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Methods for Evaluating Value-at-Risk 

Estimates

Jose A. Lopez

I. CURRENT REGULATORY FRAMEWORK

In August 1996, the U.S. bank regulatory agencies

adopted the market risk amendment (MRA) to the 1988

Basle Capital Accord. The MRA, which became effective

in January 1998, requires that commercial banks with

significant trading activities set aside capital to cover the

market risk exposure in their trading accounts. (For further

details on the market risk amendment, see Federal Register

[1996].) The market risk capital requirements are to be

based on the value-at-risk (VaR) estimates generated by the

banks’ own risk management models.

In general, such risk management, or VaR, models

forecast the distributions of future portfolio returns. To fix

notation, let  denote the log of portfolio value at time t.

The k-period-ahead portfolio return is .

Conditional on the information available at time 

is a random variable with distribution . Thus, VaR

model m is characterized by , its forecast of the

distribution of the k-period-ahead portfolio return.

VaR estimates are the most common type of fore-

cast generated by VaR models. A VaR estimate is simply a

specified quantile (or critical value) of the forecasted

. The VaR estimate at time t derived from model

m for a k-period-ahead return, denoted , is

yt
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the critical value that corresponds to the lower  percent

tail of . In other words, VaR estimates are forecasts of

the maximum portfolio loss that could occur over a given

holding period with a specified confidence level.

Under the “internal models” approach embodied

in the MRA, regulatory capital against market risk

exposure is based on VaR estimates generated by banks’

own VaR models using the standardizing parameters of a

ten-day holding period  and 99 percent coverage

. A bank’s market risk capital charge is thus based

on its own estimate of the potential loss that would not be

exceeded with 1 percent certainty over the subsequent two-

week period. The market risk capital that bank m must

hold for time , denoted , is set as the

larger of  or a multiple of the average of the

previous sixty  estimates, that is,

        

                                ,

where  is a multiplication factor and  is an addi-

tional capital charge for the portfolio’s idiosyncratic credit

risk. Note that under the current framework .

The  multiplier explicitly links the accuracy of

a bank’s VaR model to its capital charge by varying over

time.  is set according to the accuracy of model m’s VaR
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estimates for a one-day holding period ( ) and 99 per-

cent coverage, denoted  or simply .

 is a step function that depends on the number of

exceptions (that is, occasions when the portfolio return 

is less than ) observed over the last 250 trading days.

The possible number of exceptions is divided into three

zones. Within the green zone of four or fewer exceptions, a

VaR model is deemed “acceptably accurate,” and 

remains at its minimum value of three. Within the yellow

zone of five to nine exceptions,  increases incrementally

with the number of exceptions. Within the red zone of ten

or more exceptions, the VaR model is deemed to be “inac-

curate,” and  increases to its maximum value of four.

II. ALTERNATIVE EVALUATION METHODS

Given the obvious importance of VaR estimates to banks

and now their regulators, evaluating the accuracy of the

models underlying them is a necessary exercise. To date,

two hypothesis-testing methods for evaluating VaR esti-

mates have been proposed: the binomial method, currently

the quantitative standard embodied in the MRA, and the

interval forecast method proposed by Christoffersen (forth-

coming). For these tests, the null hypothesis is that the

VaR estimates in question exhibit a specified property

characteristic of accurate VaR estimates. If the null hypoth-

esis is rejected, the VaR estimates do not exhibit the speci-

fied property, and the underlying VaR model can be said to

be “inaccurate.” If the null hypothesis is not rejected, then

the model can be said to be “acceptably accurate.”

However, for these evaluation methods, as with any

hypothesis test, a key issue is their statistical power, that is,

their ability to reject the null hypothesis when it is incorrect.

If the hypothesis tests exhibit low power, then the probabil-

ity of misclassifying an inaccurate VaR model as “acceptably

accurate” will be high. This paper examines the power of

these tests within the context of a simulation exercise.

In addition, an alternative evaluation method that

is not based on a hypothesis-testing framework, but instead

uses standard forecast evaluation techniques, is proposed.

That is, the accuracy of VaR estimates is gauged by how

well they minimize a loss function that represents the
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regulators’ concerns. Although statistical power is not rele-

vant for this evaluation method, the related issues of

comparative accuracy and model misclassification are

examined within the context of a simulation exercise. The

simulation results are presented below, after the three

evaluation methods are described. (See Lopez [1998] for a

more complete discussion.)

EVALUATION OF VAR ESTIMATES BASED ON THE 
BINOMIAL DISTRIBUTION

Under the MRA, banks will report their VaR estimates to

their regulators, who observe when actual portfolio losses

exceed these estimates. As discussed by Kupiec (1995),

assuming that the VaR estimates are accurate, such excep-

tions can be modeled as independent draws from a binomial

distribution with a probability of occurrence equal to 1 per-

cent. Accurate VaR estimates should exhibit the property

that their unconditional coverage , where x is

the number of exceptions, equals 1 percent. Since the prob-

ability of observing x exceptions in a sample of size 250

under the null hypothesis is

,

the appropriate likelihood ratio statistic for testing

whether  is

                

                            .

Note that the  test is uniformly most powerful for a

given sample size and that the statistic has an asymptotic

 distribution.

EVALUATION OF VAR ESTIMATES USING THE 
INTERVAL FORECAST METHOD

VaR estimates are also interval forecasts of the lower 1 per-

cent tail of , the one-step-ahead return distribution.

Interval forecasts can be evaluated conditionally or uncon-

ditionally, that is, with or without reference to the infor-

mation available at each point in time. The  test is an

unconditional test since it simply counts exceptions over

the entire period. However, in the presence of variance

dynamics, the conditional accuracy of interval forecasts is an
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Loss Functions of Interest

VaRmt 0
εt+1

Cmt+1

Notes:  The diagram graphs both the binomial and the magnitude loss functions. 
The binomial loss function is equal to 1 for εt+1< VaRmt and zero otherwise. For 
the magnitude loss function, a quadratic term is added to the binomial loss 
function for εt+1< VaRmt.

important issue. Interval forecasts that ignore variance

dynamics may have correct unconditional coverage, but at

any given time, they will have incorrect conditional coverage.

In such cases, the  test is of limited use since it will

classify inaccurate VaR estimates as “acceptably accurate.”

The  test, adapted from the more general test

proposed by Christoffersen (forthcoming), is a test of

correct conditional coverage. Given a set of VaR estimates,

the indicator variable  is constructed as 

.

Since accurate VaR estimates exhibit the property of

correct conditional coverage, the  series must exhibit

both correct unconditional coverage and serial indepen-

dence. The  test is a joint test of these two properties.

The relevant test statistic is , which

is asymptotically distributed . The  statistic is

the likelihood ratio statistic for the null hypothesis of serial

independence against the alternative of first-order Markov

dependence.

EVALUATION OF VAR ESTIMATES USING 
REGULATORY LOSS FUNCTIONS

The loss function evaluation method proposed here is not

based on a hypothesis-testing framework, but rather on

assigning to VaR estimates a numerical score that reflects

specific regulatory concerns. Although this method forgoes

the benefits of statistical inference, it provides a measure

of relative performance that can be used to monitor the

performance of VaR estimates.

To use this method, the regulatory concerns of

interest must be translated into a loss function. The general

form of these loss functions is

,

where  and  are functions such that

 for a given y. The numerical scores are

constructed with a negative orientation, that is, lower

values of  are preferred since exceptions are given

higher scores than nonexceptions. Numerical scores are
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generated for individual VaR estimates, and the score for the

complete regulatory sample is 

.

Under very general conditions, accurate VaR estimates will

generate the lowest possible numerical score. Once a loss

function is defined and  is calculated, a benchmark can

be constructed and used to evaluate the performance of

a set of VAR estimates. Although many regulatory loss

functions can be constructed, two are described below

(see diagram).

Loss Function Implied by the Binomial Method
The loss function implied by the binomial method is

.

Note that the appropriate benchmark is the expected value

of , which is , and for the full

sample, . As before, only the number of excep-

tions is of interest, and the same information contained in

the binomial method is included in this loss function.
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Loss Function That Addresses the Magnitude of the Exceptions
As noted by the Basle Committee on Banking Supervision

(1996), the magnitude as well as the number of exceptions

are a matter of regulatory concern. This concern can be

readily incorporated into a loss function by introducing a

magnitude term. Although several are possible, a quadratic

term is used here, such that

.

Thus, as before, a score of one is imposed when an

exception occurs, but now, an additional term based on its

magnitude is included. The numerical score increases with

the magnitude of the exception and can provide additional

information on how the underlying VaR model forecasts the

lower tail of the underlying  distribution. Unfortunately,

the benchmark based on the expected value of  can-

not be determined easily, because the  distribution is

unknown. However, a simple, operational benchmark can

be constructed and is discussed in Section III.

Simulation Exercise
To analyze the ability of the three evaluation methods to

gauge the accuracy of VaR estimates and thus avoid VaR

model misclassification, a simulation exercise is con-

ducted. For the two hypothesis-testing methods, this

amounts to analyzing the power of the statistical tests,

that is, determining the probability with which the tests

reject the null hypothesis when it is incorrect. With

respect to the loss function method, its ability to evaluate

VaR estimates is gauged by how frequently the numerical

score for VaR estimates generated from the true data-

generating process (DGP) is lower than the score for

VaR estimates from alternative models. If the method is

capable of distinguishing between these scores, then the

degree of VaR model misclassification will be low.

In the simulation exercise, the portfolio value 

is specified as , where the portfolio return

 is generated by a GARCH(1,1)-normal process. That

is, , the variance of , has dynamics of the form

. The true DGP is one of

Cmt 1+
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eight VaR models evaluated and is designated as the “true”

model, or model 1.

The next three alternative models are homoske-

dastic VaR models. Model 2 is simply the standard normal

distribution, and model 3 is the normal distribution with a

variance of 1½. Model 4 is the t-distribution with six

degrees of freedom, which has fatter tails than the normal

distribution and an unconditional variance of 1½.

The next three models are heteroskedastic VaR

models. For models 5 and 6, the underlying distribution is

the normal distribution, and  evolves over time as an

exponentially weighted moving average of past squared

returns, that is,

.

This type of VaR model, which is used in the well-known

RiskMetrics calculations (see J.P. Morgan [1996]), is cali-

brated here by setting  equal to 0.94 and 0.99 for mod-

els 5 and 6, respectively. Model 7 has the same variance

dynamics as the true model, but instead of using the nor-

mal distribution, it uses the t-distribution with six

degrees of freedom. Model 8 is the VaR model based on

historical simulation using 500 observations, that is, using

the past 500 observed returns, the  percent VaR estimate

is observation number  of the sorted returns.

In the table, panel A presents the power analysis of

the hypothesis-testing methods. The simulation results

indicate that the hypothesis-testing methods can have rela-

tively low power and thus a relatively high probability of

misclassifying inaccurate VaR estimates as “acceptably

accurate.” Specifically, the tests have low power against the

calibrated normal models (models 5 and 6) since their

smoothed variances are quite similar to the true GARCH

variances. The power against the homoskedastic alterna-

tives is quite low as well.

For the proposed loss function method, the simu-

lation results indicate that the degree of model misclassifi-

cation generally mirrors that of the other methods, that is,

this method has a low-to-moderate ability to distinguish

between the true and alternative VaR models. However, in

certain cases, it provides additional useful information on

hmt 1+

hmt 1+ 1 λ–( ) λi

i 0=
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∑ εt i–
2 λhmt 1 λ–( )εt

2+==

λ
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the accuracy of the VaR estimates under the defined loss

function. For example, note that the magnitude loss func-

tion is relatively more correct in classifying VaR estimates

than the binomial loss function. This result is not surpris-

ing given that it incorporates the additional information

on the magnitude of the exceptions into the evaluation.

The ability to use such additional information, as well as

the flexibility with respect to the specification of the

loss function, makes a reasonable case for the use of the

loss function method in the regulatory evaluation of VaR

estimates.

III. IMPLEMENTATION OF THE LOSS 
FUNCTION METHOD

Under the current regulatory framework, regulators

observe  for bank  and thus can

construct, under the magnitude loss function, . How-

ever, for a realized value , aside from the number of

exceptions, not much inference on the performance of these

VaR estimates is available. It is unknown whether  is a

“high” or “low” number.

εt i+ VaRmt i+,{ }i 1=
250

m

Cm

Cm
∗

Cm
∗

To create a comparative benchmark, the distribu-

tion of , which is a random variable due to the random

observed portfolio returns, can be constructed. Since each

observation has its own distribution, additional assump-

tions must be imposed in order to analyze , the dis-

tribution of . Specifically, the observed returns can be

assumed to be independent and identically distributed

(iid); that is, . This is quite a strong assumption,

especially given the heteroskedasticity often found in

financial time series. However, the small sample size of 250

mandated by the MRA allows few other choices. 

Having made the assumption that the observed

returns are iid, their empirical distribution  can be

estimated parametrically, that is, a specific distributional

form is assumed, and the necessary parameters are esti-

mated from the available data. For example, if the returns

are assumed to be normally distributed with zero mean, the

variance can be estimated such that  is .

Once  has been determined, the empirical

distribution of the numerical score  under the distribu-

tional assumptions, denoted , can be generated since

the distribution of the observed returns and the corre-

sponding VaR estimates are now available. For example, if

, then the corresponding VaR estimates

are . Using this information,  can

then be constructed via simulation by forming 1,000 values

of the numerical score , each based on 250 draws from

 and the corresponding VaR estimates.

Once  has been generated, the empirical

quantile , where  is the cumulative

distribution function of , can be calculated for the

observed value . This empirical quantile provides a per-

formance benchmark, based on the distributional assump-

tions, that can be incorporated into the evaluation of the

underlying VaR estimates. In order to make this benchmark

operational, the regulator should select a threshold quantile

above which concerns regarding the performance of the VaR

estimates are raised. This decision should be based both on

the regulators’ preferences and the severity of the distribu-

tional assumptions used. If  is below the threshold that

regulators believe is appropriate, say, below 80 percent, then
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SIMULATION RESULTS FOR GARCH(1,1) -NORMAL DGP 
Units: percent

Models
Homoskedastic Heteroskedastic Historical

2 3 4 5 6 7 8
PANEL A: POWER OF THE LRUC AND LRCC AGAINST ALTERNATIVE VAR MODELSa

LRuc 52.3 21.4 30.5 5.1 10.3 81.7 23.2
LRcc 56.3 25.4 38.4 6.7 11.9 91.6 33.1

PANEL B: ACCURACY OF VAR ESTIMATES USING REGULATORY LOSS FUNCTIONSb

Loss function
Binomial 91.7 41.3 18.1 52.2 48.9 0 38.0
Magnitude 96.5 56.1 29.1 75.3 69.4 0 51.5

Notes: The results are based on 1,000 simulations. Model 1 is the true data-generating 
process, , where .  Models 2, 
3, and 4 are the homoskedastic models N(0, 1), N(0,1.5), and t (6), respectively. 
Models 5 and 6 are the two calibrated heteroskedastic models with the normal 
distribution, and model 7 is a GARCH(1,1) -t (6) model with the same parameter 
values as model 1. Model 8 is the historical simulation model based on the previous 
500 observations.
aThe size of the tests is set at 5 percent using finite-sample critical values.
bEach row represents the percentage of simulations for which the alternative 
VaR estimates have a higher numerical score than the “true” model, that is, 
the percentage of the simulations for which the alternative VaR estimates are 
correctly classified as inaccurate.
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 is “typical” under both the assumptions on 

and the regulators’ preferences. If  is above the threshold,

then  can be considered atypical, and the regulators

should take a closer look at the underlying VaR model.

Note that this method for evaluating VaR esti-

mates does not replace the hypothesis-testing methods, but

instead provides complementary information, especially

regarding the magnitude of the exceptions. In addition,

the flexibility of this method permits many other concerns

to be incorporated into the analysis via the choice of the

loss function.

IV. CONCLUSION

As implemented in the United States, the market risk

amendment to the Basle Capital Accord requires that com-

mercial banks with significant trading activity provide their

regulators with VaR estimates from their own internal

models. The VaR estimates will be used to determine the

banks’ market risk capital requirements. This development

clearly indicates the importance of evaluating the accuracy

of VaR estimates from a regulatory perspective.

Cm
∗ f̂ εt 1+( )

q̂m

Cm
∗

The binomial and interval forecast evaluation

methods are based on a hypothesis-testing framework and

are used to test the null hypothesis that the reported VaR

estimates are “acceptably accurate,” where accuracy is

defined by the test conducted. As shown in the simulation

exercise, the power of these tests can be low against reason-

able alternative VaR models. This result does not negate

their usefulness, but it does indicate that the inference

drawn from this analysis has limitations.

The proposed loss function method is based on

assigning numerical scores to the performance of the VaR

estimates under a loss function that reflects the concerns of

the regulators. As shown in the simulation exercise, this

method can provide additional useful information on the

accuracy of the VaR estimates. Furthermore, it allows the

evaluation to be tailored to specific interests that regulators

may have, such as the magnitude of the observed excep-

tions. Since these methods provide complementary infor-

mation, all three could be useful in the regulatory

evaluation of VaR estimates.

REFERENCES

Basle Committee on Banking Supervision. 1996. “Supervisory Framework for
the Use of ‘Backtesting’ in Conjunction with the Internal Models
Approach to Market Risk Capital Requirements.” Manuscript,
Bank for International Settlements.

Christoffersen, P. F. Forthcoming. “Evaluating Interval Forecasts.”
INTERNATIONAL ECONOMIC REVIEW.

Federal Register. 1996. “Risk-Based Capital Standards: Market Risk.”
Vol. 61: 47 357-78.

J.P. Morgan. 1996. RISKMETRICS TECHNICAL DOCUMENT. 4th ed.
New York: J.P. Morgan.

Kupiec, P. 1995. “Techniques for Verifying the Accuracy of Risk
Measurement Models.” JOURNAL OF DERIVATIVES 3: 73-84.

Lopez, J. A. 1998. “Methods for Evaluating Value-at-Risk Estimates.”
Federal Reserve Bank of New York Research Paper no. 9802. 

NOTES

The views expressed in this article are those of the author and do not necessarily reflect the position of the Federal Reserve
Bank of New York or the Federal Reserve System. The Federal Reserve Bank of New York provides no warranty, express or
implied, as to the accuracy, timeliness, completeness, merchantability, or fitness for any particular purpose of any information
contained in documents produced and provided by the Federal Reserve Bank of New York in any form or manner whatsoever.


