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1. Introduction 

 The econometrics literature contains various methods for testing for an unknown 

breakpoint in the parameters of a time-series model. Siegmund (1986) proposed a test for a 

single parameter, Akman and Raftery (1986) for a single Poisson parameter, and James, James 

and Siegmund (1987) for multiple parameters. Andrews (1993) provided a very general 

methodology based on the generalized method of moments (GMM), which includes as special 

cases models estimated using ordinary least squares and various instrumental variables 

techniques.1 

 In all of those cases, the tests abstract from the direction of the parameter change at the 

breakpoint. When test results identify a breakpoint, the value of each parameter may have either 

increased or decreased, since the statistics considered are quadratic forms as functions of the 

parameters.  

 However, in some applications it may be of interest to investigate the directionality of the 

change, or to state the null hypothesis in terms of an increase or decrease in the value of a 

parameter that may be of particular interest. For instance, in the case of a monetary policy 

reaction function, we may want to know whether the magnitude of the reaction to deviations of 

inflation from target has increased or decreased over a given period.  

 In such cases, the two-sided tests are not sufficient for two reasons. First, the significance 

level of the test – the probability in the relevant tail of the distribution – is different and needs to 

be adjusted. Second, this adjustment is not as simple as when the estimate is normally distributed 

because the sup operator in the breakpoint test introduces a certain amount of asymmetry.  

 This paper uses the framework of Andrews (1993) to derive an analogous method for a 

one-sided test for a single parameter. The procedures in Andrews (1993) may be used to test for 
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a change in a single parameter. However, our test differs in two ways: it takes into account the 

direction of the change and it allows other parameters to change at the same time as the 

parameter being tested. If the model has more than one parameter, we consider various possible 

treatments of the other parameters in the test. The test statistic is the sup of a series of Student’s t 

statistics. We show that the sup t statistic is distributed as a normalized Brownian bridge.  

 The distribution of the one-sided test statistic differs from the two-sided tests tabulated in 

Andrews (1993, 2003) and Estrella (2003), but it shares similar computational difficulties. Thus, 

we also discuss the computation of p values and critical values. As in the earlier literature, we 

make use of results in DeLong (1981), who also considers the one-sided case, although he does 

not derive an explicit formula in this case. 

 To illustrate the method and its potential usefulness, we present a simple application to 

monetary policy, based on the concerns expressed above. We ask whether the reaction to 

inflation deviations has increased since 1959, and we allow for more than one possible break. 

We also consider whether the inflation reaction parameter has changed relative to the reaction to 

deviations of output from potential. 

 Section 2 defines the test statistic and derives its distribution. Section 3 provides a 

method for calculating p values and critical values, and provides a table of the latter. The 

application to monetary policy is given in Section 4, and Section 5 provides some general 

conclusions. Proofs of the propositions stated in the text appear in the Appendix. 

                                                                                                                                                             
1 Ghysels, Guay and Hall (1997) provided an alternative method based on predicted orthogonality conditions. 
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2. Econometric theory 

 We begin with a time series model that is indexed by a parameter vector tθ , where t 

represents time. The vector tθ  is of the form ( ),t tθ β δ= , with k parameters 1 , ,t ktβ β…  that may 

change over time and q parameters 1, , qδ δ…  that are fixed. Although the first k parameters may 

change, we are only interested in testing whether one of them, say 1tβ , is constant throughout the 

sample. However, we allow for the possibility that other parameters may change at the same 

time. Moreover, we would like to test whether 1tβ  changes in a given direction, say increases.  

 The literature has focused on the joint distribution of the estimate of changes in the full 

vector tβ . When testing for a single unknown breakpoint, Andrews (1993) has shown that 

various natural test statistics are distributed as the square of a normalized tied-down Bessel 

process distribution. The distribution function is then computed using the approach of DeLong 

(1981) for two-sided joint tests.  

 For our purposes, we need to formulate a signed test statistic based on the estimate of 

changes in 1tβ  and derive its marginal distribution. Furthermore, we need to compute the 

distribution numerically, for which we use a method suggested in the same paper by DeLong 

(1981). Not surprisingly, the distributions of the marginal and joint test are related, though not 

the same, and the general procedure used to compute the distribution of the two-sided joint test 

may be adapted to compute one-sided marginal tests. 

 The null hypothesis may be expressed as 

 0 1 10: tH β β= ,  1, 2, ,t T= …  (1) 
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and the alternative, that the first parameter changes at a proportion π  of the sample, at time Tπ , 

as 

 1
1

1

( ), 1, ,
:

( ), 1, ,
a

a t
b

t T
H

t T T
β π π

β
β π π

=⎧
= ⎨ = +⎩

…
…

, (2) 

where 1 1( ) ( )b aβ π β π> . This framework differs from Andrews (1993) in that we do not require 

that all nuisance parameters be constant, since all elements of tβ  but the first are allowed to 

change and are estimated accordingly for test purposes. However, in general, our framework is 

very similar to Andrews (1993), and we focus only on definitions that are needed to state our 

results, referring the reader to that paper for more details about the basic framework. 

Thus, we define a sequence of full-sample GMM estimators { }, 1Tθ ≥�  as a sequence that 

satisfies  

 ( ) ( )
1 1

1 1ˆ, , , ,
T T

t tm W m W
T T

β δ γ β δ′∑ ∑� � � �  

 

 
{ }

( ) ( )
, 1 1

1 1ˆinf , , , ,
T T

t tm W m W
T Tβ δ

β δ γ β δ′= ∑ ∑ , (3) 

where tW  is an array of data-generating random variables, ( ), ,m ⋅ ⋅ ⋅  is a vector function that 

corresponds to the GMM orthogonality conditions of the form ( ) ( )11 , , 0T
tE T m W β δ =∑ , and 

γ̂  is a random symmetric weighting matrix. If the system is overidentified, we assume that γ̂  is 

optimal as defined in Hansen (1982).  

Full sample GMM estimators may be used to estimate the model under the null. 

However, we are mainly interested in a t statistic that requires that the model be estimated under 
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the alternative, so we need to produce partial sample GMM estimates. A sequence of partial-

sample GMM estimators { }ˆ( ), , 1Tθ π π ∈Π ≥  is defined as a sequence that satisfies  

 ( ) ( ) { }
( ) ( )ˆ ˆˆ ˆ( ), ( ) ( ), inf , ( ) ,T T T Tm m m m

θ
θ π π γ π θ π π θ π γ π θ π′ ′= , (4) 

where m  is defined as 

 ( ) ( )
( )1 1

0, ,1 1,
, ,0

T T
t a

T
t bT

m W
m

m WT T

π

π

β δ
θ π

β δ+

⎛ ⎞⎛ ⎞
= + ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ . (5) 

Thus, in the partial-sample case we compute estimates ˆ ( )aβ π  and ˆ ( )bβ π , which correspond to 

the subperiods before and after the breakpoint at time Tπ . Once again, we assume that γ̂  is 

optimal. 

 A few additional preliminary definitions are required. Let  

 
( )

1

ˆ ˆ, ( ), ( )1ˆ ( )
T t a

a
a

m W
M

T

π β π δ π
π

π β

∂
=

′∂∑ , (6) 

 
( )

1

ˆ ˆ, ( ), ( )1ˆ ( )
(1 )

T t b
b

T b

m W
M

T π

β π δ π
π

π β+

∂
=

′− ∂∑ , (7) 

 ( )( ) ( )( )
1

1ˆ ˆ ˆ ˆ ˆ( ) , ( ), ( ) , ( ), ( )
T

a t a aT t a aTS m W m m W m
T

π
π β π δ π β π δ π

π
′

= − −∑ , (8) 

 ( )( ) ( )( )
1

1ˆ ˆ ˆ ˆ ˆ( ) , ( ), ( ) , ( ), ( )
(1 )

T

b t b bT t b bT
T

S m W m m W m
T π

π β π δ π β π δ π
π +

′
= − −

− ∑ , (9) 

 ( ) 11ˆˆ ˆ ˆ( ) ( ) ( ) ( )j j j jV M S Mπ π π π
−−′=  (10) 

for j=a,b. Under certain regularity conditions,2 Andrews (1993) shows that the variance of  

                                                 
2 See Andrews (1993), Assumptions 1-3, Sections 3.2 and 3.3 for a listing and useful discussion of the required 
conditions. 
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 ( )ˆ ˆ( ) ( )b aT β π β π−  (11) 

may be estimated as 

 ˆ ˆ ˆ( ) ( ) ( ) (1 )a bV V Vπ π π π π= + − . (12) 

Based on the foregoing, we consider a normalized variable ( )U π  that will be helpful in defining 

our test statistic. Thus, let 

 ( ) ( )1/ 2 ˆ ˆˆ( ) ( ) ( ) ( )b aU V Tπ π β π β π
−

= − . (13) 

 

Proposition 1. The asymptotic distribution of ( )U π  is a vector of independent normalized 

Brownian bridges.3 

 

 Let 1u  be a k-dimensional vector with unit first element and zeros elsewhere, and let 

11 1 1
ˆˆ ( )v u V uπ′=  be the first element of the matrix ˆ( )V π . We define our test statistic as 

 ( )1/ 2
1 11 1

ˆ ˆˆ( ) ( ) ( )b av u Tτ π β π β π− ′= − . (14) 

Mechanically, this is the t statistic that would normally be computed for testing whether a break 

occurs at a proportion π  of the sample. We can use Proposition 1 to calculate its asymptotic 

distribution. 

 

Corollary 1. The asymptotic distribution of 1( )τ π  is a scalar normalized Brownian bridge. 

 

                                                 
3 Note: if ( )µ π  is scalar Brownian motion over the unit interval [0,1]π ∈ , then ( )( ) (1) (1 )µ π πµ π π− −  is a 
scalar normalized Brownian bridge, which has mean zero and unit variance for (0,1)π ∈ . 
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To test 0H  versus aH , as defined earlier, we may use the test statistic defined by 

 1sup ( )
π

τ π
∈Π

, (15) 

where Π  is a closed proper subset of the unit interval. 

 

Proposition 2. Suppose that 1 2[ , ]π πΠ =  is a closed interval contained in (0,1). Then  

 1sup ( )P
π

τ π τ
∈Π

⎛ ⎞>⎜ ⎟
⎝ ⎠

= 1 1( ) (1)sup
(1 )

B BP
π

π π τ
π π∈Π

⎛ ⎞−
>⎜ ⎟⎜ ⎟−⎝ ⎠

= 1

1

( )sup
s

B sP
sλ

τ
< <

⎛ ⎞>⎜ ⎟
⎝ ⎠

, (16) 

where 2 1

1 2

(1 )
(1 )

π πλ
π π

−
=

−
 and 1( )B π  is scalar normalized Brownian motion.  

 

Note that the probability depends on 1π  and 2π  only through λ . Also, when 

1 2 01π π π= − = , then ( )20 0(1 )λ π π= − . This result differs from equation (5.1) in Andrews 

(1993) in that the statistics are scalars and in that it involves the signed value of the Brownian 

motion 1( )B π  rather than its modulus 1( )B π . We can apply alternative results from DeLong 

(1981) to calculate p values and critical values from the distribution in (16). 

Before we move to the calculation of these values, we note that the testing procedure for 

a single unknown break point may be extended to sequential tests of additional breakpoints by 

means analogous to those of Bai and Perron (1998) and Bai (1999). Thus, suppose that we wish 

to test for m+1 breaks under the null of m breaks.  

Let 10 1mϕ ϕ< < < <…  be the proportions of the sample representing the m break points 

estimated under the null, with 1 0i iϕ ϕ π−− >  for 00 1π< << . Let 0 1/( )i i iη π ϕ ϕ −= − , 

1, , 1i m= +… , where we take 0 0ϕ =  and 1 1mϕ + = . A test is obtained by searching for an 
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additional break point in the set of intervals [ ,1 ]i iη η− . If the sup of 1( )τ π  over these intervals is 

τ , the asymptotic distribution is  

 
1

1 1

[ ,1 ]1

( ) (1)( 1 ) 1 1 sup
(1 )i i

m

i

B BP m breaks P
π η η

π π τ
π π

+

∈ −=

⎛ ⎞⎛ ⎞−
+ = − − >⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

∏ . (17) 

 

3. Computation of p values and critical values 

 Proposition 2 of the previous section implies that we need to calculate probabilities of the 

form 

 1

1

( )sup
s

B sP
sλ

τ
< <

⎛ ⎞>⎜ ⎟
⎝ ⎠

 (18) 

for values of λ  and τ . Since ( )20 0(1 )λ π π= −  when the testing interval is symmetrical, we 

can focus on 0π  instead of λ . DeLong (1981) provides an explicit expression only for the two-

sided case in which the sup is taken over the absolute value of the Brownian motion. However, 

we can use his derivations to compute one-sided probabilities for the signed variable, which he 

tabulates as well. 

 

Proposition 3. Let ( )D zν  represent the parabolic cylinder function.4 Tail probabilities of the 

distribution of sup 1( )τ π  are given by 

 1

1

( )sup
s

B sP
sλ

τ
< <

⎛ ⎞>⎜ ⎟
⎝ ⎠

= 1/ 2

1

( ) ( )
1

( )
ii

iii

D
D
νν

ν

φ τ τ
λ

ν τ

∞
−−

=

⎧ ⎫−⎪ ⎪− −⎨ ⎬′ −⎪ ⎪⎩ ⎭
∑ , (19) 

                                                 
4 See, e.g., Abramowitz and Stegun (1964, Chapter 19). 
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where iν  is the ith root of the equation ( )Dν τ−  as a function of ν , ( )
i

Dν τ′ −  is the derivative 

with respect to ν  evaluated at iν , and φ  is the standard normal density function. 

 

 On the surface, this formula looks simpler than DeLong’s formula for the two-sided case, 

which is expressed in terms of the confluent hypergeometric function, and which contains an 

additional constant representing the number of parameters that are allowed to change. In fact, 

calculation of (19) is, if anything, a bit more challenging because of the computational properties 

of the parabolic cylinder function. However, the method suggested in Estrella (2003) works here 

as well and produces accurate p values and critical values for the one-sided distribution. 

 These probabilities differ from the two-sided case for two reasons. The first reason is 

straightforward: the probability of Type 1 error is concentrated in one tail rather than split 

between the two tails. The second is more subtle and results from the fact that the probability in 

(19) corresponds to crossing a positive bound at any point within a finite interval over s rather 

than at a fixed value of s. The two-sided test involves crossing either that boundary, its negative 

counterpart, or possibly both. Thus, we have the following. 

 

Proposition 4. In a comparison of the one-sided and two-sided probabilities in the one-parameter 

case, 

 1 1

1 1

( ) ( )1 sup sup
2 s s

B s B sP P
s sλ λ

τ τ
< < < <

⎛ ⎞ ⎛ ⎞> < >⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 (20) 

for 1λ >  or, equivalently, for 0 1 2π < . 
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Hence, using two-sided p values as proxies for the one-sided case, adjusting only for the 

splitting of tail probabilities, results in underestimating p values and consequently in 

overestimating critical values. When looking at relatively low p values, say in the context of 5% 

or 1% tests, the difference between the two sides of equation (20) is small and the tail-splitting 

effect dominates. Differences can be much greater for larger p values. This effect is illustrated in 

Figure 1 for 0 .10π = . Note that the differences decline as 0π  increases and that equality results 

when 0 1 2π = , which corresponds to a known breakpoint. 

 We conclude this section by providing critical values for the one-sided one-parameter 

case in a form analogous to Andrews (1993). Table 1 shows critical values for 0π  ranging from 

.05 to .5 and for significance levels of 10%, 5%, and 1%. Recall that with two-sided 

probabilities, the case 0 .5π =  collapses to a chi-squared distribution. Similarly, the same case 

here collapses to a standard normal distribution.  

 As noted above, the values in the table are very close to those that would be obtained for 

two-sided critical values with twice the tail probability. In fact, at this level of precision, most of 

the results are identical. The only minor differences occur at the 10% level, where the critical 

values for 0π = .20, .10, and .05 would be understated by .01. 

 

4. Monetary policy reaction function 

 To illustrate the application of the proposed one-sided statistic, we look for increases in 

the monetary policy reaction to inflation in the United States since 1960. In this case, it is clear 

that we would like to know not only whether the reaction parameter changed over this period, 

but also whether it increased or decreased. Earlier papers have found evidence of changes in the 

inflation parameter by estimating a reaction function over different time periods and in some 
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cases testing for changes in the parameters of the equation.5 For consistency, we adopt two of the 

earlier models and apply our one-sided test with unknown breakpoint. 

 The first specification is the base model from Judd and Rudebusch (1998), denoted 

hereafter as “JR.” It is an extension of the Taylor (1993) rule with additional lags in the variables 

of the model. These lags are motivated primarily by a partial adjustment mechanism to the 

desired level of the policy interest rate and contribute to a better fit for the model. The desired 

rate is modeled as 

 ( ) 0 1 1* * * *t t t tr r y yπ β π π γ γ −= + + − + + , (21) 

where *r  is the equilibrium real rate, *π  is target inflation, tπ  is actual inflation, measured as 

an average of the current and three lagged quarters, and ty  is the output gap (the log difference 

between actual and potential GDP).  

The actual rate adjusts partially to the desired level according to 

 ( )1 1*t t t tr r r rκ ρ− −∆ = − + ∆ . (22) 

Together, the two equations imply that 

 1 0 1 1 1t t t t t tr r y y rκα κ κβπ κγ κγ ρ− − −∆ = − + + + + ∆ , (23) 

where * ( 1) *rα β π= − − . Our principal objective is to look for changes in the parameter β , so 

we treat α  as a single parameter. As in Judd and Rudbusch (1998), we estimate the model by 

ordinary least squares, given the timing of the variables. 

 The second model is from Clarida, Galí, Gertler (2000) and is denoted “CGG.” It is 

similar to the JR model, except that policy is assumed to react to expected inflation and output 

rather than to current and lagged values. The desired rate is given by 

                                                 
5 For example, Judd and Rudebusch (1998) and Clarida, Galí, Gertler (2000) look for breakpoints at known dates 
corresponding to changes in the Chairman of the Board of Governors of the Federal Reserve, and Estrella and 
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 ( )1 1* * * *t t t t tr r E E yπ β π π γ+ += + + − + , (24) 

where tE  is the expectations operator. The CGG paper considers a series of variations of this 

model, for instance involving longer-horizon expectations, but we use only the base model as an 

illustration. Partial adjustment (in the base case) is of the form 

 ( )1 1 2 2 1 21 *t t t tr r r rρ ρ ρ ρ− −= + + − − , (25) 

which is isomorphic to (22). The empirical equation is thus of the form 

 ( ) ( ) ( ) ( )1 1 2 2 1 2 1 2 1 1 2 11 1 * 1t t t t t t tr r r E E yρ ρ ρ ρ α ρ ρ β π π ρ ρ γ− − + += + + − − + − − − + − − , (26) 

where α  is defined as before.  

 Because of the appearance of expectations in the right hand side of (26), we follow CGG 

in estimating the equation by the generalized method of moments, with the list of instruments 

specified there. The instruments consist of a constant and contemporaneous and three lagged 

values of inflation, the output gap, the federal funds rate, commodity price inflation, growth in 

M2, the spread between 10-year and 3-month Treasury rates, and the 3-month Treasury rate. 

 Data common to both models include the federal funds rate (quarterly average of daily 

rates), the GDP deflator (for inflation), and the CBO measure of potential output (for the real 

GDP gap). For the CGG model, we also use the aggregate commodity price index from the 

Conference Board and data on M2 and Treasury rates from the Federal Reserve. 

 We test for an unknown break in the inflation parameter ( β  in both models) during the 

period from 1960 to 2004. With regard to the other parameters in each model, we use two 

alternative extreme assumptions: that they are constant over the entire period or that they are all 

allowed to change at the same time as the inflation parameter. These results, which appear in the 

first four rows of Table 2, point conclusively to a break around the time that Chairman Volcker 

                                                                                                                                                             
Fuhrer (2003) also test for unknown breakpoints. 
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took office. In each of the four cases, the sup of the t statistic for an increase in the inflation 

parameter is observed for a break in the third quarter of 1980. This result is consistent with much 

of the earlier literature, but the form of our statistic allows us to test explicitly for an increase 

rather than just a change. 

 If we try the same test for the period since 1980, the results in the next four rows of Table 

2 are not at all supportive of a further increase in the inflation parameter. Interestingly, the only 

support at the 5% level for a change during this period is for a decrease in the parameter in the 

first quarter of 2001. The statistic is marginally significant at this level, though the result is 

nevertheless somewhat puzzling. Perhaps the explanation is statistical. Since 2001, inflation has 

presumably been much closer to target levels, and has been less variable than in most of the 

earlier periods. It would thus be difficult for the model to link changes in the policy rate directly 

with reactions to an inflation gap that was uniformly close to zero. 

 Though we are most interested in the inflation variable, we can also apply our one-sided 

test to the parameter representing the reaction to the output gap. Results for the output gap, in the 

same format as Table 2, appear in Table 3. In the full sample period, the evidence for a break 

around 1980 is not as ponderous as for inflation, but we may reject in favor of an increase in the 

output parameter if all parameters are allowed to change in the JR model. This result is 

consistent with the theoretical principle that if policy is optimal, both the inflation and output 

parameters increase when greater weight is placed on inflation targeting in the policy objective 

function.6  

We should note that the JR model contains two coefficients related to the output gap, and 

that the JR results in Table 3 apply only to the coefficient on the contemporaneous value ( 0γ ) of 

                                                 
6 See, e.g, Estrella (2005). 
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the gap. Results for the sum of the two coefficients ( 0 1γ γ+ ) lead to no rejections. Moreover, for 

the period since 1980, there are no rejections for the output parameter in any variant of the 

models. 

 

5. Conclusions 

 The procedure outlined here for a one-sided break test at an unknown breakpoint extends 

the results from the literature in the single-parameter case. Though we are confined to looking at 

one parameter only, we can make inference about the direction of the possible change in 

parameter value. In addition, we show that the test may be used when the parameter tested is a 

proper subset of the parameters allowed to change in the model.  

 The usefulness of the approach is illustrated by examining changes since 1960 in the 

monetary policy reaction to inflation. The empirical results are quite strong for a change around 

1980, which was to be expected, but the period since 1980 also produces some interesting results 

that are directly dependent on the directionality of the test. Overall, the empirical estimates 

suggest that the method is potentially useful in other problems in which the direction of the 

parameter change is of interest. 

 

6. Appendix: Proofs of propositions 

Proof of Proposition 1. Let M and S be the limits of expressions (6)-(9) in the text under the null 

hypothesis as the sample size T goes to infinity, and define ( ) 11 1/ 2C M S M M S
−− −′ ′= . In the 

proof of his Theorem 3, Andrews (1993) shows that asymptotically 

 ( ) ( ) (1) ( )ˆ ˆ( ) ( )
1a b

B B BT C π πβ π β π
π π

−⎡ ⎤− = −⎢ ⎥−⎣ ⎦
 (27) 
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and  

 [ ]ˆ( ) / (1 )V CCπ π π′= − , (28) 

where ( )B π  is a vector of independent Brownian motions. Therefore, 

 ( ) 1/ 2 ( ) (1)( )
(1 )

B BU CC C π ππ
π π

− −′=
−

, (29) 

where ( )U π  is defined in (13). Since ( )( ) (1) (1 )B Bπ π π π− −  is a vector of independent 

normalized Brownian bridges and ( ) ( )( )1/ 2 1/ 2CC C CC C I− − ′′ ′ = , ( )U π  is also a vector of 

independent normalized Brownian bridges. 

 

Proof of Corollary 1. By the definition of ( )U π , 

 ( ) ( )1/ 2ˆ ˆ ˆ( ) ( ) ( ) ( )a bT V Uβ π β π π π− = . (30) 

Proposition 1 shows that ( )U π  is a vector of independent normalized Brownian bridges, and the 

statistic 1( )τ π  is derived from ( )U π  by pre-multiplying by ( )1/ 21/ 2
11 1

ˆˆ ( )v u V π− ′ , which amounts to 

taking a weighted sum of its elements. Since a Brownian bridge is a Gaussian process, a 

weighted sum of Brownian bridges is also a Brownian bridge, and its distribution is uniquely 

determined by its variance.7 Now ˆ( )V π  corresponds to the variance of ( )ˆ ˆ( ) ( )a bT β π β π− , so 

that 

 ( )( )2 1
1 11 1 1

ˆ ˆ ˆ ˆˆ( ) ( ) ( ) ( ) ( ) 1a b a bE Ev Tu uτ π β π β π β π β π− ′′= − − = . (31) 

Thus, 1( )τ π  is a scalar normalized Brownian bridge. 

                                                 
7 See, e.g., Beichelt and Fatti (2002). 
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Proof of Proposition 2. The first equality follows directly from Corollary 1. The second equality 

follows by application of equation (A.33) in Andrews (1993), that is, 

 { } ( )( ) (1) : [0,1] 1 : [0,1]
1

B B B ππ π π π π
π

⎧ ⎫⎛ ⎞− ∈ ≈ − ∈⎨ ⎬⎜ ⎟−⎝ ⎠⎩ ⎭
, (32) 

where B represents scalar Brownian motion and ≈  indicates equality in distribution. The process 

on the left is a non-normalized Brownian bridge. For the normalized Brownian bridge, we obtain 

 ( ) (1) 1: [0,1] : [0,1]
1(1 )

B B Bπ π π ππ π
π ππ π

⎧ ⎫ ⎧ ⎫− −⎪ ⎪ ⎪ ⎪⎛ ⎞∈ ≈ ∈⎨ ⎬ ⎨ ⎬⎜ ⎟−− ⎝ ⎠⎪ ⎪⎪ ⎪ ⎩ ⎭⎩ ⎭
. (33) 

Now, applying the change of variables 1 1 1/( 1 )s sπ π π π= + − , the right hand side of (33) 

becomes 

 
( )1 1 2 1 2 1

1 1 1 2 1 2

1 (1 ) (1 ): [1, ] : [1, ]
1 (1 ) (1 )

B ssB s s
s s
π π π π π π

π π π π π π
⎧ ⎫⎧ ⎫⎛ ⎞− − −⎪ ⎪ ⎪ ⎪∈ ≈ ∈⎨ ⎬ ⎨ ⎬⎜ ⎟− − −⎪ ⎪ ⎪ ⎪⎝ ⎠⎩ ⎭ ⎩ ⎭

�
, (34) 

where ( ) 1 1

1 1

1
1

sB s Bπ π
π π

⎛ ⎞−
= ⎜ ⎟−⎝ ⎠

�  is also normalized Brownian motion. 

 

Proof of Proposition 3. Using the Mellin transform that DeLong (1981) provides for the one-

sided case,8 we can apply contour integration to obtain the inverse transform. Let ( )D zν  be the 

parabolic cylinder function. Because this function is a solution to a Sturm-Liouville problem, its 

eigenvalues are all real and positive. The Mellin transform may be written as 

 2 2 1

2

( ) ( ) ( ) ( )( )
( )

b b

b

D Db
bD

τ τ φ τ τµ
τ

−Φ − − −
=

−
� , (35) 

                                                 
8 DeLong (1981, Section II, page 2202). 
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where Φ  and φ  are the standard normal cumulative distribution and density function, 

respectively. To invert, we need to calculate 

 1 ( )
2

c i b
c i

b db
i

λ µ
π

+ ∞ −
− ∞∫ � . (36) 

Poles of the integrand are found at / 2i ib ν= , where iν  are the roots of the parabolic cylinder 

function. The residue at ib  is 

 1( ) ( )
( )

ii

i

b

i

D
D

ν

ν

φ τ τ
λ

ν τ
−− −

−
′ −

, (37) 

from which the expression for the probability follows. 

 

Proof of Proposition 4. The two-sided probability may be written as 

 1 1 1

1 1 1

( ) ( ) ( )sup sup sup
s s s

B s B s B sP P or
s s sλ λ λ

τ τ τ
< < < < < <

⎛ ⎞ −⎛ ⎞> = > < −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

. (38) 

The right hand side may be expanded to 

 1 1 1 1

1 1 1 1

( ) ( ) ( ) ( )sup sup sup sup
s s s s

B s B s B s B sP P P and
s s s sλ λ λ λ

τ τ τ τ
< < < < < < < <

− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞> + < − − > < −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

.(39) 

By symmetry, the first two terms are equal and the result follows. 
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Table 1. Critical values of the distribution 

 1
2

1

1

( )sup
s

B sP
s α

λ
τ α

< <

⎛ ⎞> =⎜ ⎟
⎝ ⎠

 

 α =    
0π  10% 5% 1% 

.50 1.28 1.64 2.33 

.49 1.50 1.86 2.54 

.48 1.59 1.94 2.62 

.47 1.65 2.01 2.68 

.45 1.75 2.10 2.77 

.40 1.91 2.26 2.91 

.35 2.04 2.38 3.02 

.30 2.13 2.47 3.10 

.25 2.22 2.55 3.17 

.20 2.31 2.63 3.24 

.15 2.39 2.70 3.30 

.10 2.48 2.78 3.37 

.05 2.59 2.88 3.45 
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Table 2. Monetary policy reaction function: inflation parameter 
Test of increase or decrease at an unknown breakpoint in the sample period 
 Parameters    sup t stat,  p values  
Model changing Period 0π  Direction inflation Date of sup 1-sided 2-sided 
JR Inflation 1960:1-2004:4 .10 Increase 6.68 1980:3 .000 .000 
JR All 1960:1-2004:4 .10 Increase 6.02 1980:3 .000 .000 
CGG Inflation 1960:1-2004:3 .15 Increase 6.77 1980:3 .000 .000 
CGG All 1960:1-2004:3 .15 Increase 4.65 1980:3 .000 .000 
JR Inflation 1980:1-2004:4 .10 Increase 0.45 1994:1 .890  
JR All 1980:1-2004:4 .10 Increase 1.58 1982:2 .421  
CGG Inflation 1980:1-2004:3 .30 Increase -0.68 1993:4 .967  
CGG All 1980:1-2004:3 .30 Increase 0.14 1988:1 .822  
JR Inflation 1980:1-2004:4 .10 Decrease 2.78 2001:1 .050 .101 
JR All 1980:1-2004:4 .10 Decrease 1.89 1997:3 .282 .543 
CGG Inflation 1980:1-2004:3 .30 Decrease 1.93 1989:2 .145 .289 
CGG All 1980:1-2004:3 .30 Decrease 1.24 1996:4 .380 .736 
Notes: JR is the base model from Judd and Rudebusch (1998), estimated with non-linear least squares to obtain the t statistic for the 
change in the inflation parameter. CGG is the base model from Clarida, Galí and Gertler (2000), estimated by GMM with the same 
instruments as in that paper. 0π  is the proportion of observations excluded from testing for a breakpoint at each end of the sample (see 
Section 2). This proportion is higher for the CGG model when all parameters are allowed to change because more observations are 
required for estimation. The 2-sided p value corresponds to the direction with the larger absolute t value. 
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Table 3. Monetary policy reaction function: output gap parameter 
Test of increase or decrease at an unknown breakpoint in the sample period 
 Parameters    sup t stat,  p values  
Model changing Period 0π  Direction Output gap Date of sup 1-sided 2-sided 
JR Output gap 1960:1-2004:4 .10 Increase 1.77 1974:3 .334 .630 
JR All 1960:1-2004:4 .10 Increase 3.64 1979:3 .004 .008 
CGG Output gap 1960:1-2004:3 .15 Increase 1.49 1969:1 .409 .757 
CGG All 1960:1-2004:3 .15 Increase 1.82 1980:3 .267 .520 
JR Output gap 1980:1-2004:4 .10 Increase 0.06 2000:4 .958  
JR All 1980:1-2004:4 .10 Increase 1.15 1982:2 .633  
CGG Output gap 1980:1-2004:3 .30 Increase 1.13 1988:2 .426 .810 
CGG All 1980:1-2004:3 .30 Increase 0.59 1990:1 .661 .999 
JR Output gap 1980:1-2004:4 .10 Decrease 1.80 1984:3 .319 .607 
JR All 1980:1-2004:4 .10 Decrease 2.23 1998:3 .162 .319 
CGG Output gap 1980:1-2004:3 .30 Decrease -0.18 1992:4 .899  
CGG All 1980:1-2004:3 .30 Decrease 0.26 1993:4 .784  
Notes: JR is the base model from Judd and Rudebusch (1998), estimated with non-linear least squares to obtain the t statistic for the 
change in the contemporaneous output gap parameter. CGG is the base model from Clarida, Galí and Gertler (2000), estimated by 
GMM with the same instruments as in that paper. 0π  is the proportion of observations excluded from testing for a breakpoint at each 
end of the sample (see Section 2). This proportion is higher for the CGG model when all parameters are allowed to change because 
more observations are required for estimation. The 2-sided p value corresponds to the direction with the larger absolute t value. 
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Figure 1. One-sided p values and two-sided proxy for 0 .10π =  

t value
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