
On-Line Appendix to

Valuing the Treasury’s Capital Assistance Program

In this appendix, we expand the discussion of the example in Figure 1, we detail the calibration

of the model with a jump to default, we extend the model to include stochastic interest rates,

and we show that our recursive game formulation is equivalent to an extensive-form version.

A.1 Example

This section continues and expands the discussion of the example in Section 5.2.

The top panel in Figure 6 repeats Figure 1. Following conversion or warrant exercise, the

game is governed by the lower figure. The nodes with squares in the lower figure show the

warrant exercise region for the UST after the QFI has converted (the exercise region for W c).

Similarly, the circles and crosses in the lower figure show the redemption and conversion regions

the QFI would use if the UST had already exercised its warrants (the regions for Ce). Beyond

the mandatory conversion date, the QFI has no remaining options, so we allow the UST to

exercise at every time step between the seventh and tenth years.

One set of decisions remains, not covered by the figures: If the QFI redeems before the

UST exercises its warrants, the UST is then left holding a standard warrant (W r) on undiluted

shares. The calculation of the exercise region for a standard warrant is straightforward, so we

have not included a separate figure for that case.

In Figure 7, we illustrate how the exercise regions change as we vary the dividend rate on

the CAP. The figures correspond to the top half of Figure 6, in the sense that they show exercise

regions for C and W , before either party has exercised. In the top left panel, the dividend rate

is 2% and thus equal to the risk-free rate; this makes early redemption less attractive to the

QFI, creating the possibility that the UST will exercise its warrants before the QFI converts

or redeems. In the top right panel, we further reduce the CAP’s dividend below the risk-free

rate to 1%. Here, the benefit of terminating the dividend payments is reduced relative to the

cost of conversion, and a gap opens in the QFI’s exercise regions, allowing the CAP to continue

beyond the initial two years. In the bottom panel, the CAP pays no dividend and the QFI

never chooses early conversion. The QFI still has an incentive to redeem the CAP at the end of

the initial two years if the stock price has increased in order to avoid mandatory conversion at

the end of seven years at an unattractive conversion price. Indeed, the mandatory conversion

feature creates a strong incentive for the QFI to redeem if the stock price increases.
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Figure 6: Exercise regions for the CAP: The cross marks show the region in which the QFI
exercises its conversion option, the circles show where redemption is optimal, and the squares
show the exercise region for the UST’s warrants. The top figure applies before either party has
exercised an option; once the QFI converts or the UST exercises, the other party’s decisions
are governed by the lower figure. After year seven, the UST is the only remaining player.
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Figure 7: Exercise regions for the CAP with a dividend of 2% (top left), 1% (top right), and
0% (bottom).

One way to gauge the importance of the interaction between the two players is to compare

the value of the CAP with the values of two separate securities granting options separately to

the two players. In the example of Figure 6, we get a CAP value of C0 = $25.67 million, or

25.67% of the initial capital G. If we value the warrants in isolation within the same model, we

get a value to the Treasury of $13.85 million, and if we value the CAP stripped of warrants (i.e.,

with m = 0), we get a value to the QFI of $34.14 million. Ignoring the interaction between the

two contracts would yield a net value of $34.14− $13.85 = $20.29 million to the QFI. But the

QFI captures more value (25.67 rather than 20.29) when the embedded options are combined.

This is a consequence of the conversion option which lowers the value of the warrants through

dilution and by shifting part of the cost of subsequent dilution from warrant exercise to the

UST.

A.2 Default Calibration

For the extension of the model that includes a potential jump to default, we calibrate parameters

for each firm using its credit default swap (CDS) spreads. We use CDS spreads from Markit
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at maturities of six months and 1, 2, 3, 4, 5, 7 and 10 years.21 For consistency with our stock

price model, we use spreads for the holding company rather than the bank in cases (like Bank

of America) where both are available. We also use CDS recovery rates from Markit, which are

40% in all cases reported, except BAC for which it is 44.86%. We use 40% for BK and RF, for

which no Markit recovery rates were available.

For six firms (BBT, BK, FITB, PNC, RF, and STT) some or all spreads were missing for

the period of interest (February 2009). For BBT, BK, PNC, and STT just a few maturities

were missing, so we imputed values through regression, using as regressors the average spread

over all banks for each maturity. To impute, say, a missing 1-year spread at BBT, we regress

BBT’s 1-year spread against the averages for all maturities, estimating the model with daily

data from January 2006 through May 2009. The imputed value on a given day is then the value

fit by the model using the estimated coefficients and the average spreads on that day. For FITB

and RF, we had too much missing data across maturities and days to apply this procedure, so

we used only the 5-year contract (typically the most liquid), for which we had data for both

banks, and simply assumed a constant spread across all maturities equal to the 5-year spread.

Using the CDS spreads, we calibrate an adjusted volatility and default intensity for each

firm; the results are summarized in Table 6. Recall from the discussion in Section 5.3 that the

volatility adjustment offsets the volatility increase that results from adding a jump to zero.22

We calculate the volatility adjustment as follows. First, we calculate a constant default intensity

ξconst calibrated to the 1-year CDS spread for each firm. Then, we solve numerically for the

value of the adjusted volatility that yields the same price for a 1-year at-the-money call option

in a binomial lattice with a jump intensity of ξconst as would be obtained with no jump to

zero and the original volatility in Table 2. The choice of calibration to a 1-year horizon is

a compromise between the greater liquidity of options at shorter maturities and the greater

liquidity of CDS at somewhat longer maturities.

Once we have an adjusted volatility, we can calibrate the parameters a0–a3 of the default

intensity (19). For now, we fix a1 at zero and reintroduce this parameter when we include

stochastic interest rates. The calibration proceeds iteratively. We start from initial values

for the parameters23 and calculate CDS spreads in the jump-to-default binomial lattice, as in
21

We use spreads for senior unsecured debt under document clause XR, which takes the most restrictive

definition of a credit event, excluding restructuring.
22

Whether such an adjustment is needed depends on whether one interprets volatility in the binomial tree as

measuring market implied volatility, including the possibility of default, or as measuring stock price fluctuations

in the absence of default. In our calibration to market data, we adopt the first interpretation.
23

We used a0 = 0, a2 = 1, and a3 = .1 as initial values, except in the case of USB for which we needed to start

at a0 = 5 to get a satisfactory fit. We compared results from multiple starting points.
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Ticker Spread ξconst Adj. Vol. a0 a2 a3 λmax

AXP 394.71 0.0673 0.7627 1.5584 0.181 -0.1407 0.0500
BAC 285.06 0.0512 1.1643 -2.8121 0.0078 -0.0653 0.0500
BBT 152.53 0.0256 0.8182 14.508 0.8152 -0.1971 0.0500
BK 74.57 0.0125 0.7936 9.9998 0.5943 -0.1229 0.1063
C 523.17 0.0897 1.152 -1.5994 0.0357 -0.1159 0.0100

COF 410.06 0.0705 0.9988 1.3649 0.1773 -0.2331 0.0719
FITB 70.81 0.0119 1.8758 -2.9019 0.0739 -0.1257 0.1492
GS 340.65 0.0577 0.6927 0.7806 0.1479 -0.1247 0.0469

JPM 106.84 0.0179 0.803 11.503 0.6204 -0.165 0.0500
KEY 298.13 0.0512 1.0169 1.4622 0.2117 0.1458 0.0080
MET 659.18 0.1122 0.8454 -2.1008 0.0035 -0.0406 0.0724
MS 499.94 0.0865 0.8351 0.7394 0.1331 -0.1726 0.0500

PNC 242.90 0.0416 0.8355 0.429 0.1553 -0.0321 0.0750
RF 509.47 0.0865 1.2972 -2.453 0.0018 0.0926 0.0450
STI 192.20 0.0320 1.0937 1.16 0.2092 -0.0288 0.0069
STT 127.71 0.0214 0.9024 24.5275 1.2986 0.077 0.0500
USB 93.75 0.0157 0.8459 9.919 0.5888 -0.0608 0.0100
WFC 200.48 0.0352 0.9047 -0.6811 0.1104 -0.0675 0.0427

Table 6: Parameters for jump-to-default model. The spread column reports 1-year CDS spreads;
these determine the value of λconst, which we use to calculate the adjusted volatility. The last
four columns report the parameters of the default intensity obtained through calibration to
CDS spreads of maturities from six months to ten years.

equations (12)–(15) in Das and Sundaram [7]. We compare the model spreads with our observed

(or imputed) spreads and adjust a0, a2 and a3 to minimize the mean square error between the

two. At sufficiently large values of the default intensity, the up or down probabilities in the

binomial lattice may become negative. To avoid this problem, we cap the default probability

at λmax and include λmax in the calibration process itself, starting at 0.075. The final values

are included in Table 6.

For reference, Table 3 also includes the average CDS spread for each QFI, averaged over

maturities from six months to ten years and averaged over the ten days ending on February

25. In general, the larger the spread the greater the difference in CAP values with and without

default; see Figure 8. The correlation between the price differences and the average spread is

0.85. Although not included in the table, we have also calculated prices for the CAP warrants

in isolation with and without a jump to default. The results are in most cases identical, and

the difference is never more than half a percentage point. Recall that we calibrated the default

model to keep the one-year implied volatility unchanged when we add jumps, so the agreement

in warrant values between the two models is consistent with our objective in the calibration.
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Figure 8: The figure shows differences in CAP values (with and without default) plotted against
average CDS spreads. The diamonds mark differences with fixed interest rates, and the squares
mark differences with stochastic rates. The correlations are 0.85 and 0.88, respectively.

A.3 Stochastic Interest Rates

We now further extend our valuation model to allow for a stochastic term structure of interest

rates. For this, we apply the implementation of the Heath-Jarrow-Morton (HJM) [13] framework

developed by Das and Sundaram [7]. Their model allows for consistent valuation of equity and

credit derivatives in a stochastic interest rate setting.

The central modeling element in the HJM setting is the forward rate curve. In a discrete-

time setting, it is convenient to use the same time step h both for calendar time and maturity.

Thus, f(t, T ) denotes the forward rate fixed at time t for borrowing or lending over the interval

from T to T + h, and the HJM framework describes the evolution of all such rates from time t

to time t + h. In the notation of Das and Sundaram [7], we have

f(t + h, T ) = f(t, T ) + α(t, T )h + σ(t, T )Xf (t)
√

h, (20)

where α is the drift coefficient, σ is the diffusion coefficient, and Xf (t) is a random variable

taking the values ±1. This is a discrete-time approximation to a diffusion model, with Xf (t)
√

h

approximating a Brownian increment. It is implicit in Das-Sundaram [7] that σ(t, T ) depends

only on T ; given σ, the form of α is determined by the absence of arbitrage through the key

result of HJM. The short rate at time t is given by r(t) = f(t, t).

In a binomial model of the evolution of the stock price S and the forward curve f , each node

records a pair (S, f). The stock price may take a step up or down, and the forward curve may
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receive a positive or negative shock Xf , so there are four possible transitions out of each node

corresponding to the four possible combinations of up and down moves. The special feature of

the Das and Sundaram [7] model is that it recombines in the sense that a move up followed

by a move down reaches the same node as a move down followed by a move up. This makes

the model computationally tractable compared to a tree in which the number of nodes grows

exponentially. It is, however, computationally much more demanding than a binomial model of

the stock alone. Whereas a single-asset binomial model produces a triangular lattice of O(T 2)

nodes after T steps, the bivariate model produces a pyramid of O(T 3) nodes.24

The equations in Section 4 require some modification to apply to the current setting. The

difficulty we face in a direct application of the previous equations is that when rates are stochas-

tic, the value of cash becomes path-dependent. Suppose, for example, that the capital G is

invested at the risk-free rate at time zero. At some future node (S, f), we would like to deter-

mine the liquidation value of the CAP contract, but the value of the initial investment of G is

not uniquely determined by the state information (S, f). Different paths from the root node

to (S, f) would produce different paths of the short rate r(t) and thus different values of the

investment at the same ending node.

We circumvent this difficulty by working with bonds rather than money market accounts.

At time zero, part of the capital G is used to buy a strip of zero-coupon bonds whose cashflows

match the CAP’s dividend payments all the way to the mandatory conversion date Tc. This

strip “defeases” the promised dividend payments. Let Bt denote the value of the remaining

cashflows from this strip as of time t; this value can be calculated at any node (S, f) because

the remaining cashflows can be discounted off the forward curve.

Next we suppose that, at time zero, the remaining cash G−B0 (which could be negative) is

invested in zero-coupon bonds maturing at Tc. If we let Pt(Tc) denote the time-t price of such

a zero-coupon bond with a face value of 1, then the number of bonds N satisfies

G−B0 = N · P0(Tc).

If at some future time t we liquidate the CAP (due to conversion or redemption, for example),

the UST returns the bond strip Bt to the QFI to stop the remaining dividend payments, and

the QFI keeps the N zero-coupon bonds, now worth Pt(Tc) each. (In the case of redemption,

the QFI also pays the par value G to the UST.) Thus, the net effect of these transaction is that
24

This limits our numerical calculations to a time step of 1/8 of a year, compared with 1/32 for our basic

binomial model.
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everywhere in equations (8)–(15) that we previously had Gt −Dt, we now have

Bt + N · Pt(Tc), N =
G−B0

P0(Tc)
.

The new expression has the advantage that the prices needed at each node can be computed

from the forward curve at that node.

A simple calculation verifies that the expression we have derived here actually reduces to

the previous expression in the case of a constant interest rate r. This follows from the fact that,

with a fixed rate,

Bt = e
−r(T−t)h

DT −Dt and Pt(Tc) = e
−rTch

which yields Bt + N · Pt(Tc) = Gt −Dt after some algebraic simplification.

Details of the construction of the Das-Sundaram [7] model are given in their paper, so we

do not repeat them here but simply note the parameter values we use. We fix the parameter

γ in their paper at 1, meaning that we continue to model the stock price process as a bino-

mial approximation to a geometric Brownian motion. Their framework also allows correlation

between the increments of the stock price and forward curve process; we fix this parameter at

0.3; however, we have found our results to be relatively insensitive to this parameter.

We extract a forward curve from overnight index swap (OIS) rates on February 25, 2009.

OIS maturities range from one week to five years, extending the overnight Fed funds rates.

We build zero-coupon bond prices from the OIS rates, interpolate the bonds, and then extract

forward rates for any maturity time step h. Beyond five years, we assume the forward curve

remains flat. For the diffusion coefficients σ, we start with implied volatilities for swaptions from

Bloomberg on February 25. These are “Black volatilities” in the sense that they are based on

the Black formula for swaptions, as in Hull [15], p.660. We use interpolation to get volatilities

for forward rates at arbitrary maturities. As these are proportional or lognormal volatilities,

to convert to the diffusion coefficients used in the Das-Sundaram [7] model, we multiply each

lognormal volatility by the corresponding rate. In other words, we set σ(0, T ) = σL(0, T )f(0, T ),

where σL(0, T ) is a lognormal volatility; we then take σ(t, T ) = σ(0, T ) for all t.

To include a possible jump to default, we need to recalibrate the default intensity to account

for the addition of stochastic interest rates. The results are displayed in Table 7. CAP values

with and without default in the presence of stochastic interest rates are recorded in Table 3.

These results are in line with those we found with fixed rates, adding to the robustness of the

results.
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Ticker ξconst Adj. Vol. a0 a1 a2 a3 λmax

AXP 0.0675 0.7013 1.5011 -8.0150 0.1790 -0.0241 0.1500
BAC 0.0530 1.0896 -2.1610 -29.7816 0.0324 0.1421 0.0700
BBT 0.0256 0.7923 14.4938 5.0000 0.8166 -0.1392 0.1200
BK 0.0128 0.7798 10.8446 7.1339 0.6325 -0.1142 0.1000
C 0.0901 1.0277 -1.5604 -18.7977 0.0370 0.0693 0.2000

COF 0.0707 0.9152 1.8990 -14.4515 0.2015 -0.0778 0.1500
FITB 0.0120 1.8432 -2.9026 -2.6515 0.0743 -0.0670 0.1400
GS 0.0578 0.6447 0.7011 -27.1054 0.1432 0.0990 0.0498

JPM 0.0176 0.7856 11.3953 -1.0196 0.6172 -0.0926 0.0500
KEY 0.0514 0.9553 -2.1085 -3.5350 0.0041 0.0422 0.0724
MET 0.1136 0.7239 -2.1245 -1.0055 0.0029 0.0515 0.0500
MS 0.0853 0.7513 0.6824 -21.6812 0.1303 0.0392 0.0224

PNC 0.0401 0.7949 0.5101 3.7111 0.1613 0.0044 0.0500
RF 0.0869 1.1584 -2.3995 1.3801 0.0043 0.1095 0.0500
STI 0.0353 1.0451 0.6813 -3.3801 0.1886 0.0688 0.0700
STT 0.0216 0.8781 22.6242 -4.3263 1.2148 0.2656 0.1200
USB 0.0157 0.8292 10.4310 1.6605 0.6125 -0.0105 0.0700
WFC 0.0337 0.8701 0.2264 -9.4252 0.1469 0.0210 0.0343

Table 7: Parameters for jump-to-default model with stochastic interest rates.

A.4 From Normal Form to Extensive Form

In this appendix, we formulate the game between the QFI and the UST created by the CAP’s

options more precisely, and we justify the extensive form of the game that underlies the recursive

equations in Section 4.

We start with a more generic formulation of the type used in Ohtsubo [25] and references

therein. Recall our key modeling assumption that the exercise of the CAP’s embedded options

does not affect total firm value, only how value is allocated between the two players. Thus,

any payoff to one party comes at the expense of the other. We focus (arbitrarily) on the payoff

to the QFI and thus designate the QFI to be the maximizing player and the UST to be the

minimizing player.

The strategies available to the two parties are stopping times with respect to the history of

the underlying state process. Initially, we allow these stopping times (the admissible strategies)

to take values in the set {0, 1, . . . }. We introduce payoffs Xt and Yt, for t = 0, 1, . . . . If the QFI

exercises at t, it receives Xt; if the UST exercises at t, the QFI receives Yt. In either case, the

game stops when either party exercises. Thus, if the QFI and UST choose strategies τQ and
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τU , respectively, the payoff to the QFI is

Π(τQ, τU ) = XτQI{τQ≤τU} + YτU I{τU<τQ}.

We have arbitrarily chosen Xt as the payoff if both players exercise at t, though we rule out

this possibility shortly. The upper and lower values of the game are given by

v
+ = inf

τU
sup
τQ

E[e−r min(τQ,τU )hΠ(τQ, τU )], v
− = sup

τQ

inf
τU

E[e−r min(τQ,τU )hΠ(τQ, τU )],

with obvious modifications in the case of stochastic interest rates. We will impose conditions

ensuring the existence of the expectations in these expressions and thus ensuring that the values

are well-defined. We will also establish that for the game created by the CAP’s options, the

upper and lower values are equal and can be calculated through backward induction.

We first need to fit the CAP game into this generic formulation. To have the players alternate

turns, we can restrict the set of admissible strategies, limiting one player to exercise at even

times and the other to exercise at odd times. We can similarly force exercise by a specific date

(conversion at year seven, warrant exercise at year ten) by restricting the admissible strategies.

In a discrete-time, discrete-state model (like our extended binomial model), we can alternatively

impose these restrictions by adding sufficiently large penalties to payoffs at stopping times that

violate the restrictions.

In the CAP game, the QFI holds two options (conversion and redemption) in the first two

years. For purposes of valuation, we may reduce the QFI’s three choices — convert, redeem,

continue — to two choices — stop or continue — where the payoff upon stopping is the greater

of the payoff from conversion and (when permissible) redemption. Also, under the terms of the

CAP the game continues after one party exercises an option, though our generic formulation

has the game terminate at that point. We accommodate this feature by defining the payoffs Xt

and Yt appropriately.

In more detail, if the QFI redeems at time t (assumed to be the QFI’s turn), its payoff is

Gt −Dt −G−W
r
t (St),

where

W
r
t (S) = sup

τ∈Tt

m

m + n
E[e−r(τ−t)h max(Sτ −K, 0)|St = S],

and Tt is the set of stopping times taking values in {t, t + 1, . . . , T}. Here, W r
t (St) is just the

value at time t of a standard warrant for m shares with strike price K and expiration T . In

this formulation, when the QFI redeems the game stops and the cash value of the warrants
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is deducted from the payoff to the QFI. Similarly, as explained following (14), in the case of

conversion the payoff is

− qn

n + q
St + Gt −Dt −W

c
t (

nSt

n + q
),

in which the last term is the value of a warrant on m shares with n + q shares outstanding at

a stock price of nSt/(n + q). Thus, we take

Xt = max{− qn

n + q
St + Gt −Dt −W

c
t (

nSt

n + q
), Gt −Dt −G−W

r
t (St)},

omitting the second term inside the max once the redemption option expires. In the case of

exercise by the UST, the payoff to the QFI is

Yt = − mn

m + n
(St −K) + C

e
t

�
nSt + mK

n + m

�
;

see the discussion following (18). The key point is that Ce
t (like the warrant prices in the

previous cases) is the value of a security in which only one player (in this case, the QFI) holds

an option. In our formulation, the value of this security is paid to the QFI when the UST

exercises and the game stops.

We now have the following:

Proposition. Suppose that E[St] < ∞ for t = 1, 2, . . . , T . Then the upper and lower values

of the game v+ and v− are equal and given by C0(S0), the value found recursively through

(7)–(18).

Proof. This is a special case of Proposition 2.1 in Ohtsubo [25], except for some minor differ-

ences. Ohtsubo’s [25] setting is infinite horizon, but his result applies to our simpler setting

if we restrict the admissible strategies so that the players exercise their options in accordance

with the CAP rules. Ohtsubo’s [25] payoffs are not discounted; if we redefine our payoffs by

setting X̃t = exp(−rth)Xt and Ỹt = exp(−rth)Yt (in other words, if we denominate our payoffs

in time-0 dollars) we put our problem in his setting. The discounted case is treated explicitly

in Kifer [18]. Our equations (14) and (18) can be expressed as

Ct(St) = max{Xt, e
−rh

E[Ct+1(St+1)|St]} (QFI turn) (21)

Ct(St) = min{Yt, e
−rh

E[Ct+1(St+1)|St]} (UST turn) (22)

because Wt = −Ct. Ohtsubo [25] requires Xt ≤ Yt for all t and concludes (in our notation) that

Ct(St) is the median of the three values Xt, Yt, and e−rhE[Ct+1(St+1)|St]. In our game, the

players alternate turns; we do not need Xt ≤ Yt, nor do (21)–(22) require or imply the median

property. �
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