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Abstract
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I. INTRODUCTION

At the apex of the U.S. financial system is a network
of interconnected financial markets by which domestic
and international financial institutions allocate capital
and manage their risk exposures. The events of Septem-
ber 11, 2001 and, to a lesser extent, the North American
blackout of August 14, 2003 underscored that these mar-
kets are vulnerable to wide-scale disruptions. The inabil-
ity of one of these markets to operate normally can have
wide-ranging effects not only for the financial system but
potentially for the economy as a whole. Currently, the fi-
nancial industry and regulators are devoting considerable
resources to strengthen the resiliency of the U.S. finan-
cial system [35, 37]. Critical to the smooth functioning of
these markets are a number of wholesale payments sys-
tems and financial infrastructures that facilitate clearing
and settlement.
Despite their importance, little empirical research on

the impact of disruptions these systems and infrastruc-
tures is available. One branch of the literature has fo-
cused on simulating the effects from a default of a major
participant [4, 10, 16, 25]. Another branch has done de-
tailed case studies of disruptions to the U.S. financial
system, e.g. the 1987 stock market crash and the events
following September 11th [11, 20, 28, 30].
However, the payment system can be treated as a spe-

cific example of a complex network. In recent years, the
physics community has made significant progress towards
understanding the structure and functioning of complex
networks [5, 7, 18, 32, 39]. The literature has focused on
characterizing the structure of networked systems and
how the properties of the observed topologies relates to
stability, resiliency and efficiency in case of pertubations
and disturbances [5, 15].
A few recent papers [12, 22, 26] have started to describe

the actual topologies observed in the financial system us-
ing this methodology. This paper adds to this literature
by describing the network topology of the interbank pay-
ment flows in the U.S. Moreover, we add new insight to
the response of complex networks to pertubations by an-
alyzing the effects of September 11th on the network.
The paper is organized as follows. Section II intro-

duces network theory and the main concepts applied.
Section III describes the data. Section IV presents a
visualization of the data. Section V defines and discusses
the topological characteristics of the interbank payment
flows. Section VI looks at the impact of September 11th
on these characteristics. Section VII concludes.

II. NETWORKS

A network consists of two types of elements, nodes and
the connections between them, links. Links can have
weights attached to them representing the importance
of the relationship between nodes. Links can be either

undirected or directed. A link from a node to itself is
called a loop. The neighbors of a node are all the nodes
to which it has a link. The predecessors of a node are the
nodes that have a link to the node and the successors
are the nodes that have a link from the node. A walk is
a sequence of nodes in which each node is linked to the
next. A walk is a path if all its nodes are distinct. The
length of a path is measured by the number links. If the
start node and the end node of a path are one and the
same, then it forms a cycle.
A complete network is a network where all nodes have

a link to each other. A tree is a network in which any
two nodes are connected by exactly one path. In a star
network all nodes connects to a central node called the
hub. A component of a network is a subset of nodes in
a network such that any two nodes can be joined by a
path. A connected network consists of a single compo-
nent, while a disconnected network is made up of two or
more components. These concepts are illustrated in Fig.
1a.
There are two classes of network formation mod-

els some times referred to as equilibrium and non-
equilibrium models [18]. Equilibrium models have a
fixed set of nodes with randomly chosen pairs of nodes
connected by links. Erdös and Rényi [19] proposed a
basic model of a network with n nodes, where each pair
of nodes is connected by a link with probability p. This
type of network is commonly referred to as a classical ran-
dom network. Non-equilibrium network models grow a
network by successively adding nodes and setting proba-
bilities for links forming between the new nodes and ex-
isting nodes and between already existing nodes. Many
of these models, notably the Barabasi and Albert (BA)
[6] model, are based on preferential attachment. Prefer-
ential attachment assigns a probability of a link forming
with a node that is increasing with the number of links
of the node. Both the classical random network and the
BA network will be used as benchmarks in the following
sections.

III. INTERBANK PAYMENTS

We use transaction data from the Fedwire r° Funds
Service (Fedwire) service to create the interbank pay-
ment network. Fedwire is a real-time gross settlement
(RTGS) system, operated by the Federal Reserve Sys-
tem, in which more than 9, 500 participants initiate funds
transfers that are immediate, final, and irrevocable when
processed. Participants use Fedwire to process large-
value, time-critical payments, such as payments for the
settlement of interbank purchases and sales of federal
funds; the purchase, sale, and financing of securities
transactions; the disbursement or repayment of loans;
and the settlement of real estate transactions. Fedwire is
used also for the settlement of ancillary payment systems
such as automated clearing houses (ACH) and other large
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FIG. 1: a) Simple networks and some commonly used terms. b) Fedwire interbank payment network. First day of sample. 6600
nodes and 70.000 links. c) Core of Fedwire Interbank Payment Network, largest links equivalent to 75 percent of daily value
transferred. d) Network Components. GWCC = giant weakly connected component, DC = disconnected component, GSCC
= giant strongly connected component, GIN = giant in component, GOUT = giant out component.

value payment systems e.g. CHIPS and CLS.1

We analyze at the network of the actual payments flows
transferred over Fedwire. We choose to model the pay-
ment flows as a directed network and establish a link
from the sender of payment to the receiver of payment
on the basis of payments sent. While Fedwire partici-
pants include a variety of entities, including government
agencies, we consider only the subset of payments be-
tween commercial banks. Thus, commercial banks con-
stitute the nodes in the network, and a directed link from
one bank to another is present in a day if at least one
transaction debits the account of former and credits the
account of the latter.2 Additional transactions between
any two banks add to the associated link weights in terms
of value and volume (number) of payments settled. The
network could be defined in alternative ways. From a
technical perspective, Fedwire is a star network where
all participants are linked to a central hub, i.e., the Fed-

1 The Clearing House Inter-bank Payment System (CHIPS) and
Continuous Linked Settlement (CLS).

2 We use master-accounts, and exclude loops that result from
banks making transfers across their own sub-accounts.

eral Reserve, via a proprietary telecommunications net-
work. From a payment processing perspective Fedwire is
a complete network as all nodes (particpants) are linked
in the sense that they can send and receive payments
from each other. However, these representations do not
represent the actual behavior of participants and the flow
of liquidity in the system.

We consider data for the first quarter of 2004. Each
day is modeled as a separate network, for an ensemble of
62 daily networks. The average daily value of funds trans-
fers between commercial banks amounts to $1.3 trillion
and the daily number of payments to 345, 000. On the
peak activity day, 644, 000 payments worth more than
$1.6 trillion were processed. The average value per pay-
ment is $3 million, but the distribution is highly right-
skewed with a median payment of only $30, 000. Both
the daily value and volume of payments show periodicity
around the first and last days of the month as well as
on mid month settlement days for fixed income securities
(see Fig. 2).
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IV. VISUALIZING THE NETWORK

An intuitive way to analyze a network is to draw it as a
graph, as in Fig. 1a. The interbank payment network on
the first day of our sample is illustrated in Fig. 1b. The
figure includes over 6, 600 nodes and more than 70, 000
links. Each link is shaded by the associated weight, with
darker shades indicating higher values. Despite the ap-
pearance of giant fur ball, the graph suggests the exis-
tence of a small group of banks connected by high value
links. To gain a clearer picture of this group, we graph
a subset of our network in Fig. 1c where we focus on
high value links. This graph shows the undirected links
that comprise 75 percent of the value transferred. This
network consists of only 66 nodes and 181 links. The
prominent feature of this network is that 25 nodes form
a densely connected sub-graph, or clique, to which the
remaining nodes connect. In other words, we find that
only a small number of banks and the links between them
constitute the majority of all payments sent over the net-
work.

V. TOPOLOGY CHARACTERISTICS

The large number of nodes and links makes detailed
analysis of the structure by visualization difficult and
comparisons across time and between networks almost
infeasible. The complexity of our network leads us to
consider statistical measures. In this section, we describe
a series of commonly used statistical measures of topolog-
ical characteristics for the interbank payment network.

A. Components

A starting point for the quantitative analysis of a net-
work is to partition the set of nodes into components ac-
cording to how they connect with other nodes. Dorogovt-
sev et al [17] divide a network into a single giant weakly
connected component (GWCC) and a set of disconnected
components (DCs). The GWCC is the largest compo-
nent of the network in which all nodes connect to each
other via undirected paths. The DCs are smaller compo-
nents for which the same is true. In empirical studies the
GWCC is found to be several orders of magnitude larger
then any of the DCs [13]. This is also the case here.
The GWCC consists of a giant strongly connected com-

ponent (GSCC), a giant out-component (GOUT), a giant
in-component (GIN) and tendrils. The GSCC comprises
all nodes that can reach each other through a directed
path. A node is in the GOUT if it has a path from the
GSCC but not to the GSCC. In contrast, a node is in
GIN if it has a path to the GSCC but not from it. Ten-
drils are nodes that have no directed path to or from the
GSCC. They have a path to the GOUT and/or the GIN
(see Fig. 1d).

Over our sample period a total of 7, 584 different banks
are part of the network. We find that the network’s
GWCC is composed of on average 6, 490 ± 83 (mean ±
standard deviation over the 62 days) banks. On 36 of the
62 days we also find a small number of DCs consisting
of between two to eight banks. Over the sample period
6, 854 different banks were part of the GSCC. Of these,
2, 578 were present in the network on all days. The GSCC
contains 78 percent of the nodes in the GWCC on aver-
age whereas the GIN, GOUT and tendrils contain 8, 12
and 2 percent, respectively. In terms of value transferred,
90 percent occur within the GSCC and 7 percent is from
GIN to GSCC. We will focus on the GSCC component
in the analysis below.

B. Size, connectivity and reciprocity

Definition The most basic properties of a network are
the number of nodes n and the number of links m. The
number of nodes defines the size of the network while the
number of links relative to the number of possible links
defines the connectivity of a network. The connectivity
(p) is the unconditional probability that two nodes share
a link. For a directed network, the connectivity is p =

m
n(n−1) . It ranges from

1
n for a tree network to 1 for a

complete network. Reciprocity is the fraction of links
for which there is a link in the opposite direction in the
network.
Discussion The average size of the daily network was

5, 086 ± 128 nodes. Almost 710, 000 different links were
found between banks over the sample period, with only
11, 000 of them present on all days. On average the net-
work had 76, 614±6, 151 directed links. In comparison, a
complete network of similar size has over 25 million links.
The connectivity is only 3± 0.1 per mil. In other words,
the interbank payment network is extermely sparse as
99.7 % of the potential links are not used on any given
day. The reciprocity averages 22 ± 0.3 percent. Hence,
less than a quarter of the relationships that exist between
banks had payments going in both directions.
The number of nodes and links are almost perfectly

correlated across days and are both highly correlated
with the value and volume of payments settled (see Tab.
I). In particular, the size and number of links spike on
the high value and volume days identified in section III
(see Fig. 2). Interestingly, the connectivity is also highly
correlated with value and volume. On high payment ac-
tivity days, the network not only grows but it also be-
comes denser as the level of interactions between banks
increases faster than size. However, the same is not true
for reciprocity. Reciprocity is uncorrelated with value
and volume and connectivity. The extent to which the
relationships between banks are bilateral does not appear
to depend on either the overall level of payment activity
or the connectivity between banks.
.
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FIG. 2: Top: Value and volume of interbank payments trans-
ferred over Fedwire in fourth quarter 2004. Middle: The num-
ber of nodes and links in giant strongly connected component
(GSCC). Bottom: Connectivity and reciprocity in GSCC.

The periodicity in the size and number links suggests
that it might be insightful to model high payment activity
days separately. For simplicity, we ignore this and treat
the networks as coming from the same data generating
process.

ρxy Value Volume n m p r

Value
Volume 0.88
n 0.73 0.84
m 0.78 0.92 0.96
p 0.76 0.91 0.80 0.93
r 0.06 0.09 -0.32 -0.18 -0.003

TABLE I: Correlations of basic network properties. n = size,
m = number of links, p = connectivity, r = reciprocity.

C. Distance and diameter

Definition The distance from node i to node j (dij) is
the length of the shortest path between the two nodes.
If node i has a link to node j, then dij = 1. The
average distance from a node to any other node, com-
monly referred to as the average path length of a node,
is ci = 1

n−1
P

j 6=i dij . The average path length of a net-
work is defined as hci = 1

n

P
i ci. In a classical random

network hci ≈ ln(n)
ln(p·n) . The eccentricity of a node (εi) is

the maximum distance to any other node in the network,
i.e., εi = maxj dij. The diameter of a network (D) is
the maximum eccentricity (or distance) across all nodes,
i.e., D = maxi ei. Goh et al. [23] defines the mass dis-
tance function as the fraction of nodes within a certain
distance of a node. At the network level it is defined
as M(x) = 1

n(n−1)
P

i

P
i6=j 1(dij ≤ x), where 1(·) is the

indicator function taking the value one if true and zero
otherwise.
Discussion The average path length is hci = 2.6± 0.2

across our sample. In comparison, the average path
length of a same size classical random network is 3.2.
The mean eccentricity is hεi = 4.7± 0.33, and the diam-
eter ranges between 6 and 7 across days (see Tab. II).
The interbank payment network exhibits the small-world
phenomenon common for many complex networks. Infor-
mally, small world means that any node can be reached
from any other node in only a few steps. A short path
length to any other node is a common property for all
nodes in the network as illustrated by the mass distance
function is shown in Tab. II. It shows that it is possi-
ble for a sparse network with low connectivity to be ex-
tremely compact. Although few nodes directly connect,
41 percent are within two links, and 95 percent are within
three links from each other. This further reflects the no-
tion that the interbank payment network is comprised of
a core of hubs with whom smaller banks interact.

D. Degree distribution

Definition Two important characteristics of a node in
a directed network are the number of links that originate
from the node and the number of links that terminate

4



Mean Median Min. Max. SD Mean Median Min Max SD

Payments Distance Measures
Volume (,000) 436 411 371 644 60.3 hci 2.62 2.63 2.56 2.66 0.02
Value ($tr) 1.30 1.27 1.13 1.64 0.11 hεi 4.67 4.63 4.18 5.74 0.33
Average ($mn) 3.01 3.06 2.48 3.35 0.20 D 6.6 7 6 7 0.5

Components M(2) (%) 41.6 41.3 38.9 47.3 2.0
GWCC 6,460 6,484 6,355 6,729 83 M(3) (%) 95.9 95.8 95.1 97.1 0.5
DC 2 2 0 8 2 M(4) (%) 99.9 99.9 99.8 100 0.0
GSCC (n) 5,086 5,066 4,914 5,395 123 Clustering
GIN 527 528 404 645 49 hCi 0.53 0.53 0.51 0.55 0.01
GOUT 774 782 595 916 67 Degree Distribution
Tendrils 103 103 88 116 7 hki 15.2 14.8 13.9 17.6 0.8

Connectivity and Reciprocity Max kout 1,922 1,913 1,772 2,269 121
m 76,614 75,397 69,077 94,819 6,151 Max kin 2,097 2,070 1,939 2,394 115
p (%) 0.3 0.29 0.28 0.33 0.01 γ̂outM LE 2.11 2.11 2.09 2.14 0.01
r (%) 21.5 21.5 21 23 0.03 γ̂inM LE 2.15 2.15 2.15 2.18 0.01

TABLE II: Turnover, component and network statistics for the Fedwire interbank payment network, fourth quarter 2004. $tr =
$trillion, $mn = $million, GWCC = giant weakly connected component, GSCC = giant strongly connected component, GIN =
giant in component, GOUT = giant out component, DC = Disconnected component. All network statistics are calculated for
GSCC. n = size, m = number of links, p = connectivity, r = reciprocity, hci = average path length, hεi = average eccentricity,
D = diameter, M(x) = mass distance function, hCi = clustering coefficient, hki = average degree, kin = in-degree, kout =
out-degree, γ = power law coefficient.

at the node. These two quantities are referred to as
the out-degree (kouti ) and in-degree of a node (kini ), re-
spectively. The average degree of a node in a network
is the number of links divided by the number of nodes,
i.e., hki = 1

n

P
kouti = 1

n

P
kini = m

n . Networks are of-
ten categorized by their degree distributions, P (ki = x).
The degree distribution of a classical random network is
a Poisson distribution. Many real networks have fat-
tailed degree distributions and a large number have been
found to follow the power law P (ki = x) v k−γi in the
tail. A power-law distribution is also sometimes called
a scale-free distribution and networks with such a degree
distribution are referred to as scale-free networks.3

Discussion The average degree in the network is hki =
15.2 ± 0.8. However, most banks have only a few con-
nections and a small number of "hubs" have thousands
of links to other banks. Almost half of all banks have 4
or fewer outgoing links and 15 percent have only a sin-
gle outgoing link. The banks with the largest in- and
out-degrees averaged 2, 097±115 and 1, 922±121 links re-
spectively. The out-degree distribution of the interbank
payment network is shown in Fig. 3a together with the
degree distribution for a classical random network with

3 The term "scale-free" refers to the fact the the distribution re-
mains unchanged within a multiplicative factor under a rescal-
ing of the random variable, i.e., P (bk) = aP (k) (Newman [32] p.
186). For example, if a bank with four links is twice as likely as
one with eight links then a bank with eight links should also be
twice as likely as a bank with 16 links and so on.

the same connectivity. For degrees greater than 10, the
distribution follows a power law. The maximum likeli-
hood estimate of the coefficient is γ̂ = 2.11± 0.01 with a
standard error of σ̂γ = 0.03±0.001. Appendix I describes
the estimation procedure. The correlation between in
and out degrees across nodes is 0.97 and the in-degree
distribution looks similar to the out-degree distribution.
It has a lower power law coefficient of γ̂ = 2.15 ± 0.01
with the same standard error. The degree distributions
are comparable to those of the Japanese interbank pay-
ment system (BOJ-NET) reported in Inaoka et al [26].4

A degree distribution following a power law distribution
with a coefficient between 2.1 and 2.3, is not unique to
payment systems, and appears to be a common feature in
complex networks.5 Albert et al [3], and Crucitti et al.
[15] find that scale-free networks are robust to random
failures, but vulnerable to targeted attacks.

4 Inaoka et al [26] and Boss et al. [12], both find evidence of scale-
free distributions in their tails of their networks. Inaoka et al.
report a degree distribution with a power law tail of 2.3 for k >
20 and Boss et al. report a coefficient of 3.1 for the out-degree
and 1.7 for in-degree k>40.

5 Power law degree distributions have been observed in a wide
variety of systems, including the phone call network [1], the
metabolic network of E. coli bacteria [27], the movie actor collab-
oration network [6], and the World Wide Web [2]. Although the
observation of power-law behavior in complex networks is recent,
the phenomena was observed by as long ago as 1896, by Vilfredo
Pareto in the distribution of income [34].
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E. Degree correlations

Definition The probability that a node connects to an-
other node may depend on the characteristics of the re-
spective nodes. One characteristic of a node that is en-
dogenous to the structure of the network is its degree. In
an uncorrelated network there is no dependence between
the degree of a node and the degrees of its neighbors. A
network is said to be assortative if nodes with a given
degree are more likely to have links with nodes of similar
degree. A network is said to be disassortative if the oppo-
site is true, i.e., nodes with low degrees are more likely to
be connected to nodes with high degrees, and vice versa
(e.g. Catanzaro et al [14]). The sign of the Pearson cor-
relation coefficient between the degree of each nodes at
the end of a link shows the direction of the dependency:
zero for uncorrelated networks, positive for assortative
networks and negative for dissasortative networks. An-
other method is to compute the average degree of the
nearest neighbors of a node as a function of the node
degree. This is known as the average nearest neighbor

degree (ANND) function, hknni (k).6
Discussion Both the correlation coefficients and the av-

erage nearest neighbor degree functions show that the in-
terbank payment network is disassortative. For example,
the correlation of out degrees is −0.31 and the ANND
defined for the out-degree of successors is inversely re-
lated to the out degree of a node as shown in Fig. 3b.
Using other combinations of neighbors and degree direc-
tion, we get similar coefficients. Disassortivity is more
common among technological and biological networks, as
opposed to social networks which tend to exhibit assori-

6 In general, the correlations as well as the ANND function can be
defined for any combination of in and out degree of nodes. More-
over, the ANND function can be defined for any set of nearest
neighbors e.g. predessors or successors (see Serrano et al [36]).
Let P (k0, k) denote the probability of two nodes, with degrees k

0

and k, being joined by a link. The conditonal probalbility of a
node with degree k being joined to a node of degree k0 node is
given by P (k0|k) = P (k0, k)/P (k) where P (k) is the degree distri-
bution. The average nearest neighbor degree (ANND) function
is given by hknni (k) = k0 k

0P (k0|k).
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tative properties [32]. Moreover, Newman [31] shows that
assortative networks percolate more easily than disassor-
tative networks and that they are more robust to node
removal.

F. Clustering coefficient

Definition Another common correlation between nodes
is the probability that two nodes which are the neighbors
of the same node, themselves share a link. This is equiv-
alent to the observation that two people, each of whom is
your friend, are likely to be friends with each other. One
way of measuring the tendency to cluster is the ratio of
the actual number of directed links between the neigh-
bors of a node (mnn,i) over the number of potential links
among them

Ci =
mnn,i

ki(ki − 1)
(1)

The clustering coefficient for the entire network, hCi, is
given by the average of all individual coefficients [38].
A tree network has a clustering coefficient of zero, and
a complete network a coefficient of one. In a classical
random network, the clustering coefficient is the uncon-
ditional probability of connection, i.e., hCi = p.
Discussion The average clustering coefficient for the

networks calculated for the successors of node is 0.53 ±
0.01 suggestive of cliquishness in the interbank payments.
As such the observed clustering coefficient of the network
is 90 times greater than the clustering coefficient of a
comparable random network. However, the clustering
coefficient for the network as a whole conceals the fact
that the clustering across nodes is highly disperse, as
illustrated in Fig. 3c. More than 35 percent of the nodes
have either a coefficient of zero or one. This is largely
the result of low degree nodes.7 Ignoring nodes with a
degree smaller than three increases the average clustering
coefficient to 0.62. A high level of clustering is observed
in many other real world networks [38].

G. Link Weights and Node Strength

Definition Weights (wij) are assigned to the links in a
network to show the importance of each link. Barrat et
al. [8] define strength (si) of a node as the sum of the
weights of all the links attached to it, i.e., si =

P
j wij ,

and suggest calculating the average strength as a function

7 In a scale-free network low degree nodes are plentiful as discussed
above. If a node has a degree of one, then the clustering coeffi-
cient is by definition zero. Moreover, all nodes in a triplet, which
consists of nodes with degree two, have a clusterings coefficient
of one.
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FIG. 4: Node out-strength as a function of Degree. Strength
measures are normalized by dividing the strength by the aver-
age link weight hwiji. The strength functions can be approx-
imated by power law relationships s(k) ∼ kβ with β̂vol = 1.2,
σ̂βvo l = 0.001 and β̂val = 1.9, σ̂βva l = 0.001, respectively.
The dotted line represents β = 1. Similar relationshiops were
observed between in-strength and in-degree.

of the degree of a node, s(k), in order to investigate the
relationship between these two node characteristics. For
a directed network, strength can be defined over both the
incoming and outgoing links.
Discussion The average weight per link in terms of

value and volume are $15.2 ±0.8 million and 5.2 ± 0.3
payments, respectively. The distribution of link weights
follow a power law when weighted by the volume of pay-
ments but when weighted by the value of payments, the
distributions of the link weights is closer to a lognormal
distributions. The same is true for the distribution of
node strengths (see Fig. 3d).
For both weight measures, strength increases faster

than the degree of a node. Like Barrat et al. [8], we
see a power-law relationship between (out) strength and
the degree of a node, s(k) ∼ kβ . The coefficient is
β̂volume = 1.2 when volume is used as weight and it is
β̂value = 1.9 when value is used (see Fig. 4). More con-
nected nodes transact a higher value and volume of pay-
ments than would be suggested by their degree alone.
For example, if a bank has twice as many out links as
another bank, it would be expected to send 2.4 times
the number of payments, and 3.8 times the value of pay-
ments.

VI. THE IMPACT OF SEPTEMBER 11TH ON

NETWORK TOPOLOGY

The terrorist attacks of September 11th, 2001 dis-
rupted the financial systems of the United States, in-
cluding the interbank payment system. The attacks af-
fected the structure of the interbank payment network
in two ways. First, the massive damage to property
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and communications systems in lower Manhattan made
it more difficult, and in some cases impossible, for many
banks to execute payments to one another [21, 28], i.e.,
some nodes were removed from the system or had their
strength reduced. Second, the failure of some banks to
make payments disrupted the payment coordination by
which banks use incoming payments to fund their own
transfers to other banks. Once a number of banks began
to be short of incoming payments, others became more re-
luctant to send out payments themselves, i.e., links were
either removed or had their weight reduced [21, 30].
Both effects reduced the circulation of funds and collec-

tively banks were growing short of liquidity. The Federal
Reserve recognized this trend toward illiquidity and pro-
vided liquidity through the discount window and open
market operations in unprecedented amounts in the fol-
lowing week [21]. The impact on the interbank payment
network is summarized in Table III and Figure 5. The
number of nodes in the giant weakly connected compo-
nent decreased by 5 percent from 6, 755 to 6, 466, while
the number of nodes in the giant strongly connected com-
ponent (GSCC) decreased by 10 percent, from 5, 325 to

4, 795. The relative size of the GSCC on September
11th was 6 percentage points lower than typical, as non-
offsetting payment flows placed more nodes in the giant
in- and giant out-components. The number of nodes in
the GSCC did not return to its normal level until Sep-
tember 14th.
The connectivity on September 11th dropped from 3.0

per mil to 2.6 per mil. After two days of low connectiv-
ity, the connectivity shot up to over 3 per mil from the
14th to 17th. This “overshooting” is likely the result
of banks settling payments they had delayed in the days
after September 11th.
As the connectivity decreased and key nodes were re-

moved from the system, the average distance between
nodes increased. The mass distance function for Septem-
ber 11th was well below its normal range. Thus both
the average path length and the average eccentricity rose
(see Table III). The local structure of the network was
also disrupted. Reciprocity fell from 24 percent to 22
percent, and the clustering coefficient from 0.52 to 0.47.
These results are indicative of the breakdown in the co-
ordination between banks found in [30].
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Non 9/11 9/11-2001
mean Std. Dev.

n 5,325 137 4,795
m 84,786 6,638 59,640
p (%) 0.30 0.01 0.26
r (%) 24.3 0.4 22.3
hki 15.9 0.8 12.4
hci 2.65 0.03 2.80
hεi 4.84 0.30 5.28
hCi 0.52 0.012 0.465
M(2) (%) 39.3 2.1 29.3
M(3) (%) 95.3 0.6 91.3
M(4) (%) 99.8 0.0 99.5

TABLE III: Network Statistics for giant strongly connected
component, n = size,m = number of links, p = connectivity, r
= reciprocity, hki = average degree hci = average path length,
hεi = average eccentricity, hCi = clustering coefficient. Non
9/11-2001 = Sept. 4 - Sept. 21, 2001.

The size of the September 11th network is similar to
the Friday after Thanksgiving and Christmas Eve (see
Fig. 5a). In terms of connectivity and average path
length the September 11th network is more similar to
Good Friday of 2001, when the New York Stock Exchange
was closed. However, none of these semi holidays can
capture all he changes to the topology that occurred on
September 11th.

VII. CONCLUSION

In this paper, we analyzed the topology of the 62 daily
networks formed by the payment flows between commer-
cial banks over Fedwire. These networks share many of
the characteristics commonly found in other empirical
complex networks, such as a scale-free degree distribu-
tion, high clustering coefficient and the small world phe-
nomenon. The network is disassortative like many other
technological networks. We also found that, apart from
a few holidays, the statistics characterizing the network
are quite similar from day to day. Moreover, we found
that the topology of the network was significantly altered
by the attacks of September 11th, 2001. The number of
nodes and links in the network and its connectivity was
reduced, while the average path length between nodes
was significantly increased.
Because scale-free networks are found in many areas,

the performance of such networks under ordinary and dis-
rupted conditions is receiving increasing attention. Static
scale-free networks, for example, have been found to pre-
serve their connectivity under random node removal yet
to be vulnerable to disconnection following removal of
high-degree nodes [3]. The vulnerability of a particular
network depends both on its structure and on the mech-

anisms of contagion. As these differ across networks, we
cannot extrapolate this conclusion to payment networks.
In the case of a payment system, understanding the dy-
namics of the liquidity flows is essential for assessing net-
work robustness. A question for further research is how
the degree distribution and other topological measures
relate to contagion of disturbances.
Finally, many of the network statistics appear to vary

periodically and abruptly. An interesting question is
whether the networks of daily payments naturally form
distinct clusters, and what processes create such distinc-
tions. The scale-free daily network is constructed from
individual payments accumulated over the day. Analy-
sis of the intra-day payment data will give us insights
into how the network forms and on the regularity of this
process.

I. MAXIMUM LIKELIHOOD ESTIMATION OF

THE POWER LAW EXPONENT

In recent years, a significant amount of research has fo-
cused on showing that the distribution of many physical
and social phenomena follow a power-law, i.e., P (k) ∼
k−γ . Maximum likelihood estimators for slope coefficient
γ for the discrete and continuous case are derived in Gold-
stein et al. [24] and Newman [33], respectively. Since,
many empirical distributions are found only to follow a
power law in the right hand tail of the distribution, i.e.,
P (k) ∼ k−γ for k > a, we derive the maximum likeli-
hood estimator for a truncated power law distribution.
The probability distribution of a truncated random vari-
able is given by

P (k|k > a) =
P (k)

1− P (k ≤ a)

In the discrete case the power law distribution is given
by

P (k) =
k−γ

ζ(γ)

where ζ(γ) is the Riemann Zeta function. Hence, we have

P (k|k > a) =

k−γ

ζ(γ)

1−
Pa

s=1
s−γ

ζ(γ)

=
k−γ

ζ(γ, a)

where ζ(γ, a) is the Hurwitz Zeta function. Analogous
to Goldstein et al [24] we have that maximum likelihood
estimator, γ̂M LE , equates the negative logarithmic deriv-
ative of the Hurwitz Zeta function with the average log-
arithm of the data in the sample, i.e.,

ζ 0(γ, a)

ζ(γ, a)
=
1

n

X
i
log(xi)
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The equation can be solved numerically for γ̂M LE . An
estimate of the standard error of the maximum likeli-
hood estimator can be computed by evaluating the sec-
ond derivative of the log-likelihood function at γ̂M LE

σ̂M LE =
1√
n
·
µ

ζ(γ̂M LE , a)
2

ζ 00(γ̂M LE , a)ζ(γ̂M LE , a)− ζ 0(γ̂M LE , a)2

¶ 1
2
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