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  Abstract *

We use daily data on bank reserves and overnight interest rates to document a striking pattern in
the high-frequency behavior of the U.S. market for federal funds:  depository institutions tend to
hold more reserves during the last few days of each “reserve maintenance period,” when the
opportunity cost of holding reserves is typically highest.  We then propose and analyze a model of
the federal funds market where uncertain liquidity flows and transaction costs induce banks to
delay trading and to bid up interest rates at the end of each maintenance period.  In this context, the
central bank’s interest-rate-smoothing policy causes a high supply of liquid funds to be associated
with high interest rates around reserve settlement days.
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1.  Introduction

 The high frequency behavior of the interbank market for reserves has been intensely

scrutinized by research on banking in recent years.  One of the goals of this research has been to

identify patterns displayed by money-market data, mostly from the U.S., and to examine their

consistency with the assumption of rational, profit-maximizing behavior of depository institutions. 

Our paper contributes to this research by documenting and modeling a pattern that is both

remarkable and previously unnoticed in the literature on the U.S. market for federal funds:  the

tendency of U.S. banks to hold--and of the Federal Reserve to provide--the bulk of their reserves

during the last days of each “reserve maintenance period” (the bi-weekly period over which banks’

reserves are averaged for the purpose of reserve requirements), when the opportunity cost of

holding reserves is typically highest.  After documenting this pattern empirically, we rationalize it

in the context of a model where banks’ policy of liquidity management interacts with the central

bank’s interest-targeting policy, and where transaction costs and liquidity shocks cause both

interest rates and bank reserves to rise endogenously at the end of each maintenance period.

The main ingredients of our analysis are banks’ uncertainty on their reserve needs when

trading reserves is costly, and the Federal Reserve’s interest-rate-smoothing policy.  We show that

small costs of trading federal funds and uncertainty on reserve flows induce banks to trade late in

each maintenance period, so as to conduct federal funds transactions when they have more precise

information on their eventual reserve needs.  This policy allows individual banks to offset higher

reserve-holding costs around period-end by saving on overall transaction costs.  The aggregate

effect of this policy would only be to cause interest rates to rise at period-end if the supply of

reserves remained constant through the maintenance period.  If, however, the central bank’s goal is
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to control the supply of reserves so as to limit fluctuations of market rates around their target, in

equilibrium both interest rates and reserves should rise cyclically around period-end, in accordance

with the clear empirical patterns of U.S. federal funds data.

Our modeling perspective is similar to that of several recent studies of interbank markets,

including Kopecky and Tucker (1993), Hamilton (1996), and Clouse and Dow (1999), who first

pointed to the importance of trading and other fixed costs in the federal funds market.  We build

on these studies to develop a more complete account of the role of trading costs in explaining the

joint behavior of interest rates and reserves.  For instance, we extend Kopecky and Tucker’s

(1993) work by assuming that trading costs are incurred every day (Kopecky and Tucker assume

transactions to be costly only on settlement days), so as to be able to genuinely endogenize

differences in behavior between days.  Conversely, we strip Hamilton’s (1996) model of a number

of accessory assumptions (such as heterogeneous bank behavior, tighter restrictions on banks’

ability to sell rather than buy federal funds, week-end effects, etc.) which blur the analysis of

trading costs and lead Hamilton’s simulated settlement-day rates below typical non-settlement-day

rates, in contrast with U.S. federal funds data.  Our emphasis on the tendency of interest rates to

rise on settlement days is also similar to that of Clouse and Dow (1999).  Clouse and Dow’s study,

however, hinges on the role of fixed costs incurred when borrowing from the discount window. 

While analytically interesting, this perspective is empirically more problematic, since discount-

window lending has decreased dramatically in the U.S. since the banking crisis of the mid-1980s,

while the stylized fact we seek to explain has survived unscathed.   More fundamentally, all these1

studies feature an exceedingly stylized description of Fed intervention.  Hamilton (1996), for



 We refer to institutions subject to reserve requirements simply as “banks,” although, strictly2

speaking, these requirements apply (in the United States as elsewhere) to a larger class of
depository institutions.  See the Appendix for a summary of U.S. reserve requirements.

 In short:  If, at the margin, reserves are held for the purpose of satisfying reserve requirements,3

overnight interbank rates should be expected to stay constant (aside from negligible discounting)
based on information available daily, that is, they should display no predictable within-period
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instance, abstracts from official intervention altogether, assuming aggregate reserves to remain

constant over time.  Kopecky and Tucker (1993) and Clouse and Dow (1999) let the Fed issue

reserves randomly, irrespective of their impact on interest rates.  As a result, these studies--and

others in the literature--cannot account for the cyclical reserve patterns we identify in U.S. data.

Our paper is structured as follows.  Section 2 reviews the main evidence on the high-

frequency behavior of U.S. federal funds rates and presents new evidence on the behavior of bank

reserves.  Section 3 presents a model of the federal funds market, a simplified version of which is

solved in Section 4.  This simple version of the model yields a number of analytical results and

intuition for the more general results that follow.  Section 5 solves the more general model in

parameterized form, roughly calibrated on U.S. data.  Section 6 concludes.

2.  The High-Frequency Behavior of Interest Rates and Reserves

U.S. depository institutions must satisfy reserve requirements defined on a period-average

basis:  both actual reserves and required reserves are computed as averages of daily values over

two-week periods (i.e., the “maintenance period” for actual reserves, and an earlier “computation

period” for required reserves, each lasting two weeks).   The cyclical character of reserve2

requirements, along with the no-arbitrage condition that derives from banks’ attempts to minimize

the cost of meeting requirements (the so-called martingale hypothesis of federal funds rates)  has3



pattern.  This is because predictable rate changes would induce banks to cluster demand for
reserves in low-rate days, and vice versa, so as to minimize the cost of meeting the requirements,
until--in equilibrium--expected rates are brought into equality within each maintenance period.

 We obtained our data from the Federal Reserve Bank of New York.  Interest rate data are daily4

effective federal funds rates, computed as transaction-weighted rates on unsecured overnight
loans arranged by the (usually, 5 or so) funds brokers.  These are the rates monitored by the Fed
for intervention purposes, and represent about � of all transactions taking place in the federal
funds market.  Reserves data include end-of-day total actual reserves (applied vault cash, plus
deposits held at the Fed by institutions subject to reserve requirements) and required reserves. 
The sample runs from January 1, 1986 (the inception of the Fed’s archive), to July 8, 1998 (the
month when reserve requirements were reformed by lagging the maintenance period by four
additional weeks with respect to the computation period--see the Appendix for details).  To our
knowledge, the only prior study using daily reserve data (from a much smaller sample than ours)
is Hamilton (1996), which however focuses on issues of monetary transmission rather than of
market efficiency, and does not identify cyclical patterns in reserves.
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been the target of scrutiny since the U.S. reserve system was reformed in the 1980s.  Generally, the

martingale hypothesis has been found to fail, the most flagrant violation being the tendency of

federal funds rates to rise predictably at the end of each maintenance period (see Campbell, 1987,

Hamilton, 1996, and Balduzzi et al., 1998, among others).  Relevant evidence is summarized in the

top two panels of Figures 1-3, which plot the average and median differences between the federal

funds rate prevailing on each day of the maintenance period and the rate prevailing on the first day

of each period.   The figures show that average federal funds rates are far from constant within a4

typical maintenance period.  In particular, they tend to rise markedly over the last three days of

each period, and the rise recorded on day ten (“settlement day”) is so sharp that the typical value of

the rate for this day lies well above the typical value for the other nine (“non-settlement”) days.  As

discussed by Hamilton (1996), it is important to consider outlier-robust statistics, since an

overwhelming proportion of the variance of federal funds rates since the 1980s is accounted for by

very few observations.  The pattern of average federal funds rates within maintenance periods,

however, does not reflect the presence of outliers:  as Figures 1-3 show, the mean and the (outlier-



 The patterns are also independent of our use of volume-weighted rates, which better represent5

overall market behavior:  the cyclical behavior of end-of-day rates is qualitatively identical (see,
for instance, Balduzzi et al., 1997).
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robust) median statistics display a very similar behavior.  Furthermore, the pattern cannot be

ascribed to the behavior of the market, or of the Fed, in specific sub-periods.  To document this

claim, we split the full sample, analyzed in Figure 1, into two sub-samples:  one running from

January 2, 1986, to January 5, 1994;  the other running from January 6, 1994, to July 1, 1998.  This

particular split is motivated by the Fed’s switch, in January 1994, to a procedure whereby changes

in target rates have been publicly announced and implemented mainly at times of FOMC meetings,

a regime change which Bartolini et al. (1998) show to have affected patterns of interest rate

volatility.  As is apparent from the figures, the patterns described above are robust to sample

choice, and remain statistically significant in both the pre-1994 and post-1994 sub-samples.  Other

sample splits that we considered yielded qualitatively identical results.5

Besides the rates’ sharp rise at period-end, Figure 1 shows a pattern of slightly falling rates

over the first days of each period which, as discussed in Section 6, may reflect carry-over of high

rates from settlement day to the early days of the following period.  The data also display other

patterns (for instance, the rate tends to fall slightly on Fridays and rise on Mondays), well known

to reflect accounting conventions (e.g., the triple counting of reserves on Fridays; Hamilton, 1996). 

It will be useful in what follows to abstract from such details, and compare the behavior of interest

rates on settlement days with their average behavior on the remaining nine days.  The evidence of

high settlement-day rates is even more transparent from this perspective.  Table 1 shows that mean

settlement-day rates exceed those for non-settlement days by 18 basis points.  The mean-based test

of equality of interest rates between these two groups of days strongly rejects the null of equality.



 The F-test and the Bartlett test are standard.  The outlier-robust Brown-Forsythe test is based on6

an analysis of variance of the absolute median difference.
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The data also display periodic patterns of interest rate volatility, reflecting banks’ last-

minute scramble to build or off-load reserves in the face of unforeseen aggregate liquidity shocks.

Such volatility patterns are indirectly relevant to the mean patterns on which we focus, since

evidence of higher settlement-day rates could in principle be spuriously generated by outliers.  In

Table 1, standard deviation and (outlier-robust) mean absolute median difference statistics indicate

that the volatility of interest rates is indeed significantly higher on settlement days than in the rest

of each maintenance period.   The evidence is similar across all the subsamples we investigated,6

and consistent with previous findings (Spindt and Hoffmeister, 1988, Griffiths and Winters, 1995,

and Bartolini et al., 1999).  We also explored the settlement-vs.-non-settlement behavior of the

rates’ skewness.  The distribution of settlement and non-settlement rates appears to be positively

skewed in our full sample, and more markedly so on non-settlement than settlement days (see

Table 1).  Measures of skewness tend to be very unstable, however (see, for instance, Mood,

Graybill, and Boes, 1974, pp. 75-76).  Our analysis confirmed this feature, as neither the ranking

of settlement vs. non-settlement skewness, nor the sign of the skewness itself, proved robust to

sample choice. 

The stylized facts we focus on, however, do not depend on the shape of the distribution of

interest rates.  The non-parametric outlier-robust statistics reported in Table 1 indicate that the gap

between settlement- and non-settlement-day rates is a strongly significant and remarkably robust

feature of the data.  Median settlement-day rates exceed those for non-settlement days by 12 basis

points, and median-based tests of equality of interest rates between these two groups of days
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 The Wilcoxon-Mann-Whitney statistic tests the equality of the sum of ranks from two7

subgroups (here: settlement and non-settlement days) with the same median under the null.  The
median chi-square test is a rank-based ANOVA test comparing the number of observations in
each subgroup falling above and below the overall median.  This test’s adjusted version corrects
for continuity.  The Kruskal-Wallis test is a rank-based, one-way ANOVA which extends the
Mann-Whitney test.  The van der Waerden test is analogous to the Kruskal-Wallis test, although
it converts ranks into normal quantiles.
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strongly reject the null of equality of settlement and non-settlement rates.   Non-parametric tests7

based on the frequency of rate increases on settlement days (occurring in 70 percent of the periods)

and non-settlement days (occurring in 41 percent of the periods) yield similar results.  In sum, the

main testable prediction of simple models of reserve management under periodic requirements is

clearly violated:  federal funds rates have a predictably higher mean on settlement days;  hence,

they do not behave as martingales within maintenance periods. 

Models that reconcile this evidence with profit-maximizing behavior usually allow for

market frictions such as transaction costs, credit lines, bid-ask spreads, etc., or recognize that

reserves offer liquidity-provision benefits, besides satisfying reserve requirements.  A common

approach to modeling this liquidity role of reserves (see, for instance, Campbell, 1987) posits that

banks incur increasing costs when liquidity deviates from a target level (determined by the bank’s

relationship with its nonbank customers, its role in the payment system, and the need to secure

positive balances to avoid end-of-day overdraft penalties).  Postulating a tractable quadratic form

for such liquidity yields, and including foregone profits from interbank lending, a bank’s daily cost

of holding reserves is:

 , (1)

where  denotes the level and  the opportunity cost of reserve holdings;  indexes the strength
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early in each period, as they fear being unable to fill their reserve needs before period-end.
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of liquidity concerns;  and T denotes the target level of liquidity.  Absent other constraints, such as

reserve requirements, optimal reserves should satisfy the first-order condition associated with

minimizing (1), namely, .  By this condition, as long as  banks should hold

relatively fewer reserves on days with predictably high interest rates, and vice versa.

From this perspective, the pattern of excess reserves (i.e., reserves in excess of bi-weekly

requirements) documented in the bottom panels of Figures 1-3 and in Table 2 is remarkable.  Far

from economizing on reserve-carrying costs by holding more reserves when their opportunity cost

is low, banks hold more reserves around end-period, when interest rates are typically highest: 

mean and median excess reserves decline slightly from the first to the sixth day of each period, and

rise sharply thereafter, as banks tend to accumulate the bulk of their excess reserves in the last two

days of each maintenance period, especially on settlement day.    The market’s liquidity, like the8

federal funds rate, features a slightly declining pattern over the first few days of the maintenance

period (with oscillations attributable to day-of-the-week effects), and a sharp increase thereafter.  It

is particularly insightful to focus again on the contrast between non-settlement and settlement

days.  While excess reserves equal 2.4 percent of required reserves (or about $1.3 billion) over a

typical whole period, they equal about 7 percent of required reserves on a typical settlement day,

but less than 2 percent on non-settlement days.  All tests reported in Table 2 reject the null of

equality between settlement and non-settlement days, with non-parametric statistics showing that

excess reserves--similarly to interest rates--rise on 70 percent of settlement days.

An interesting issue, relevant for the analysis that follows, is that of whether such reserve



 Note that the Fed’s stock of securities rises on about half (51 percent) of non-settlement days,9

although the Fed is a net seller of securities, cumulatively, on these days.  Thus, on these days the
Fed disposes of its securities (thereby draining liquidity from the market) by increasing the size,
rather than the frequency, of its reverse-repo operations.  This pattern is not statistically
significant and plays no role in our subsequent model, which hinges only on average changes in
security holdings, and not on the choice between size and frequency of operations.
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patterns reflect the cyclical behavior of reserves provided to banks by the non-bank sector, or that

of reserves supplied by the Fed.  Figure 4 and Tables 3-4 settle this issue by documenting the

behavior of excess reserves when broken down into their “non-bank” and “official” components.

The top two panels of Figure 4 show mean and median reserves injected by the Fed each day of the

maintenance period, measured as the change in securities held by the Fed (under outright purchase

or under repo).  On day one in each period, the Fed typically drains liquidity from the system, on

average for 5 percent of required reserves.  After typically draining some liquidity on day two as

well, the Fed gradually injects liquidity into the system through the remaining non-settlement days.

Cumulatively, however, the Fed is a net seller of securities on non-settlement days, withdrawing

liquidity from the market--on average--on these days.  On day ten, instead, the Fed typically

increases market liquidity by purchasing securities:  its stock of securities rises on 67 percent of

settlement days, against 51 percent of non-settlement days (Table 3).9

By contrast, the bottom panels of Figure 4 show that excess reserves net of intervention

display only a mild, statistically insignificant U-shaped pattern within the maintenance period. 

This is not surprising, since one would not expect non-Fed sources of liquidity such as Treasury

payments, changes in household and corporate deposits, etc., to be related to the bi-weekly

maintenance cycle.  (It is also unsurprising to find that non-Fed liquidity displays some day-of-the

week effects.)  Table 4 formally confirms this feature:  tests of equality between mean and median
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1994 periods, as well as into alternative sub-samples.  Details are available upon request.
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excess reserves net of Fed intervention indicate insignificant difference between settlement- and

non-settlement- day rates.  Only non-parametric tests show net reserves to rise slightly more

frequently (59 percent of the time vs. 48 percent of the time) on settlement than on non-settlement

days, but even this feature is significantly less marked than for gross reserves.  10

To summarize, this section documents strong evidence of two stylized facts which the

analysis of the next sections is called to explain.  First, there is a strong positive correlation

between the daily behavior of prices (interest rates) and quantities (reserves) in the U.S. market for

federal funds, which indicates that endogenous patterns in demand dominate the behavior of this

market at this frequency.  Second, the cyclical evolution of reserves reflects essentially the

behavior of Fed intervention, which therefore must be explicitly accounted for, if one’s goal is to

provide a reasonably realistic model of the U.S. interbank market for reserves.

3.  The Operating Environment of Depository Institutions

We now present a stylized model of the U.S. market for federal funds to explain the

correlation between prices and quantities across settlement and non-settlement days documented

above.   We cast the model in discrete time by collapsing all transactions a bank undertakes in the

course of a day into (at most) a single daily transaction, after which the bank’s position is tallied

for the purpose of reserves computation.  Let  denote the reserves a bank holds at the end of day

t, and let  denote the interest charged on inter-bank loans extended overnight from day t to day

t+1.  The opportunity cost of holding  overnight is then .  Banks also incur a (quadratic) cost
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when their liquidity deviates from a target level T.  Thus, as in Equation (1) and in related studies,

a bank’s daily cost of holding  is .

Every day, banks receive net overnight deposits from their non-bank customers, denoted

.  If a bank does not trade in the interbank market, its reserve position at the end of day t is . 

For simplicity, we assume required reserves to remain constant, so that  describes a shock to

both actual and excess reserves, the latter being the only relevant reserve variable in our model. 

Also for simplicity, we let the distribution of  be continuous on an infinite support (to imply that

there is always a possibility--however remote--of a reserve shortfall), and we assume it to be

distributed identically and independently over time.  To capture in the simplest possible way the

different behavior of the market between the first nine (non-settlement) and the last (settlement)

days of each period, we consider a sequence of maintenance periods, each lasting only two days,

referring to day one of each period as “non-settlement day” and to day two as “settlement day.” 

Our theoretical results are qualitatively valid under more general conditions than those just

outlined, however.  In particular, in Section 6 we briefly discuss how more complex models might

explain interest rate and liquidity patterns over the ten days of real-life maintenance periods.

To model the aggregate market cleared by the average federal funds rate, we let  be

uncorrelated across banks and assume banks to be of infinitesimal size, with unit total mass, so

that aggregate reserves originating from the non-bank sector, , are not random. 

Disregarding discounting, whose impact is negligible over such short horizons, the banks’ problem

is to minimize the expected cost of holding reserves, while keeping average reserves over the

period at least equal to a required level, denoted  in what follows.

Each day, after the realization of , banks may trade federal funds, borrowing or lending
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overnight, to achieve an end-day reserve position different from .  Whenever a bank trades

funds, so that , it must pay a fixed cost which, to simplify tracking of reserve accounts, is

assumed payable by means other than cash or Fed deposits.  We denote this transaction cost with k

and interpret it broadly, to include a variety of fixed costs associated with trading federal funds,

such as brokerage and Chips or Fedwire transaction fees, as well as--and more importantly--the

costs of searching for banks with matching liquidity needs and those resulting from the need to

split large transactions into many small ones to work around credit lines, minimize exposure to

interest rate fluctuations, etc. (see Kopecky and Tucker, 1993, Hamilton, 1996, and Hancock et al.,

1999, for a discussion).  Our results show that such costs allow our model to replicate the patterns

observed in the U.S. federal funds market.  In any case, the most revealing sign that transaction

costs play an important role in this market is that banks do hold excess reserves in equilibrium,

foregoing the option of selling them on the market--at positive returns--at period’s end.  

We assume penalties on reserve shortfalls to be prohibitively large, abstracting from banks’

ability to roll-over a fraction of their reserve imbalances to future periods, or to borrow reserves

from the Fed at penalty rates.  Finally, although we ignore non-cyclical regulations such as daily

overdraft penalties and the requirement for banks to maintain a fixed deposit at the Fed as a

“clearing balance,” we capture their effects on banks’ desire to hold reserves irrespective of

periodic requirements by our assumption (1) that banks target a daily reserve balance T.

4.  The Timing of Optimal Reserve Accumulation

4.1.  A typical bank’s problem.  We solve our model beginning with the liquidity-management

policy of an isolated, price-taking bank, facing reserve requirements, stochastic liquidity shocks,
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and transaction costs.  We then build on this analysis to study the equilibrium of the banking sector

as a whole, the behavior of the Fed, and the dynamics of aggregate reserves.

The individual bank we consider must choose, on each day t, whether and how much to

trade in the federal funds market.  Since our problem is stationary across maintenance periods--

though not within periods--we can drop the subscript t from our notation, while keeping the

distinction between settlement and non-settlement days.  Thus, we denote the interest rate by

 if falls on a non-settlement day, and by  if falls on a settlement day.  Recalling that

the bank’s reserves must average at least  over the period, its intertemporal problem is:

 , (2a)

 , (2b)

where the expectation in (2a) is taken over the distribution of , while the bank faces no residual

uncertainty at trading time on settlement day, since by then  is already known.  In (2a-b), the

indicator function  takes a value of one when the event in square brackets is true, and zero

otherwise;  and the bank must satisfy reserve requirements on every settlement day.

To develop intuition for the economics of our problem, in this Section we analyze the

special case where reserves do not provide liquidity benefits (i.e., we let �=0), so that banks hold

reserves only to satisfy reserve requirements.  The next Section considers the more general case,

which preserves much of the intuition provided by the simpler case. 

4.2.  Settlement-day behavior.  Given the reserve position inherited from non-settlement day, ,

and the day’s liquidity shock, , on settlement day the bank follows a simple policy.  If
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, it must borrow at least  to meet reserve requirements.  Since excess reserves

have no value, the bank will borrow exactly this amount.  If , instead, the bank may

choose either to trade or to remain idle.  If the bank decides to trade, it will still find it optimal to

meet the requirements exactly, rather than carry unremunerated reserves on its books.  In this case,

the bank’s net borrowing  is negative, reflecting its decision to lend funds overnight.

When a bank finds itself with excess reserves (i.e., ), however, it may prefer not

to trade.  This is the case if the interest flow it would earn from a loan does not compensate it for

the cost k, that is, if  or .  (We break ties in favor of no trading.) 

Thus, a bank facing trading costs will hold excess reserves on average, as it never has a reserve

shortfall but sometimes holds excess reserves.  Formally:

Result 1:  If , i.e., if transactions are costly, then an individual bank’s excess reserves are

positive over the maintenance period, on average. 

  

Proof:  On day S, the bank borrows  if either  or , bringing

its daily reserves to  and its average reserves to .  If, instead, , the

bank remains idle on day S, and its day S reserves are .  Hence, average reserves over the

period weakly exceed .  They do so strictly if and only if  and

, which can be true only if .  �

4.3.  Non-settlement-day behavior.  Given the information available at trading time on day N, the

bank can compute the expected loss for settlement day, , as a function of  as:
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 = 

                                    = 

                                         +

                         = +

                                    �  , (3)

Substituting (3) into (2a) allows us to characterize the bank’s optimal policy on non-

settlement day, and highlights that a fixed transaction cost does not impair the martingale property

of federal funds rates (which, in our context, requires the rate to remain constant over each

maintenance period).  Intuitively, since banks would react to a predictable pattern in interest rates

within a maintenance period by opening unbounded positions to generate infinite profits, a finite

transaction cost cannot prevent a bank from arbitraging even minuscule differences in rates

between days.  Formally, this property becomes apparent by considering, for example, the case

.  In this case, a bank would try to lend an unboundedly large amount of reserves on day N

( ), and borrow a corresponding amount of reserves (plus ) on day S ( ).  As

the terms involving cumulative distributions in (3) go to zero, the firm’s expected non-settlement

loss, , goes to minus infinity with  (since ), as the term

 swamps any finite transaction cost.  Conversely if .  Hence:

Result 2:  When �=0, and irrespective of whether k>0 or k=0, a bank’s optimization problem has a

bounded solution only if interest rates are constant:  .

      

As long as the only role of reserves is to satisfy reserve requirements, as assumed in this
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 Strict equality of interest rates reflects our assumption of no discounting within maintenance11

periods.  With discounting, the exact equilibrium condition is .  
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section, (lump-sum) transaction costs do not relax the required equality of settlement and non-

settlement-day rates.   Transaction costs, however, do affect banks’ optimal reserve holdings.  If11

k=0, a bank is indifferent as to the timing of its reserve holdings:  its total cost over the period is

, irrespective of when reserves are held.  If k>0, instead, the bank’s position on day N

affects its trading on day S, as captured by the dependence of day S’s inaction range on the reserves

inherited from day N.  The bank is then no longer indifferent to when it holds reserves, even with

constant interest rates.  In particular, it benefits from waiting for information on eventual reserve

needs to arrive on day S, so as to economize on the transaction costs.  Formally:

Result 3:  If reserves have no liquidity-provision role ( ) and the interest rate is constant over

the maintenance period ( ), then a bank never trades on non-settlement day:   .

Proof:  Consider a candidate policy whereby the bank trades on day N with positive probability,

and compare its cost with that of an alternative policy which postpones all the candidate policy’s

transactions for day N to day S.  The two policies feature identical average reserves over the

period, hence both satisfy reserve requirements if the candidate policy does.  The opportunity cost

of funds is also the same for both policies, since the same rate applies to funds traded on either

day.  Total transaction costs are the same across the two policies along all paths where the

candidate policy involves no trade on either day N or on day S, but the alternative policy saves k

along paths where the candidate policy requires trading on both days.  Thus, the alternative policy

dominates the candidate policy at least weakly (and strictly if the probability of trading on both
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days is positive, as is the case if the support of the distribution of  is unbounded below).  Hence,

optimal behavior entails inaction on day N.  �

Recalling that equality of interest rates is necessary for this section’s model to yield a well-

defined solution, Result 3 completes the description of the bank’s optimal policy:  on day N, the

bank lets its reserve account fully absorb the liquidity shock, holding  at day’s end;  on day

S the bank brings reserves exactly in line with requirements ( ) if either 

 or , and holds that day’s random liquidity ( ) otherwise.

4.4.  Reserve patterns.  We can now compare the expected level of reserves on settlement day to

that for non-settlement day, .  We shall do so under the regularity

assumption that , i.e., that the banking sector as a whole is required to hold reserves at least

weakly larger than exogenous flows would imply.  Clearly, this calls for the Fed to stand ready to

provide reserves as needed by the banking sector.  Based on our previous analysis, we then show

that expected reserve holdings on settlement days exceed those on non-settlement days:

Result 4:  If  , , and , then  .

Proof:   = + (4a)

= + (4b)

+ (4c)

+ (4d)

    = (4e)

=  , (4f)
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 Strictly speaking we should identify shocks using both time- and bank-specific subscripts, as in12

.  We can avoid this notational complication, provided that  is understood to be bank-
specific.

18

where (4b) reflects the optimal policy studied above;  (4c) holds because an idle bank never has a

reserve deficiency, so that the unconditional distribution of  is truncated below at ;  (4d)

holds because reserve requirements bind on average, i.e., ;  and (4f) holds because in

equilibrium, with constant interest rates, banks never trade on non-settlement day.  � 

Thus, under the mild regularity conditions we have imposed on the definition of reserve

requirements and on the distribution of reserve shocks (aimed, essentially, to assure that reserve

requirements bind weakly on average, and with a positive probability in all states), banks strictly

prefer to hold more reserves on settlement day if .  Intuitively, extending this section’s

model so as to allow for a well-defined (as opposed to vertical) daily trade-off between prices and

quantities should preserve, for small differences between settlement and non-settlement rates,

banks’ preference for postponing acquisition of reserves to settlement day.  Before undertaking

this extension in Section 5,  however, we outline how the model of this section can be closed by

industry aggregation and to include the Fed’s intervention.

4.5.  Industry equilibrium, interest targeting, and Fed intervention.  To study the market’s

equilibrium and the associated behavior of the Fed, we must aggregate reserve demand across

banks.  As discussed above, we abstract from aggregate interest rate variability by assuming that

the market is populated by a continuum of banks such as that studied in Sections 4.1-4.4, and by

letting each bank receive an idiosyncratic  shock on each day.  12
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 See Hamilton (1996) for a similar assumption.  Bartolini et al. (1998) make the polar13

assumption that there is only a common, market-wide shock, reflecting that paper’s focus on
interest rate volatility rather than on the rates’ mean behavior.
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These assumptions have two related implications.  First, for the banking sector as a whole,

there is no uncertainty on aggregate liquidity, implying non-stochastic equilibrium interest rates.  13

Recalling that we interpret exogenous liquidity shocks as customer-originated transactions, and

that their average  equals µ with probability one, the assumption that liquidity shocks

are identically distributed across days implies that liquidity net of Fed intervention displays no

maintenance-period-related pattern, consistently with the evidence documented in Section 2.

Second, the assumption of bank-specific shocks implies that the empirical frequency of the

time-series behavior of an individual bank’s reserves corresponds to the steady-state (ergodic)

cross-sectional distribution of reserves among banks:  since banks are identical ex-ante, the

probability of each of them being in a particular state must equal the fraction of time a bank

spends, on average, in that particular state between  and  (i.e., as , the bank’s initial

condition becomes irrelevant, and banks are mixed according to their steady-state distribution).

In this setting, it is easy to characterize the Fed’s interest-targeting policy:  intervention,

added to liquidity originating from the non-bank sector, must be such as to satisfy banks’ daily

reserve demand at the target rate.  That is, denoting its target for day t by , the Fed must provide

 so that:

, (5a)

, (5b)

where  is an individual bank’s demand for end-day reserves for day t, given past liquidity
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shocks and the market-determined interest rates.  Now, in the model of this section, .  Hence

the target rate should be a constant  over the two days.  In turn, with equal settlement and non-

settlement interest rates, banks remain idle on non-settlement day.  Therefore:

 , (6)

so that, from (5a) and (6):

 (7)

is the liquidity of the banking sector at the end of non-settlement day, and .

On settlement day, banks borrow (lend, if negative)  if either  or

, and remain idle otherwise.  Therefore:

 ,   for    or  , (8a)

          ,         otherwise . (8b)

So that, combining (5b) and (8b), and using Result 4,

 . (9)

Intuitively, to smooth interest rates over the period, the Fed must issue more liquidity on

settlement days than on non-settlement days, a prediction matching the evidence discussed in

Section 2.  What happens, however, if the Fed is unwilling to fully accommodate the increase in

reserve demand on settlement days?  To answer this question, we now consider a slightly more

general model, which allows for differences in equilibrium rates across days.
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5.  Patterns in Interest Rates and Reserves with Liquidity Yields

While the simple model of the previous section allows analytic results and conveys the

intuition behind our problem, it enforces a tight no-arbitrage condition whereby interest rates must

remain constant over each maintenance period and banks do not trade at all on non-settlement

days.  For our model to capture realistic patterns in interest rates and reserves, we now reinstate a

liquidity-provision role for reserves by assigning positive values to the parameter � in (1).  Since

deviations from the target level of reserves T are now costly, banks will not open unbounded

reserve positions in response to finite differences in rates across days.  Equilibrium interest rates

can then differ across days in response to liquidity shocks.  As noted in Section 2, a liquidity-

provision role for reserves also gives to banks an incentive to hold less reserves on days with

higher interest rates.  The resulting model can still feature high reserves on high-interest-rate days

if the transaction-saving motive identified in the previous section is not more than offset by this

liquidity-targeting motive.  As we show below, this is indeed the case in equilibrium when banks’

behavior is allowed to interact with a realistic description of the Fed’s behavior, whereby the Fed

tolerates small fluctuations of interest rates around their target level.  The resulting model can then

capture the positive correlation between interest rates and reserves we identified in U.S. data.

5.1.  Settlement-day behavior.  On day S, a bank must choose whether to trade or not, a choice it

makes by comparing the loss from trading with the loss from remaining idle, knowing that if it

does trade, then it would trade the amount minimizing its total loss.  This optimal holding of

reserves conditional on trading is obtained by differentiating (2b) with respect to , upon setting

, which yields .  Since this unconstrained optimum may fail to satisfy reserve
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requirements, settlement-day reserves conditional on trading equal .

Of course, a bank may choose not to trade on day S to save the cost k.  We now show that

the optimal policy for day S is defined by a range of inaction whose boundaries depend on the

inherited reserves :  the bank does not trade if  ;  otherwise it trades, so as to set

reserves at .  We characterize this policy as a function of  over three ranges:

i) :  in this case  satisfies the requirement .  Hence, if the bank

trades, its loss is minimized at .  By remaining idle, instead, the

bank’s loss is .  Inaction is then optimal if  ;  the bank

borrows (lends, if negative)  otherwise. 

ii) :  in this case, the lower bound of the inaction band that was optimal

in case i), , falls below the required level .  The bank must then acquire reserves

even for  in the range , where it would have preferred to remain idle.  As it

is forced to pay the cost k for these values of , the bank will choose to hold .  Its policy is to

remain idle if , and to borrow (lend, if negative)  otherwise.  

iii) :  now reserves inherited from day N are too low for  to satisfy the requirement

.  Hence, if the bank trades, it can at best settle on the corner solution ,

which just meets the requirement.  (The problem’s convexity ensures that the constrained optimum

lies at the corner.)  Since  cannot be attained, the bank may well decide not to trade at all.  To

study this decision, let , which is positive in this range and is

the level of reserves the bank is required to hold in excess of the unconstrained optimum.  If the
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bank trades, then it holds  and its loss is 

= .  Since the loss from inaction is , the bank stays

idle if  and holds  otherwise.

5.2.  Non-settlement day.  Stepping back to day N, we first consider the expected loss for day S,

based on information available at the end of day N.  To do so, recall definition (1) and write:

 = 

= 

+ 

 = +

�  , (10)

where the boundaries of the inaction range,  and , are those studied above for cases

i)-iii), and are summarized in Table 5.

It is now easy to compute  by numerical integration for any given distribution of

the shock , and to find the optimal reset point for day N by a standard grid search over .  The

solution for  can then be checked against the analytic first-order conditions for optimal trading

yielded by (2a):

 . (11)

  The inaction range on day N is also easy to obtain numerically, by comparing expected

losses from trading with expected losses from inaction.  The bank’s policy on day N is then the

following:  do not trade if ;  trade, re-setting reserves at , otherwise.  and 
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satisfy the conditions:

 , (12a)

 . (12b)

This solution is shown in Figure 5 for an illustrative set of parameters (discussed below). In

the figure, the total expected cost as of day N, , is plotted as the sum of the expected loss

for day S, , and the current cost of holding reserves on day N, .  The former is

decreasing in , as the bank foresees holding less reserves on day S when holding more reserves

on day N;  the latter is increasing in , as the opportunity and liquidity costs of holding reserves

on day N rise with  .  Both are convex in .  Their sum, , is U-shaped and is

minimized at .  Interestingly, and intuitively, this optimal reset point exceeds the daily average

reserve requirement ($3 million in the figure), because overshooting requirements decreases the

likelihood of having to transact again on day S.  The figure also identifies the optimal range of

inaction, whose bounds--as required by (12a-b)--are the points  and  at which  equals

the expected loss at , , plus the cost k.

5.3.  Implications for Fed intervention in equilibrium.  It is now easy to characterize the

aggregate demand for reserves, and then to close the model by incorporating the Fed’s daily target

rates.  Following the previous analysis, the  banks whose liquidity falls in the

 inaction range do not trade on day N and hold .  The remaining banks (with mass

) demand .  Therefore, the aggregate net demand of reserves on day N

is:

 , (13)
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 Clearly, our simple calibration cannot capture the historical evolution, nor the cross-sectional14

features, of the market we study.  For instance, while we hold required reserves constant, these
have been on a declining trend in recent years, reflecting banks’ growing use of “sweep”
practices that reduce required reserves by transferring liabilities subject to requirements (e.g.,
checking accounts) overnight to liabilities not subject to requirements (e.g., money-market
accounts).  We also abstract from differences in behavior among banks, such as those between
small banks (typically net lenders in the market) and large banks (typically net borrowers).
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which depends on  and  through , , and .  In equilibrium, the Fed must provide

 if its target rates for the two days are  and , respectively.

We proceed to illustrate the model’s solution, and to assess the extent to which our model--

despite its many simplifying assumptions--delivers reasonably realistic results.  While we try to

choose plausible parameters, we are of course aware of the crude nature of our exercise.  14

We fix the interest rate on day N, , at 5 percent (on an annual basis, like all other rates

mentioned in this section), and solve the model for a variety of possible levels of the rate on day S,

.  We assume the liquidity shocks to be normally distributed, and choose parameters drawing on

Clouse and Elmendorf ’s (1997) study of the federal funds market.  From that study we draw

estimates of total required reserve balances of $18 billion;  of the reserves banks would optimally

hold for liquidity purposes (the empirical analog of (T-r/�)), about $6 billion;  of the interest semi-

elasticity of reserve balances, which Clause and Elmendorf set (mostly judgementally) at 0.1

percent;  and of the standard deviation of aggregate reserve shocks, $1-1� billion per day.  With

6,000 banks in Clouse and Elmendorf’s sample, these figures suggest parameters for our model in

the range of $3 million for  and T, and of 1E-10 for .  Ceteris paribus, these parameters imply

that each additional interest basis point decreases a typical bank’s reserves by 10 ×0.01/360=138910

dollars;  and that a bank’s optimal reserves in the absence of reserve requirements (the analog of
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(T-r/ )) should be in the one- to two-million dollar range, for interest rates of about 5 percent.

The volatility of aggregate shocks (absent in our model) provides no information on the

cross-sectional variability of bank-level liquidity; with a standard deviation of aggregate liquidity

shocks of about $0.2 million per bank, however, a standard deviation of end-day bank-level

reserve shocks of �=$0.5 million seems reasonable.  We then set =  (= ), assuming that--in the

long run--banks could optimally manipulate their non-bank customer and portfolio positions so as

to bring average reserve balances near their required level.  Finally, we set k conditional on the

other parameters, so that the model predicts excess reserves of about 2 percent of required

reserves, as in our estimates of Section 2;  this is the case for a transaction cost k in the order of

$90.  This amount, while larger than explicit costs of trading (e.g., Fedwire/Chips and brokerage

fees), seems small relative to that of other resources--such as expensive managerial time--banks

must dedicate to each reserve transaction, rather than to other profitable tasks.

The model’s dynamic properties are summarized in Figure 6, which displays on its vertical

axis the aggregate daily demand of reserves, computed as the average from a Montecarlo run with

20,000 maintenance periods.  On average over the two days, reserves exceed the requirement by

about 1.8 percent, and barely decrease as the settlement-day rate  (on the horizontal axis) rises

from slightly below to slightly above the non-settlement day rate =5 percent.  Realistically,

aggregate excess reserves are positive on both days, but markedly lower on the first day.  The

distance between the (descending and ascending) lines plotting mean daily reserves corresponds to

the Fed’s intervention needed to secure market clearing at the value of  plotted on the horizontal

axis.  Thus, for instance, the value  percent yields the solutions for  and  when the Fed

fully accommodates banks’ demand for reserves at a constant target rate (since  is also set at 5
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percent).  For our choice of parameters, to smooth interest rates completely, the Fed would have to

ensure that reserves lie at the points marked by round dots in the figure, and increase its supply of

reserves on settlement days by about 2.2 percent over its non-settlement-days’ supply.  

Solutions for higher values of  illustrate equilibria in which the Fed lets demand for

liquidity in high-demand (typically, settlement) days partly spill over into a small rise in interest

rates.  This realistically captures the Fed’s reluctance to provide liquidity elastically at a fixed

target rate, and its preference for enforcing a small corridor of rates, the width of which reflects its

tolerance for day-to-day expected interest rate fluctuations.  For instance, Feinman (1993)

estimates that only expected deviations from the target rate greater than 20 basis point have,

historically, triggered Fed intervention with almost-unit probability.  Feinman’s roughly linear

intervention-hazard function (valued at about 0.20 at a zero-expected-deviation of the market rate

from its target) corresponds to a band of tolerance less than 20 basis points wide.  

Our analysis in Section 2 provides concurring--if crude--evidence to the same extent,

pointing to the Fed’s tolerance of a systematic spread in rates within maintenance periods of about

15 basis points.  In our simulations, a spread of 15 basis points between high-demand (settlement)

and low-demand (non-settlement) days requires the Fed to provide 1.7 percent more reserves on

settlement days than on non-settlement days, at the levels marked by square dots in Figure 6.  This

gap falls for higher settlement-day rates, as a larger interest premium trims the inaction band’s

width.  Should the Fed decide to let the higher demand of reserves on day S spill over only to

interest rates (hence allowing no adjustment in reserves), it would have to accept settlement-day

rates 64 basis points higher than non-settlement-day rates.15
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that of a smaller �, for which our numerical results approach the analytical results of Section 4. 
In the limiting case of �=0, a flat interest-rate pattern  (  percent) would be needed to
prevent arbitrage.  In this case, holding the other parameter at the values discussed above, excess
settlement-day reserves would be 3.2 percent above their non-settlement-day level (with period-
average excess reserves of about 3 percent of the required level).  Increasing k to $190 brings
period-average excess reserves up to 8 percent of their required level.
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6.  Concluding Remarks

A simple model of the U.S. market for federal funds can explain the tendency of U.S.

banks to hold more reserves--and of the Federal Reserve to provide them--on days when the cost

of holding reserves is cyclically highest:  uncertainty over reserve needs and small costs of trading

induce banks to trade mainly when they are endowed with the most precise information on their

reserve needs--particularly on settlement days--even if this strategy entails higher costs of carrying

reserves overnight.  In turn, upward pressure on interest rates around period-end combines with the

Fed’s goal to smooth interest rates over time to induce the central bank to provide reserves mostly

around the end of each reserve maintenance period.

Our model is clearly stylized, and focussed on only a few key features of the U.S. market

for federal funds.  We designed it with the main goal of replicating the observed correlation

between prices and quantities across settlement and non-settlement days.  While doing so, we left

aside other features of this market--such as week-end effects, heterogeneous bank behavior, and

patterns of interest rate volatility.  Existing research provides a convincing explanation for these

phenomena, which appear analytically unrelated to the role of the transaction strategies on which

we focus.  Our modeling strategy also disregarded the intriguing--if less significant--pattern of

declining reserve holdings and interest rates during the first few days of typical maintenance

periods.  However, we conjecture that a multi-period model of liquidity management in the same

spirit of our model should be able to explain this pattern.  If banks behave as our model predicts,
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they would hold unusually high reserves on settlement days, and dispose of these excess reserves

in the following period, actually unwinding their positions only when reached by a liquidity shock

sufficiently large to justify the payment of the transaction cost.  Thus, transaction costs would lead

to serially correlated demand for reserves, in analogy to models of investment or hiring and firing

in models with costly capital and labor adjustment.  To the extent that the Fed accommodates this

demand only imperfectly, any such cyclical behavior on the market’s demand side would also lead

to a cyclical behavior of interest rates.

Other aspects of the federal funds market deserve closer scrutiny and are related to this

paper’s goals and modeling perspective.  Our model, for instance, implies that banks prefer to

transact late in the maintenance period, when more relevant information is available, suggesting

that the volume of gross transactions should rise around end-period.  It would be interesting to

verify this implication, but daily data on gross interbank transactions are not available.  Recently,

Dell’Ariccia and Garibaldi (1999) have also shown that search costs in credit markets may help

explain some features of the dynamics of gross credit flows at the quarterly frequency.  This view,

applied to our study’s higher frequency, points to a channel that would strengthen our results:  if

settlement-day transaction costs fall as trade volume rises (e.g., because of the associated decline

in “search” costs), then banks’ tendency to cluster trading on these days should be exacerbated.  

Finally, future research should offer a more detailed analysis of market imperfections and

institutional features which we captured under the gross heading of “transaction costs.”  We

suspect, for instance, that indivisibilities in federal funds trades and rigidities induced by Fed

regulations (especially penalties for overnight overdrafts) may also induce banks to defer federal

funds trading to the late portion of each maintenance period.  A formal analysis of these rigidities

is more difficult than that of transaction costs, and is best deferred to further research.  In general,

however, a more detailed and realistic description of constraints and frictions faced by market

participants should yield results similar to those of this paper, as long as a bias towards “late”
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trading--whether stemming from transaction costs, or other sources--is preserved.
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Appendix.  Summary of Reserve Requirements in the United States

Under the Garn-St. Germain Depository Institutions Act of 1982, most commercial banks,

mutual savings banks, savings and loan institutions, credit unions, and branches and agencies of

foreign banks operating in the United States are subject to reserve requirements.  Banks with

reservable liabilities of less than $2 million are not subject to reserve requirements;  slightly larger

banks are subject to requirements, although they are only required to report quarterly.  A regime of

almost-contemporaneous two-week computation and maintenance periods was established in

1984.  (Until then, one-week computation periods determined reserves to be held in one-week

maintenance periods lagged by two weeks.)  In this regime, required reserves are computed over

two-week “computation periods” beginning on Tuesday and ending on the second following

Monday;  actual reserves must be held over “maintenance periods” beginning on Thursday, two

days after the beginning of the computation period, and ending two weeks later on “settlement

Wednesday.”  (The levels prevailing on the most recent business day are imputed to week-ends

and holidays.)  In July 1998 the maintenance period was lagged by an additional four weeks with

respect to the previous regime.  Reservable liabilities consist of average transaction deposits

(including checking accounts and demand deposits, but excluding money-market deposits and

savings accounts);  reserves include average Federal Reserve deposits and vault cash, the latter

applied with a one-period lag.  Excess Fed balances (but not excess vault cash), up to the greater of

$50,000 or four percent of required reserves, may be carried over to the next maintenance period. 

Four percent of deficiencies may also be carried over to the next period, while further deficiencies

are charged a penalty equal to the discount rate plus 2 percent.
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Table 1

Federal Funds Rate:  Summary statistics and tests of equality between settlement and non-settlement days
(January 2, 1986 - July 1, 1998)

Statistic Non-settlement Settlement Equality Test Degrees Value Probability
days days of freedom

Mean difference from -7.5 10.3 t-test 2812   7.44 0.000
day 1 (basis points)

Median difference from -6.0  6.0 Wilcoxon/Mann-Whitney 1   7.59 0.000
day 1 (basis points) Median chi-square 1 32.80 0.000

Adj. median chi-square 1 32.124 0.000
Kruskal-Wallis 1 57.62 0.000

van der Waerden 1 70.95 0.000

Fraction of increases 40.5 69.3 Pearson chi-square 1 98.12 0.000
(percent) Likelihood ratio chi-square 1 99.20 0.000

Standard Deviation of 28.0 47.4 F-test (2490,322) 2.86 0.000
daily changes (basis points) Bartlett 1 204.58 0.000

 
Mean absolute median 12.8 31.1 Brown-Forsythe (1,2812) 135.68 0.000
difference of daily changes
(basis points)

Skewness of daily changes 9.69 5.41



Table 2

Excess Reserves:  Summary statistics and tests of equality between settlement and non-settlement days
(January 2, 1986 - July 1, 1998)

Statistic Non-settlement Settlement Equality Test Degrees Value Probability
days days of freedom

Mean difference from day 1  1.8 7.5 t-test 3138   21.82 0.000
(percent of required reserves)

Median difference from day 1  1.6  6.8 Wilcoxon/Mann-Whitney 1   14.74 0.000
(percent of required reserves) Median chi-square 1  87.24 0.000

Adj. median chi-square 1   86.15 0.000
Kruskal-Wallis 1 217.32 0.000

van der Waerden 1  272.66 0.000

Fraction of increases 48.9 69.3 Pearson chi-square 1  48.75 0.000
(percent) Likelihood ratio chi-square 1  50.01 0.000

Table 3

Securities bought by the Fed (outright or under repo):  Summary statistics and tests of equality between 
settlement and non-settlement days (January 2, 1986 - July 1, 1998)

Statistic Non-settlement Settlement Equality Test Degrees Value Probability
days days of freedom

Mean difference from day 1 -3.9 1.5 t-test 3138   8.63 0.000
(percent of required reserves)

Median difference from day 1 -3.1 1.5 Wilcoxon/Mann-Whitney 1   8.25 0.000
(percent of required reserves) Median chi-square 1 36.61 0.000

Adj. median chi-square 1 35.90 0.000
Kruskal-Wallis 1 68.07 0.000

van der Waerden 1 78.26 0.000

Fraction of increases 51.1 67.2 Pearson chi-square 1 30.07 0.000
(percent) Likelihood ratio chi-square 1 30.76 0.000
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Table 4

Excess reserves net of intervention:  Summary statistics and tests of equality between settlement and
non-settlement days (January 2, 1986 - July 1, 1998)

Statistic days days of freedom
Non-settlement Settlement Equality test Degrees Value Probability

Mean difference from day 1 5.7 6.1 t-test 3138  0.68 0.499
(percent of required reserves)

Median difference from day 1 4.9 5.4 Wilcoxon/Mann-Whitney 1  0.52 0.606
(percent of required reserves) Median chi-square 1  0.17 0.681

Adj. median chi-square 1  0.12 0.725
Kruskal-Wallis 1  0.27 0.606

van der Waerden 1  0.26 0.611

Fraction of increases 47.8 58.8 Pearson chi-square 1  14.10 0.000
(percent) Likelihood ratio chi-square 1  14.14 0.000

Table 5

Optimal policy for settlement day

Inherited level of 
Inaction band for   Reset point, =

Lower bound Upper bound

 high x :    N 

intermediate x : N 

low x :  N 
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Fig. 1:   Federal funds rate and excess reserves (Jan. 2, 1986 - July 1, 1998)
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Fig. 2:   Federal funds rate and excess reserves (Jan. 6, 1994 - July 1, 1998)
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Fig. 3:   Federal funds rate and excess reserves (Jan. 2, 1986 - Jan. 5, 1994)
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Fig. 4:   Securities bought by the Fed, and excess reserves net of intervention (Jan. 2, 1986 - July 1, 1998)




