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When market volatility is stochastic, intertemporal models predict that asset risk premia are not 

only determined by covariation of returns with the market return, but also covariation with the 

state variables that govern market volatility.  To study this prediction, we model the log-volatility 

of the market portfolio as the sum of a short- and a long-run volatility component.  This approach 

parsimoniously captures shocks to systematic risk at different horizons.   

Market volatility is a significant cross sectional asset pricing factor as shown by Ang et 

al. (2006).1  Their two-factor model with the market return and market volatility does reduce 

pricing errors compared to the capital asset pricing model (CAPM), though not by as much as the 

Fama-French model.  In contrast, our benchmark asset pricing model with the market return and 

the two volatility components as cross sectional pricing factors achieves lower pricing errors 

than the Fama and French (1993) model for size and book-to-market sorted portfolios.  Our 

finding that the short- and long-run volatility components have negative, highly significant prices 

of risk is robust across sets of portfolios, sub-periods, and volatility model specifications. 

Consistent with previous research, we also find that the average compensation for 

volatility risk is positive.  This is because the prices of risk of both volatility components are 

negative, and average sensitivities to the volatility components are also negative.  Our two-factor 

decomposition shows that the average risk premium for short-run volatility is 0.17% monthly 

versus 0.23% monthly for long-run volatility. 

Across individual portfolios, we see a wide dispersion in sensitivity to the volatility 

components, which generates cross sectional variation in the risk premia attributed to these 

factors.  For example, short-run volatility risk premia across the growth-value dimension range 

from -0.22% to 0.41%, while long-run risk premia range from 0.16% to 0.30% along the growth-

value dimension.  Because the dispersion of average returns across the book-to-market portfolios 



 

 2

is the most important source of failure for the CAPM, the short-run component is an important 

cross sectional pricing factor. 

To interpret the economics of short- and long-run volatility as pricing factors, we relate 

these two factors to a measure of the tightness of financial constraints and to the business cycle.  

We use the skewness of market returns as an indicator of the tightness of financial constraints, 

since return skewness arises endogenously in pricing theories with financial constraints (Hong 

and Stein (2003), Yuan (2005)).  Intuitively, shocks to market skewness are particularly costly 

when financial constraints of investors are binding.  Industrial production growth is our proxy for 

the business cycle; we use this measure because market volatility moves with the business cycle 

(Schwert (1989a) and (1989b)). 

In our empirical analysis, we find that the risk premium of the short-run component 

correlates highly with the risk premium of market skewness, while the risk premium of the long-

run component correlates highly with the risk premium of industrial production growth.  

Furthermore, market skewness is a significant pricing factor in the cross section of size and 

book-to-market sorted portfolios; however, including the short-run volatility component as 

additional factor makes skewness insignificant.  The significance of industrial production 

innovations is eliminated by the inclusion of the long-run component as a pricing factor.   

Our pricing results deepen our understanding of the relationship between risk and return.  

An extensive literature shows that the time series relation between market risk and return is 

ambiguous (see, in particular, French, Schwert, and Stambaugh (1987), Campbell and Hentschel 

(1992), and Wu (2001)).  Our cross sectional pricing approach allows us to distinguish between 

the asset pricing effects of shocks to volatility and the static risk-return tradeoff.  Volatility risk 

premia compensate investors for the risk that volatility might increase in the future.  Our finding 
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that prices of risk are negative and significant for both volatility components implies that 

investors are willing to pay for insurance against increases in volatility risk, even if those 

increases have little persistence. 

The remainder of the paper is organized as follows. In Section I, we present the volatility 

components model and its intertemporal asset pricing implications. Section II describes the main 

cross sectional asset pricing results and relates the volatility components to our measures of 

financial constraints and the business cycle. In Sections III and IV, we present robustness results. 

Section V concludes. 

 

I. The short- and long-run components of market volatility  

 The literature on the time series of market risk shows that aggregate volatility is subject 

to shocks at different frequencies (Engle and Lee (1999)).  Intertemporal asset pricing models 

predict that the set of state variables that determines systematic risk also determines expected 

returns of individual assets or portfolios of assets (Merton (1973)).  Our analysis combines these 

insights from the volatility and the asset pricing literature.  In this section, we present a model of 

market return volatility that parsimoniously captures short- and long-run volatility factors.  We 

also present the asset pricing restrictions that will be tested in later sections. 

 

A.  Specification of volatility dynamics 

Starting with Engle and Lee (1999), many studies find that two-component volatility 

models outperform one-component specifications in explaining equity market volatility.2 In 

addition, two component volatility models perform well in the option pricing literature (see Xu 

and Taylor (1994), Bates (2000), and Christoffersen, Jacobs, and Wang (2006)).  Nelson (1991) 
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shows that conditionally log-normal models of volatility perform better than square-root or affine 

volatility specifications.  In modeling market risk, we incorporate these features and specify the 

dynamics of the market return in excess of the risk-free rate M
tR  and its conditional volatility 

tv  as: 

Market return:   11 ++ ε+μ= tt
M
t

M
t vR     (1a) 

Market volatility:   ttt lsvln +=     (1b) 

Short-run component:  ( )1 4 5 1 6 1θ θ ε θ ε 2 πt t t ts s /+ + += + + −   (1c) 

Long-run component:  ( )1 7 8 9 1 10 1θ θ θ ε θ ε 2 πt t t tl l / .+ + += + + + −  (1d) 

 In equation (1a), εt is a normal i.i.d. error term with zero expectation and unit variance, 

and M
tμ  is the one-period expected excess return.  The log-volatility in equation (1b) is the sum 

of two components st and lt.  Each component is an AR(1) processes with its own rate of mean 

reversion.  Without loss of generality, let lt be the slowly mean-reverting, long-run component 

and st be the quickly mean-reverting, short-run component (θ4< θ8).  We normalize the 

unconditional mean of st to be zero. 

 The terms |εt+1|- π/2  in equations (1c) and (1d) are the shocks to the volatility 

components.  Their expected values are equal to zero, given the normality of εt.  For these error 

terms, equal sized positive or negative innovations result in the same volatility change, although 

the magnitude can be different for the short- and long-run components (θ6 and θ10).  We also 

allow for an asymmetric effect of returns on volatility by including the market innovation in 

equations (1c) and (1d) with corresponding coefficients θ5 and θ9.   

The market model defined by equations (1a) – (1d) converges to a continuous-time, two 
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factor stochastic volatility process (see Nelson (1990)).  Chernov et al. (2003) estimate a variety 

of specifications including the continuous time limit of our equations (1a) – (1d).  They find that 

a linear specification with jumps fits the market return data as well as a log-linear specification 

with two components.  An advantage of our specification is that it can be estimated in discrete 

time via maximum likelihood.   

 

B.  Equilibrium asset pricing restrictions 

Expected returns are endogenous.  The key insight of intertemporal equilibrium models 

such as Merton’s (1973) intertemporal capital asset pricing model (ICAPM) is that state 

variables of the return generating process are state variables of the pricing kernel.  In our setting 

with a two-component volatility process, the equilibrium pricing kernel thus depends on both the 

short- and long-run volatility components as well as the excess market return ( M
tR ).  We denote 

returns on asset i in excess of the risk-free rate by i
tR .  The equilibrium expected excess return 

for asset i is: 

 ( ) ( ) ( ) ( )1 1 1 1 1 1 1γi i M i i
t t t t t t s t t t l t t tE R Cov R ,R F Cov R ,s FCov R ,l ,+ + + + + + += + +          (2) 

where γt is the coefficient of relative risk aversion, and Fs and Fl are (negatively) proportional to 

changes in the marginal utility of wealth due to changes in the state variables st and lt. 

Equation (2) shows that expected returns depend on three risk premia.  The first risk 

premium arises from the covariance of the asset return with the market return, multiplied by 

relative risk aversion γt.  This is the risk-return tradeoff in a static CAPM model.  The second and 

third risk premia depend on the covariance of the asset return with the innovations in the short- 

and long-run factors.  These are scaled by the impact of changes in the volatility factors on 

marginal utility of wealth (the terms Fs and Fl).3  
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We allow for time varying relative risk aversion in equation (2) to accommodate non-

separable preferences.  Equation (2) can be derived in Duffie and Epstein’s (1992) economy with 

stochastic differential utility.4  

In this intertemporal pricing framework, the evolution of market volatility is exogenous.  

Thus, market volatility in our setup can be linked to the variability of fundamental economic 

variables (for example, Cox, Ingersoll, and Ross (1985) and Tauchen (2005) address the 

equilibrium pricing of this type of risk).  Market volatility can also reflect uncertainty generated 

endogenously by financial constraints as suggested by Cuoco (1997) as well as Detemple and 

Serrat (2003). 

 

C.  Estimation of the volatility components 

In the case of the market portfolio, equation (2) implies that the conditional expected 

return depends on its conditional variance (the static risk-return tradeoff) and the volatility 

components (the terms associated with intertemporal hedging).  To specify a market return 

model that captures the dependence of expected returns on the state variables of the economy, 

our benchmark definition of M
tμ  is:5 

     1 2 3θ θ θM
t t tμ s l .= + +      (3) 

 We interpret equation (3) as a first-order approximation to the functional relationship of 

the expected market return M
tμ  with the volatility components st and lt.  This specification does 

not allow the separate identification of the static risk-return trade-off and the dynamic hedging 

component of volatility risk, but the cross sectional approach does allow such identification. 

We estimate our volatility model using daily market excess returns.  We use daily data in 

order to improve the estimation precision (see Merton (1980)), and we time aggregate to a 
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monthly frequency for our cross sectional analysis.6 The value-weighted (cum-dividend) Center 

for Research in Security Prices (CRSP) portfolio return is our measure of the market return, and 

the three-month Treasury rate is our proxy for the risk-free rate.  We estimate the volatility 

model from 1962/7/3 to 2005/12/31. 

Summary statistics for the daily market excess return are given in the first row of Table I, 

and estimation results for the volatility model are shown in the remaining rows of the table.   

[Table I] 

In the expected return equation, we find that short-run volatility has a significant, 

negative coefficient (θ2), while the long-run volatility component has a positive coefficient (θ3) 

significant at the 10% level.  The expected market return thus depends positively on long-run 

volatility (the risk-return trade off), but negatively on short-run volatility.  This finding might 

explain why previous papers often have difficulty detecting a time-series relationship between 

risk and expected returns.7  

We identify the short- and long-run components by their relative degrees of 

autocorrelation: the short-run volatility component has an autoregressive coefficient (θ4) of 

0.333, and the long-run component has an autoregressive coefficient (θ8) of 0.989.  While the 

long-run component is highly persistent, it is not permanent; we reject the hypothesis that θ8=1 

at the 1% level.  Because the short- and long-run components determine log-volatility additively, 

we are not able to identify the means of the two components separately, and we estimate only the 

mean of the long-run component (θ7). 

We find that negative returns increase short- and long-run volatility more than positive 

returns.  In our volatility model, this asymmetric impact of market return innovations on market 

volatility captures the time-varying skewness of market returns.  The asymmetric effect for the 
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short-run component (θ5) is more than twice as large in magnitude as this effect for the long-run 

component (θ9).  Thus, we would expect short-run volatility to be closely linked to market 

skewness, since a negative return shock disproportionately increases short-run volatility, which 

further raises the likelihood of another a large move (either up or down).8  

In Figure 1, we graph three estimates of market risk: conditional volatility from our 

model, implied volatility from the Chicago Board Options Exchange Volatility Index (VIX), and 

realized volatility from daily returns.  It is apparent that all three measures are quite similar.  As 

would be expected in the presence of a volatility risk premium, implied volatility appears to be a 

biased estimate of conditional and realized volatility (see Fleming (1999), Rosenberg (2000), and 

Bollerslev and Zhou (2005)). 

[Figure 1] [Figure 2] [Figure 3] 

Our long-run volatility component is highly correlated with the low frequency component 

of market volatility estimated using other techniques.  To illustrate this point, we plot the long-

run component together with the trend component of Hodrick and Prescott (1997) filtered daily 

squared returns in Figure 2.  We see that these estimates of long-run volatility track each other 

closely.  In Figure 3, we graph the time series of the short-run volatility component, which is 

clearly much less persistent than the long-run component.   

For our cross sectional pricing tests, we aggregate daily innovations of the volatility 

components to a monthly frequency by subtracting the short- and long-run component from the 

value expected 21 days earlier.  We then sum these innovations over the days in each month, and 

denote the monthly innovations of the short- and long-run components as sres and lres.  

Summary statistics of the innovations and the other pricing factors are shown in Table II.   

[Table II] 
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II.   The cross section of returns in size and book-to-market sorted portfolios 

 Fama and French (1992 and 1993) show that expected returns for size and book-to-

market sorted portfolios are particularly difficult to fit with the single-factor CAPM.  To address 

this failure of the CAPM, Fama and French (1993) develop the value and size asset pricing 

factors (high-minus-low HML and small-minus-big SMB).  In this section, we focus on pricing 

the size and book-to-market sorted portfolios.  We use the Fama-French three-factor model as a 

benchmark for the following asset pricing tests.9 

  

A.  The cross section of factor loadings, prices of risk, and risk premia 1963 to 2005 

We estimate the unconditional beta representation of equation (2), which states that a 

portfolio’s expected return is equal to the sum of its factor loadings times the prices of risk.  In 

the first stage, we obtain loadings for each portfolio from time series regressions (Table III).  In 

the second stage, we estimate prices of risk using monthly cross sectional regressions (Table IV).  

We then calculate risk premia for each portfolio using the factor loadings times the prices of risk 

(Table V).  The standard errors reported in the tables are adjusted to incorporate estimation error 

in the volatility factors and in the factor loadings.  A description of the estimation methodology 

for the factor loadings, prices of risk, and standard errors is given in the Appendix. 

As shown in Table III, factor loadings on short- and long-run volatility exhibit significant 

variability across both the size and book-to-market dimensions.  We see that growth stocks have 

positive loadings on short-run volatility, while value stocks tend to have negative loadings. 

Growth stocks thus provide insurance against short-run volatility shocks – after controlling for 

the market return and long-run volatility.   

We can interpret the positive loadings of growth stocks on short-run volatility risk using 
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insights from Pastor and Veronesi (2003).  Growth stocks are typically young firms with a high 

degree of uncertainty about future profit growth.  Pastor and Veronesi show that investor 

learning about firms’ growth opportunities implies a positive dependence of returns with respect 

to volatility (after controlling for other pricing factors, particularly the market return).  The cross 

sectional heterogeneity of volatility exposures along the value-growth dimension could also 

reflect differences in the duration of cash flows which might be linked to the differences in 

duration of the volatility shocks (Lettau and Wachter (2007)).  In addition, diversity in the option 

value of growth opportunities across firms due to heterogeneous adjustment costs should create 

variability in volatility loadings along the value-growth dimension (see Gomes, Kogan, and 

Zhang (2003) and Zhang (2005)). 

[Table III] 

  In Table IV, we analyze the pricing of volatility risk in the cross section of the 25 size 

and book-to-market sorted portfolios.  Ang et al. (2006) show that market variance has a 

negative price of risk for the 1986 to 2000 sample period.  We also identify a negative price for 

market variance risk in the 1963 to 2005 sample period (column iv) using innovations in 

estimated market variance from our two factor model.10 

Following the prediction of the ICAPM that the state variables of market volatility should 

be priced factors, we go on to explore the pricing of each volatility component.  In column (v) of 

Table IV, we see that both volatility components are significant pricing factors at the 1% level, 

and both components have negative prices of risk.  These negative prices of volatility risk mean 

that assets with high returns in states of the world with high volatility are expensive (i.e. they 

have low expected returns).  The price of risk of the short-run component of -0.21% monthly 
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implies that an asset with a short-run beta of unity requires a 21 basis point lower return than an 

asset with zero exposure to the short-run component. 

[Table IV] 

In terms of pricing performance, our three factor volatility model compares favorably 

with four alternative benchmarks.  We report the sum of squared pricing errors as well as the 

root-mean-squared pricing error (RMSPE) to evaluate the pricing performance of the different 

models (details are given in the Appendix).  For example, our three factor model has a root-

mean-squared pricing error of 0.13 (column v), while the Fama-French three factor model has a 

root-mean-squared pricing error of 0.14 (column ii).  Besides the Fama-French model, we 

present three other benchmark asset pricing models: the CAPM (column i), a model with the 

market return and the momentum factor of Carhart (1997) (column iii), and a model analogous to 

Ang et al. (2006) with the market and innovations to the market variance as risk factors (column 

iv).  None of these models performs as well as a model with the market return and the two 

volatility components as shown by their RMSPE’s which range from 0.24 to 0.31. 

  In columns (vi) and (vii), we report prices of risk when the short- and long-run volatility 

components enter as separate factors.  Each of the components is significant at the 1% level, and 

the prices of risk are similar to the model in which both components enter simultaneously.  It is 

also noteworthy that the two factor model with the market and the short-run component (column 

vi) outperforms the other two factor models in Table IV (columns iii and iv). 

  Figure 4 provides a graphical comparison of different asset pricing specifications.  In this 

figure, we display a scatter plot of average excess returns for the 25 size and book-to-market 

sorted portfolios against predicted returns from four different models.  The models we include 

are: the CAPM, the Fama-French model, the Ang et al. (2006) model, and our volatility 
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components model.  We see that the model with the market return and variance as pricing factors 

(lower-left panel) only slightly improves upon the CAPM (upper-left panel).  The fit of the 

market return and market variance model is not as good as the Fama-French model (upper-right 

panel).  Notably, our three-factor model with the market and two volatility components (lower-

right panel) produces a fit that is comparable to the Fama-French model.  Considering that the 

Fama-French factors are constructed to address the mispricing in the size and book-to-market 

sorted portfolios, these plots provide an illustration of the accurate pricing properties of the 

volatility components model. 

[Figure 4] 

  When we augment our benchmark three factor model with the HML and SMB factors, all 

five factors are significant, and the volatility components stay significant at the 1% level (Table 

IV, column viii).  In this five-factor pricing model, pricing errors are slightly smaller than in 

either the volatility components three factor model or the Fama-French three factor model.  So, 

the volatility components and the Fama-French factors capture some orthogonal sources of 

priced risk.  Yet, Figure 4 suggests that many of the portfolios are priced similarly by the Fama-

French factors and the volatility components.   

  To better understand this apparent tension, we take a closer look at the pricing errors for 

each portfolio.  We find that the volatility components model more accurately prices small and 

large growth stocks (with a contribution of 0.08% and 0.02% to the difference in sum of squared 

pricing errors), while the Fama-French model prices a variety of portfolios marginally better 

(with contributions of 0.01% or 0.02% to the difference in sum of squared pricing errors for a 

variety of portfolios).  These differences drive the result that all of the factors together are 

statistically significant so that the combination of the volatility components and the Fama-French 
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factors improves pricing performance. 

Why do the volatility components explain the average returns of growth stocks? Growth 

stocks have high market betas but low average returns.  Controlling for the market return, we 

find that growth stocks also have positive exposures to short-run volatility risk, while the 

exposure of value stocks is negative.  Combined with the negative price of volatility risk, our 

three-factor model predicts average returns of growth stocks that are lower than the CAPM 

benchmark. 

 For a portfolio that is long growth stocks and short value stocks, the magnitude of this 

effect is -0.63% monthly.  We compute this portfolio return using the average growth portfolio 

risk premium minus the average value portfolio risk premium attributable to short-run volatility 

risk. These average returns are reported in the middle panel of Table V (-0.22% - 0.41% = - 

0.63%).  Thus, in our pricing model, the low average returns of growth stocks are explained by 

the insurance they provide against short-run volatility risk. 

[Table V] 

Furthermore, we find that the long-run component explains some of the value spread 

(0.30% - 0.16% = 0.14% monthly, from the bottom panel of Table V), but much less than the 

short-run component.  There is a large spread in short-run volatility risk premium between small 

and large stocks (-0.12% - 0.31% = - 0.43%, middle panel of Table V), but this spread in risk 

premia is more than offset by the long-run volatility premia (0.53% + 0.07% = 0.60%, bottom 

panel of Table V).  The average short-run risk premium over all portfolios – a measure of the 

market risk premium associated with short-run volatility – is 0.17% monthly, and the average 

risk premium for the long-run component is somewhat larger (0.23%).   
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B.  Interpreting the short- and long-run volatility components 

In this section, we present cross sectional pricing results to facilitate interpretation of the 

short- and long-run volatility components.  For this purpose, we investigate the relationship of 

the volatility components with two drivers of market volatility: the tightness of financial 

constraints and business cycle risk. 

We use market skewness as an indicator of the tightness of financial constraints.  

Intuitively, an increase in market skewness makes financial constraints more binding.  Indeed, 

Hong and Stein (2003) and Yuan (2005) show that financial constraints endogenously generate 

skewed asset returns, and that this skewness is priced in equilibrium.  In addition, market 

skewness might be related to portfolio hedging (see Gennotte and Leland (1990)), or the price 

impact of the trades of large portfolio managers (see Gabaix et al. (2006)). 

Previous work that analyzes the pricing of market skewness includes Rubinstein (1973), 

Kraus and Litzenberger (1976), and Harvey and Siddique (2000).  In these papers, skewness risk 

is priced because investors dislike skewness or more generally higher order moments of returns.  

While these papers provide preference based motivations for the pricing of market skewness, the 

pricing of skewness risk in our setup follows directly from the intertemporal hedging of volatility 

risk. The time variation in volatility, in turn, drives time variation in skewness.  Economically, 

we view the price of skewness risk as a proxy for the tightness of financial constraints, and we 

interpret disutility of skewness as a reduced form representation.   

Bansal and Viswanathan (1993), Bansal, Hsieh, and Viswanathan (1993), and Dittmar 

(2002) investigate the premium due to portfolio covariance with market volatility (co-skewness) 

and the premium due to portfolio covariance with market skewness. The latter premium is called 

co-kurtosis by Fang and Lai (1997) and Christie-David and Chaudhry (2001).  These papers 
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motivate the pricing of higher moments of the market return distribution by taking higher order 

Taylor approximations to the equilibrium pricing kernel.  Bansal and Viswanathan (1993), 

Bansal, Hsieh, and Viswanathan (1993), and Dittmar (2002) measure market volatility and 

market skewness using squared and cubed market returns at the same frequency (weekly or 

monthly) as their cross sectional regressions.   

We choose a somewhat different definition of market skewness that has several 

advantages.  In particular, we estimate market skewness from daily market return data, using the 

sample skewness within each month.  Our use of higher frequency (daily) data allows us to 

obtain more precise estimates in our lower frequency (monthly) cross sectional regressions.  This 

is analogous to our market volatility estimation approach, which is based on daily returns rather 

than squared monthly returns.  We also adopt a normalized estimate of skewness (third moment 

divided by cubed standard deviation) rather than just cubed returns.  This skewness definition 

effectively orthogonalizes the skewness factor to the volatility factor and makes it easier to 

distinguish each effect.  The market skewness innovations in our cross sectional regressions are 

residuals from a monthly autoregressive model with one lag. 

We choose a macroeconomic measure of business conditions, because market volatility 

moves with the business cycle (Schwert (1989a) and (1989b)).  The existing literature analyzing 

the cross sectional pricing of business cycle risk includes Chen, Ross, and Roll (1986), 

Jagannathan and Wang (1996), Lettau and Ludvigson (2001), and Vassalou (2003).   

Since gross domestic product is only available at a quarterly frequency and our analysis is 

monthly, we use industrial production growth as our proxy for the state of the business cycle.  

Industrial production data is from the Federal Reserve Board of Governors G.17 release.  For our 

cross sectional regressions, we compute industrial production growth innovations as an 
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autoregressive model with three lags.  Summary statistics for the skewness and industrial 

production factors are provided in Table II. 

In Table VI, we assess the performance of market skewness and industrial production 

innovations as pricing factors.  For both of these variables, we then add short-run and long-run 

volatility separately to see if the volatility factors encompass the information in skewness or 

business cycle risk. 

[Table VI] 

We find that market skewness and industrial production growth are significant asset 

pricing factors in addition to the market return (Table VI, columns ii and v).  Adding short-run 

volatility as pricing factor makes skewness insignificant (column iii).  Adding long-run volatility 

makes industrial production insignificant (column vii), but does not reduce the significance of 

market skewness (column iv).  The short-run volatility component thus appears to capture shocks 

to market skewness, while the long-run component captures business cycle risk.  An additional 

advantage of our factors over sample skewness and the industrial production risk factor is that 

our factors produce smaller pricing errors.  Our short-run volatility factor also reduces pricing 

errors considerably more than the market skewness risk factor. 

In columns (viii) and (ix) of Table VI, we see that market skewness and industrial 

production are jointly significant at the 1% level when added to a three factor model. However, if 

we also include the short- and long-run components in a five factor model, both skewness and 

industrial production become insignificant, while the short and long-run components are 

significant at the 1% level. 

In Table VII, we extend the comparison of the volatility components on the one hand, 

and market skewness and industrial production on the other hand. We now assess factor 
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correlations based on prices of risk, factor loadings, and risk premia.  Across these measures, we 

see that short-run volatility is most highly correlated with market skewness, and long-run 

volatility is most highly correlated with industrial production growth. 

In particular, the price of short-run volatility risk is negatively correlated with the price of 

skewness risk (Table VII, top panel).  Thus, times when insurance against skewness risk is more 

expensive correspond to times of more negative prices of short-run volatility risk.  Furthermore, 

portfolios that have higher loadings on market skewness tend to have lower loadings on short-run 

volatility (Table VII, middle panel).  As a result of the negative time series correlation of prices 

of risk and the negative cross sectional correlation of factor loadings, market risk premia of 

short-run volatility and skewness are strongly positively correlated (Table VII, bottom panel). 

[Table VII] 

The negative correlation between the price of short-run volatility risk and the price of 

skewness risk is driven by the strong short-run leverage effect in the stochastic volatility model 

(see Table I).  Negative shocks to the market return increase short-run volatility more than 

positive shocks to the market return, giving rise to the negative skewness in the market return 

distribution.  Thus, the short-run volatility component embeds a market skewness effect and is 

naturally interpreted as a skewness factor. 

 

III. Additional portfolio sorts and time periods 

In this section, we present pricing results for alternative sets of portfolios and alternative 

sample periods.  This analysis ensures that the significance of the volatility components is not 

specific to the particular set of portfolios or sample period used in the pricing tests. 
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A. Volatility sorted portfolios 

 An important alternative set of test assets consists of portfolios sorted on exposures to the 

volatility components.  This sorting procedure also provides another estimate of the risk premia 

associated with the volatility components.  We use 25 portfolios sorted first on exposure to short-

run volatility and then long-run volatility for the cross sectional tests presented in the next 

section.  We sort first on the short-run and then the long-run exposures, because we find that a 

double sort yields months with missing observations for some portfolios. 

For each stock in the monthly CRSP data, we estimate factor loadings with respect to 

short-run and long-run volatility innovations.  To estimate loadings for month t, we include all 

stocks that have at least 60 non-missing returns between January 1958 and month t-1 (we re-

estimate the volatility components model starting in 1957 for this purpose).  Loadings are 

estimated using an expanding window of data.  For each month in the 1963/7 to 2005/12 sample 

period, we form quintile portfolios using the loadings estimated with returns up to the previous 

month.  All our portfolios are value weighted.  Summary statistics for the volatility exposure 

sorted portfolios are reported in Table VIII. 

[Table VIII] 

By construction, the sensitivities of the short-run volatility portfolios with respect to the 

short-run volatility factor are increasing along the short-run quintiles, and the sensitivities of the 

long-run volatility portfolios are increasing along the long-run quintiles.  Exposures to the 

volatility components are negative for each of the portfolios.   

Table VIII also shows that portfolios with larger negative exposure to either short- or 

long-run volatility risk have higher expected returns.  This is consistent with our finding that the 

volatility components have a negative price of risk.  Since volatility has a negative price of risk, 
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higher negative exposure to volatility risk should lead to higher expected returns. 

 The monthly excess return for the quintile with the most negative exposure to short-run 

volatility is 0.98%, while it is 0.78% for the quintile with the least negative exposure.  For the 

long-run volatility component, the quintile with the highest negative exposure has monthly 

excess returns that average 1.11%, versus 0.68% for the quintile with the lowest exposure.   

The difference in the average return between the first and the fifth short-run quintile also 

provides an estimate of the short-run volatility risk premium, which is 0.20% monthly.  This 

estimate is only slightly higher than the average short-run risk premium of 0.17% obtained from 

the Fama-MacBeth regressions in the size and book-to-market sorted portfolios (middle panel of 

Table V).  The long-run volatility risk premium implied by the sorts is 0.33% monthly (1.11% - 

90.68%), which is somewhat higher than the long-run risk premium in the size and book-to-

market sorted portfolios of 0.23% (bottom panel of Table V). 

 

B. Cross sectional regressions using the volatility sorted portfolios and other portfolios 

 In column (i) of Table IX, we report the results from Fama-MacBeth regressions for the 

25 volatility sorted portfolios.  In column (ii), we pool the 25 volatility sorted portfolios with the 

25 book-to-market sorted portfolios.  In a misspecified pricing model, we would expect the 

prices of risk of the volatility components to change substantially across different sets of test 

assets.  Thus, pooling the volatility-sorted and size and book-to-market sorted portfolios provides 

a specification check. 

In columns (iii) – (vi), we report cross sectional pricing results for sub-periods (1963/7 to 

2005/12 excluding 1987/10, 1986/03 to 2005/12, 1963/07 to 1986/02, and 1988/01 to 2005/12).  

Additionally, we estimate prices of risk in a pooled set of earnings-to-price, cash-flow-to-price, 
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dividend yield and momentum sorted portfolios (column vii).  In columns (viii) and (ix), we 

report pricing results for out-of-sample tests.  Here, the volatility components and factor loadings 

are estimated out-of-sample over 20-year rolling windows starting in 1926, so the first cross 

sectional test starts in 1946 (column viii).  We also show the out-of-sample results starting in 

1963 (column ix).   

[Table IX] 

 In all ten tests, both short- and long-run volatility are highly significant pricing factors 

with negative prices of risk.  We find that magnitudes of the prices of risk for the volatility 

components are fairly similar across time and across portfolio sorts, which is a useful further 

specification test.  

 To determine whether our results are robust to model misspecification, we recalculate the 

significance levels for our three factor volatility components model (Table IV, column v) with 

Shanken and Zhou (2006) standard errors.  As shown in column (x), the volatility components 

remain highly significant.  This provides additional support for our benchmark specification. 

 

IV.   Robustness analysis of the volatility model 

 To further examine the robustness of our cross sectional pricing results, we test the 

pricing of volatility factors estimated using a number of alternative volatility model 

specifications.  In Panel A of Table X, we report estimation results for three alternative 

specifications: the exponential generalized autoregressive conditional heteroskedasticity 

(EGARCH) model of Nelson (1991), the generalized autoregressive conditional 

heteroskedasticity components (GARCH-components) model of Engle and Lee (1999), and the 

GARCH-GJR model of Glosten, Jagannathan, and Runkle (1993).  In each alternative 
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specification, we include the market variance in the expected return equation.   

[Table X] 

 We use the Bayesian information criterion to compare models, since the models in Table 

X are non-nested.  Our EGARCH components model achieves the lowest information criterion, 

indicating that it is preferable to the other three specifications.  In Panel A, we see that all four 

specifications pass the Ljung-Box Q-test on the squared standardized residuals. The cross 

sectional regressions in Panel B show that all models have negative and highly significant prices 

of volatility risk.   

 More importantly, our volatility components model produces the lowest cross sectional 

pricing errors when compared to the other specifications (Table X, Panel B).  The lowest root-

mean-squared pricing error among the alternative models is 0.25 versus 0.13 for the benchmark 

model. 

 In these cross sectional tests, we use the of log market variance innovations as a pricing 

factor for the EGARCH and GARCH-GJR models.  This makes the pricing results more 

comparable to our benchmark model in which sres and lres are also log-volatility innovations.  

And, in fact, we see that the single factor GARCH models (Panel B, columns ii and iv) have 

prices of risk very close to the estimated price of risk for the benchmark model short-run 

component. 

 One might also expect relatively similar pricing performance when comparing the Engle 

and Lee (1999) GARCH volatility components with our benchmark EGARCH volatility 

components, since both are two-factor volatility models.  However, we cannot take logs of the 

GARCH components for our cross sectional tests, because the short-run component is sometimes 

negative.  This results in the differently scaled prices of risk that we observe when we compare 



 

 22

results in (i) and (iii) of Panel B.  It is also not surprising that to see disparities in the prices of 

short-run volatility risk, because the persistence of the GARCH short-run component is much 

higher than that of the EGARCH component (autoregressive coefficients of 0.86 and 0.33, 

respectively). 

 In addition, we find taking logs of volatility factors seems to generally improve cross 

sectional pricing performance.  For example, the root-mean-squared pricing errors using 

EGARCH log-market variance as a pricing factor is 0.25 (Table X, Panel B, column ii) 

compared to 0.29 for EGARCH market variance (not shown).  This is likely to be the reason that 

the GARCH components model’s pricing performance is the weakest among these alternative 

market risk models. 

 In Panel A of Table XI, we present time series and cross sectional results of our volatility 

components model using seven alternative specifications of the predictable component of the 

market return (see equation 2).  We report our benchmark specification in column (i).  In 

columns (ii)-(iv), we vary the volatility components included in the return equation.  In columns 

(v)-(vii), we add autoregressive and moving average terms to the market return equation.   

[Table XI] 

 Since some of the alternative models contain more explanatory variables than the 

benchmark model, it is not surprising that they achieve higher likelihoods.  However, using the 

Bayesian information criterion to balance explanatory power versus parsimony, we see that the 

models are very similar.  In addition, all models pass the Ljung-Box Q-test. 

 In terms of cross sectional pricing, Panel B of Table XI shows that the benchmark model 

is superior to the alternatives with the lowest sum of squared pricing errors.  Alternative 

specifications perform reasonably well with sum of squared pricing errors ranging from 0.45 to 
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0.88.  We also see that including market variance (column i versus iv) with the short- and long-

run components results in only a small change in pricing accuracy.  In contrast, using market 

variance alone in the expected return equation results in a noticeable deterioration in the sum of 

squared pricing errors (column i versus ii). 

 

V. Conclusions 

Intertemporal models predict that financial asset risk premia are not only due to 

covariation of returns with the market return, but also covariation with the state variables that 

govern market volatility.  We model the log-volatility of the market portfolio as the sum of a 

short- and a long-run volatility component to form pricing factors that reflect shocks to 

systematic volatility at different horizons.   

Our empirical results demonstrate that shocks to systematic volatility are more important 

determinants of equity returns than has been previously shown.  We find that prices of risk are 

negative and significant for both volatility components indicating that investors require 

compensation in order to hold assets that depreciate when volatility rises, even if the volatility 

shocks have little persistence.  Our analysis links the short-run volatility component to market 

skewness risk, which we interpret as a measure of the tightness of financial constraints.  The 

long-run volatility component relates closely to business cycle risk.  Our three factor pricing 

model with the two volatility components and the market return as pricing factors compares 

favorably to benchmark models in explaining the cross section of equity return. 
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Appendix 

Shanken (1992) and Jagannathan and Wang (1998) derive consistent standard error 

estimators for the two-step Fama and MacBeth (1973) estimation technique.  Both papers show 

that standard errors of the risk-premia (λ) must be adjusted to account for the estimation error of 

the factor loadings (β).  Our approach adds another layer of estimation error, specifically error in 

the estimation of the volatility factors (F), which are used in the loadings regressions.  Using 

results from Murphy and Topel (1985) and Jagannathan and Wang (1998), we derive the 

appropriate standard error adjustments for our three-step procedure. 

In the first step, we use maximum likelihood to estimate the parameters of the volatility 

components model (θ ).  The daily log-likelihood function is 
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where td=1,...,Td is the daily time index, Td is the total number of daily observations, and the 
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M
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Next, the factor loadings βi (K ×1) for each portfolio are estimated by regressing portfolio 

returns on pricing factors: 

( )-1' ' ,i i
c c c cF F F Rβ =  for i = 1, ..., N           (A3)  

where Fc=F-1T. F  is the T×K matrix of demeaned pricing factors, and i
cR = 1i i

TR R−  is the T×1 
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vector of demeaned excess portfolio returns for portfolio i.   

 We then stack the factor loadings portfolio by portfolio to obtain a NK×1 vector denoted 

by β.  To estimate the N×N covariance matrix of residuals (Φ), we use the sample covariance 

matrix of the 1×N vector of time series residuals (ut).  Therefore, the log-likelihood function 

conditional on the set of pricing factors ( )tF θ  for month t is given by: 

( )( ) ( ) 1
2 | , ln 2 0.5ln 0.5 ' .t t t t tf R F N u uβ θ π −= − − Φ − Φ        (A4) 

The covariance matrix of residuals (Φ) is constant, and (A4) defines the likelihood 

function to a system of seemingly unrelated regressions (SUR). Therefore, (A3) is the solution to 

maximizing (A4) with respect to the parameter vector θ  (see Greene (2003)). 

To estimate standard errors for the factor loadings (V2), we evaluate the gradient of the 

likelihood function numerically: 
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This estimate of the variance covariance matrix (V2 which is NK×NK) does not take the sampling 

error of the generated volatility factors into account.   

 We correct for estimation error in the loadings regression using the two-step procedure of 

Murphy and Topel (1985). Murphy and Topel show that the original parameter covariance 

matrix (V2) must be corrected for estimation error to arrive at a consistent estimate ( 2V ∗ ).  The 

formula is given as follows: 

( ) ( ) ( )( )2 2 2 2 1 2 2 2 2 1 2 2 1 2 21
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daily gradients 
1

/dt
f θ∂ ∂  in month t from the likelihood function (A1).  The derivative 2 /tf β∂ ∂  

is the gradient of the likelihood function (A4).  The gradient of likelihood (A4) with respect to 

the parameters of the volatility model θ  is 2 /tf θ∂ ∂ .  We compute 2 /tf θ∂ ∂  numerically as 

( )( ) ( )( )2 2| , | ,t t t i t t t if R F f R Fβ θ ε β θ ε⎡ ⎤+ −⎣ ⎦  for each θi.  1N denotes the N×1 vector of ones.   

When pricing factors are not estimated, there are no first stage parameters.  Therefore, the 

derivative of the likelihood function in the loadings regression with respect to these parameters is 

zero ( 2 / 0tf ′∂ ∂ =θ , Γ2 = 0, and C2 = 0).  Then, 2V ∗  equals the original covariance matrix estimate 

V2.  Otherwise, the second stage standard errors depend in the first stage standard errors (V1) and 

covariances of scores from the first and second stages.   

Following Fama and MacBeth (1973), our third stage estimates of factor risk premia are 

from monthly cross sectional regressions: 

( ) ( )( ) ( )
1' ,t tvecinv vecinv vecinv Rλ β β β

−
=  for t = 1, ..., T       (A7) 

where vecinv(β) denotes the K×N matrix of stacked βi’s such that vec(vecinv (β))=β, and Rt is the 

N×1 cross section of portfolio returns at time t.  The estimated prices of risk are contained in λ  

(a K×1 vector), which is the time series average of the λt’s.   

We then use Jagannathan and Wang (1998) to obtain standard errors for the risk premia 

( 3V ∗ ) that are adjusted for error in the estimated factor loadings.  We also correct for volatility 

factor estimation error by using the Murphy and Topel (1985) adjusted standard errors ( 2V ∗ ), 

rather than the OLS standard errors (V2) from the loadings regressions.  To further adjust for 

possible heteroskedasticity and autocorrelation, we estimate covariance matrices in the 

Jagannathan and Wang (1998) formula using Newey and West (1987):  
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where ut is the 1×N row vector of errors from the time series regression.  We use q = 

int(4(T/100)2/9) for the Newey and West (1987) autocorrelation adjustment.   

Without the Newey-West adjustment in G3 and V3 and with 2 2V V∗ = , (A8) reduces to the 

expression of Jagannathan and Wang (1998, Theorem 1).  This can be seen by replacing (A7) 

into (A8), and substituting analytically for V2.  The term V3 then corresponds to the original 

covariance matrix of pricing errors as proposed by Fama and MacBeth (1973).  The terms G3 and 

W3 adjust for the estimation errors of the previous stages.   

 We calculate the average pricing error for each portfolio, the sum of squared portfolio 

pricing errors, and the root-mean-squared pricing errors respectively using: 
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ENDNOTES 

1 Papers that focus on the cross sectional pricing implications of time-varying volatility but do 

not study the pricing implications of intertemporal hedging include Engle, Bollerslev, and 

Wooldridge (1988), Harvey (1989), and Schwert and Seguin (1990).  Ozoguz (2004) uses the 

ex-ante uncertainty of a regime switching model of the market premium as an asset pricing 

factor. 

2 Engle and Rosenberg (2000), Alizadeh, Brandt, and Diebold (2002), Bollerslev and Zhou 

(2002), Chacko and Viceira (2003), and Chernov et al. (2003) find that two-component 

volatility specifications outperform one-factor models for market return volatility.   

3 Merton (1973) and Cox, Ingersoll, Ross (1985) derive general results that allow us to write 

expression (2). Abel (1988) and Gennotte and Marsh (1992) —  in discrete and continuous 

time, respectively — solve for equilibrium expected returns when cash-flow volatility follows a 

one-component, square-root process and investors have constant relative risk aversion 

preferences.  With Kreps and Porteus (1978) preferences that separate the coefficient of relative 

risk-aversion from the intertemporal elasticity of substitution, Tauchen (2005) derives an 

approximate solution in a discrete-time setting with two volatility components.  Bansal and 

Yaron (2004) quantify aggregate risk premia in a setting with one volatility component and 

Kreps-Porteus preferences.   

4 Our equation (2) can be derived in Duffie and Epstein’s (1992) stochastic differential utility 

setting by replacing their equation (17) into (36), imposing market clearing, and then solving 

for the expected returns of individual assets.  Duffie and Epstein’s –wJw/Jww then corresponds 

to our γt, their vector -wJxw/Jw corresponds to our [Fs, Fl], and the vector of state variables x 

corresponds to the short- and long-run volatility components [s, l] in our setting. 
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5 It is unlikely that one would be able to identify hedging demands based on the signs and 

significance of estimated coefficients in the mean equation, because these coefficients might be 

affected by the particular functional form chosen for the volatility equation. 

6 Nelson (1992) shows that estimation error due to volatility model misspecification decreases as 

observation frequency increases.  Andersen et al. (2003) demonstrate that volatilities can be 

precisely estimated without a parametric model using high frequency data; however, intraday 

data is not available over our full sample period.  Campbell, Lo, and MacKinley (1997) point 

out potential biases in volatility estimation arising from the use of high-frequency data such as 

the effects of non-synchronous trading and bid ask bounce.  While these effects can be 

important for individual stocks, the impact for a broadly diversified portfolio should be small. 

7 Since Merton’s (1980) investigation of the time series of the risk-return tradeoff, the literature 

has found a negative, insignificant, or positive risk-return tradeoff depending on the 

specification.  See, in particular, French, Schwert, and Stambaugh (1987), Turner, Startz, and 

Nelson (1989), Baillie and DeGennaro (1990), Campbell and Hentschel (1992), Glosten, 

Jagannathan, and Runkle (1993), Scruggs (1998), Harvey (2001), Brandt and Kang (2004), 

Ghysels, Santa-Clara, and Valkanov (2005), and Guo and Whitelaw (2006). 

8 The asymmetric relationship between return innovations and volatility is documented in one-

factor contexts by Campbell and Hentschel (1992), Glosten, Jagannathan, and Runkle (1993), 

Zakoian (1994), Andersen, Benzoni, and Lund (2002), and Eraker, Johannes, and Polson 

(2003), and Bollerslev and Zhou (2005), among others.  Engle and Lee (1999) model the 

asymmetric relation between returns and the short-run component of volatility, but not the 

long-run component.  Chernov et al. (2003) also find that both the short-run and long-run 
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components of stock market volatility exhibit a leverage effect.  Wu (2001) and Tauchen 

(2005) model economic mechanisms that give rise to the leverage effect. 

9 In our analysis, returns to the size and book-to-market sorted portfolios and the value, size and 

momentum factors (HML, SMB, and UMD) are from the website of Kenneth French at 

http://www.dartmouth.edu/~kfrench/.  We use the research size and value factors for our 

analysis.  These factors have better cross sectional pricing properties than the benchmark 

factors. 

10There are a number of differences between our specification in column (iv) and the asset 

pricing model proposed by Ang et al. (2006).  These authors use the VIX implied volatility 

index, which is only available since 1986, while we use estimated volatility since 1963.  Their 

cross sectional regressions are based on a volatility factor mimicking portfolio, while we use 

market variance innovations directly as a factor. Lastly, they construct volatility innovations 

using monthly changes.  We use innovations of an AR(2) process, since we detect significant 

autocorrelation in the differenced variance series. 
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Mean Median Std. Dev. Skewness Kurtosis
0.030 0.054 0.883 -0.748 21.188

θ 1 θ 2 θ 3

coef. 0.045 -1.568 0.038
std. err. 0.014 0.140 0.022
p -value 0.001 0.000 0.086

θ 4 θ 5 θ 6

coef. 0.333 -0.069 -0.002
std. err. 0.036 0.005 0.004
p -value 0.000 0.000 0.655

θ 7 θ 8 θ 9 θ 10

coef. -0.002 0.989 -0.032 0.061
std. err. 0.001 0.001 0.002 0.003
p -value 0.003 0.000 0.000 0.000

p -value of θ 8 =1:         0.000

10 lags 20 lags
10.58 15.47

2.21 0.75

Table I
Time-Series Estimation of the Volatility Components Daily 1962/7/3 to 2005/12/31

This table reports the summary statistics of the daily market excess return and the maximum likelihood estimates of the
volatility components model. The market excess return is measured as the cum-dividend return of the value weighted CRSP 
portfolio in excess of the three-month Treasury bill rate. The standardized error term ε is assumed to be distributed normally
with mean zero and variance one. The variance of the market excess return v is defined as v=exp (2 (s+l )), where l denotes the
long-run volatility component and s  the short-run volatility component. 

Summary statistics of market excess return (10951 days)

p -value

Market excess returns:   

Short-run component:   

Long-run component:   

Ljung-Box Q -statistic of ε²

1 1 2 3 1θ θ θ εM
t t t t tR s l v+ += + + +

( )1 4 5 1 6 1θ θ ε θ  ε 2 πt t t ts s /+ + += + + −

( )1 7 8 9 1 1 0 1θ θ θ ε θ  ε 2 πt t t tq l /+ + += + + + −
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Pricing factor Mean Std. Dev. Skewness Kurtosis

Short-run volatility (sres ) 0.00 0.47 0.04 3.04
Long-run volatility (lres ) 0.05 3.77 0.57 3.80

Market variance (vres ) 0.05 9.78 6.22 82.30
Excess market return 0.47 4.42 -0.50 5.06
Value factor (HML ) 0.44 2.92 0.02 5.50

Size factor (SMB) 0.25 3.24 0.52 8.43
Momentum factor (UMD) 0.85 4.03 -0.65 8.43

Market skewness 0.00 0.55 -0.33 3.94
Industrial production 0.00 0.01 0.35 3.50

Table II
Summary Statistics of Pricing Factors Monthly 1963/7 to 2005/12

The daily innovations of the short-run component (s ) and the long-run component (l ) from the volatility components model (Table I)
are aggregated to a monthly frequency (sres, lres ) as described in Section I.C. The market variance (v ) is aggregated to a monthly
frequency, and variance innovations (vres ) are estimated as residuals of a monthly autoregressive process with two lags. The market
skewness factor is calculated from daily market excess returns for each month, and its residuals are obtained from a monthly
autoregression. The industrial production factor is computed as residuals of an autoregressive process of monthly industrial production
growth with three lags.
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Growth 1.63 *** 1.51 *** 1.38 *** 1.33 *** 1.04 ***

Book-to-Market 2 1.20 *** 1.07 *** 1.01 *** 1.01 *** 0.86 ***

Book-to-Market 3 0.96 *** 0.87 *** 0.80 *** 0.81 *** 0.77 ***

Book-to-Market 4 0.89 *** 0.80 *** 0.68 *** 0.62 *** 0.54 ***

Value 0.89 *** 0.78 *** 0.76 *** 0.70 *** 0.53 ***

Growth 2.74 * 1.17    0.46    0.72    0.08    

Book-to-Market 2 0.72    -0.44    -0.63    -0.55    -1.03 *

Book-to-Market 3 -0.35    -0.83    -1.29    -1.54 ** -0.95    

Book-to-Market 4 -0.10    -1.02    -1.90 ** -2.79 *** -2.63 ***

Value -0.20    -1.99 *  -1.83 *  -2.78 *** -2.96 ***

Growth -0.26 *** -0.14 *** -0.08 ** 0.00    0.07 ***

Book-to-Market 2 -0.27 *** -0.17 *** -0.09 *** -0.03    0.04    

Book-to-Market 3 -0.22 *** -0.22 *** -0.13 *** -0.05    0.03    

Book-to-Market 4 -0.25 *** -0.19 *** -0.11 *** -0.05    0.03    

Value -0.31 *** -0.21 *** -0.16 *** -0.05    -0.01    

Table III
Factor Loadings of the 25 Size and Book-to-Market Sorted Portfolios Monthly 1963/7 to 2005/12

This table reports factor loadings from regressions of each size and book-to-market portfolio return on the market return, short-run volatility innovations
(sres ), and long-run volatility innovations (lres ). Standard errors are adjusted for heteroskedasticity and estimation error of the volatility components (see
Appendix). Significance at the 1%-level is denoted by ***, at the 5%-level by **, and at the 10%-level by *. 

Multivariate loadings on the market factor

Small Size 2 Size 3

p -value that all 25 loadings are equal = 4.27%

Multivariate loadings on long-run volatility innovations (lres )
Small

Large

p -value that all 25 loadings are equal = 0.00%

Multivariate loadings on short-run volatility innovations (sres )

Large

p -value that all 25 loadings are equal = 0.00%

Small Size 2 Size 3 Size 4

Size 4 Large

Size 2 Size 3 Size 4



 

 42

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)
coef. 0.65 *** 0.43 ** 0.54 ** 0.56 *** 0.34 *  0.43 *  0.45 ** 0.42 ** 0.35 *  

t -stat 2.92 2.18 2.39 2.75 1.64 1.85 2.24 2.04 1.65

coef. -0.21 *** -0.23 *** -0.18 *** -0.27 ***

t -stat -4.18 -5.10 -3.38 -6.60

coef. -2.02 *** -1.92 *** -3.58 *** -2.19 ***

t -stat -3.10 -3.14 -4.21 -3.18

coef. -3.23 ** 

t -stat -1.98

coef. 0.49 *** 0.44 ***

t -stat 3.17 2.83

coef. 0.24    0.26 *  

t -stat 1.57 1.64

coef. -3.16 ** 1.87 ***

t -stat -2.41 3.45

Sum of squared pricing errors 2.38 0.49 1.45 2.16 0.44 0.64 1.64 0.38 0.40
RMSPE 0.31 0.14 0.24 0.29 0.13 0.16 0.26 0.12 0.13

Table IV
Pricing the Cross-Section of 25 Size and Book-to-Market Sorted Portfolios Monthly 1963/7 to 2005/12

                           Volatility Components                                                  Benchmarks                        

Excess market return

Short-run volatility (sres )

Long-run volatility (lres )

Market variance (vres )

Value factor (HML )

Size factor (SMB )

Momentum factor (UMD )

This table reports summary statistics of the cross-sectional Fama-MacBeth (1973) regressions for the size and book-to-market sorted portfolios of Fama and French (1993). In
the first stage, portfolio returns are regressed on the pricing factors to obtain factor loadings (reported in Table III). In the second stage, for each month, portfolio returns are
regressed on the loadings, giving an estimate of the price of risk for each factor. The t -statistics are adjusted for autocorrelation and heteroskedasticity, estimation error in
factor loadings, and estimation error of the volatility components (see Appendix). Innovations to the short-run component (sres ), the long-run component (lres ), and the
variance of excess returns (vres ) are from the volatility-components model reported in Table I. RMSPE denotes the root mean square pricing error.
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Small Size 2 Size 3 Size 4 Large Average
Growth 0.56 0.52 0.48 0.46 0.36 0.48

Book-to-Market 2 0.41 0.37 0.35 0.35 0.30 0.36
Book-to-Market 3 0.33 0.30 0.27 0.28 0.27 0.29
Book-to-Market 4 0.31 0.28 0.23 0.21 0.18 0.24

Value 0.31 0.27 0.26 0.24 0.18 0.25

Average 0.38 0.35 0.32 0.31 0.26 0.32

Small Size 2 Size 3 Size 4 Large Average
Growth -0.57 -0.25 -0.10 -0.15 -0.02 -0.22

Book-to-Market 2 -0.15 0.09 0.13 0.12 0.22 0.08
Book-to-Market 3 0.07 0.17 0.27 0.32 0.20 0.21
Book-to-Market 4 0.02 0.21 0.40 0.59 0.55 0.35

Value 0.04 0.42 0.38 0.58 0.62 0.41

Average -0.12 0.13 0.22 0.29 0.31 0.17

Small Size 2 Size 3 Size 4 Large Average
Growth 0.53 0.27 0.17 -0.01 -0.15 0.16

Book-to-Market 2 0.55 0.35 0.19 0.07 -0.08 0.21
Book-to-Market 3 0.44 0.45 0.25 0.11 -0.05 0.24
Book-to-Market 4 0.50 0.38 0.23 0.10 -0.06 0.23

Value 0.62 0.43 0.31 0.10 0.01 0.30

Average 0.53 0.38 0.23 0.07 -0.07 0.23

Table V
Factor Risk Premia of the 25 Size and Book-to-Market Sorted Portfolios Monthly 1963/7 to 2005/12

This table reports the risk premia of each size and book-to-market portfolio return on the market return, short-run volatility innovations (sres ),
and long-run volatility innovations (lres ). The risk premia are calculated by multiplying factor loadings (from Table III) times prices of risk
(from Table IV, column v). 

Short-run volatility risk premium

Long-run volatility risk premium

Market risk premium
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(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (xi)
coef. 0.34 *  0.67 *** 0.39 *  0.39 ** 0.47 ** 0.36 *  0.45 ** 0.40 ** 0.36 *  

t -stat 1.64 3.05 1.85 1.94 2.36 1.71 2.25 2.01 1.73
coef. -0.21 *** -0.25 *** -0.20 *** -0.16 ***

t -stat -4.18 -4.74 -4.25 -3.97
coef. -2.02 *** -2.39 *** -2.55 *** -2.39 ***

t -stat -3.10 -3.92 -3.56 -3.88
coef. 0.48 ** -0.15    0.76 *** 0.82 *** 0.37    

t -stat 2.09 -0.54 2.53 3.49 1.61
coef. 0.01 *** 0.00    0.00    0.01 *** 0.00    

t -stat 3.15 1.28 -1.04 6.17 -0.06

Sum of squared pricing errors 0.44 1.90 0.60 0.47 1.77 0.50 1.62 0.58 0.38
RMSPE 0.13 0.28 0.15 0.14 0.27 0.14 0.25 0.15 0.12

     Skewness and IP         Industrial Production    

Excess market return

Short-run volatility (sres )

Long-run volatility (lres )

Market Skewness 

Industrial production 

Table VI
Pricing the Cross-Section of 25 Size and Book-to-Market sorted Portfolios Monthly 1963/7 to 2005/12

             Skewness             

This table reports summary statistics of the cross-sectional Fama-MacBeth (1973) regressions for the Size and Book-to-Market sorted portfolios of
Fama and French (1993). In the first stage, portfolio returns are regressed on the pricing factors to obtain factor loadings. In the second stage, for each
month, portfolio returns are regressed on the loadings, giving an estimate of the price of risk for each factor. The t-statistics [reported in brackets] are
adjusted for autocorrelation using the Newey-West (1987) procedure, and adjusted for the estimation error using the Shanken (1992) correction. The J
statistic corresponds to the joint test that the pricing errors for all 25 portfolios are zero (Hansen and Singleton 1982). The pseudo R2 is from
Campbell and Vuoltheenhao (2004). Innovations to the short-run component (sres ), the long-run component (lres ), and the variance of excess returns

This table reports summary statistics of the cross-sectional Fama-MacBeth (1973) regressions for the size and book-to-market sorted portfolios of Fama and French
(1993). In the first stage, portfolio returns are regressed on the pricing factors to obtain factor loadings. In the second stage, for each month, portfolio returns are
regressed on the loadings, giving an estimate of the price of risk for each factor. Market skewness is calculated from daily market excess returns for each month and
its residuals are obtained from a monthly autoregression. Industrial production denotes the time-series innovations of an AR(3) process of industrial production
growth. Short- and long-run volatility are the innovations to the volatility components (sres and lres ) from the volatility model of Table I. The t -statistics are
adjusted for autocorrelation and heteroskedasticity, estimation error in factor loadings, and estimation error of the volatility components (see Appendix). RMSPE
denotes the root mean square pricing error.
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Short-run volatility (sres ) Long-run volatility (lres )
Market return skewness -78% 49%

Industrial production 7% -98%
Value factor (HML ) -59% -20%

Size factor (SMB ) 26% -88%
Momentum factor (UMD ) 89% -9%

Short-run volatility (sres ) Long-run volatility (lres )
Market return skewness -84% 61%

Industrial production 22% -94%
Value factor (HML ) -83% -13%

Size factor (SMB ) 59% -93%
Momentum factor (UMD ) 85% -15%

Short-run volatility (sres ) Long-run volatility (lres )
Market return skewness 54% 22%

Industrial production -2% 95%
Value factor (HML ) 52% 10%

Size factor (SMB ) -1% 85%
Momentum factor (UMD ) 79% -4%

Time series correlations of prices of risk          

Table VII
Correlations of Prices of Risk, Factor Loadings, and Risk Premia 

This table reports the time series correlations of prices of risk, the cross sectional correlations of factor
loadings, and the pooled time series and cross sectional correlations of risk premia for the pricing models
of columns (ii), (iii) and (v) of Table IV and columns (ii) and (v) of Table VI. 

Cross sectional / time series correlations of risk premia          

Cross sectional correlations of factor loadings          
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1 2 3 4 5

Average excess return 0.98 0.93 0.93 0.85 0.78

Loading on short-run volatility (sres ) coef. -13.60 -10.88 -9.45 -7.94 -5.61
t -stat -26.85 -31.84 -32.82 -32.77 -24.95

1 2 3 4 5

Average excess return 1.11 1.02 0.87 0.80 0.68

Loading on long-run volatility (lres ) coef. -0.87 -0.73 -0.65 -0.56 -0.47
t -stat -10.78 -11.78 -12.37 -12.65 -12.52

Long-run volatility quintiles

Short-run volatility quintiles

Portfolios are formed by first sorting the universe of CRSP stocks into short-run and long-run volatility
exposure quintiles. Exposures are calculated as univariate factor loadings using an expanding window
from 1958/01, up to the month before portfolio formation. Each stock is required to have at least 60
months of returns before being included into the portfolio. Portfolio returns are value weighted.
Innovations to the short-run component (sres ) and the long-run component (lres ) are from the volatility-
components model reported in Table I. 

Table VIII
Portfolios Sorted on Volatility Component Sensitivities Monthly 1963/7 to 2005/12
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(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x)
coef. 0.48 ** 0.42 ** 0.39 *  0.58 ** 0.21    0.60 ** 0.44 ** 0.94 *** 0.88 *** 0.34 *  
t -stat 2.22 1.95 1.85 1.94 0.69 2.05 2.12 5.68 4.34 1.64
coef. -0.12 ** -0.18 *** -0.22 *** -0.22 ** -0.19 *** -0.22 *** -0.17 *** -0.42 *** -0.20 *** -0.21 ***
t -stat -2.07 -3.85 -4.28 -2.37 -3.03 -2.62 -4.33 -2.64 -4.48 -4.29
coef. -2.39 ** -1.83 *** -2.08 *** -2.70 *** -2.22 *** -2.92 *** -1.25 *  -2.14 *** -2.52 *** -2.02 ***
t -stat -2.23 -3.23 -3.18 -2.46 -2.53 -2.56 -1.86 -3.94 -2.86 -3.05

Sum of squared pricing errors 0.30 1.02 0.52 1.13 0.48 1.09 0.84 0.74 0.92 0.44
RMSPE 0.11 0.14 0.14 0.21 0.14 0.21 0.15 0.17 0.19 0.13

Column (i):  
Column (ii):

Column (iii):
Column (iv):
Column (v):

Column (vi):
Column (vii):

Column (viii): 25 size and book-to-market sorted portfolios, 20-year rolling out-of-sample factors and loadings, 1946/07 to 2005/12
Column (ix): 25 size and book-to-market sorted portfolios, 20-year rolling out-of-sample factors and loadings, 1963/07 to 2005/12
Column (x):

36 portfolios sorted on earnings/price (10), cash-flow/price (10), dividend yield (10), and size and momentum (6) 1963/07 to 2005/12

Short-run volatility (sres )

Long-run volatility (lres )

Table IX
Pricing the Cross-Section of other Test Assets and Sample Periods

This table reports summary statistics of the cross-sectional Fama-MacBeth (1973) regressions using the set of portfolios and sample periods reported below. The t-statistics
are adjusted for heteroskedasticity and autocorrelation, for the estimation error in factor loadings, and for the estimation error in the volatility components (see Appendix).
RMSPE denotes the root mean squared pricing error.

Excess market return

25 volatility exposure sorted portfolios 1963/07 to 2005/12

25 size and book-to-market sorted portfolios, Shanken and Zhou (2006) standard errors, 1963/07 to 2005/12

25 size and book-to-market sorted portfolios 1963/07 to 1986/02
25 size and book-to-market sorted portfolios 1988/01 to 2005/12

25 volatility exposure plus 25 book-to-market sorted portfolios 1963/07 to 2005/12
25 size and book-to-market sorted portfolios 1963/07 to 2005/12, excluding 1987/10
25 size and book-to-market sorted portfolios 1986/03 to 2005/12
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vt+1 = qt + 0.88*** (vt - qt ) + (vt ε²t+1-qt) [ Iε<0  0.11***- 0.01]

Log-likelihood -12,051 Log-likelihood -12,334
Ljung-Box of ε 2  (10 lags) 10.58 Ljung-Box of ε 2  (10 lags) 5.20

Bayesian Information Criterion 2.21 Bayesian Information Criterion 2.26

vt+1 =  0.01*** + 0.91***vt + vt ε²t+1 [ Iε<0  0.09***+ 0.03***]
Log-likelihood -12,271 Log-likelihood -12,315

Ljung-Box of ε 2  (10 lags) 6.94 Ljung-Box of ε 2  (10 lags) 4.67
Bayesian Information Criterion 2.25 Bayesian Information Criterion 2.25

Excess market return 0.34 * 0.43 ** 0.48 ** 0.43 **

Short-run volatility -0.21 *** -6.18 ***

Long-run volatility -2.02 *** -3.30 ***

Market variance -0.19 *** -0.22 ***

Sum of squared pricing errors 0.44 1.61 1.74 1.58
RMSPE 0.13 0.25 0.26 0.25

(i) Benchmark (ii) EGARCH (iii) GARCH-components

 lt+1 = 0.00*** + 0.99*** lt - 0.03***εt+1 +0.06***(|εt+1| - √2/π )

(iv) GARCH-GJR

Table X
Comparison to Alternative Market Risk Models

Panel A: Time-series estimation, daily 1962/7/3 to 2005/12/31

(i) Benchmark specification (iii) GARCH-components, Engle and Lee (1999)

Panel A: The estimation of alternative volatility model specifications uses the data described in Table I. The Bayesian Information
Criterion of Schwarz (1978) allows comparison of goodness of fit across models. The benchmark model is the EGARCH components
specification described in Section I.A.

Panel B: These cross-sectional pricing results use the volatility components estimated using the models in Panel A. The market
variance pricing factor is in logs for the EGARCH and GARCH-GJR models. RMSPE denotes the root mean square pricing error.

(iv) GARCH-GJR, Glosten, Jagannathan, Runkle (1993)

 st+1 = 0.33***st
  - 0.07*** εt+1 - 0.002 (|εt+1| - √2/π )

Rt+1 = 0.04***  - 1.57*** st + 0.04*lt + √vt εt+1

qt+1 =1.63 + 0.99*** qt + 0.03***vt (ε²t+1 - 1)

Rt+1 = 0.03*** +0.05***vt +  √vt εt+1

Rt+1 = 0.03*** + 0.01vt+  √vt εt+1Rt+1 = 0.02** + 0.03*vt  + √vt εt+1

ln(vt+1) = -.12***  + 0.98*** ln(vt)-0.07*** εt+1 + 0.15***|εt+1|

Panel B: Cross-sectional pricing, monthly 1963/7 to 2005/12, size and book-to-market sorted portfolios

(ii) EGARCH, Nelson (1991)
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Panel A: Time series estimation
θ 1 0.04 *** 0.05 *** 0.01 0.02 -0.04 -0.05 -0.04
θ 2 -1.57 *** -1.62 *** -1.59 *** -0.13 ** -0.26 *** -0.22 ***

θ 3 0.04 * 0.02 -0.04 -0.05 -0.05
θ v -0.02 0.04 ** 0.02 0.07 *** 0.09 *** 0.08 ***

θ R 0.18 *** 0.05
θε 0.16 *** 0.12 **

θ 4 0.33 *** 0.86 *** 0.33 *** 0.33 *** 0.88 *** 0.88 *** 0.88 ***

θ 5 -0.07 *** -0.06 *** -0.07 *** -0.07 *** -0.06 *** -0.06 *** -0.06 ***

θ 6 0.00 0.03 0.00 0.00 0.03 0.03 0.03
θ 7 0.00 *** 0.00 *** 0.00 ** 0.00 *** 0.00 *** 0.00 *** 0.00 ***

θ 8 0.99 *** 1.00 *** 0.99 *** 0.99 *** 1.00 *** 1.00 *** 1.00 ***

θ 9 -0.03 *** -0.01 *** -0.03 *** -0.03 *** -0.01 *** -0.01 *** -0.01 ***

θ 10 0.06 *** 0.04 *** 0.06 *** 0.06 *** 0.04 *** 0.04 *** 0.04 ***

Log-likelihood
Ljung-Box of ε 2  (10 lags) 8.97 8.35 8.89 8.78

Bayesian Information Criterion
Panel B: Cross sectional pricing

Excess market return 0.34 *  0.65 *** 0.35 *  0.35 *  0.61 *** 0.62 *** 0.62 ***

Short-run volatility (sres ) -0.21 *** -0.64 *** -0.20 *** -0.21 *** -1.16 *** -0.93 *** -1.00 ***

Long-run volatility (lres ) -2.02 *** -4.39 *** -2.01 *** -2.03 *** -4.13 *** -4.52 *** -4.41 ***

Sum of squared pricing errors 0.44 0.84 0.45 0.45 0.63 0.68 0.67
RMSPE 0.13 0.18 0.13 0.13 0.16 0.17 0.16

2.21 2.21
(i) (ii) (iii) (iv) (v) (vi) (vii)

2.212.21 2.23 2.21 2.21

-11501.9 -12019.0
10.58 9.87 10.15

-12050.8 -12177.7 -12050.6 -12050.4 -12020.4

(iv) (v) (vi) (vii)

Table XI
Specification Analysis of the Volatility Components Model

Panel A: The time series estimation of the daily volatility components model 1962/7/3 to 2005/12/31 uses the data described in Table I. The models
incorporate different expected return specifications; the baseline model is in column (i). The Bayesian Information Criterion of Schwarz (1978) allows
comparison of goodness of fit across models. The estimated time series model is:

Panel B: Cross sectional asset pricing results using the 25 size and book-to-market sorted portfolios 1963/7 to 2005/12 monthly as in Table IV. RMSPE is the
root mean squared pricing error.

(i) (ii) (iii)

( ) ( )
1 1 2 3 ε 1 1

1 4 5 1 6 1 1 7 8 9 1 10 1

θ θ θ θ θ θ ε ε      

θ θ ε θ ε 2 π          θ θ θ ε θ ε 2 π

M M
t t t v t R t t t t t

t t t t t t t t

R s l v R v v

s s / l l /

+ − +

+ + + + + +

= + + + + + +

= + + − = + + + −
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Figure 1. Monthly market volatility (annualized). This figure plots three measures of the annualized standard deviation of the market return at a monthly frequency
for 1962/7 to 2005/12. The first measure is the implied volatility of the S&P100 stock index from the VIX (starting in 1986/01, dotted line). The second measure is
derived from daily squared returns (grey thick line). The third measure is the conditional volatility from the volatility components model shown in Table I (black solid
line). 
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Figure 2. The long-run volatility component. This figure plots the estimated long-run volatility component (l ) at a monthly frequency from 1962/7 to 2005/12 (solid
line). The conditional variance of the excess market return is defined as v=exp (2 (s+l )), where s is the short-run component of volatility (Figure 3). The estimate of l is
from the stochastic volatility model that is reported in Table I. The Hodrick and Prescott (1997) filtered long-run component is obtained by applying the Hodrick-
Prescott filter to the log of daily squared returns (dashed line). 
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Figure 3. The short-run volatility component. This figure plots the estimated short-run volatility component s at a monthly frequency from 1962/7 to 2005/12. The
conditional variance of the excess market return is defined as v=exp (2 (s+l )), where l is the long-run component of volatility (Figure 2). The estimate of s is from the
stochastic volatility model that is reported in Table I. 
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 Figure 4. Actual versus predicted returns. This figure shows the average excess returns for the size and book-to-market sorted 
portfolios against the predicted returns from the models reported in columns (i), (ii), (iv) and (v) of Table IV.  Portfolio ij corresponds to 
the i-th book-to-market quintile and the j-th size quintile. 


