002, Order imbalance, liquidity, and market

returns, Journal of Financial Economics 65, 111-130.

Chordia, T., A. Sarkar, and A. Subrahmanyam, 2005, An empirical analysis of stock and

bond market liquidity, Review of Financial Studies 18, 85-129.

Chordia, T., L. Shivakumar, and A. Subrahmanyam, 2004, Liquidity dynamics across small

and large firms, Economic Notes 33, 111-143.

Chordia, T., and A. Subrahmanyam, 1995, Market making, the tick size, and payment-for-

order flow: Theory and evidence, Journal of Business 68, 543-575.

Chordia, T., and B. Swaminathan, 2000, Trading volume and cross-autocorrelations in stock

returns, Journal of Finance 55, 913-935.

Chowdhry, B., and V. Nanda, 1991, Multimarket trading and market liquidity, Review of

Financial Studies 4, 483-511.

Chung K., and C. Chuwonganant, 2004, Tick size, order handling rules, and trading costs,

Financial Management 33, 47-62.

Clark, R., J. McConnell, and M. Singh, 1992, Seasonalities in NYSE bid-ask spreads and

stock returns in January, Journal of Finance 47, 1999-2014.

Conrad, J., M. Gultekin, and G. Kaul, 1991, Asymmetric predictability of conditional vari-

32



ances, Review of Financial Studies 4, 597-622.

Davis, P., 1999, A reappraisal of market liquidity risk in the light of the Russia/LTCM

global securities market crisis, working paper, Bank of England, London, U.K.

Dennis, P., and D. Strickland, 2003, Who blinks in volatile markets? Individuals or Insti-

tutions? Journal of Finance 53, 1923-1949.

Eisfeldt, A., 2004, Endogenous liquidity in asset markets, Journal of Finance 59, 1-30.

Emmons, W., and F. Schmid, 2000, The Asian crisis and the exposure of large U.S. firms,

Federal Reserve Bank of St. Louis Review, January 2000, 15-34.

Fama, E., and K. French, 1993, Common risk factors in the returns on stocks and bonds,

Journal of Financial Economics 33, 3-56.

French, K., 1980, Stock returns and the weekend effect, Journal of Financial Economics 8,

55-69.

Gallant, A., P. Rossi, and G. Tauchen, 1992, Stock prices and volume, Review of Financial

Studies 5, 199-242.

Gibbons, M., and R. Hess, 1981, Day of the week effects and asset returns, Journal of

Business 54, 579-596.

Glosten, L., and P. Milgrom, 1985, Bid, ask, and transaction prices in a specialist market

with heterogeneously informed traders, Journal of Financial Economics 14, 71-100.

Glosten, L., 1989, Insider trading, liquidity, and the role of the monopolist specialist, Journal

of Business 62, 211-235.

Gorton, G., and G. Pennacchi, 1993, Security baskets and index-linked securities, Journal

of Business 66, 1-27.

Harris, L., 1995, Minimum price variations, discrete bid-ask spreads, and quotation sizes,

Review of Financial Studies 7, 149-178.

Hasbrouck, J., 1991, Measuring the information content of stock trades, Journal of Finance

56, 179-207.

Hasbrouck, J., and D. Seppi, 2001, Common factors in prices, order flows and liquidity,

Journal of Financial Economics 59, 383-411.

33



Haugen, R., and J. Lakonishok, 1987, The Incredible January Effect, Dow Jones-Irwin,

Homewood, IL.

Hiemstra, C., and J. Jones, 1994, Testing for linear and nonlinear Granger causality in the

stock price-volume relation, Journal of Finance 49, 1639-1664.

Hirshleifer, D., A. Subrahmanyam, and S. Titman, 1994, Security analysis and trading

patterns when some investors receive information before others, Journal of Finance 49,

1665-1698.

Ho, T., and H. Stoll, 1983, The dynamics of dealer markets under competition, Journal of

Finance 38, 1053-1074.

Hou, K., and T. Moskowitz, 2005, Market frictions, price delay, and the cross-section of

expected returns, Review of Financial Studies 18, 981-1020.

Huang, R., and H. Stoll, 1996, Dealer versus auction markets: A paired comparison of

execution costs on NASDAQ and the NYSE, ıJournal of Financial Economics 41, 313-

357.

Huberman, G., and D. Halka, 2001, Systematic liquidity, Journal of Financial Research 24,

161-178.

Jacoby, G., D. Fowler, and A. Gottesman, 2000, The capital asset pricing model and the

liquidity effect: A theoretical approach, Journal of Financial Markets 3, 69-81.

Johnson, T., 2005, Dynamic liquidity in endowment economies, forthcoming, Journal of

Financial Economics.

Jones, C., 2001, A century of stock market liquidity and trading costs, working paper,

Columbia University, New York, NY.

Jones, C., G. Kaul, and M. Lipson, 1994, Transactions, volume, and volatility, Review of

Financial Studies 7, 631-651.

Keim, D., 1983, Size-related anomalies and stock return seasonality: Further empirical

evidence, Journal of Financial Economics 12, 13-32.

Kumar, A., and C. Lee, 2005, Retail investor sentiment and return comovements, forthcom-

ing, Journal of Finance.

34



Kumar, P., and D. Seppi, 1994, Information and index arbitrage, Journal of Business 67,

481-509.

Kyle, A., 1985, Continuous auctions and insider trading, Econometrica 53, 1315-1335.

Leach, C., and A. Madhavan, 1993, Price experimentation and security market structure,

Review of Financial Studies 6, 375-404.

Lee, C., and B. Radhakrishna, 2000, Inferring investor behavior: Evidence from TORQ

data, Journal of Financial Markets 3, 83-111.

Lee, C., and M. Ready, 1991, Inferring trade direction from intraday data, Journal of

Finance 46, 733-747.

Lee, C., A. Shleifer, and R. Thaler, 1991, Investor sentiment and the closed-end fund puzzle,

Journal of Finance 46, 75-109.

Lehmann, B., 1990, Fads, martingales, and market efficiency, Quarterly Journal of Eco-

nomics 105, 1-28.

Lo, A., and C. MacKinlay, 1990, When are contrarian profits due to stock market overre-

action?, Review of Financial Studies 3, 175-205.

Lo, A., and J. Wang, 2000, Trading volume: definitions, data analysis, and implications of

portfolio theory, Review of Financial Studies 13, 257-300.

Longin, F., 1997, The threshold effect in expected volatility: A model based on asymmetric

information, Review of Financial Studies 10, 837-869.

McQueen, G., M. Pinegar, and S. Thorley, 1996, Delayed reaction to good news and the

cross-autocorrelation of portfolio returns, Journal of Finance 51, 889-919.

Mech, T., 1993, Portfolio return autocorrelation, Journal of Financial Economics 34, 307-

344.

Merton, R., 1973, An intertemporal capital asset pricing model, Econometrica 41, 867-887.

Merton, R., 1987, A simple model of capital market equilibrium with incomplete informa-

tion, Journal of Finance 42, 483-510.

Mitchell, M., T. Pulvino, and E. Stafford, 2002, Limited arbitrage in equity markets, Journal

of Finance 57, 551-584.

35



Muller, A., and W. Verschoor, 2004, The financial crisis exchange rate risk of U.S. multina-

tionals, working paper, Limburg Institute of Financial Economics, Maastricht, Nether-

lands.

Odders-White, E., 2000, On the occurrence and consequences of inaccurate trade classifica-

tion, Journal of Financial Markets 3, 205-332.

Odean, T., 1998, Are investors reluctant to realize their losses?, Journal of Finance 53,

1775-1798.

O’Hara, M., and G. Oldfield, 1986, The microeconomics of market making, Journal of

Financial and Quantitative Analysis 21, 361-376.
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Table 1: Levels of stock market liquidity  
The stock liquidity series are constructed by first averaging all transactions for each individual stock on a 
given trading day and then constructing value-weighted averages for all individual stock daily means that 
satisfy the data filters described in the text.  QSPR stands for quoted spread, NTRADE for the number of 
shares traded, and DEP for depth measured as the average of the posted bid and ask dollar amounts 
offered for trade. DQSPR is the absolute value of the daily proportional change in the quoted spread 
QSPR.  DDEP is the absolute value of the daily percent change in DEP, measured as the average of the 
posted bid and ask dollar amounts offered for trade.  The suffixes “0” and “9“ represent the smallest and 
largest size deciles, respectively. The stock data series excludes September 4, 1991, on which no trades 
were reported in the transactions database.  The mean, median, and standard deviation (S.D.) is reported 
for each measure.  The sample spans the period January 4, 1988 to December 31, 2002; the number of 
observations is 3782 for all deciles. 
 
 
 
 1/4/1988-6/23/1997 6/24/1997-1/28/2001 1/29/2001-12/31/2002 
          
 Mean Median S.D. Mean Median S.D. Mean Median S.D. 
          
QSPR0 0.191 0.191 0.009 0.167 0.166 0.009 0.102 0.101 0.016 
DQSPR0 0.125 0.101 0.107 0.140 0.108 0.132 0.116 0.093 0.097 
DEP0 6.373 6.277 1.036 4.378 4.387 1.206 2.169 2.211 0.502 
DDEP0 0.194 0.140 0.377 0.206 0.146 0.281 0.244 0.184 0.214 
NTRADE0 13.168 12.488 4.269 31.866 28.162 13.985 47.052 43.558 16.324 
          
QSPR9 0.186 0.185 0.019 0.127 0.124 0.013 0.050 0.047 0.012 
DQSPR9 0.163 0.122 0.207 0.179 0.137 0.175 0.182 0.126 0.224 
DEP9 13.215 12.865 3.515 7.524 7.081 1.788 3.420 3.278 0.633 
DDEP9 0.317 0.168 2.555 0.647 0.308 2.747 0.306 0.198 0.570 
NTRADE9 579.7 551.2 222.3 2401.1 2295.4 982.1 3984.3 3836.6 1002.5 



 

 
 

  
 

 

 
 
Table 2: Adjustment regressions for liquidity  
The stock liquidity series are constructed by first averaging all transactions for each individual stock on a 
given trading day and then constructing value-weighted averages for all individual stock daily means that 
satisfy the data filters described in the text. QSPR stands for quoted spread, and DEP for depth measured 
as the average of the posted bid and ask dollar amounts offered for trade. The sample spans the period 
January 4, 1988 to December 31, 2002; the number of observations is 3782 for all deciles.  The stock data 
series excludes September 4, 1991, on which no trades were reported in the transactions database.  The 
suffixes “0” and “9“ represent the smallest and largest size deciles, respectively.  Holiday: a dummy 
variable that equals one if a trading day satisfies the following conditions, (1) if Independence day, 
Veterans’ Day, Christmas or New Year’s Day falls on a Friday, then the preceding Thursday, (2) if any 
holiday falls on a weekend or on a Monday then the following Tuesday, (3) if any holiday falls on a 
weekday then the preceding and the following days, and zero otherwise.  Monday-Thursday: equals one if 
the trading day is Monday, Tuesday, Wednesday, or Thursday, and zero otherwise.  February-December: 
equals one if the trading day is in one of these months, and zero otherwise.  The tick size change dummy 
equals 1 for the period June 24, 1997 to January 28, 2001.  The decimalization dummy equals 1 for the 
period January 29, 2001 till December 31, 2002.  Estimation is done using the Ordinary Least Squares 
(OLS).  All coefficients are multiplied by a factor of 100.  Estimates marked **(*) are significant at the 
one (five) percent level or better. 



 

 
 

  
 

 

 
 
Table 2, continued 
 
 QSPR0 QSPR9 DEP0 DEP9 
Intercept 19.218** 21.797** 685.180** 722.286** 
Day of the week  

Monday 0.198** -0.160** -18.537** -29.669** 
Tuesday -0.017 -0.133* -3.274 3.468 

Wednesday -0.060 -0.032 5.957 11.397 
Thursday -0.033 -0.018 5.227 6.890 

Holiday 0.014 -0.002 -2.548 -82.535** 
Month  

February 0.170* -0.172* 6.997 11.328 
March 0.231** -0.406** 17.976* 49.737** 
April 0.281** -0.285** -17.945* 50.291** 
May -0.031 -0.844** -7.374 76.167** 
June -0.066 -0.993** 1.332 109.950** 
July 0.072 -0.967** -19.058** 125.763** 

August 0.067 -1.023** -23.136** 128.828** 
September 0.016 -1.292** -7.407 187.114** 

October 0.089 -0.722** -14.146* 101.307** 
November -0.196** -1.147** -2.573 103.219** 
December -0.605** -1.042** 60.077** 77.545** 

Tick size change dummy -2.749** -10.951** -429.364** 29.142 
Decimalization dummy -6.598** -13.879** -423.927** -402.167** 
Trend, pre-tick size change  

Time 0.000** -0.002** -0.138** 0.574** 
Time2 0.0000** 0.0000** 0.0001** 0.000** 

Trend, pre-decimalization     
Time -0.0014* 0.0120** 0.6109** -1.086** 

Time2 0.003** 0.0000** -0.0004** 0.002** 
Trend, post-decimalization     

Time -0.0128** -0.018** 0.0640 -0.384 
Time2 0.000** 0.000** -0.001** 0.000 

  
 



 

 
 

  
 

 

 
 
 
Table 3: Adjustment regressions for returns and volatility 
The sample spans the period January 4, 1988 to December 31, 2002; the number of observations is 3782 
for all deciles.  RET is the decile return and VOL is the return volatility.  The suffixes “0” and “9“ 
represent the smallest and largest size deciles, respectively. Holiday: a dummy variable that equals one if 
a trading day satisfies the following conditions, (1) if Independence day, Veterans’ Day, Christmas or 
New Year’s Day falls on a Friday, then the preceding Thursday, (2) if any holiday falls on a weekend or 
on a Monday then the following Tuesday, (3) if any holiday falls on a weekday then the preceding and the 
following days, and zero otherwise.  Monday-Thursday: equals one if the trading day is Monday, 
Tuesday, Wednesday, or Thursday, and zero otherwise.  February-December: equals one if the trading 
day is in one of these months, and zero otherwise.  The tick size change dummy equals 1 for the period 
June 24, 1997 to January 28, 2001.  The decimalization dummy equals 1 for the period January 29, 2001 
till December 31, 2002. Estimation is done using the Ordinary Least Squares (OLS).  All coefficients are 
multiplied by a factor of 100.  Estimates marked **(*) are significant at the one (five) percent level or 
better. 



 

 
 

  
 

 

 
 
Table 3, continued 
 RET0 RET9 VOL0 VOL9 
Intercept 0.490** 0.053 2.784** 1.313** 
Day of the week  

Monday -0.365** 0.141* --- --- 
Tuesday -0.287** 0.096 --- --- 

Wednesday -0.233** 0.103 --- --- 
Thursday -0.189** 0.020 --- --- 

Holiday 0.315** -0.103 0.089 -0.045 
Month  

February -0.185** -0.044 -0.131** -0.127** 
March -0.196** -0.015 -0.185** -0.123** 
April -0.248** 0.012 -0.136** -0.023 
May -0.224** 0.050 -0.271** -0.230** 
June -0.344** -0.062 -0.325** -0.221** 
July -0.335** -0.003 -0.271** -0.171** 

August -0.382** -0.118 -0.264** -0.249** 
September -0.372** -0.038 -0.238** -0.209** 

October -0.421** 0.069 0.074 0.011 
November -0.271** 0.062 0.013 -0.265** 
December -0.216** 0.039 0.102* -0.317** 

Tick size change dummy 0.132 0.117 -1.021** -0.129 
Decimalization dummy -0.021 -0.146 0.275** 0.801** 
Trend, pre-tick size change     

Time 0.000 0.000 0.001** 0.000** 
Time2 0.000 0.000 0.000** 0.000** 

Trend, pre-decimalization     
Time -0.001 0.000 0.002** 0.002** 

Time2 0.000 0.000 0.000 0.000 
Trend, post-decimalization     

Time 0.001 0.000 -0.002** -0.004** 
Time2 0.000 0.000 0.000** 0.000** 

 



 

 
 

  
 

 

 
 
 
 
Table 4: Granger causality results. 
   
The table presents causality results from a VAR with endogenous variables OIB0, OIB9, VOL0, VOL9, 
RET0, RET9, QSPR0, QSPR9, with the smallest decile being “0” and the largest being “9”. The VAR is 
estimated with two lags, includes a constant term, and uses 3782 observations.  Cell ij shows chi-square 
statistics and p-values of pairwise Granger Causality tests between the ith row variable and the jth column 
variable.  The null hypothesis is that all lag coefficients of the ith row variable are jointly zero when j is 
the dependent variable in the VAR.  QSPR stands for quoted spread.  The stock liquidity series are 
constructed by first averaging all transactions for each individual stock on a given trading day and then 
constructing value-weighted averages for all individual stock daily means that satisfy the data filters 
described in the text. RET is the decile return , VOL is the return volatility, and OIB is the buy dollar 
volume less sell dollar volume normalized by the total  dollar volume.  The sample spans the period 
January 4, 1988 to December 31, 2002. ** denotes significance at the 1% level and * denotes significance 
at the 5% level.  
 
 
 
 
 

VOL0 VOL9 RET0 RET9 QSPR0 QSPR9 

VOL0  38.808** 38.119** 10.213** 32.659** 19.282** 
VOL9 2.123  12.439** 5.537 8.868* 101.944** 
RET0 13.296** 8.721* 2.891 4.505 2.540 
RET9 9.552** 18.792** 39.728** 1.035 12.910** 
QSPR0 96.854** 0.953 0.314 4.959 10.568** 
QSPR9 68.278** 60.968** 4.859 2.176 11.146**  
 
  



 

 
 

  
 

 

 
 
 
 
 
 
Table 5: Contemporaneous Correlation between VAR Innovations.   
 
The table presents the correlation matrix of innovations from a VAR with endogenous variables OIB0, 
OIB9, VOL0, VOL9, RET0, RET9, QSPR0, QSPR9, with the smallest decile being “0” and the largest 
being “9”. The VAR is estimated with two lags, includes a constant term, and uses 3782 observations.  
QSPR stands for quoted spread. The stock liquidity series are constructed by first averaging all 
transactions for each individual stock on a given trading day and then constructing value-weighted 
averages for all individual stock daily means that satisfy the data filters described in the text. RET is the 
decile return, VOL is the return volatility, and OIB is the buy dollar volume less sell dollar volume 
normalized by the total  dollar volume. The sample spans the period January 4, 1988 to December 31, 
2002. ** denotes significance at the 1% level and * denotes significance at the 5% level.  
 
 
 
 
 VOL0 VOL9 RET0 RET9 QSPR0 QSPR9 
VOL0 1.000      
VOL9 0.264** 1.000     
RET0 0.059** -0.143** 1.000    
RET9 -0.032 -0.045** 0.495** 1.000   
QSPR0 0.053** 0.056** -0.063** -0.061** 1.000  
QSPR9 0.196** 0.318** -0.219** -0.182** 0.133** 1.000 
 
 
 



 

 
 

  
 

 

 
 
 
 
 
 
Table 6: VAR Results With Interaction Terms, for the Smallest Decile.   
The table presents results from VARs with endogenous variables VOL0, VOL9, RET0, RET9, QSPR0, 
QSPR9, where N=0 and 9 refer to size deciles. The deciles are numbered in order of increasing size, with 
the smallest decile being “0” and the largest being “9”. In addition, one lag of the exogenous variables 
QRET09, QRET99, and QOIB99 are included in the equation for RET0, where QRET09= QSPR0*RET9, 
QRET99= QSPR9*RET9, and QOIB99= QSPR9*OIB9.  The VAR is estimated with two lags, include a 
constant term, and uses 3782 observations. The Seemingly Unrelated Regression (SUR) method is used to 
estimate the system of equations. QSPR stands for quoted spread. The stock liquidity series are 
constructed by first averaging all transactions for each individual stock on a given trading day and then 
constructing value-weighted averages for all individual stock daily means that satisfy the data filters 
described in the text.  RET is the decile return and VOL is the return volatility. OIB is measured as the 
dollar value of shares bought minus the dollar value of shares sold, divided by the total dollar value of 
trades.  The sample spans the period January 4, 1988 to December 31, 2002.  The Wald test reports the 
chi-square statistics for the null hypothesis that the coefficients of all exogenous variables are jointly zero. 
** denotes significance at the 1% level and * denotes significance at the 5% level.  
 
 
 

 Estimate t-
statistic 

Estimate t-
statistic 

Estimate t-
statistic 

Endogenous variable: RET0       
  

RET9(-1) 0.088** 6.028 0.059 1.024 0.015 0.255 
QRET09(-1) --- --- -0.214 -0.689 -0.179 -0.578 
QRET99(-1) --- --- 0.368* 2.226 0.313 1.892 
QOIB99(-1) --- --- --- --- 0.047** 4.317 

Wald Test  
Chi-square --- --- 4.994  23.727  
Probability --- --- 0.082  0.000  

 



 

 
 

  
 

 

 
 
 
 
 
 
 
 
 
Table 7: VAR Results With Interaction Terms, for all deciles excluding the smallest decile.   
 
The table presents results from VARs with endogenous variables VOLN, VOL9, RETN, RET9, QSPRN, 
QSPR9, where N=1 through 8 refers to size deciles. RET denotes the decile return, VOL the return 
volatility, and QSPR the quoted spread. The deciles are numbered in order of increasing size, with the 
smallest decile being “0” and the largest being “9”. In addition, one lag of the exogenous variables 
QRETN9, QRET99, and QOIB99 are included in the equation for RETN, where N=1 through 8, and 
QRETN9= QSPRN*RET9, QRET99= QSPR9*RET9, and QOIB99= QSPR9*OIB9.  OIB is the order 
imbalance, measured as the dollar value of shares bought minus the dollar value of shares sold, divided by 
the total dollar value of trades. All VARs are estimated with two lags, include a constant term, and use 
3782 observations. The Seemingly Unrelated Regression (SUR) method is used to estimate the system of 
equations. The stock liquidity series are constructed by first averaging all transactions for each individual 
stock on a given trading day and then constructing value-weighted averages for all individual stock daily 
means that satisfy the data filters described in the text. The sample spans the period January 4, 1988 to 
December 31, 2002. The last two rows of each decile group report the Wald test chi-square statistics and 
p-values for the null hypothesis that the coefficients of all exogenous variables are jointly zero. ** 
denotes significance at the 1% level and * denotes significance at the 5% level.  
 
 



 

 
 

  
 

 

 
 
Table 7, continued 
 

Endogenous variable: RET1 Estimate t-
statistic 

Estimate t-
statistic 

Estimate t-
statistic 

RET9(-1) 0.064** 4.057 0.037 0.783 0.001 0.018 
QRET09(-1) --- --- -0.167 -0.721 -0.096 -0.413 
QRET99(-1) --- --- 0.340* 2.127 0.290 1.802 
QOIB99(-1) --- --- --- --- 0.030** 2.932 

Chi-square --- --- 4.529  13.162  
Probability --- --- 0.104  0.004  

Endogenous variable: RET2       
RET9(-1) 0.053** 3.027 0.035 0.851 -0.015 -0.341 

QRET29(-1) --- --- -0.248 -1.340 -0.143 -0.768 
QRET99(-1) --- --- 0.391* 2.453 0.310 1.930 
QOIB99(-1) --- --- --- --- 0.042** 4.257 

Chi-square --- --- 6.168  24.383  
Probability --- --- 0.046  0.000  

Endogenous variable: RET3       
RET9(-1) 0.062** 3.352 0.056 1.500 0.011 0.293 

QRET39(-1) --- --- -0.185 -1.131 -0.117 -0.711 
QRET99(-1) --- --- 0.247 1.524 0.165 1.017 
QOIB99(-1) --- --- --- --- 0.045** 4.582 

Chi-square --- --- 2.560  23.609  
Probability --- --- 0.278  0.000  

Endogenous variable: RET4       
RET9(-1) 0.045* 2.230 0.050 1.413 0.005 0.123 

QRET49(-1) --- --- -0.302* -1.983 -0.245 -1.615 
QRET99(-1) --- --- 0.321* 2.002 0.234 1.454 
QOIB99(-1) --- --- --- --- 0.049** 5.228 

Chi-square --- --- 5.263  32.687  
Probability --- --- 0.072  0.000  

Endogenous variable: RET5       
RET9(-1) 0.025 1.141 0.018 0.496 -0.025 -0.674 

QRET09(-1) --- --- -0.051 -0.318 0.026 0.164 
QRET99(-1) --- --- 0.097 0.653 0.012 0.082 
QOIB99(-1) --- --- --- --- 0.041** 4.840 

Chi-square --- --- 0.428  23.881  
Endogenous variable: RET6       

RET9(-1) 0.034 1.415 0.059 1.801 0.030 0.895 
QRET69(-1) --- --- -0.201 -1.216 -0.164 -0.991 
QRET99(-1) --- --- 0.079 0.442 0.009 0.049 
QOIB99(-1) --- --- --- --- 0.034** 4.213 

Chi-square --- --- 1.981  19.736  
Probability --- --- 0.372  0.000  

Endogenous variable: RET7       
RET9(-1) 0.018 0.661 0.019 0.534 0.000 -0.002 

QRET79(-1) --- --- 0.154 0.890 0.177 1.022 
QRET99(-1) --- --- -0.176 -1.008 -0.220 -1.255 
QOIB99(-1) --- --- --- --- 0.022** 2.900 

Chi-square --- --- 1.045  9.456  
Probability --- --- 0.593  0.024  

Endogenous variable: RET8       
RET9(-1) -0.040 -1.141 -0.030 -0.794 -0.048 -1.241 

QRET89(-1) --- --- -0.023 -0.149 -0.013 -0.081 
QRET99(-1) --- --- -0.027 -0.148 -0.061 -0.335 
QOIB99(-1) --- --- --- --- 0.020** 3.245 

Chi-square --- --- 0.327  10.863  
Probability --- --- 0.849  0.013  



 

 
 

  
 

 

Table 8: VAR Results With Interaction Terms, for all Deciles, Using Mid-quote Returns.   
 
The table presents results from VARs with endogenous variables MRETN, MRET9, MVOLN, MVOL9, 
QSPRN, QSPR9, where N=0 through 8 refers to size deciles.  MRET denotes the mid-quote return, 
MVOL the return volatility, and QSPR the quoted spread.   The deciles are numbered in order of 
increasing size, with the smallest decile being “0” and the largest being “9”. In addition, one lag of the 
exogenous variables QMRETN9, QMRET99, and QOIB99 are included in the equation for MRETN, and 
QMRETN9= QSPRN*MRET9, QMRET99= QSPR9*MRET9, and QOIB99= QSPR9*OIB9.  OIB is the 
order imbalance, measured as the dollar value of shares bought minus the dollar value of shares sold, 
divided by the total dollar value of trades.  All VARs are estimated with two lags, and include a constant 
term. The Seemingly Unrelated Regression (SUR) method is used to estimate the system of equations. 
The stock liquidity series are constructed by first averaging all transactions for each individual stock on a 
given trading day and then constructing value-weighted averages for all individual stock daily means that 
satisfy the data filters described in the text. The sample spans the period January 4, 1988 to December 31, 
2002. ** denotes significance at the 1% level and * denotes significance at the 5% level.  
 



 

 
 

  
 

 

Table 8, continued 
 

 Estimate t-
statistic 

Endogenous variable: MRET0   
MRET9(-1) 0.040 0.772 

QMRET09(-1) 0.093 0.296 
QMRET99(-1) -0.147 -0.795 

QOIB99(-1) 0.054** 3.024 
Endogenous variable: MRET1   

MRET9(-1) 0.065 1.347 
QMRET19(-1) -0.028 -0.107 
QMRET99(-1) -0.149 -0.759 

QOIB99(-1) 0.116** 8.196 
Endogenous variable: MRET2   

MRET9(-1) 0.054 1.176 
QMRET29(-1) -0.271 -1.233 
QMRET99(-1) -0.037 -0.189 

QOIB99(-1) 0.061** 3.119 
Endogenous variable: MRET3   

MRET9(-1) 0.023 0.524 
QMRET39(-1) 0.145 0.656 
QMRET99(-1) -0.257 -1.223 

QOIB99(-1) 0.061** 3.028 
Endogenous variable: MRET4   

MRET9(-1) 0.063 1.541 
QMRET49(-1) -0.290 -1.438 
QMRET99(-1) -0.099 -0.462 

QOIB99(-1) 0.056** 2.837 
Endogenous variable: MRET5   

MRET9(-1) 0.005 0.109 
QMRET59(-1) -0.051 -0.253 
QMRET99(-1) -0.324 -1.587 

QOIB99(-1) 0.080** 4.232 
Endogenous variable: MRET6   

MRET9(-1) 0.046 1.213 
QMRET69(-1) 0.018 0.079 
QMRET99(-1) -0.511* -2.109 

QOIB99(-1) 0.055** 3.127 
Endogenous variable: MRET7   

MRET9(-1) 0.036 0.895 
QMRET79(-1) 0.004 0.015 
QMRET99(-1) -0.284 -1.104 

QOIB99(-1) 0.025 1.497 
Endogenous variable: MRET8   

MRET9(-1) -0.025 -0.601 
QMRET89(-1) -0.286 -1.120 
QMRET99(-1) -0.119 -0.439 

QOIB99(-1) 0.047** 3.441 
 



 

 
 

  
 

 

 
 
Table 9: VAR Results With Interaction Terms for Volatility and Returns, for the Smallest Decile.   
The table presents results from VARs with endogenous variables MRET0, MRET9, MVOL0, MVOL9, 
QSPR0, QSPR9, MRET denotes the mid-quote return, MVOL the return volatility, and QSPR the quoted 
spread, with the smallest decile being “0” and the largest being “9”.   In addition, one lag of the 
exogenous variables QMRET09, QMRET99, and QOIB99 are included in the equation for MRET0, and 
QMRET09= QSPR0*MRET9, QMRET99= QSPR9*MRET9, and QOIB99= QSPR9*OIB9.   Further, 
one lag of the exogenous variables QMVOL90=QSPR9*MVOL0 and QMVOL00=QSPR0*MVOL0 are 
included in the equation for VOL9.  OIB is the order imbalance, measured as the dollar value of shares 
bought minus the dollar value of shares sold, divided by the total dollar value of trades.  All VARs are 
estimated with two lags. The Seemingly Unrelated Regression (SUR) method is used to estimate the 
system of equations. The stock liquidity series are constructed by first averaging all transactions for each 
individual stock on a given trading day and then constructing value-weighted averages for all individual 
stock daily means that satisfy the data filters described in the text. The sample spans the period January 4, 
1993 to December 31, 2002. ** denotes significance at the 1% level and * denotes significance at the 5% 
level.  
 
 
 
 

 Estimate t-statistic 
Endogenous variable: MRET0   
  

MRET9(-1) 0.041 0.797 
QMRET09(-1) 0.082 0.262 
QMRET99(-1) -0.142 -0.765 

QOIB99(-1) 0.054** 3.002 
   
Endogenous variable: MVOL9   
   

MVOL0(-1) 0.301** 2.872 
QMVOL90(-1) 0.089 0.258 
QMVOL00(-1) -1.499* -2.349 

  
Wald Test  

Chi-square 15.447  
Probability 0.009  

 



 

 
 

  
 

 

 
 
 
 
Table 10: VARs Including Nasdaq Stocks   
 
Panel A of the table presents the correlation matrix of innovations from a VAR with endogenous variables 
VOL0, VOL9, VOLN, RET0, RET9, RETN, QSPR0, QSPR9, QSPRN with the smallest NYSE decile 
being “0” and the largest being “9”; the subscript “N” represents Nasdaq stocks.  The VAR uses 3782 
observations.  QSPR stands for quoted spread. RET is the decile return, VOL is the return volatility,  and 
OIB is the buy dollar volume less sell dollar volume normalized by the total  dollar volume.   Panel B of 
the table presents causality results from the VAR.  Cell ij shows chi-square statistics and p-values of 
pairwise Granger Causality tests between the ith row variable and the jth column variable.  The null 
hypothesis is that all lag coefficients of the ith row variable are jointly zero when j is the dependent 
variable in the VAR.  The sample spans the period January 4, 1988 to December 31, 2002. ** denotes 
significance at the 1% level and * denotes significance at the 5% level.  
 
 
Panel A: Granger Causality Results 
 
 

VOLN VOL9 RETN RET9 QSPRN QSPR9 

VOLN  18.951** 3.296 2.407 11.291* 4.513 
VOL9 4.720  7.719 8.504* 0.310 96.061** 
RETN 19.960** 6.282  2.863 5.109 0.912 
RET9 2.079 13.014** 0.321  7.173 11.824** 
QSPRN 23.513** 10.091* 5.416 2.248  5.479 
QSPR9 37.964** 55.411** 3.833 0.499 18.562**  
 
 
Panel B: Contemporaneous Correlations between VAR Innovations 
 VOLN VOL9 RETN RET9 QSPRN QSPR9 
VOLN 1.000      
VOL9 0.529** 1.000     
RETN -0.064** -0.055** 1.000    
RET9 -0.057** -0.042** 0.729** 1.000   
QSPRN -0.045** -0.055** -0.034* -0.030 1.000  
QSPR9 0.210** 0.318** -0.151** -0.183** 0.039* 1.000 
 



 

 
 

  
 

 

 
 
 
 
Table 11: VAR Results With Interaction Terms, including Nasdaq Stocks 
This table presents results from a VAR with endogenous variables VOL0, VOL9, VOLN, RET0, RET9, 
RETN, QSPR0, QSPR9, QSPRN with the smallest NYSE decile being “0” and the largest being “9”; the 
subscript “N” in this table represents Nasdaq stocks.  RET denotes the return, VOL the return volatility, 
and QSPR the quoted spread.   The deciles are numbered in order of increasing size, with the smallest 
decile being “0” and the largest being “9”. In addition, one lag of the exogenous variables QRETN9, 
QRET99, and QOIB99 are included in the equation for RETN, and QRETN9= QSPRN*RET9, QRET99= 
QSPR9*MRET9, and QOIB99= QSPR9*OIB9.  OIB is the order imbalance, measured as the dollar value 
of shares bought minus the dollar value of shares sold, divided by the total dollar value of trades.   The 
Seemingly Unrelated Regression (SUR) method is used to estimate the system of equations.  The sample 
spans the period January 4, 1988 to December 31, 2002.  The Wald test reports the chi-square statistics 
for the null hypothesis that the coefficients of all exogenous variables are jointly zero. ** denotes 
significance at the 1% level and * denotes significance at the 5% level.  
 
 

 Estimate t-
statistic 

Estimate t-
statistic 

Estimate t-
statistic 

Endogenous variable: RETN       
  

RET9(-1) -0.019 -0.526 0.008 0.189 -0.066 -1.326 
QRETN9(-1) --- --- 0.167 1.013 0.162 0.984 
QRET99(-1) --- --- -0.103 -0.304 -0.074 -0.217 
QOIB99(-1) --- --- --- --- 0.077** 2.799 

Wald Test       
Chi-square --- --- 2.969  10.815  
Probability --- --- 0.227  0.013  

 
 



 

 
 

  
 

 

 
 
Figure 1  
 
Panel A: Quoted Bid-Ask Spread for small and large cap stocks   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Panel B: Proportional Quoted Bid-Ask Spread for small and large cap stocks   

Proportional Quoted Bid-Ask Spread: Deciles 0 
and 9
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Figure 2. Impulse Response Functions 
The figure presents impulse response functions from the VARs with endogenous variables representing 
order imbalance (OIB), volatility (VOL), returns (RET) and quoted bid-ask spreads (QSPR).  The 
ordering is OIB0, OIB9, VOL0, VOL9, RET0, RET9, QSPR0, QSPR9, with the smallest decile being “0” 
and the largest being “9”. 
 
 
Panel A. Response of Decile 9 to Decile 0  
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Figure 2, continued  
 
 
Panel B. Response of Decile 0 to Decile 9 
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Figure 3. Impulse Response Functions for Nasdaq stocks to Large NYSE Stocks 
The figure presents impulse response functions from the VARs with endogenous variables representing 
volatility (VOL), returns (RET) and quoted bid-ask spreads (QSPR), for small and large NYSE firm 
deciles, and Nasdaq stocks.  The largest firm NYSE deciles is denoted “9”;  “N” represents Nasdaq 
stocks. 
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