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This appendix contains the mathematical details underlying the results in the main text. The

results are explained in the order that they appear in the text.

A Section III: Menu cost distribution

In the main text, we introduced the menu cost distribution function in the form it is used by DKW.

That is, we used

Gt (ξ) =

⎧⎪⎨⎪⎩
0 for ξ < 0

γ1t + γ2t tan (γ3tξ + γ4t) for 0 ≤ ξ < ξt
1 for ξt ≤ ξ

(1)

In order to see how this distribution nests the menu cost distribution functions underlying the

Calvo and Calvo-Taylor hybrid models, i.e. our models (i) and (ii), it turns out to be worthwhile

to consider a particular reparameterization. Namely we reparametrize Gt in terms of ξt, φ, and φ

as

γ1t = −γ2t tan
¡¡
φ− 0.5

¢
π
¢

(2)

γ2t = 1/
£
tan

¡¡
φ− 0.5

¢
π
¢
+ tan

¡¡
φ− 0.5

¢
π
¢¤

(3)

γ3t =
¡
φ− φ

¢
π/ξt (4)

γ4t =
¡
φ− 0.5

¢
π (5)

where 0 < φ < φ < 1.

The intuition behind our parameterization is most easily explained using figure 1. The DKW

distribution function is a transformation of the tangent function on
£¡
φ− 0.5

¢
π,
¡
φ− 0.5

¢
π
¤
. This
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is the interval that is depicted in the figure by the arrow denoted by (i). The mapping of this interval

on the support of the distribution function, i.e.
£
0, ξt

¤
,determines the value of the parameters γ3t

and γ4t. Arrow (ii) depicts how γ1t is determined. That is, γ1t is such that the value of the

distribution function at the minimum of its support equals zero. To assure that the menu cost

assumes a value within its support with probability one, γ2t is chosen such that arrow (iii) is of

length one.

The menu cost distribution function that underlies both the Calvo model and the Calvo-Taylor

hybrid is

G∗t (ξ) =

⎧⎪⎨⎪⎩
0 for ξ < 0

α for 0 ≤ ξ < ξt
1 for ξt ≤ ξ

(6)

where for the Calvo model ξt is infinite at all t, except T when the Euro is introduced, and for the

Calvo-Taylor hybrid it is finite.

G∗t (.) is a limiting case of Gt (.) in the sense that G∗t (.) → Gt (.) when φ → 0 and φ is chosen

according to

φ = 0.5 +
1

π
arctan

µ
−
µ
1− α

α

¶
tan

¡¡
φ− 0.5

¢
π
¢¶

(7)

B Section IV: Equilibrium inflation dynamics

For the derivation of the equilibrium inflation dynamics and equilibrium price adjustment behavior

it turns out to be convenient to write the problem in terms of variables that are constant along the

balanced growth path. For this purpose, we define

πSj,t =
ΠSj,t

[(1 + π) (1 + g)]t
, vSj,t =

V S
j,t

[(1 + π) (1 + g)]t
, (8)

p∗S,t =
P ∗S,t

(1 + π)t
, and pi,t =

Pi,t

(1 + π)t
(9)

for s ∈ {D,E} and j = 0, . . . ,∞.
Given these definitions, we can write the detrended profits as

πSj,t =

Ã
p∗S,t−j

(1 + π)j
− ψ

!Ã
1

(1 + π)j
p∗S,t−j
pit

!−εµ
pit
p

¶−η
y (10)

where again s ∈ {D,E} and j = 0, . . . ,∞.
Furthermore, we can write the functional equations for the detrended value function as

vD0,t = max
p∗D,t

©
πD0,t + λEtmax

©
vD0,t+1 − wξ, vE0,t+1 − wξ − wc, vD1,t+1

ªª
(11)

vE0,t = max
p∗E,t

©
πE0,t + λEtmax

©
vE0,t+1 − wξ, vE1,t+1

ªª
(12)

vDj,t =
©
πDj,t + λEtmax

©
vD0,t+1 − wξ, vE0,t+1 − wξ −wc, vDj+1,t+1

ªª
(13)

vEj,t =
©
πEj,t + λEtmax

©
vE0,t+1 − wξ, vEj+1,t+1

ªª
(14)
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where λ = (1 + g) (1 + π) / (1 + r).

Since these value functions are defined in terms of variables that are constant along the econ-

omy’s balanced growth path, we will use this representation of the value functions to solve for the

transitional path in the price level if sector i that results from the announcement of the conversion

to the Euro.

In order to solve the equilibrium inflation dynamics in this model, we need to define the proper

state space. The structure of the state space in this model is very similar to that in DKW. The

main difference is that it is not only defined as the discrete distribution of firms over the length

over which they have not adjusted their prices but also over the denomination in which they charge

their prices.

Let θSj,t for S ∈ {D,E} denote the fraction of firms at the start of period t that changed

their price j periods ago and that charge their price in denomination S. Furthermore, let αS
0

j,t for

S0 ∈ {D,E} denote the fraction of firms that are charging a price that they set j periods ago in
denomination S0 that change their price at time t and that keep on charging their price in the same

denomination. Let αCj,t denote the fraction of firms that are charging a price that they set j periods

ago in their old domestic currency that change their price at time t as well as switch to the Euro.

Finally, let ωSj,t for S ∈ {D,E} denote the fraction of firms at the end of period t that changed

their price j periods ago and that charge their price in denomination S. Here, the end of period

refers to the part of the period after which firms have made their pricing decisions. This is the part

of the period in which revenue is generated and prices are measured.

The dynamic transition equations for the state are given by the following identities

ωE0,t =
∞X
j=1

¡
αEj,tθ

E
j,t + αCj,tθ

D
j,t

¢
(15)

ωD0,t =
∞X
j=1

αDj,tθ
D
j,t (16)

ωEj,t =
¡
1− αEj,t

¢
θEj,t (17)

ωDj,t =
¡
1− αDj,t − αCj,t

¢
θDj,t (18)

θSj+1,t+1 = ωSj,t for S ∈ {D,E} (19)

where, since the state represents a distribution of firms, ωSj,t ≥ 0 and
P∞

s=0 ω
S
j,t = 1. Furthermore,

since they represent transition probabilities, 0 ≤ αSj,t ≤ 1 for S ∈ {C,D,E}.
This definition of the state allows us to define the price level at the end of the period as a

function of the state and the prices set by the firms. That is, we can write the measured price level

at each point in time as

Pit =

⎡⎣ X
S∈{D,E}

∞X
j=0

ωSj,t

Ã
1

P ∗S,t−j

!ε−1
⎤⎦ 1
1−ε

(20)
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In terms of the detrended prices, this yields

pit =

⎡⎣ X
S∈{D,E}

∞X
j=0

ωSj,t

Ã
(1 + π)j

p∗S,t−j

!ε−1
⎤⎦ 1
1−ε

(21)

which is constant on the balanced growth path.

Solving for the firms’ optimal price setting decision involves solving for three decisions: (i)

whether or not to adjust their price, (ii) whether or not to switch to the Euro (in case they are

charging prices in the domestic currency), and (iii) what price to charge if the price is adjusted.

We will tackle parts (i) and (ii) first and then solve (iii).

A firm that charges its price in Euros in period t and set that price j periods ago will adjust

its price whenever the menu cost it draws is smaller than the gain in value that the firm obtains

when it adjusts its price. Mathematically, this boils down to

ξ ≤
¡
vE0,t − vEj,t

¢±
w (22)

The probability that this happens is depends on the distribution function of menu costs. In par-

ticular

αEj,t = G
¡¡
vE0,t − vEj,t

¢±
w
¢

(23)

We will denote the expected menu cost for such a firm, conditional on adjusting its price as

ΞEj,t =

Z (vE0,t−vEj,t)/w
0

ξdG (ξ)

This price adjustment rule is essentially the same as that in DKW.

This is not the case for the a firm that charges its price in the domestic currency, though. Rather

than deciding on whether or not to change its price, such a firm decides on whether to change its

price and continue to charge it in the domestic currency, change its price and start charging it in

Euros, or not change its price at all.

If the firm decides to change its price, it will start charging it in Euros whenever the value

of charging it in Euros net of the Euro conversion adjustment cost is higher than the value of

continuing to charge it in the domestic currency. That is, if the firm adjusts its price, it will

convert to the Euro whenever

vE0,t − cw ≥ vD0,t (24)

This result implies that, if this inequality holds strictly one way or the other, either all firms that

charge their prices in domestic currency and adjust their prices will change to Euros or they will

all keep on charging their prices in the domestic currency. Hence, in that case αDj,tα
C
j,t = 0.

A firm that set its domestic currency denominated price j periods ago will adjust its price

whenever the menu cost it draws satisfies

ξ ≤ max
©
vE0,t − cw − vDj,t, v

D
0,t − vDj,t

ª±
w (25)
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This allows us to solve for the adjustment probabilities

αDj,t =

(
G
³³

vD0,t − vDj,t

´.
w
´

whenever vD0,t > vE0,t − cw

0 otherwise
(26)

and

αCj,t =

(
G
³³

vE0,t − cw − vDj,t

´.
w
´

whenever vE0,t − cw > vD0,t

0 otherwise
(27)

Here, we assume that, in case of indifference, firms will switch to the Euro. Its expected menu cost,

conditional on adjusting its price and still charging it in the domestic currency

ΞDj,t =

( R (vD0,t−vDj,t)/w
0 ξdG (ξ) whenever vD0,t > vE0,t − cw

0 otherwise
(28)

and its expected menu cost, conditional on adjusting its price and switching to the Euro equals

ΞCj,t =

( R (vE0,t−cw−vDj,t)/w
0 ξdG (ξ) whenever vE0,t − cw > vD0,t
0 otherwise

(29)

The solution of these adjustment probabilities and expected adjustment costs now allows us

to solve for the optimal price P ∗S,t for S ∈ {D,E}. However, we will solve for the optimal price
detrended price, p∗S,t, rather than for P

∗
S,t. In order to do so, it is convenient to first rewrite the

functional equations that define the value function by substituting in the optimal price adjustment

decisions. This yields

vD0,t = max
p∗D,t

©
πD0,t + λαD1,t+1v

D
0,t+1 + λαC1,t+1

¡
vE0,t+1 − wc

¢
(30)

+λ
¡
1− αD1,t+1 − αC1,t+1

¢
vD1,t+1 − λwΞD1,t+1 − λwΞC1,t+1

ª
vE0,t = max

p∗E,t

©
πE0,t + λαE1,t+1v

E
0,t+1 + λ

¡
1− αE1,t+1

¢
vE1,t+1 − λwΞE1,t+1

ª
(31)

vDj,t =
©
πDj,t + λαDj+1,t+1v

D
0,t+1 + λαCj+1,t+1

¡
vE0,t+1 − wc

¢
(32)

+λ
¡
1− αDj+1,t+1 − αCj+1,t+1

¢
vDj+1,t+1 − λwΞDj+1,t+1 − λwΞCj+1,t+1

ª
vEj,t =

©
πEj,t + λαEj+1,t+1v

E
0,t+1 + λ

¡
1− αEj+1,t+1

¢
vEj+1,t+1 − λwΞEj+1,t+1

ª
(33)

which allows us to derive the first order necessary conditions for the optimal prices p∗D,t and p∗E,t.
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The first order necessary condition for the choice of p∗D,t reads

0 =
∂

∂p∗D,t

©
πD0,t + λαD1,t+1v

D
0,t+1 + λαC1,t+1

¡
vE0,t+1 − wc

¢
(34)

+λ
¡
1− αD1,t+1 − αC1,t+1

¢
vD1,t+1 − λwΞC1,t+1 − λwΞD1,t+1

ª
=

∂πD0,t
∂p∗D,t

+ λ
∂αD1,t+1
∂p∗D,t

¡
vD0,t+1 − vD1,t+1

¢
− λw

∂ΞD1,t+1
∂p∗D,t

(35)

λ
∂αC1,t+1
∂p∗D,t

¡
vE0,t+1 − wc− vD1,t+1

¢
− λw

∂ΞC1,t+1
∂p∗D,t

+λ
¡
1− αD1,t+1 − αC1,t+1

¢ ∂vD1,t+1
∂p∗D,t

(36)

However, the envelope theorem implies that

0 = λ
∂αD1,t+1
∂p∗D,t

¡
vD0,t+1 − vD1,t+1

¢
− λw

∂ΞD1,t+1
∂p∗D,t

(37)

= λ
∂αC1,t+1
∂p∗D,t

¡
vE0,t+1 − wc− vD1,t+1

¢
− λw

∂ΞC1,t+1
∂p∗D,t

(38)

Hence, the first order condition simplifies to

0 =
∂πD0,t
∂p∗D,t

+ λ
¡
1− αD1,t+1 − αC1,t+1

¢ ∂vD1,t+1
∂p∗D,t

(39)

The partial
∂vDj,t+1
∂p∗D,t

can be derived in a similar way as the above condition. It equals

∂vDj,t+1
∂p∗D,t

=
∂πDj,t
∂p∗D,t

+ λ
¡
1− αDj+1,t+1 − αCj+1,t+1

¢ ∂vDj+1,t+1
∂p∗D,t

(40)

Solving the optimality condition through forward recursion yields that p∗D,t is chosen such that

0 =
∂πD0,t
∂p∗D,t

+
∞X
j=1

λj
jY

s=1

¡
1− αDj+s,t+s − αCj+s,t+s

¢ ∂πDj,t+j
∂p∗D,t

(41)

Since
∂πDj,t+j
∂p∗D,t

=

"
1− ε

(1 + π)j
+ ε

ψ

p∗D,t

#Ã
1

(1 + π)j
p∗D,t

pit+j

!−εµ
pit+j
p

¶−η
y (42)

This first order condition implies that

p∗D,t =
ε

ε− 1ψ
P∞

j=0 χ
D
j,t (1 + π)jP∞
j=0 χ

D
j,t

(43)

where

χDj,t =

(
1 for j = 0

λj
Qj

s=1

¡
1− αDs,t+s − αCs,t+s

¢
(1 + π)εj pε−ηi,t+j for j > 0

(44)
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Similarly, we can solve for the optimal price charged in Euros as being

p∗E,t =
ε

ε− 1ψ
P∞

j=0 χ
E
j,t (1 + π)jP∞
j=0 χ

E
j,t

(45)

where

χDj,t =

(
1 for j = 0

λj
Qj

s=1

¡
1− αEs,t+s

¢
(1 + π)εj pε−ηi,t+j for j > 0

(46)

In terms of the non-transformed prices, we thus obtain for S ∈ {D,E} that

P ∗S,t =
ε

ε− 1

∞X
j=0

ΩSj,tΨt+j where ΩSj,t =
χEj,tP∞
q=0 χ

E
q,t

(47)

which is the result used in the main text

C Section V: Calibration of price adjustment frequencies

Because our calibration pertains to the steady state in which firms do not switch the denomination

of their prices, we ignore the currency denomination dimension in this derivation. Our goal is to

derive an expression for the probability of adjusting the price x times in 12 monhs.

Let qx,y,j denote the probability that a firm adjusts its price x times over the next y periods

conditional on not having adjusted its price for j periods. Let αj denote the probability of adjusting

the price when a firm has not adjusted its price for j periods.

These probabilities can be derived using a version of the Chapman-Kolmogorov equation for

discrete time and discrete state Markov processes. The particular application here yields that

qx,y,j = (1− αj) qx,y−1,j+1 + αjqx−1,y−1,0 (48)

The intuition for this result is that there are two ways to adjust x times from now during the next

y periods. The first, which happens with probability, (1− αj), is that a firm does not adjust its

price in the current period and will thus have to adjust its price x times in the remaining y − 1
periods. The second, which happens with probability αj is that the firm adjusts its price in the

current period and has y − 1 periods left to adjust its price another x− 1 times.
Since the model implies that a firm can at maximimum adjust its price once per period, qx,y,j = 0

for x > y and all j. Note also that q0,0,j = 1 for all j. These latter two results can be used to

initialize the recursion implied by the Chapman-Kolmogorov equation above.

If a period is a month, then the probability that a firm that hasn’t adjusted its price for j

months adjusts its price x times in the subsequent year is given by qx,12,j . Let ωj be the steady

state fraction of firms that have not adjusted their prices for j months, then the fraction of firms

that will adjust its price x times in a year in steady state, which is what we use for our calibration

and which is what we will denote by Qx,12 equals

Qx,12 =
∞X
j=0

ωjqx,12,j (49)
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In particular, the data for the Dutch restaurant sector in which we based our calibration reports

the empirical equivalents of Q0,12, Q1,12, and Q2,12 +Q3,12 +Q4,12.

D Section V: Numerical solution method

For the numerical solution of our model we use the ‘extended path’ method. This method has

been applied in other studies of transitional dynamics, like Greenwood and Yorukoglu (1997). We

will assume that our economy starts off in period 0 in the steady state in which everyone charges

their prices in the domestic currency and charging prices in Euros is not an option. In period 0

the conversion to the Euro at time T is announced. We will solve for the transitional path of the

economy under the assumption that at time T > T > 0 the sector has converged to its new steady

state. This new steady state is the one in which all firms charge their prices in Euros.

The numerical solution method basically works as follows

1. We start with a guess for the equilibrium price path {pi,t}Tt=0.

2. We solve the optimal price setting response for the firms. This is done using the value function

iterations, (30) through (33), the optimal price setting rules, (43) and (45), and the transition

equations for the state space, (15) through (19) and (23), (26) and (27).

3. The new path of the prices and the state space is then used to solve the price level identity,

(21) and obtain a new equilibrium price path
n
p0i,t

oT
t=0

.

4. Steps 2 and 3 above are repeated until {pi,t}Tt=0 →
n
p0i,t

oT
t=0
.

GAUSS code that implements this numerical procedure is available upon request.
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Figure 1: DKW menu cost distribution
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