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"Volatility forecasting is a little like predicting whether it will rain; you can be
correct in predicting the probability of rain, but still have no rain."

- Engle (1993)

I. Introduction

Although dynamics in the variance of financial time series were observed at least as
early as Mandelbrot (1963), efforts to empirically model these dynamics héve only developed
in the last fifteen years. GARCH models, pioneered by Engle (1982) and Bollerslev (1986),
are the volatility models most commonly used in the economics literature, although numerous
alternatives exist. Specifically, stochastic volatility models, which arose from the theoretical
finance literature, are increasingly employed in empirical research.’ g

Volatility models and their forecasts are of interest to many types of economic agents.
For example, options traders require asset volatilities to price options, and central banks or
international investors forecasting exchange rates may require interval forecasts, which are
readily derived from volatility forecasts. Given the vast number of models available, such
agents must decide which forecasts to use as well as the evaluation criterion upon which to
base that decision.

Forecast evaluation is typically conducted by minimizing a loss function, and mean
squared error (MSE) is the one most commonly used.? Yet, the quadratic loss function
implied by MSE is inappropriate for evaluating volatility forecasts because it penalizes positive
and negative forecasts symmetrically. Furthermore, MSE is a purely statistical loss function
with little economic meaning. As suggested by Bollerslev er al. (1994), economic loss
functions that explicitly incorporate the costs faced by volatility forecast users provide the most
meaningful forecast evaluations.” West er al. (1993) and Engle er al. (1993) propose such loss

functions based on specific economic questions. However, these questions are arguably too

- For recent surveys of GARCH models, see Bollerslev er al. (1994) as well as Diebold and Lopez (1995a). Andersen
(1994) presents a rigorous categorization of volatility models.

* Numerous studies have used MSE to evaluate the performance of volatility models; for example, see Taylor (1986,
1987), Friedman and Kuttner (1988), Pagan and Schwert (1990), Akgiray (1989), Kroner er al. (1993), West and Cho
(1994), Donaldson er al, (1994), Lee (1991, 1994) and Bollerslev and Ghysels (1994).

* For further discussion of this issue with respect to exchange rates, see Stockman (1987).
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specific; the loss functions are only relevant to small subsets of forecast users. For example, it
is unclear whether central banks can use profit-based forecast evaluations to minimize their
loss functions.

The foréca.st evaluation framework proposed in this paper incorporates a more general
class of economic loss functions. Such loss functions, implicitly or explicitly based on
volatility forecasts, are translated into statistical loss functions and hypothesis tests based on
probability forecasts. Forecast evaluations are thus tailored to key elements of the relevant
economic loss functions. The first such element is the economic events of interest to the user.
Volatility forecasts are transformed into probability forecasts by integrating over a model's
assumed distribution for the innovation terms, and the ranges of integration are chosen to
- correspond with the economic events specified.* In this way, economic loss functions are
directly incorporated into the probability forecasts.

Once generated, the probability forecasts are evaluated using probability scoring rules
and calibration tests; i.e., statistical criteria that further incorporate elements of the relevant
loss functions into the forecast evaluations. Probability scoring rules measure the accuracy of
probability forecasts with respect to whether or not the forecasted events occur. Forecast users
can select the scoring rules best suited to their particular loss functions. The most common
scoring rule (and the one used in this paper) is the quadratic probability score (QPS), the
analog of MSE for probability forecasts. Calibration tests, as developed by Seillier-
Moiseiwitsch and Dawid (1993}, examine the degree of equivalence between an event's
predicted and observed frequencies of occurrence within specified subsets of the forecasts,
Thus, forecast users can evaluate subsets of the transformed volatility forecasts that are of
particular interest under their loss functions. The tests of comparative predictive accuracy
under a general loss function proposed in Diebold and Mariano (1995) are also used to
evaluate the forecasts.

The paper is structured as follows. In Section II, the loss functions, both statistical and

* Although the distributions of the innovation terms will be assumed, the proposed evaluation framework can -

incorporate estimated distributions as in Engle and Gonzalez-Rivera (1991).
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economic, previously used for volatility forecast evaluation are reviewed. Section ITI
describes the three elements of the proposed evaluation framework that are specified by the
user's loss function -- the events to be forecast, the scoring rule used to evaluate the forecasts,
and the subsets of the forecasts of particular interest. Section IV bresgnfs an

empirical example using daily foreign exchange rates to illustrate the evaluation procedure.
Five economic loss functions implicitly based on volatility forecasts are used to specify the
elements of the evaluation framework, and volatility forecasts from several models are

evaluated. Section V concludes and suggests directions for further research.

II. Previous Evaluations of Volatility Forecasts

Volatility models are generally expressed as

yt:}‘ll*-sl’ €l=hl12\71, Vv, ~ D(O,]),

t
where the conditional mean p, = Efy, | Q_,] Q._, is the information set available at time
t-1, g is the innovation term, h, is its conditional variance and D(0,1) is a symmetric,

standardized distribution, such as the normal or t-distribution; thus, € | Q,., ~ D(0, h,}.

p q
For example, the GARCH(p.q) model is characterized as h, = « + Z o ef_i + Z [3‘. hl,].
i=) =t

The parameters of a volatility model are estimated over a specified in-sample peried t = 1, ...,
T, and volatility forecasts based on these estimates are generated over the out-of-sample period
t=T+1, ..., T+T} |

Several in-sample procedures, such as maximization of the log-likel’hood function or
fitting the news impact curve proposed by Engle and Ng (1993), are used to compare volatility
model specifications. However, out-of-sample forecast accuracy provides a more useful

comparison; a model generating accurate forecasts provides a reasonable approximation of the

3 In a slight abuse of terminology, in-sample, fitted conditional variances are often called in-sample forecasts. This
convenient phrasing will be used in this paper. '



underlying data generating process. Out-of-sample volatility forecasts have been evaluated
using three types of loss functions -- mean-squared error and related statistical measures,

utility-based loss fﬁn;tions and profit-based loss functions.

The mean-squared error (MSE) criterion is commonly used to evaluate both in-sample
and out-of-sample volatility forecasts. Focussing on out-of-sample forecasts, MSE is the
average squared difference between h;.,, the actual conditional variance, and the

corresponding volatility forecast. However, since hy,, is unobservable, the squared innovation

T" ‘
::%-, is used as a proxy. Thus, MSE = -}1—2 (efr,l - hp )] where {hm }:r]are the one-step-
- -

ahead forecasts based on the in-sample parameter estimates and the relevant information sets.®

Volatility forecast evaluation based on MSE have two shortcomings. First, even

though €7, is an unbiased estimator of hy,,, it is an imprecise or “noisy" estimator. For
. . 2 2 . .
example, if v ~ N(O,1), €3, = h;_ v3_ has a conditional mean of h,,, since

2 . . C e ., 2 1
VI, ~ xfn._ However, since the median of a x(zn distribution is 0.455, €}, < —2th_l more

n = 0.2588;

that is, even if one is willing to accept a proxy that is up to 50% different than h;_,, ei

than 50% of the time. In fact,

1 3 2
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would fulfill this condition only 25% of the time. This proxy introduces a source of error into

volatility forecast evaluations that diminishes as T" increases.

¢ Although this paper focusses on one-step-ahead volatility forecasts, k-step-ahead forecasts can be generated and
evaluated using statistical loss functions. However, generating the corresponding probability forecasts is more difficult
since the conditional distribution of the k-step-ahead innovation term is not easily determined, as shown in Baillie and
Bollerslev (1992) for GARCH models.



The second and more important difficulty with MSE is the quadratic loss function that
it implies. As discussed by Bollerslev er al. (1994), such a loss function penalizes negative

volatility forecasts (which are meaningless) and positive forecasts symmetrically. In addition,

the in-sample MSE is minimized by forecasts based on a least squares regression of ef on

Ql_l = {em, o € } Thus, MSE is a purely statistical loss function that addresses neither the

specific requirements of volatility forecast evaluation nor the economic issues underlying such

evaluations.

Alternative statistical loss functions are proposed in the litcfature; for example, mean

absolute error (MAE), MAE = T-1 = hy_ | although the same criticisms apply.
Two loss functions that penalize volatility forecasts asymmetrically are the logarithmic loss
(LL) function employed by Pagan and Schwert (1990),
- —2} [in{e3.,) - m(hy.)]"
=

and the heteroskedasticity-adjusted MSE (HMSE) of Bollerslev and Ghysels (1994),

HMSE = — Z

‘Bollerslev er al. (1994) suggest the loss function implicit in the Gaussian quasi-maximum

likelihood function often used in estimating volatility models; that is,

TZ:()+f_T.._‘

T+t

GMLE = -
T

However, these alternative loss functions are also based on purely statistical considerations.

Loss functions based on users' economic costs provide more meaningful forecast evaluations.

21 II -]. -—E i I E ) .

West e al. (1993) evaluate volatility forecasts using an economic loss function based



on expected utility; the criterion is how much an investor with a2 mean-variance utility function
+ would pay to use the forecasts from a particular model. The utility function is quadratic in.
wealth, and in the investment framework specified, the first two moments of the asset retarn
distributions are assumed to be finite. The average utility over the out-of-sample period,

denoted as U, is

T
1 z 0
U=—3 W ( Cr + Ay, fler by ¢T—:))-
The ¢y, and d;, terms are functions of the asset returns and the coefficient of relative risk

aversion, and W is the wealth required to achieve U given the volatility forecasts, €5, and

¢;.,, the interest rate differential. Note that

f(e'z['-p ]‘:l-;,tl d)T..t) = ((b"zrq + BT_;)’] - (q)'zr-t + si't)(q)%‘l * ];'I‘-:)‘2

1
2
is asymmetric with respect to flT_l. The optimal model is defined as the one whose forecasts

require the lowest wealth, say W", to achieve a specified U. The difference between W* and

W;, the wealth required using model j's forecasts, is viewed as the fee an investor would pay

to use the optimal forecasts; the smaller the fee, the closer the forecasts are to being optimal.
This evaluation framework is economically meaningful since it is motivated by the

investment decisions of risk-averse utility maximizers, but it has two weaknesses. It relies on

the Ei_: proxy for the unobservable h;_,, and the economic loss function is very specific and

highly parameterized, especially with respect to the utility function and the moments of the
asset return series. Although the evaluation results are robust across parameterizations, this

utility-based criterion would not be useful to most forecast users.

2¢c. Profit-Rased Loss Functions

Engle ez al. (1993) propose an economic loss function based on trading profits earned



in a simulated options market.” The market consists of M traders, each using one of the
ifolatility models to be examined. The traders price options on the chosen stock portfolio, such
as the S&P 500, at the start of a trading period using the one-step-ahead forecasts from their
models and the Black-Scholes option-pricing formula. The traders then examine the set of
forecast-induced prices and trade according to a specified algorithm. At the end of the period,
the realized value of the portfolio return is used to determine the traders' profits. The trader
with the largest accumulated profit is said to have used the model generating the most
appropriate volatility forecasts.
| In addition to being economically relevant, this profit criterion avoids proxying for the
unobservable conditional variances; instead, it relies on the observed value of the stock
portfolio for evaluating the forecasts. However, this loss function addresses only options
‘trading, which is irrelevant to many other users of volatility forecasts. Moreover, the
procedure's complicated structure, which entails specifying a trading algorithm and selecting
an option-pricing formula, diminishes its usefulness. |
The forecast evaluation framework proposed in Section III retains the advantages of
these two economic criteria and addresses their weaknesses. The framework incorporates a
more general class of economic loss functions, is based solely on observable outcomes, and

has a relatively simple structure.

1. Generating and Evaluating Probability Forecasts

The proposed forecast evaluation framework consists of two stages at which elements
of economic loss functions are incomoréted into the evaluation procedure. The first stage
consists of transforming volatility forecasts into probability forecasfs of events of interest to the
user. In the second stage, the probability forecasts are evaluated using statistical tools tailored
to the user's loss function. The first part of this seétion déscﬁbés how the probability forecasts
are generated, and the remainder describes the evaluation criteria employed -- probability

scoring rules, the predictive accuracy tests of Diebold and Mariano (1995), and the calibration

7 This line of research is continued in.EngIe et al. (1993) and Noh er al. (1994).
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tests of Seil]ier-Moiseiwiisch and Dawid (1993).

12 Transformine Volatility B 110 Probability B

- Given the assumption that ¢, | Q,_, ~ D (0, h } volatility forecasts are transformed

into probabitity forecasts by integrating over the standardized distribution D{0,1). The rangé
of integration is chosen by the user in accordance with their loss function and its implied
economic events of interest; thus, a general class of economic loss functions implicitly or
explicitly based on volatility forecasts can be incorporated into the evaluation framework. To
illustrate this, two categories of implicit economic loss functions and their associated economic
events are discussed.

The probability forecast notation used is as follows. Volatility models are fit to the in-
sample observations t = 1,...,T, and P, is the in-sample probability forecast for time t based

on the estimated parameters and Q, . Out-of-sample, P;,,, t = 1,...,T", is the one-step-ahead
probability forecast conditional on the parameter estimates and Q. _,. The subsequent

discussion will focus on out-of-sample forecasts. The event space to be examined is created by
partitioning the set of all possible outcomes into N mutually exclusive and collectively
exhaustive subsets according to the forecast user’s interests. If N=2, a binomial event is
specified, and P;_, and R;,,, an indicator variable equalling one if the event occurs and zero
otherwise, are scalar variables.®

An important category of volatility forecast users are those interested in the behavior of

the innovation term €;_. This category includes, for example, spot traders or options traders
structuring their hedging strategies with respect to ;.. For such users’ economic loss

functions, the event of interest is €, € [Lt_.f_l, Umﬂ]. and the associated probability forecast

. . |
® J'N>2, P,,, is an (NxI) vector probability forecast such that P, ,, - O forn = 1,..,Nand 3 P o = 1. This
. n=}
paper focusses exclusively on binomial events.



is Pr(L, 1, s &< U ;). Given hy_ and the assumed distribution of ¢, _,

L U et .
eT-1] _ f f(ZT-t)er.p

€. T+
Ttz
V hT-l V th leret

where z.,, is the standardized innovation, f (zT,,) is the functional form of D (0, 1) and

PT-t = Pr(Lc.TﬂSST-tSUr.T-I) = Pr

[]c.Tﬂ’ u n.r_‘] is the standardized range of integration. Forecast users thus incorporate their

loss functions directly into the probability forecasts by specifying the appropriate

[Le.rw Uer. | interval.

The second category of economic loss functions is characterized by economic events
based on the behavior of the level term y;,.. Such loss functions would be relevant to a
central bank forecasting whether an exchange rate will remain within a target zone or a
portfolio manager comparing cross-country asset returns. In such cases, the event of interest is

Yo € [L}__T_P U}_.T_‘], the probability forecast is Pr(L ;. <y < U 1 ), and
PT-1 = Pr(L_\-.T—l £ yT—L < Uy.T-t) = Pr(Ly.T-: - ﬁ'r-: s £T~1 s U_\‘.T‘l. - lj‘T-t)

L. - . ) U - ~ i u}.T-t
= Pr -—Lpt—l €2, % —:—T-'!‘—h = f ﬂjz‘r-:)dz'r'l‘
|

T-1 hT -1 v. T

where .__ is the forecasted conditional mean and [I, ;... u, 1] is the standardized range of

integration.” For example, a central bank's target zone would be [L},_T_t, U}‘_T_t] =[L,U]

Once the desired probability forecasts are generated, forecast users can evaluate them

using probability scoring rules and calibration tests, statistical criteria that accommodate

® A special case of probability forecasts based on Y14, Is examined in Granger er al. (1989). Interval forecasts
{ (L\, T-p U\, Tt )}T 1 are set to generate a constant ¢¢% confidence interval around the corresponding conditional mean
Pl R 1= .
forecasts. The propbsed LIH statistic, which is based on the xz goodness-of-fit test, is used to evaluate whether the

forecasts adequately represent the observed outcomes. Dawid (1986) alludes to, but does not propose, such a statistic.
Further tests for evaluating interval forecasts are proposed in Christoffersen (1995).



elements of users’ loss functions. These two forecast evaluation criteria, as well as the
Diebold-Mariano (1995) tests of comparative predictive accuracy, are briefly described in the

following subsections; see Diebold and Lopez (1995b) for further discussion.

3h. Probability Scorine Rul

Probability scoring rules are primarily employed in the economics literature to evaluate,
business-cycle turning-point probébiiities as in Diebold and Rudebusch.(1989), Ghysels
(1993), and Lahiri and Wang (1994).'° Scoring rules measure the "goodness" of the
forecasted probabilities, as defined by the forecast user. Thus, a user's economic loss function
is used to select the probability scoring rule (i.e., statistical loss function) with which to
evaluate the transformed volatility forecasts.

The quadratic probability score (QPS), developed by Brier (1950) for evaluating
weather forecasts, is the most common probability scoring rule. The QPS is the analog of
MSE for probability forecasts and thus implies a quadratic loss function.”" The QPS over a
_forecast sample of size T is

1 <+
772 HPra R

which implies that QPS ¢ [0,2] and has a negative orientation (i.e., smaller values indicate

QPS =

more accurate forecasts). The QPS is a proper scoring rule, which means that forecasters
should report their actual forecasts to minimize their expected QPS score.

In addition to being intuitively simple, QPS is a useful scoring rule because it
highlights various attributes of probability forecasts. The three main attributes of probability |
forecasts are accuracy, calibration and resolution. Accuracy refers to the closeness, on
average, of the predicted probabilities to the observed realizations and is directly measured by

QPS. Calibration refers to the degree of equivalence between the forecasted and observed

' Probability scoring rules are also used in Fair (1993) to evaluate probability forecasts generated by stochastic
simulation. '

! Other scoring rules, such as the logarithmic score, with different implied loss functions are available; see Murphy
and Daan (19835) for further discussion.
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frequencies of occurrence. An overall measure of calibration is global squared bias (GSB).

GSB = 2(P - R,
.

T -
>P . R= -_-I_l— Z R;., and GSB € [0,2] with a negative orientation.
=i .

where 5 = -]—-
T

-
--

Calibration can also be examined in subsets of probability forecasts using the local squared
bias (LSB) measure; that is, calibration can be examined within J mutually exclusive and

collectively exhaustive subsets created by the forecast user. The LSB is

I ¥~ ome(5 3
LSB = — Y 27, (P, - R J,
T j=1
where 1_3j and l-ij are the forecasted and observed frequencies of occurrence in subset j, T. is

the number of forecasts in subset j, and LSB € [0,2] with a negative orientation. '

The resolution (RES) of probability forecasts is the correspondence between ﬁj and R;

that is,

327 (R - RJ.

Note that RES > 0 and has a positive orientation; as the resolution increases, probability

1
T

forecasts more accurately to describe the underlying process. Since RES depends only on the
defined J subsets, it measures how well a series of events can be forecast with respect to the
subsets relevant to the forecast user.

The QPS can be decomposed as QPS = QPS- + LSB - RES, where QPSR is QPS

evaluated with P, = R Vt. Thus, QPS is a particularly useful scoring rule because it can be

used to examine several attributes of probability forecasts. As suggested in Diebold and

Rudebusch (1989), this decomposition alludes to a more general decomposition,

F [ g(f{ ) LSB, RES ] where the functions F and g are determined by the relevant economic

= Note that LSB = 0 implies GSB = 0, but not conversely.
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loss function.” This decomposition underscores the main advantage of using probability-based
criteria for evaluating volatility forecasts: a forecast user's economic loss function can be -

introduced into the evaluation process in several ways.

1 O e the Predictive, 4 ¢ Prohahility

Scoring rules measure the accuracy of pfobability forecasts; for example, if the QPS

for 1) is closer to zero than the QPS for {; ;.7 , then the forecasts from model A

are more accurate than those from model B However, the statistical significance of the
difference between the two QPS values is unclear. Diebold and Mariano (1995) propose
several tests for determining whether the expected losses induced by two sets of poinr forecasts
under a general loss function are statistically different. These tests are readily generalized to
probability forecasts. _ ' |

The null hypothesis under a loss function g is E[ gP 1o Rpoy )] = E[ &Py v RT_‘)],
or, equivalently, E[d; ] = E[g{P, 1. Rp.) = (Pp 1. Ryo)] = 0. For QPS,

dr = 2(Pyry - ReL P - 2(Pyr - Re T

where P, +,, and Py o, are the probability forecasts from two volatility models. Several
statistics are proposed for testing this null hypothesis. The first is the asymptotic mean statistic
defined as

S, = 9 2N,

where d is the sample mean of d.,, and ?‘d(O) is the spectral density function at frequency zero

estimated using a rectangular lag window.

* Winkler (1993) presents a family of asymmetric scoring rules that address this generalization indirectly by permitting
users’ loss functions to shape the appropriate scoring rule.

" To employ these tests, { dr }‘T ] must be covariance stationary, a condition determined empirically.
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The second and third statistics require d;,, to be serially uncorrelated, an issue that
must be empirically determined.’”® These statistics, which test the hypothesis that the median

of dr,, is zero, are based on the sign test and the Wilcoxon signed-rank test. The sign statistic
.

is §, = Z I;_. where I, equals one if d;,,>0 and zero otherwise, and the Wilcoxon signed-
1=1

S
rank statistic is S, = Y I Rank{|d; ,[). where Rank(|d,_,]) is the rank of the absolute value
1=1 .

of d;,, in descending order. Note that S, further requires d.,, to be symmetrically distributed
about its median. Finite sample critical values are available for these two non-parametric

tests, and the standardized forms of these statistics are asymptotically normally distributed.

3d. Calibmtion Tests of Probahiliry F

As previously discussed, calibration is the degree of equivalence between an event's
observed and predicted frequencies of occurrence within subsets of probability forecasts. For
example, a forecaster is providing perfectly calibrated rain forecasts if it rained on 10% of the
days for which a 10% chance of rain was forecast. A simple measure of calibration is thé
calibration plot, which graphs Pr(event occurs | P,) against P, for the forecast subsets j =
1,....J created by the user. The degree to which the graph lies on the 45° line is a visual
measure of calibration. Seillier-Moiseiwitsch and Dawid (1993) present test statistics that
formalize this analysis. '

The null hypothesis is that the predicted frequency of occurrence for a specified
binomial event equals the observed frequency of occurrence. The statistics are constructed by
dividing the out-of-sample probability forecasts into ¥ mutually exclusive and collectively

exhaustive subsets according to the user's interests. Let 7, denote the midpoint of subset j,

' If serial correlation does exist. an adjustment can be made as described in Diebold and Mariano (1995).

'S Although several components of the proposed forecast evaluation framework can be generalized to multinomial
events, the calibration tests are designed exclusively for binomial events.

13



T,” the number of forecas:s in subset j, and R; the number of observed events paired with

forecasts in subset j. The test statistics are the subset j calibration statistics,

R- - T-. L . .
Zj = (- 3 J T-J)]2 = (RJ }‘-ze.l ), J - 1‘._”’},
[Tj {1l - “j)] ¥
and the overall calibration statistic,
R -¢
Z, = (Ro ~ &) — "),

Wy

H

l
- w,." Each of these statistics is the square
= { ) ‘

] ]
where R, = .Z] R. e = 'Zl e; and w,
i= is j

root of a x> goodness-of-fit statistic for a binomial event with R, observed outcomes and e
expected outcomes.'®

Under the null hypothesis and weak conditions on the distribution of the probability
forecasts, thes.e statistics are asymptotically normally distributed. If the null hypothesis for the
forecasts in subset j is rejected, then these forecasts do not adequately represent the observed
frequency of occurrence in that subset. The calibration test results complement the other sets
of results by evaluating the transformed volatility forecasts using another element of the user’s
economic loss function.

In summary, a framework for volatility forecast evaluation under a general class of
economic loss functions is proposed; such loss functions are used to specify events to be
forecast, a probability scoring rule and subsets of probability forecasts. These three elements
are used to generate probability forecasts, both in-sample and out-of-sample, and tailor

statistical criteria for evaluating the forecasts. In the following section, an empirical

" Under wezk conditions on the distribution of the probability forecasts, the Z; statistics are asymptotically
independent, which allows Z, to be constructed as the sum of the Z, statistics.

'* The similarity between LSB and the calibration tests is also noteworthy. Both statistics exarine the differences
between the observed and expected event frequencies within subsets of probability forecasts. However, the calibration
statistics are directly linked to the 3* goodness-of-fit test and permit hypothesis testing.

14



application illustrating the evaluation procedure under a variety of loss functions is presented.

IV. Evaluating Exchange Rate Volatility Forecasts

To illustrate the proposed evaluation framework, one-step-éilcad volatility forecasts of
several foreign exchange rates are evaluated under economic loss functions implicitly based on
volatility forecasts; that is, five implicit economic loss functions are used to specify the three
elements needed for the probability-based forecast evaluations. As might be expected, no one
set of forecasts minimizes all of the probability-based loss functions. In fact, not only does the
minimizing set of forecasts vary across loss functions and exchange rates, it also varies across
the in-sample and out-of-sample periods. These results highlight two key features of vo.latility
forecast evaluation (and forecast evaluation, in general): thé need for careful selection of the

loss functions employed, and the usefulness of out-of-sample results for model specification.

4a. Exchange Rate Data

The three exchange rates examined are the logged daily Deutchsemark (DM) and
Canadian dollar (CD) spot exchange rates with respect to the U.S. dollar and the U'.S. doliar
‘exchange rate with respect to the British pound (BP), as recorded by the Federal Reserve Bank
of New York, from 1980 to 1991. The in-sample period used for model estimation is 1980-
1989 (2508 observations), and the out-of-sample period is 1990-1991 (502 observations). The
data series and their first differences are plotted in Figure 1.

Given established unit root results, the log exchange rates are modelled as I(1)
processes;'” that is,

B A NTRE - B Yoy * Ve el|Ql_l ~ D(O,h(). .

where y, = 100 log(s!) and s, is any of the three spot rates. Thus,

Ay, =v, +E.

" Kim and Schmidt (1993) show that the Dickey-Fuller unit root tests are not seriously affected by the presence of
conditional heteroskedasticity in finite samples, although the tests do overreject in certain cases. The results of the unit
root tests for this dataset are available upon request.
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For the DM and CD series, v, = p, but since the BP series exhibits weak first-order serial
correlation, v, = p + 8¢ _,. Table 1 presents the in-sample least squares estimates of these

conditional mean parameters, the first three moments of the in-sample and out-of-sample ¢,
series and the portmanteau statistics for up to 15™ order serial corretation in the £, and ef

series. The kurtosis estimates and the Q°(15) statistics indicate the presence of conditional

heteroskedasticity in all three series.

th. Volatility Models and Fore
Seven volatility models are estimated over the in-sample period, and the parameter
- estimates are used to generate volatility forecasts over the out-of-sample period.” The seven
séts of in-sample and out-of-sample volatility forecasts for each series are graphed in Figure 2.
These superimposed graphs highlight the relatively small degree of variation across the sets of
forecasts. This graphical result suggests that several sets of forecasts may be indistinguishable
when evaluated under the relevant loss function. _
The first volatility model is the simple Gaussian homoskedastic model {homo.), which

2

assumes h, = 0°. The next three models are drawn from the GARCH family of models: the

GARCH(1,1) model with h, = w + asf + B h,_, and the IGARCH(l,1) model with
h: =W+ sf + (1 -ea)h_,, both assuming conditional normality, and the G4 CH(1,1)

model assuming the conditional t-distribution.> The models are denoted as GARCH,
IGARCH and GARCH-t, and all four of these models are estimated using maximum
likelihood.

As in West and Cho (1994), two autoregressive models of €, are estimated using

* The parameter estimates and relevant standard errors are reported in the Appendix.

*) The estimated degrees of freedom for the DM, CD and BP series are 5.7, 6.4 and 6.6, respectively. These
" estimates are similar to those presented in the literature, such as Baillie and Bollersiev (1989).
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ordinary least squares and an assumed conditionally normal distribution. The autoregressive

12
& model assuming a lag-order of 12 (ARI2s)is b, = w + 3 @ &, Volatility forecasts
. i=1

from this model can be negative, and in such cases, the forecasts are set to a small positive
number. The second autoregressive model (AR12ab), as developed by Davidian and Carroll
(1987) and Schwert (1989), is based on |€:| and is specified as

P 12
hy=—lw+ Y 0ti|3¢-i| :
2 i :
The seventh model is the stochastic volatility model (s.v.) used by Harvey et al.

(1994); that 1s, after removing ¥, based on least squares parameter estimates,

g = exp{e,/2}v, v ~ N(0,1) -

1
o = e, +n, n~ NOO),

where v, . 1,. Thus, the innévation term is subject to two independent shocks. Estimation of

-the model is conducted using the Kalman filter on the measurement equation

loge, = o, + log v} and the transition equation e, = ¢ea_, + 1. To use quasi-maximum

likelihood methods, the measurement equation is rewritten as loge? = w + o, + E. where

w=E [log v } and £ _is assumed to be distributed N{0, n%2).% The log-likelihood function

to be maximized is

' L T lloge’ - @ - a
InL(6:2)...er) = -%log(Zn) - %; log(G, ) + 121: ( g 5 ‘)z,

where a, and G, are the Kalman filter estimates of ¢, and its conditional variance, respectively,

= Jacquier er al. (1994) and Kim and Shepard (1994) present alternative estimation techniques that employ more
appropriate distributiona) assumptions. See Geweke (1994) for a Bayesian comparison of stochastic volatility models and
GARCH models.
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and 6 = [d).w. oi]

One-step-ahead volatility forecasts from the s.v. model are easily obtained using the -

‘Kalman filter, but converting them into probability forecasts is not as straightforward. The

. . . n .
standardized innovation term z, = e ™" v, is the product a standard normal and a lognormal

. . . . ig . 2 % ‘ . . ' .
distribution with mean €™ = and variance e’ 4(e°“ ‘o ) Integration over the distribution

of this random variable, which is required for generating probability forecasts, is both difficult
and computationally intensive. To avoid this problem, its distribution is empirically

approximated by simulating 100,000 draws from it and creating 0.5% quantiles. The

probability that z, € (I, ut) is approximated as P, = f’(ut) -F (_1‘) where F is the empirical

cumulative distribution function of z,..%

Before evaluating the probability forecasts, Tables 2 and 3 report the forecast
evaluation results using the statistical loss functions in Section II. In the top portion of each
panel, the columns of the panels represent the five loss functlons the rows represent the seven
sets of volatility forecasts, and the lowest joss function value in each column is underlined.
The most obvious result is that the forecasts minimizing the loss functions vary considerably
within the in-sample and out-of-sample periods. This variation holds across the two sample
periods and the three exchange rates. Of the 15 possible in-sample vs. out-of-sample
comparisons, the set of minimizing forecasts match only 8 times. Across the three series, one
set of forecasts minimizes the same loss function in only three cases -- in-sample MSE (as
expected), in-sample HMSE and out-of-sample LL. In short, no clear patterns emerge from
these results.

The S tests are conducted to determine whether the differences between the smallest

= Although this estimated ¢.d.f. procedure introduces another source of error into the probability forecasts generated
from the s.v. model, this error is irrelevant to the purpose of the exercise, which is to evaluate competing volatility
forecasts, regardless of their source of origin.
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loss function values and the other six values are statistically significant.*® The summary results
are reported in the bottom portion of each panel in Tables 2 and 3; for each loss function, the
models whose forecasts reject the null hypothesis at the 10% significance level for more than
one of the S tests are listed.” Once again, the results for a given loss function vary
‘considerable; in some cases, the null hypothesis is never rejected while for others, the loss
function values of several forecasts are clearly different from the minimum value. The overall
inability to reject the null -hypothesis (as well as the graphs in Figure 3) suggests that no one

set of volatility forecasts. minimizes all of these statistical loss functions.

In this subsection, the implicit economic loss functions used to evaluate the volatility
forecasts are described. The proposed evaluation framework uses these loss functions to
specify the events to be forecast, the probability scoring rule used fo evaluate the forecasts,
and the subsets of these forecasts of particular interest. To simplify the evaluation exercise,
only the events to be forecast will be varied. The QPS is the probability scoring rule used
throughout, and the subsets are the quartiles {[0,0.25); [0.25,0.5); [0.5:0. 75) [0.75,11}.% In
total, five loss functions based on probability forecasts are specified.

The first two events are based on the innovation term €, (1). €, € [y, Y, ] where
Y, <0<vy,,and(2). ¢, € [yz Y3 ] The first event examines an interval with a relatively

high probability of occurrence, and in contrast. the second event examines the upper tail of the
innovation's distribution. Such events would be of interest to spot traders deciding how to

structure their market positions and to options traders holding out-of-the-money positions,

** West and Cho (1994) propose an alternative procedure for testing the null hypothesis that the root-MSE of different
sets of volatility forecasts are equal. West (1994) notes that the S tests ignore the uncertainty caused by parameter
estimation. '

2 The § test results as well as the diagnostics of the loss differential series are available upon request.

* Although selected to simplify the exercise, these subsets of the probability forecasts are reasonable. For example,
an options trader or portfolio manager may take different actions based upon which quartile a probability forecast falls
. into,
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respectively. ForDM and BP, (v,, ¥,, Y5} = (-0.5, 1, 2.5). In order to define similar
events for all three series, (Y,, 7,. y3) = {-0.2, 0.4, 1) for CD because of its lower

unconditional variance.
The last three events are based on the level term y,. The third event is a +2% move in

y; thatis, y, € [0.98 Yi.i» 1.02y,, ] This event would be of interest to a portfolio manager

deciding if and when to transact in a foreign-currency denominated asset. For comparison
purposes, the fourth event is specified as just a +2% move in y,. The last event is based on a
central bank forecasting whether an exchange rate will remain within a specified target zone.

The event of interest is y, € [L, U], where the bounds are set by the central bank. In this
evaluation exercise, L and U are set as =y ,% of y;, the last in-sample observation. For DM

and BP, y, = 35, and for CD, y, = 2.5.

Table 4 presents the in-sample and out-of-sample occurrence rates (or R's) of the five
events for the three exchange'rates. As expected, the occurrence rates of the second event, a

"tail" event for €, are much lower than those of the first event, and the R 's for the fourth
event are roughly half of those for the third event since the empirical distributions of £, are

symmetric. The last event exhibits the greatest variation in occurrence rates since it is based
on a nonstationary series crossing one of two fixed points.

The GSB compares the predicted and actual frequencies of an event's occurrence; recall

GSB = 2 (5 - R )2. The in-sample and out-of-sample GSB values for the five events are

presented in the panels of Table 5. Most of the in-sample GSB values are close to zero,
implying that the probability forecasts are well calibrated on average and that the models
provide a reasonable in-sample fit. The out-of-sample GSB values are generally higher than
in-sample, particularly for the last event, but they are still close to zero. Since they are far
from the upper GSB bound of two, the out-of-sample forecasts are also well calibrated on

average.
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4d_ Forecast Evaluation Results

The panels of Table 6 contain the in-sample QPS values for the three currencies. As
before, the columns of the panels represent the five events, the rows represent the seven sets of
generated probability forecasts, and the lowest value in each column is underlined. The panels
also list the sets of forecasts for which the null hypotheses of the $ tests are rejecred at the
10% level for more than one of the tests. .

| For the two innovation events, the AR12ab forecasts minimize the in-sample QPS in 5

of 6 possible cases. However, the results for the three level events are not as clear within or

across series. As with the statistical loss functions based on af, the forecast evaluation results

are sensitive to the chosen loss function. The S test results also indicate that for a given
probability-based lqss function, the differences between the lowest QPS value and the other six
QPS values are usually not statistically significant. Thus, no one set of forecasts clearly
minimizes the specified loss functions, although severa! sets of forecasts can be rejected
relative to the minimizing set. A forecast user may choose the minimizing set of forecasts, but
should be aware that the choice is made with generally little statistical significance.

The out-of-sample evaluation results are presented in Table 7. Once again,
considerable variation in the minimizing set of forecasts is seen within and across the series.
The only probability-based loss function minimized across the series by one set of forecasts is
event 5 minimized by the s.v. forecasts, but the feason for this result is not immediately clear.
The S test results suggest that, although certain forecasts do reject the null hypotheses relative
to the QPS-minimizing forecasts, no one set significantly minimizes ény of the loss functions.
As with the statistical loss functions, comparison of the in-sample and out-of-sample results
indicates considerable variation. Of the 15 possible comparisdns, only 7 matches occur;
further highlighting the need for out-of-sample forecast evaluation for improving model .
specification.

Calibration tests are used to further evaluate the out-of-sample probability forecasts
under the specified loss functions and thus complement the QPS results. Recall that for this

exercise, the same forecast subsets are specified for the five economic loss functions. The
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summary results for the overall calibration tests are presented in the bottom portion of the
panels in Table 7; the lists contain the models whose Z, statistics do nor reject the null
hypothesis that the predicted and observed frequencies of occurrence are equal (i.e., the
forecasts are wellj calibrated) at the 10% signiﬁcahce level. In 8 of the 15 cases, none of the
forecasts are weli calibrated.” However, for the other 7 cases, the set of forecasts minimizing
- the QPS is well calibrated. Thus, the calibration results certainly support choosing the QPS- |
minimizing forecasts as the most appropriate in these cases.

In summary, this empirical exercise presents two clear resuits. First, forecast
evaluations are directly affected by the selected economic loss function. Forecast users must
select the loss functions that most closély represent their economic interests, and the proposed
evaluation framework is capable of incorporating a large class of economic ioss functiohs.
Second, the differences in evaluation results across the in-sample and out-of-sample periods
strongly suggest that reliance on measures of in-sample fit are insufficient. Out-of-sample
forecast evaluation under the relevant loss function is necessary for improving modél

_specification.

V. Conclusions

Given the wide variety of volatility forecast users, it is unreasonable to evaluate such
forecasts with a singie, Statistical loss function. Since forecast evaluations based on economic
loss functions are undoubtedly more useful in differentiating among volatility models, a
forecast evaluation framework that directly incorporates a general class of economic loss
functions is proposed. These economic loss functions, implicitly or explicitly based on
volatility forecasts, are translated into statistical loss functions and hypotheses tests based on
probability forecasts using three key elements: the events to be forecast, a probability scoring

rule with which to evaluate the forecasts, and the subsets of these forecasts of interest to the

| different subsets are specified, different probability-based hypothesis tests are created, and the forecast evaluation
results may differ. For example, for event 2, where the forecasts are generally below 0.5, a redefinition of the subsets
as {[0,.125); [.125,.25); [.25,.75); [.75,1]} changes the results and certain forecasts no longer reject the null hypothesis.
Complete results of the calibration tests are available upon request.
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user. Using the event of interest and the distribution underlying a model's innovation term,
volatility forecast are transformed into probability forecasts, and these forecasts are evaluated
using statistical criteria tailored to the user's interests.

The empirical exercise in Section IV clearly indicates that the loss function directly
influences the forecast evaluation results. Thus, the use of MSE as the loss function of choice
for forecast evaluation and model selection must be replaced with a more thoughtful selection.
Yet, even under the appropriate loss function, forecast evaluations may provide comparative
results that are not statistically significant, as shown by the S test results. An advantage of the
proposed framework is that calibration tests provide further analysis of volatility forecasts
under the relevant loss function. The exercise also clearly shows that out-of-sample forecast
evaluation is required to achieve reasonable model selection results. |

This evaluation framework introduces a number of questions that require further
analysis. Most immediately, the properties of the:transformed volatility forecasts must be
more clearly delineated. For example, further research is required to determine whether
optimal forecasts under the implicit economic loss functions are available. Secondly, the
properties of the QPS and other scoring rules must be examined in light of West (1994); that
is, uncertainty due to parameter estimation should be incofporated into this analysis. Other
avenues for research are evaluating volatility forecasts from other models (including those

without assumed distributions for €,) and for other financial time series under different loss

functions. A systematic exploration of the theoretical and empirical aspects of the proposed
evaluation framework will undoubtedly provide more useful volatility forecasts and volatility

model specifications.
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Table 1. Descriptive Statistics of the First-Differenced Exchange Rate Series

DM cD BP

Conditional Mean B
SRR
0 0.065
(0.020)
In-sample Moments of ¢,

| variance 0.500 0.067 0.499
skewness -0.252 0.117 0.099
excess kurtosis 2.013° 4.473° 2.747
: (0.098) (0.098) (0.098)
Q(15) 17.886 20.602 22.262
Q*(15) 206.75* 352.13° 346.17"

Qut-of-sample Moments_of €, _
variance 0.545 0.063 0.471
skewness -0.032 0.787 0.009
excess kurtosis 1.914° 2.293° 1.6437
(0.219) (0.219) (0.219)
Q(15) 17.886 9,042 17.693
Q*(15) 40.01° 139,67 43.25°

Notes: The three exchange rate series are logged daily spot rates from 1980 to 1991. The in-sample period is 1980-
1989 (2508 observations), and the out-of-sample period is 1990-1991 (502 observations). The conditional mean
parameters of the first-differenced series are estimated using least squares. Standard errors are listed in parentheses.
Excess kurtosis is expressed relative to the standard normal distribution; this statistic is asymptotncally distributed
N(, 24/'1'% The portmantean stanstlcs for up to 15%-order serial correlation, Q(15) and Q‘(IS), are for the €, series
and the €, series, respectively. ~ indicates significance at the 5% level.
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Table 2. In-Sample Forecast Evaluation Results for Statistical Loss Functions

- Panel A, DM _
MSE MAE —1I HMSE GMIE.

homo. 1.0028 0.5551 29.5289 4.0159 0.3063
ARI12sq 0.9614 0.5397 29.2085 3.0623 0.2202
ARI12ab ~  0.9647 0.5160 - 28.6636 4.0287 0.2157
GARCH 0.9707 0.5431 29.1041 3.2275 0.2145
IGARCH 0.9915 0.5731 29.3290 2.9475 0.2213
GARCH-t  0.9725 0.5509 - 29.2003 3.0671 - 0.2152
S.V. 0.9736 0.5031 69011 5.0330 0.2435
S results: - ARI2sq homo. S.V., homo.

GARCH ARI12sq

IGARCH

GARCH-t
Panel B. _CD :
homo. 0.0290 0.0767 74.9056 6.4754 -1.7034
ARI12sq 00271 0.0722 73.9293 6.8975 -1.9585
ARI2ab 0.0274 0.0685 72.8760 6.5748 -1.8737
GARCH 0..0282 0.0753 73.4072 5.4510 -1.8850
IGARCH 0.0284 0.0763 73.4428 '§.3429 -1.8848
GARCH-t  0.0279 0.0745 73.3611 5.7192 -1.8839
8.V, 0.0280 0.0747 91930 6.3231 -1.8132

S results: GARCH-t  ARl2sq GARCH - -
GARCH IGARCH

IGARCH
Panel C_BP '

' MSE MAE . HMSE GMIE
homo. 1.1792 0.5511 8.3560 4.7456 0.3034
ARI2sq 10987 0.5306 8.1105 3.7935 0.2194
ARI]12ab 1.1082 0.5074 7.7393 4.5016 0.2161
GARCH 2.2072 1.2415 12.645 0.8810 0.7071
IGARCH 2.4915 1.3748 13.041 (.8220 0.7762
GARCH-t 1.125%9 0.5322 1.6856 3.5284 (0.1989
S.V. 1.1294 (L4907 7.7143 6.0733 0.2536
S results: GARCH homo. GARCH AR12sq —-—

IGARCH ARI12sq IGARCH ARIl2ab
AR]12ab GARCH-t
GARCH : S.V.
IGARCH
GARCH-t

Note: In the top portion of each panel, the columns represent the loss functions, the rows represent the forecasts, and
the lowest value in each column is underlined. The bottom portion of each panel lists the model forecasts that reject
the null hypotheses of more than one of the S tests at the 10% significance level.
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Table 3. Out-of-Sample Forecast Evaluation Results for Statistical Loss Functions

Panel A._DM

MSE MAE ' 1L HMSE GMILE.
homo. 1.1634 0.5633 ~30.586 4.6592 0.3950
ARIl2sq 1.1585 0.5707 30.410 4.1546 0.3560
ARI12ab 1.1516 0.5506 20,921 5.1821 0.3709
GARCH 1.1346 0.5742 30.353 3.4078 0.3252
IGARCH 1.1595 0.6093 30.609 2_8652 0.3297
GARCH-t 1.1373 0.5828 30.444 3.1849 0.3242
5.V. 11335 0.5383 6 8523 4.5950 0.3422
S results: -— - - . —— —
Panel B _CD

MSE MAE 11 HMSE GMIE
homo. 0.0169 0.0753 75.289 1.7732 -1.7670
ARI12sq 0.0155 0.0671 73.817 8.0314 -1.8625
ARI12ab - 0.0153 0.0625 72.633  7.3283 -1.9391
GARCH 0.0156 0.0668 72.917 6.0474 -1.9634
IGARCH  0.0157 0.0676 72.933 6.0903 -1.9612
GARCH-t 0.0156 0.0665 72.889 6.1965 -1.9576
S.V. Q.0151 0.0678 - 9.2695 4.1699 -1.9290
S results: -- 5.V. ARI12ab - -
Pane]l C. BP

MSE MAE _1I. HMSE GMLE
homo. -0.8239 0.5254 . 8.9497 3.3158 0.2551
ARI12sq 0.8029 0.5086 8.5012 3.2571 0.1852
ARI12ab 0.7954 0.4816 8.0976 4.1200 0.1892
GARCH 1.7014 1.1785 14.405 0.7652 0.6740
IGARCH 2.1063 1.3378 15.125 0.7451 0.7636
GARCH-t 0.8793 0.5480 5.2914 5.1983 0.3357
5.V. 0.8118 (14645 16870 5.8899 0.2641
S resuits: GARCH ARI12sq GARCH AR12ab GARCH

1GARCH GARCH IGARCH S.V. 1IGARCH

IGARCH

Note: In the top portion of each panel, the columns represent the loss functions, the rows represent the forecasts, and
the lowest value in each column is underlined. The bottom portion of each panel list the models whose forecasts
reject the null hypotheses of more than one of the S tests at the 10% significance level.
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Table 4. In-Sample and Out*o'f-Sample Observed Event Frequencies

Number of in-sample observations: 2508
Number of out-of-sample observations: 502

Panel A. DM

‘Event 1 Event 2

In-sample - 713.8% - 6.5%
Out-of-sample 70.7% 6.8%
Banel B. CD '

Event 1 Event 2
In-sample 77.6% 5.0%
Out-of-sample 75.5% 6.8%
Panel C. BP :

Event | Event 2
In-sample 72.9% - 6.2%
Out-of-sample 74.3% 6.2%

Event 3
95.7%
84.5%

Event 3
91.1%
81.9%

82.3%

91.2%

Table 5. In-Sample and Out-of-Sample GSB Results
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Panel A._DM
In-sample Event 1 Event 2 Event 3
homo. 0.0032 0.0002 0.0000
ARI2sq 0.0021 0.0001 0.0000
AR12ab 0.0004 0.0000 0.0001
GARCH 0.0014 0.0001 0.0000
IGARCH 0.0026 0.0003 0.0001
GARCH-t 0.0068 0.0011 0.0019
A 0.0000 0.0000 0.0002
=of- ' Event 1 Event 2 Event 3
W 0.0007 0.0001 0.0002
ARI12sg 0.0005 0.0001 0.0002
AR12ab 0.0000 0.0000 0.0000
GARCH - 0.0004 0.0002 0.0003
IGARCH 0.0013 0.0005 0.0012
GARCH-t ‘ 0.0041 0.0012 0.0051
s.V. 0.0001 0.0000 0.0002

49.4%
412%

43.9%
34.9%

40.3%
48.2%

0.0003
0.0003
0.0002
0.0001
0.0002
0.0008
0.0001

0.0000
0.0000
0.0002
0.0000
0.0000
0.0004

0.0003

11.5%

15.7%

15.1%
48.0%

21.4%
33.7%

0.0000
0.6000
0.0000
0.0000
0.0000
0.0000
0.0129

0.1841
0.1817
0.1816
0.1814
0.1808
0.1805
0.0202



Table 5. In-Sample and Out-of-Sample GSB Results (continued)

In-sample _ Event 1 Event 2 Event 3 Event 4 Event §
homo. _ 0.0032 0.0001 0.0002 . 0.0001 0.0000
ARI2sq 0.0013 0.0000 0.0001 0.0002 0.0000
ARI12ab 0.0001 0.0000 0.0000 0.0004 0.0000
GARCH 0.0008 0.0001 0.0002 0.0002 0.0000
IGARCH 0.0010 0.0001 0.0003 0.000t 0.0000
- GARCH-t - 0.0042 0.0005 0.0023 -0.0001 0.0000
5.V. 0.0027 0.0007 0.0016 0.0000 0.0219
Qut-of-sample Event ] Event 2 Event 3 Event 4 Event 5
homo. 0.0013 0.0000 0.0069 0.0004 0.1788
ARI12sq 0.0001 0.0002 0.0024 0.0013 0.1787
ARI12ab 0.0005 0.0005 0.0001 0.0030 0.1795
GARCH _ 0.0000 0.0002 0.0010 0.0022 0.1787
IGARCH 0.0000 0.0001 0.0012 0.0022 0.1786.
GARCH-t 0.0009 0.0000 - . 0.0050 0.0006 0.1775
S.V. 0.0005 0.0000 0.0134 0.0020 0.2103
Panel C. BP
In-sample Event { Event 2 Event 3 Event 4 Event §
homo. 0.0026 0.0002. 0.0009 0.0001 0.0000
ARI2sq 0.0010 (.0001 0.0004 0.0000 0.0000
ARIi2ab : 0.0001 0.0000 0.0000 0.0001 . 0.0000
GARCH 0.0754 0.0138 0.028% 0.0140 0.0000
IGARCH 0.0884 0.0138 0.0746 0.0177 0.0000
GARCH-t 0.0045 0.0006 10.0032 0.0006 0.0000
EAZ 0.0001 0.0000 0.0002 0.0001 0.0000
QOut-of-sample Event 1 Event 2 Event 3 Event 4 Event §
homo. 0.0041 0.0002 0.0006 0.0018 0.1024
ARI12sq 0.0268 0.0001 0.0003 - 0.0011 0.1016
ARI]12ab 0.0003 0.0000 ~ 0.0000 0.0006 0.1024
GARCH 0.0812 0.0139 0.0655 0.0243 0.1023
IGARCH 0.0969 0.0142 0.0819 0.0305 0.1042
GARCH-t 0.0057 0.0006 0.0041 0.0040 0.1038

s.v. 0.0000 0.0000 -0.0002 0.0005 0.0002

Note: The three papels correspond to the three exchange rate series. Within the panels, the columns represent the
specified economic events, and the rows represent the models used to generate ‘the in-sample and out-of-sample
probability forecasts. Recall that GSB € [0,2].
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Table 6. In-sample QPS Results

Panel A. DM
' Event 1 Event 2 Event 3 Event 4 Event §
homo. 0.1964 0.0609 0.0416 0.2504 0.0082
ARIi2sq - 0.1894 0.0608 .0410 0.2497 0.0079
AR12ab (L1870 0.0608 0.0411 0.2495 0.0077
~ GARCH 0.1878 0.0612 0.0414 0.2488 0.0077
IGARCH 0.1896 0.0619 - 0.0423 0.2489 0.0077
GARCH-t 0.1929 0.0618 0.0439 0.2495 0.0079
s.V. 0.1879 0.0608 0.0412 0.2498 - 0.1120
S results: - GARCH-t GARCH-t — GARCH-t
Pancl B. CD
Event1 | Event 2 Event 3 Event 4 - Event §
homo. 0.1773 0.0475 0.0802 0.2459 0.0129 .
ARI12sq 0.1680 0.0468 0.0826 0.2442 0.0130
ARI12ab " (L1652 0.0466 0.0752 0.2444 0.0130
GARCH = 0.1672 0.0470 0.0766 0.2443 - 0.0131
IGARCH 0.1676 0.0470 0.0769 0.2442 0.0131
GARCH-t (.1699 0.0471 0.0787 0.2440 0.0132
S.V. 0.1710 0.0474 0.0790 0.2443 0.1456
S results: S.V. GARCH-t GARCH-t ——- GARCH-t
‘ 5.V. . -
Panel C. RP
Event 1 Event 2 Event 3 Event 4 Event S
homo. 0.1997 0.0585 0.1158 0.2248 0.0087
ARI12sq 0.1940 0.0573 0.1101 0.2209 0.0082
AR12ab 0.1921 0.0572 0.1075 0.2196 0.0078
GARCH 0.2699 0.0715 0.1473 0.2440 - 0.0141
IGARCH 0.2821 0.0715 0.1908 0.2479 0.0150
GARCH-t 0.1964 0.0575 0.1094 0.2261 0.0086
S.V. 0.1925 0.0573 (L1057 02184 0.0073
S results: GARCH GARCH homeo. GARCH ---

IGARCH IGARCH GARCH IGARCH
IGARCH GARCH-t

Naote: In the top portion of each panel, the columns represent the specified economic events, the rows represent the
forecasts, and the lowest QPS value in each column is underlined. The bottom portion of each panel lists the models
whose forecasts rejecr the null hypotheses of more than one of the S tests at the 10% significance level.
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Table 7. Qut-of-sample QPS Results

Panel A. DM '
Event 1 Event 2 Event 3 Event 4 Event §
homo. 0.2077 0.0633 0.1302 0.2430 0.4156
ARI12sq 0.2027 0.0628 0.1298 02413 0.4096
ARI12ab 0.2030 0.0627 0.1308 0.2425 0.4106
GARCH = 0.2012 0.0630 - (L1289 0.2413 0.4082
IGARCH 0.2032 0.0636 0.1314 0.2418 0.4056
GARCH-t  0.2050 0.0638 0.1336 0.2419 0.4018
5.V. 0.2031 0.0624 0.1292 0.2440 (0.1477
S resuits: —- - --- — —
Z,results:  ARl1Zab e homo. homo. ---
GARCH AR12sg ARI12sq
IGARCH ARI12ab ARI12ab
5.V. GARCH GARCH
S.V. IGARCH
GARCH-t
s.v.
Panel B._CD _
" Event 1 Event 2 Event 3 Event 4 Event 5
homo. 0.1863 0.0632 0.1616 0.2297 0.5183
AR12sq 0.1715 0.0603 0.1390 0.2261 0.5190
ARI12ab 0.1682 0.0603 0.1337 0.2275 0.5202
GARCH 0.1674 0.0605 0.1338 0.2276 0.5203
IGARCH 0.1674 0.0605 0.1342 0.2277 0.5202
GARCH-t  0.1685 0.0607 0.1385 0.2258 0.5181
S.V. 0.1711 0.0606 0.1402 0.2267 0.4605
S resulits: --- GARCH-t - -—- ---
Z, results; ARI2sq - ARI12sq homo. -
ARI12ab ARI]2ab ARI12sq
GARCH ARI]2ab
IGARCH GARCH
GARCH-t IGARCH
5.V, GARCH-t
s.V.
Panel C._BP
, Event 1 Event 2 Event 3 Event 4 Event 5
homo. 0.1944 0.0580 0.0798 0.2515 0.2849
ARI2sq 0.2325 0.0581 . 0.07%4 0.2508 0.2843
ARI12ab (.1843 0.0583 0.0782 0.2497 0.2870
GARCH 0.2664 0.0712 0.1416 0.2738 0.2675
IGARCH 0.2828 0.0715 0.1583 0.2802 0.2679
GARCH-t  0.1987 0.0597 0.0868 0.2500 0.2816
s.V. 0.1854 0.0582 0.0796 (.2482 0.0325
S results: ARI2sq GARCH GARCH - ---
GARCH IGARCH IGARCH
IGARCH
Z,results:  ARlZab - - - e
$.V.

34



Note: In the top portion of each panel, the columns represent the specified economic events. the rows represent the
forecasts, and the lowest QPS value in each column is underfined. The middle position of each panel lists the models
whose forecasts rejecr the null hypotheses of more than one of the § tests at the 10% significance level. The bottom
portion of each panel lists the models whose forecasts are well calibrated with Tespect to the forecast subsets {[0,.25);
[.25,.50%; [.50,.75); [.75.1.0]}; i.e. these forecasts do not reject the nuli of the overall calibration test with respect to
the specified subsets.
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Figure 1. DM/$, 1980-1992
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Figure 2.
DM: In-sample Volatility Forecasts Out-of-Sample Volatility Forecasts
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APPENDIX: Volatility Model Parameter Estimates
| Volarility Model T cor. the, Gaussian Homoskedastic Model

Ay, =np+8g . +c¢

v

e.lQ., ~ N(o, h,)
' ‘h, = o
Parameter | DM CD RP
P '- -0.0006 -0.0003 -0.0131
| (0.0141)  (0.0052) (0.0141)
0. _ 0.0649°
- — (0.0232)
a* - 0.4997" 0.0670°  0.4985"

(0.0223) (0.0037) (0.0217)

Note: These parameters values are maximum likelihood estimates. The standard errors in parentheses are the robust
standard errors of Bollerslev and Wooldridge (1992).” indicates significance at the 5% level.

38



Parameter DM CD BP
u -0.0006 -0.0003 0.0123
0.0141)  (0.0052)  (0.0150)
6 0.0652"
(0.0202)
® 0.2596" 0.0324"  0.22447
0.0318)  (0.0045)  (0.0316)
o, 0.0272 0.1532° 0.0207
0.02000  (0.0200)  (0.0200)
o 0.0289 0.0431°  0.0320
| 0.02000  (0.0202)  (0.0200)
o 0.0510° 0.0946' 0.0357
(0.02000  (0.0202)  (0.0199)
o, 0.0473" 0.0226 0.1013"
©(0.0200) - (0.0203)  (0.0199)
o 0.0675" 0.0407° 0.0957"
(0.02000  (0.0203)  (0.0200)
&, | 0.0867" 0.0293 0.0600°
0.0201)  (0.0203)  (0.0201)
o, 0.0222  -0.0253 0.0313
(0.0201)  (0.0203)  (0.0201)
o 0.0311 0.0242 0.0219
0.02000  (0.0203)  (0.0200)
o 0.0159 0.0434°  -0.0020
0.02000  (0.0203)  (0.0199)
&0 0.0512" 0.0066 0.0683"
©.02000  (0.0202)  (0.0199)
@, 0.0494" 0.0587" 0.0654"
0.02000  (0.0202)  (0.0200)
ap 0.0047 0.0268 - 0.0208

(0.0200) (0.0200) (0.0200)

Nate: The conditionﬁl mean parameters are estimated using least squares. The conditional variance parameters are
estimated using least squares on the squared residuals. Standard errors are presented in parentheses. * indicates
significance at the 10% level.
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Ay, =p+8¢g,+g - £|Q,~ N(Oh)

12
h, = %[m + Zl: o e

Parameter DM Ch BP
u -0.0006 -0.0003 0.0123
(0.0141) (0.0052)  (0.0150)
8 - 0.0652"
(0.0202)
® 0.2347" 0.0719° 0.2228"
| 0.0258)  (0.0083)  (0.0254)
«, £ 0.0150 0.1310" 0.0399
C(0.02000  (0.02000  (0.0200)
o, : 0.0450" 0.0647" 0.0417°
0.0200)0  (0.0201)  (0.0200)
o, 0.0708" 0.0962° 0.0564"
0.02000  (0.0202)  (0.0200)
o, 0.0546" 0.0441° 0.0427"
0.02000  (0.0203)  (0.0200)
o 0.0840" 0.0799* 0.1075"
0.0201)  (0.0203)  (0.0200)
o, - 0.0619" 0.0655" 0.0495"
(0.0201) 0.0203)  (0.0201)
o, 0.0690" -0.0201 0.0399
©.0201)  (0.0203)  (0.0201)
oy 0.0404" 0.0408" 0.0295
0.0201)  (0.0203)  (0.0200)
o | 0.0225 0.0030 0.0425"
0.0201)  (0.0203)  (0.0200)
o 0.0585" 0.0188 0.0880°
0.0200)  (0.0202)  (0.0200)
@, 0.0221 0.0533" 0.0175
©(0.0200)  (0.0201)  (0.0200)
o 0.0083 0.0367 0.0177

(0.0200) (0.0200) (0.0200)

Note: The conditional mean parameters are estimated using least squares. The conditional variance parameters are
estimated using least squares on the absolute value of the residuals. Standard errors are presented m parentheses. *
indicates significance at the 10% level.
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Tahl 1 Volatility Model P for the G . GARCH(I 1) Model
l Ay1=u+e-81-l +81

g | Q. ~ N(0.h)

o 2
(O (‘J toE ., * Bh1-1

Parameter DM CD BRP
o 0.0127 0.0022 -0.0189
(0.0128) (0.0042) (0.0117)
0 0.0618"
| (0.0193)
w ~0.0153" 0.0015° 0.0064"
0.0031) ©  (0.0002) (0.0027)
« 0.0859" 0.1503" 0.0444"
| (0.0300) (0.0395) (0.0220)
B 0.8863" 0.8425° 0.9429"

(0.0873) (0.0729) (0.0895)

Note: These parameters values are maximum likelihood estimates. The standard errors in parentheses are the robust
standard errors of Bollerslev and Wooldridge (1992). ~ indicates significance at the 5% level.

Table A 5. Volatility Model .
Ay =u+08g , +¢

1

& | Q. ~ N(Oh)

h =w + asf_! +(l-a)h

Parameter DM Ch RP
n 0.0145 . 0.0023 -0.0208
0.0129)  (0.0042)  (0.0120)
9 | — —  0.0605
— (0.0187)
® 0.0072 0.0013 - 0.0026
0.0043)  (0.0014)  (0.0035)
a 0.1030° 0.1557" 0.0515"

(0.0282) . (0.0396) (0.0210)

Nate: These parameters values are maximum likelihood estimates. The standard errors in parentheses are the robust
standard errors of Bollerslev and Wooldridge (1992). ~ represents significance at the 5% level.
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Ay, =n+8¢, +g
g | Q. ~ t(O,hl,v)

2
ht W ag, + th-]

Parameter DM cDh RP

p - 0.0196 -0.0013 -0.0131
(0.0121) (0.0039)  (0.0121)
0 - 0.0379"
(0.0058)

® 0.0129 0.0011 0.0069
©(0.0325) (0.0025) (0.0055)
o 0.0837" 0.1240° 0.0473°
- (0.0309) (0.0277) (0.0039)
B 0.8966" 0.8683" 0.9396"
(0.0862) (0.0670) (0.0138)
v 5.7117 6.4091 6.6198

(0.6948)  (0.7459)  (0.8670)

Note: These parameters values are maximum likelihood estimates. Except for v, the standard errors in parentheses
are the robust standard errors of Bollerslev and Wooldridge (1992). The standard errors for v are derived from the
value of the numerical Hessian at the estimated parameter values. ~ represents significance at the 5% level,
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Iablﬂ_A_Llolmmy_ModeLPammﬂcmiaLthe_Smchasﬁclojmﬂhy_Madd
Ay: B eet—l’ TE

£

L= exp(e/2)v. v, ~ N(O, 1)

i

1

o = -‘b“;-l + 1, M, ~ N(O, 02)

voLm,

N 2 )
Measurement equation: loge; = w + ¢ + §

Transition equation: ¢ = ¢, + 7,

Parameter DM cD RP

P -0.0006  -0.0003 0.0123
| ~(0.0141)  (0.0052)  (0.0150)

6 e 0.0652°
(0.0202)

b 0.9728"  0.9158°  0.9726'
(0.0098)  (0.058) (0.0113)

® -0.0275  -0.2663 -0.0293
ol 0.0234°  0.1648"  0.0258

(0.0092) (0.0618) (0.0119)

Note: The conditional mean parameters are estimated using least squares. and the standard errors are presented in
parentheses. * indicates significance at the 10% level. The conditional variance parameters are estimated using the
Kalman filter and quasi-maximum likelihood methods as proposed in Harvey er al. (1994). These standard errors are
estimated using results from Dunsmuir (1979).
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