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The large reduction in the volatility of GDP and other economic aggregates since the early 1980s, now

commonly referred to as the �Great Moderation,� has spawned a number of hypotheses about its cause.

But there have been surprisingly few truly structural explanations as an alternative to the hypothesis that

volatility just exogenously fell. The primary alternative to the �good luck� view is that monetary policy

changed discretely in the early 1980s and stabilized both output and in�ation.1 As discussed in Davis

and Kahn (2008), this theory has a number of weaknesses: First, given the importance of credibility and

transparency in determining monetary policy�s impact on the economy, it is implausible that the results of

a policy change could have been felt so rapidly as to bring about an immediate drop in volatility. Second,

some have argued that the policy adopted in the 1980s was not fundamentally di¤erent from that of the

1950s and early 1960s, when GDP volatility was considerably higher than it was post-1983.2 In addition,

structural econometric models of aggregate output and in�ation have typically found that monetary policy

has most of its impact on in�ation volatility, and comparatively modest e¤ects on the volatility of GDP

growth.3 Hence there is little scope in these models for policy changes to account quantitatively for the

much of the reduction in real volatility� especially if one compares the 1950s and 1960s to the post-1983 era.

This paper revisits the hypothesis, �rst conjectured in McConnell and Perez-Quiros (1999) and Blan-

chard and Simon (2001), that changes in inventory management were an important contributor to volatility

reductions. The �rst part of the paper documents the disproportionate statistical contribution of changes

in inventory behavior to the stabilization of the U.S. economy, within the durable goods sector in particular.

The remainder of the paper develops a model of inventory behavior that is consistent with the key facts

about the volatility decline in that sector. The model is calibrated to evidence from survey data showing

that lead times for materials orders in manufacturing shrank after the early 1980s. Simulations of the model

show that it implies large reductions in the volatility of output growth, and more modest reductions in the

volatility of sales growth.

The model also addresses concerns raised by a number of researchers (e.g. Blinder and Maccini, 1991;

Humphries et al., 2001) who criticize the inventory literature�s focus on �nished goods inventories, given that

stocks of work-in-process and materials are actually larger and more volatile than those of �nished goods.

In addition, durable goods manufacturing in particular consists primarily of industries best characterized as

production-to-order industries rather than production-to-stock (see Belsley, 1969). One contribution of the

model, aside from its contribution to understanding the Great Moderation, is to adapt the stockout-avoidance

concept (as in Kahn, 1987) to a production-to-order setting, and to show that much of the intuition and

results regarding production volatility still apply. In particular, the model shows that the need to make

1See, for example, Clarida, Gali, and Gertler (2000).
2See Romer and Romer (2000)
3See, for example, Stock and Watson (2002); Ahmed et al. (2004).
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production-related decisions (in this case materials orders and work-in-process) in advance of information

about �nal product demand results in production being more volatile than shipments. This holds even

though the model has no �nished goods inventories at all.

Stock and Watson (2002) also express skepticism regarding the role of inventory management in the Great

Moderation. But their analysis focuses on four-quarter growth rates of economic time series, a transformation

that essentially �lters out the higher frequency volatility that is more likely to be associated with inventory

investment. Indeed, it should be no surprise that inventory behavior appears less important in explaining the

(smaller) volatility declines of four-quarter growth rates. Still, looking at four-quarter growth rates might

be a reasonable thing to do if changes in high frequency volatility were economically uninteresting or played

a small role in the Great Moderation, but this paper will otherwise. Stock and Watson�s other grounds

for skepticism� the fact that sales volatility declined, and that most inventories in manufacturing are raw

materials or work-in-progress� are addressed in the next section.

It should be emphasized that the claim of this paper is not that better inventory management accounts for

all of the Great Moderation. Rather it argues that it can explain a signi�cant part of it, where �signi�cant�

means that absent the e¤ects described in the paper, the Great Moderation might not have been so Great.

But undoubtedly other factors came into play as well that can account for some of the volatility reductions.

1 The Reduced Volatility of the U.S. Economy: Revisiting the

Facts

1.1 Overview

The seemingly sudden decline in the volatility of U.S. real GDP growth in the early 1980s provided the

initial impetus for research on The Great Moderation. Early �ndings of a discrete break in volatility around

1983 (McConnell and Perez-Quiros, 2000) encouraged a focus on comparisons before and after 1983. This

approach conceals the fact that many economic series did not undergo an abrupt volatility drop around 1983.

Some did so much earlier, some later. The �sudden drop�view also directs attention away from factors that

may play an important role in the long term decline of volatility. Structural shifts in the economy such as

the rising share of services in aggregate output are unlikely to produce an abrupt drop in aggregate volatility

but may contribute to gradual reductions in volatility over time..Blanchard and Simon (2001), in fact, argue,

that the drop in volatility in the early 1980s was really just a return to a longer-term downward trend after

an unusual period of turbulence in the 1970s.

The reality is that volatility does appear to have been trending downward for much of the postwar era;
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yet there was also a relatively sudden decline in the early 1980s. Figure 1 depicts the volatilies, de�ned

by rolling �ve-year standard deviations of annualized growth rates of various components of GDP, scaled by

their nominal shares in GDP. Each chart includes the volatility of GDP itself for comparison. In order

to omit from the sample the exceptionally high volatility of the Korean War years, these charts cover the

period 1954-2004. The �rst four charts (Figure 1a) depict the volatilities of four �major product�categories:

durable goods, nondurable goods, services, and structures. The second set (Figure 1b) does the same for six

spending categories: Consumption spending (separately for nondurables plus services and durables), �xed

investment (separately for nonresidential and residential), inventory investment, and government spending.

It is clear from Figure 1a that of the four product categories, only in durable goods did volatility change

in much the same way as GDP volatility� both in terms of magnitude and timing� as GDP. Nondurables

output volatility dropped, but it had also been lower in the 1960s before increasing in the 1970s, and in

any case it was never anywhere nearly as volatile as durables. Service sector output was also never nearly

as volatile as durable goods output, and moreover, its volatility dropped substantially in the early 1960s,

and again in the 1970s, long before the break in GDP volatility. Structures output did experience a drop in

volatility at the same time as overall GDP, but the size of the sector and the magnitude of the contribution

is modest.4

On the expendture side, inventory investment� despite a GDP share of less than one percent� stands

out as the key component with changes in volatility similar to those of GDP. It is also noteworthy that

consumption volatility appears to have trended modestly lower throughout the 50-year period depicted in

the top panels of Figure 1b. The permanent income model predicts that consumption expenditure responds

primarily only to real interest rates and to highly persistent �permanent� shocks to income. Thus, the

downward trend in volatility, particularly in the nondurables and services component to which the permanent

income model is most applicable, suggests either 1) there has been a steady decline in either real interest rate

volatility or low frequency income volatility during the 50-year period depicted in the chart; or 2) changes

in �nancial markets such as reduced credit market frictions have gradually increased consumers�ability to

smooth consumption expenditures. The fact that government spending volatility has also trended downward

points toward the �rst explanation, since government spending is more likely to follow the permanent income

model (in the sense of responding more to low frequency changes in revenues than to transitory ones) versus

being constrained by �nancial market imperfections.

Figure 1 is of course just accounting, and does not prove cause and e¤ect. It is possible that the decline

in GDP volatility caused the decline in durable goods output volatility, or in inventory investment volatility,

4Note that the volatility contributions depicted in the charts are also a¤ected by trends in sector shares over time, but the
e¤ect is very slight. The pictures would look virtually identical if sector shares were held constant.

3



or that all three had a common cause. Still, a challenge for any explanation of the overall decline in GDP

volatility is to account for the patterns observed in Figure 1, as well as the more detailed facts regarding

inventories and durable goods to be discussed below.

As another illustration of the evolution of volatility over this time period, we estimate a GARCH process

for GDP growth, and for durables output growth, including time trends and other variables to explain

changing volatility. The results are depicted in Table 1. The growth rates are assumed to be AR(1)

processes apart from their time-varying volatilities. The variance equation includes the standard GARCH

terms, plus a time trend, and the trend squared (given that the variance has to remain positive). Also

included in some speci�cations was the (lagged) 10-year treasury bond rate, to proxy for in�ation and the

volatility of the 1970s, and a dummy variable that takes on the value of one for the observations beginning in

1984Q1. The results show a signi�cant downward trend in the variance, with the 10-year rate also coming

in signi�cantly, but with the post-1983 dummy not signi�cant when added to the equation. Thus once one

accounts for the volatility trend, and the uptick in volatility in the 1970s and early 1980s, it would appear

that the post-1983 decline in volatility is better represented as the continuation of a longer-term trend than

as a one-time break.

To summarize: The large reduction in volatility that occurred in the early 1980s took place against the

background of a long-term modest downward trend in volatility, though punctuated by cyclical increases

in volatility associated with recessions, especially during the 1970s. Much of both the downward trend in

volatility and the relatively sudden drop appears closely linked to changes in the volatility in the durable

goods sector and in inventory investment.

1.2 Frequency Domain Analysis

The term �volatility� encompasses a variety of concepts: Conditional and unconditional, for example, or

volatility at di¤erent frequencies (e.g. low, business cycle, and high), where the intermediate business cycle

frequencies are conventionally de�ned as cycles of between 6 and 32 quarters. Looking at growth rates tends

to emphasize higher frequency volatility, whereas detrended series (assuming they are stationary around the

trend) includes more business cycle volatility. To see the di¤erence, consider the GDP and durables sector

volatility statististics in Table 2. The sample is divided into three periods: 1954-69, 1970-83, 1984-2007.

Growth rate volatility is not very di¤erent across the �rst two subsamples, which is why they are often

considered one long high-volatility era. But the detrended5 logarithmic levels data tell a somewhat di¤erent

story. Volatility, especially for GDP, appears to have increased considerably in the 1970-83 period. In fact,

5The logarithms of the series were detrended using the HP �lter with parameter 1600. Similar results were found using
other detrending methods.
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by this measure GDP volatility in the earlier 1954-69 period is closer to volatility in the period of the Great

Moderation than to that of 1970-83.

What does this mean? It suggests that higher frequency volatility was relatively stable in the 1954-83

period, whereas business cycle volatility increased in the second half of that period. We can formalize this

by looking at the data in the frequency domain. Following Ahmed, Levin, and Wilson (2004, hereafter

ALW) we divide the frequencies into three ranges as described above, but into three sample periods rather

than the standard two. Because of the relatively short duration of the subsamples, we also consider break

the frequency range into just two intervals, high and low, with the dividing point at 2�=12, i.e. cycles of 12

quarters duration.

Because volatilities tended to be lower after 1983 across all frequency ranges, ALW emphasize the behavior

of the �normalized� spectrum, i.e. the values obtained by integrating over an interval but dividing by the

integral over the entire range [0; �]. Thus, if the entire spectrum just shifts down proportionally (ALW�s null

hypothesis) then the values of the normalized spectrum integrated over any interval do not change. ALW

analyze quarterly growth rates of a variety of series. To include more of the lower frequency variation in the

data, we analyze the series detrended as in Table 2. The results of this exercise are shown in Table 3. Note

that these are variances, so the magnitudes of the changes are exaggerated relative to Table 2. Although

most of the changes are not statistically signi�cant, the general pattern of �medium, high, low�volatility at

the low and business cycle frequencies, and �high, high, low� at the higher frequencies. Focusing on the

last two columns for each series, the division of the frequency range above and below 2�=12, we see that

only lower frequency volatility increased between the 1954-69 and 1970-83 periods. Comparing 1954-69

with 1984-2007, the declines in lower frequency volatility are considerably more modest than the declines

in high frequency volatility� signi�cantly so. Although what we are calling �high� is a bit broader than

the conventional de�nition, at cycles of under three years duration it still omits the bulk of what one would

normally think of as business cycle variation.6

These results suggest that the middle period was exceptional in its high volatility at lower frequencies.

This fact contributes to ALW�s �nding that for most of the series they examine, including GDP growth,

they fail to reject their null hypothesis of a proportional reduction in volatility at all frequencies. Even

for the detrended log level data considered here, when the sample is split only between 1983 and 1984,

the data cannot reject that null hypothesis for GDP, and only marginally rejects it (the p-value is exactly

0.10) for durable goods output. The point is that when the 1970-83 period is lumped together with the

earlier subsample, it results in a larger reduction in lower frequency volatility than if that period is treated

62�=12 was not the highest cuto¤ at which signi�cant results were obtained. For example, the same qualitative results
obtained with a split at 2�=10.
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separately.

Overall this analysis supports the idea that the volatility reductions associated with the Great Moderation

are disportionately attributable to changes at higher frequencies, so long as the 1970-1983 period is treated

as exceptional. This provides additional impetus for looking at changes in inventory behavior, as inventory

investment disproportionately adds volatility at higher frequencies.

1.3 Changing Inventory Behavior

Since the early 1980s there have been signi�cant changes in the behavior of inventories in aggregate data.7

Here we focus on the durable goods sector. While the inventory literature has traditionally focused on

more disaggregated data, and in particular on the 2-digit (SIC) level manufacturing data, for the questions

examined in this paper it is more appropriate to look data that are �vertically�aggregated, i.e. that include

inventories at all stages of production and �nal output. Disaggregated data can be misleading because it

is impossible to tell whether changes in inventory behavior are genuine or just the result of a change in

location or ownership of inventories. For example, if a manufacturer reduces its holdings of �nished goods

inventories, and instead speeds up its shipments to wholesalers or retailers, that would appear as a decline in

manufacturing �nished goods inventories, even though it could be largely o¤set by an increase in wholesale

or retail inventories. Similarly, if manufacturers in one industry were to insist on �just-in-time�delivery of

materials from suppliers, that could look like a dramatic decline in materials inventories for manufacturers,

but it would likely be o¤set by increases in the inventories of suppliers, who could be from di¤erent industries

or from outside of manufacturing entirely.

Apart from the issue of structural change, since durable goods manufacturing industries tend to be

�production-to-order� rather than �production-to-stock,� focusing on manufacturing�s slice of the supply

chain means overlooking a substantial component of inventory behavior in durable goods production. Thus,

according to data from the Bureau of Economic Analysis, inventories in durable goods manufacturing indus-

tries represent only about 35 percent of inventories in the durable goods sector as a whole. (A related, and

subtler, point is that the distinction between output and sales or shipments in production-to-order industries

is not as clear cut.) And while it is possible that even the vertically aggregated data could be vulnerable to

similar criticisms� for example, if materials inventories were held by foreign suppliers� research by Alessan-

dria et al (2008) suggests this is unlikely to be a signi�cant issue. They �nd evidence that �rms that rely on

foreign suppliers of materials actually hold larger inventories, due to the longer time and larger �xed costs

of replenishing their stocks. Nonetheless, for the sake of completeness we will examine both types of data.

An important fact about the Great Moderation is that output volatility fell by substantially more than
7See, for example, Kahn et al (2002).

6



�nal sales volatility, particularly in the durable goods sector.8 Since the di¤erence between output and �nal

sales is the change in inventories, this fact implies a change in inventory behavior� either a reduction in the

volatility of inventory investment, or a change in the covariance between inventory investment and sales.

Note that by the conventions if the NIPAs, the service and structures sector do not carry inventories (in

structures this is because �nal output includes construction in progress), so they do not contribute directly

to these changes in inventory behavior.9 Figure 2 shows the behavior of output and sales volatility over time

in the durable goods sector. In contrast to the behavior of output volatility, sales volatility shows only a

modest decline.10

Given our focus on the volatility of real growth rates (as opposed to levels), we can examine the relation-

ship between output, inventories, and sales in terms of growth contributions. Although inventory investment,

because it can be negative, does not have a conventionally de�ned growth contribution, we can de�ne it in-

directly as the di¤erence between the growth rate of output and the growth contribution of �nal sales (cf.

Kahn et al, 2002). Following Whelan (2000) we can approximate the latter in terms of the real growth rate

of sales and the nominal share of sales in output. Letting xy denote the growth contribution of x to output

y, where x = s for sales and x = i for inventories, we de�ne the growth contribution of inventory investment

as

iy = yy � sy

where sy = ss�sy, �sy is the nominal share of s in y (measured as the average of current and lagged shares).

In this notation, the growth contribution of a variable to itself is just its own real growth rate.

With these de�nitions in hand, we can track the contributions of sales and inventory investment to the

variance of output growth over time:

�2y = �
2
s + �

2
i + 2�si

where the variances and covariance on the right-hand side refer to the growth contributions de�ned above.

Figure 3 plots the three components for the durable goods sector. We see that both the inventory term and

especially the covariance term exhibit a substantial downward trend, with the covariance term in particular

accounting for the big drop in the early 1980s. Thus, not only is the apparent break in 1984 associated with

a change in inventory behavior, but the downward trend from the 1950s onward is as well.

In addition to this indirect evidence of changing inventory behavior, we can directly examine the inventory-

sales ratio in the durable goods sector. Figure 4 shows that whether one looks at the ratio for durable goods

8See McConnell and Perez-Quiros (2000), Kahn et al. (2002).
9There is, however, evidence of a change in inventory behavior in residential construction, even though it is not treated as

such in the NIPAs. See Kahn (2000).
10McConnell and Perez-Quiros (2000) �nd evidence of a statistically signi�cant break in the mid-1980s in durables output

but not in �nal sales.
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output or durable goods manufacturing, and for the latter whether or not one includes materials stocks

in the numerator (due to concerns about increased foreign trade a¤ecting this number), the ratio began a

downward trend in the early 1980s that continued until at least the mid-1990s. This is not by itself a proof

of "progress;" it could just represent a shift along a �xed technological tradeo¤ in response to changing costs

(e.g. changes in real interest rates, which were quite low in the 1970s), or a compositional change within

the sector. It could even be the result of reduced volatility that is somehow exogenous to the �rms, though

such an explanation begs the question of why volatility declined. But the timing of the break in trend is

striking, and �ts with the broader pattern of changing inventory behavior.

In addition to declining, the inventory-sales ratio is clearly less volatile (relative to its varying trend),

consistent with the idea that businesses either make smaller mistakes or are able to correct their inventories

more quickly. Kahn et al. (2002) also describes results from a VAR with sales and inventories that indicates

a change in the variance decomposition pre- and post-1983. Before 1983 sales accounted for much more of

the variance of inventories than inventories did of sales (37.8 percent versus 5.4 percent); after 1983 they were

almost even (18.2 versus 14.9), consistent with the idea that �rms were better able to anticipate sales and

adjust inventories in advance. Moreover, the residual variance of sales dropped precipitously, meaning that

less of the variation in sales was unpredicted given prior sales and inventories. Again this is not de�nitive;

it is possible that the shocks are smaller or that the industry composition has shifted.

Although we have focused on the durable goods sector as a whole, for reasons emphasized earlier, we can

examine disaggregated manufacturing data as well. This helps to alleviate concerns that the patterns in the

aggregate sector are somehow misleading, either because they stem from compositional change (e.g. relative

growth of less volatile industries within the sector) or are unrepresentative of a broad range of subsectors.

Table 4 shows the volatility of production and sales growth for 2-digit durable goods manufacturing industries

over the periods 1967-83 and 1984-1997. (The data are not available prior to 1967, and after 1997 the industry

classi�cations were changed, so the series are not continuous.) The table shows a similar pattern across all

eleven industries: a large reduction in the volatility of both output and sales growth. The only qualitative

di¤erence with the NIPA aggregate durables data is that for many industries the decline in sales volatility is

approximately as large as the decline in output volatility. This suggests that some of the change in inventory

behavior may occur more downstream in the wholesale or retail sectors. But the reduced volatility is clearly

not due to compositional change, nor is it con�ned to a small subset of industries.
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2 A Model of Durable Goods Production and Inventory Behavior

One approach to assessing the role of improved inventory control is to be agnostic about the details, but

look for changes in parameters and propagation in, for example, a structural VAR. This is the approached

in McCarthy and Zakrajsek (2007). They do �nd evidence of structural change pre- and post-1983. They

use conventional identifying restrictions in an e¤ort sort out the role of, for example, monetary policy in

altering the dynamics of the sales process.

A second approach is a more speci�c model of improved inventory control as in Kahn et al (2002), based

on the approach in Kahn (1986) and Bils and Kahn (2000). Firms carry �nished goods inventories to avoid

stockouts in the face of uncertain demand, trading o¤ the cost of foregone pro�ts against the cost of carrying

inventories. If demand is serially correlated, the mistakes will get magni�ed in production volatility, so that

it will exceed the volatility of sales. If technology enables �rms to have better information about demand

disturbances, then they will make smaller errors in their production decisions, and the additional volatility

induced by correcting those errors is reduced. Firms may also be able to hold fewer inventories.

This type of mechanism can account for reduced production volatility (relative to the volatility of sales),

but has several drawbacks. First, depending on the timing of the arrival of information, either the volatility

of sales actually increases substantially, or the covariance of sales with inventory investment increases. As

we have seen, the opposite is the case in the data. The reason sales volatility increases in this model is that

the improved information essentially allows �rms to accommodate demand shocks as opposed to damping

them via stockouts. The covariance of sales and inventory investment only becomes more negative if the

�rm gets the information in time to adjust production su¢ ciently in advance (due to a desire to smooth

production if costs are convex) that inventory movements anticipate the demand shock. Then when the

shock occurs, inventory investment moves in the opposite direction, as anticipated by the �rm. But this

tends to exacerbate sales volatility.

The second problem with this approach, as alluded to in the introduction, is that it does not apply so

obviously or directly to the durable goods sector, much of which is best characterized as production-to-order

rather than production-to-stock. And as pointed out by Humphries et al (2001) and many others, most

inventories, particularly in durable goods, are of materials or works in process, not �nal goods. Third,

while there is much anecdotal evidence of technology that might provide better information about future

sales, there is no direct evidence to assist in specifying a model. And as this discussion suggests, the details

matter.

Because the model involves at least two types of stocks (works-in-process or �intermediate�goods, and

un�lled orders of �nal goods), and will distinguish between materials orders and deliveries, a lot of notation
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is involved. Let Dt denote deliveries of materials at date t, which get combined with labor NMt to produce

YMt, which is the �ow of intermediate goods that gets added to the stock Mt of works-in-process inventories

at the end of period t. Ut is the stock of un�lled orders of �nal goods, Xt the �ow fromMt�1+YMt into �nal

production (i.e. gross output at the intermediate stage), St, which corresponds to shipments of �nal goods,

and Ot the �ow of new orders for �nal goods. Value added at the �nal stage is VFt = St �Xt = AFtNFt.

At the intermediate stage, value added is VMt = YMt �Dt�1 = AMNMt. We assume a Leontief technology

for non-labor inputs at each stage. Thus we have

Dt = bMYMt (1)

Xt = bFSt (2)

To simplify, we abstract from materials inventories and assume that all materials are immediately converted

into works-in-process. Figure 5 provides a schematic diagram of the model.

A key element of the model is the delivery lag for materials orders, which we denote by � . A longer lag

means that when the �rm makes a decision about materials orders it has less information about what the

state of the economy will be when the materials arrive. Consequently the decisions will be less accurate, and

will (as the model will show) induce greater volatility in production. By the same token, if �rms are, by

whatever means, whether it be information technology or management resources, able to shorten the lead

time, they can reduce this source of volatility, and also potentially reduce average inventory holding costs.

While much has been written about information technology and inventory control, and in particular

the push toward �just-in-time�inventory management, it is di¢ cult to �nd direct and tangible evidence of

improved inventory management. There is time series evidence on � , however: the Institute for Supply

Management (ISM) surveys manufacturers monthly on their lead time for materials orders, going back to

1955. It turns out that this lead time has varied substantially, and in particular has shortened since the

early 1980s, at around the same time that output volatility declined. Figure 6 displays the time series. It

is not ideal evidence, as it is not limited to durable goods producers (though volatility did decline in the

nondurables sector as well).. But it very clearly shows a lead time that is both distinctly lower and less

volatile since the early 1980s. In particular, the average declines from 65.8 days in the 1955-83 period to 48

days in the period since 1984. Moreover, the series has stabilized since the early 1990s to a value of around

45 days, with much less volatility than in earlier years.

There are undoubtedly other ways in which inventory management may have progressed during this time.

In addition to shorter lead times enabling the �rm to have better information about the state of the economy

at the time of delivery, the �rm may just have better information at any point in time. There is considerable
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anecdotal information about the use of information technology in inventory management to obtain improved

information about product demand. For example, James Surowiecki writes about the retailer Zara in the

September 18, 2000 New Yorker magazine:

...Instead of reacting quickly to what customers want now, most retailers must guess
what they�ll want six or nine months hence. That�s hard enough if you�re selling televisions or
bicycles. In the fashion business, it�s close to impossible.

Zara doesn�t have to worry about any of that.... It does not overstock, and unsuccessful
designs are often whisked o¤ shelves after just a week, so the company doesn�t have to slash
prices. Equipped with handheld devices linked directly to the company�s design rooms in Spain,
Zara�s store managers can report daily on what customers are buying, scorning, and asking for
but not �nding. Most important, the company takes just ten to �fteen days to go from designing
a product� which, to be sure, often means knocking o¤ a hot new look� to selling it.

This idea of better information at any point in time was incorporated into the Kahn et al (2002) model for a

production-to-stock technology. But while it is undoubtedly part of the larger story of improved inventory

management, it is di¢ cult to quantify. The primary reason for focusing on shorter lead times is not because

it is the only, or even the most important, aspect of improved inventory management. It is just that there

is some quantitative evidence on it, however limited, that can be used as an input to the model described in

more detail below.

2.1 One-Period Lead Time

Given the discrete time nature of the model, for the sake of simplicity we will assume that � is an integer,

representing the number of periods ahead (�lead time�) the �rm must order materials before they will arrive.

To start with we will assume a one-period lead time for materials. So the timing is as follows: An materials

order Zt results in a delivery Dt+1 and intermediate production YMt+1 = b�1M Dt+1, with �nal production

and shipment St+1 at t+ 1. Materials costs are incurred upon delivery.

Assuming a constant wage w and a price q of materials, the cost of producing YM is cMYM = (w=AM + qbM )YM ,

and total the cost of producing St is cSt, where

c = (w=AF + cMbF ) = w=AF + (w=AM + qbM ) bF

The �rm incurs additional costs from carrying inventories of works-in-process.

We assume that prices are �xed and �nal goods orders Ot follow a stochastic process, which for concrete-

ness we assume is a simple AR(1):

Ot = (1� �) �O + �Ot�1 + �t (3)

We also assume that there is no �spec��nal production, soXt is chosen only to �ll known (i.e. un�lled) orders

as of the beginning of period t, which do not include new orders Ot. The idea is that �nal production involves
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customization that can only be done for a speci�c order. Intermediate production is more generic, and can

be done speculatively. Xt may also be constrained by the availability of works-in-process Mt�1 + b
�1
M Dt.

We assume the �rm maximizes pro�ts subject the various technological constraints:

E0

� 1P
�=t

���t [pS� � qD� � w (NM� +NF� )]

�

subject to

Mt = Mt�1 + YMt �Xt (4)

Ut = Ut�1 +Ot � St (5)

Mt � 0 (6)

Ut � Ot: (7)

Vit = AiNit; i =M;F (8)

Zt�1 = Dt (9)

Mt�1 + YMt � Xt (10)

Ut�1 � St (11)

where Vi denotes value added, Yi gross output at each stage (i =M;F ), and � < 1 is a discount factor. For

p su¢ ciently large (that is, for a positive markup), the �rm will always try to �ll all un�lled orders Ut�1 at

date t. This implies

Xt = min
�
Mt�1 + b

�1
M Dt; bFUt

	
(12)

Ut+1 = Ut +Ot+1 � b�1F Xt (13)

= Ot+1 +max
�
0; Ut � b�1F (Mt�1 +Dt)

	
(14)

That is, subject to availability of works-in-process, Xt is chosen to �ll all un�lled orders Ut.

Note the timing assumptions here: All new orders in period t are un�lled as of the end of t; shipments

during t are for orders placed at t � 1 or earlier Whether or not new orders Ot are �lled by the end of

period t+ 1 depends on the adequacy of materials orders Zt, which were made before Ot was known. Also

note that under certainty, with constant �nal goods orders �O, the above setup implies that X = YM = bF �O,

S = �O, Z = D = bMbF �O, NM = bF �O=AM , NF = �O=AF , and Mt = 0; Ut = �O... There is no reason to hold

inventories if both deliveries and orders are known in advance. Un�lled orders are held only because of the
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assumption that �spec�production is infeasible due to customization requirements.

We can show that the optimal ordering rule decision rule is of the form

Zt = bM [bFEt fUt+1g+ �1 �Mt] = Dt+1 (15)

where �1 is a constant to be determined (see below). It is then straightforward to show that

Ut+1 = �t +Ot+1 �min
�
b�1F �1; �t

	
(16)

Xt = bF
�
�t�1 + Et�1 fOtg

�
�min

�
�1; bF �t�1

	
+min f�1; bF �tg (17)

Mt = max f�1 � bF �t; 0g (18)

Dt = bMbF
�
�t�1 + Et�1 fOtg

�
(19)

Zt = bMbF (�t + Et fOt+1g) (20)

Whether or not the constraint (10) is binding is re�ected in terms likemin
�
�1; bF �t�1

	
andmax f�1 � bF �t; 0g.

But note that Zt is not a¤ected by past constraints, nor does it end up depending on �1. If �1 < bF �t;

Xt is constrained by materials. This should add to Et fUt+1g, which it does. But the e¤ect of �t on

Zt occurs regardless of the outcome of min f�1; bF �tg, because if there is no stockout (so no increase in

un�lled orders) there is the same impact on Mt, which also adds to Zt. In other words, as �t increases,

either Mt falls or Et fUt+1g rises, and both have the same impact on Zt. Xt is a¤ected by the outcome of

min f�1; bF �tg because higher �t can mean that Xt is constrained by the stock of works-in-process. Note

that if �1 < bF �t, there will be un�lled orders carried over into t + 1 (i.e. Ut+1 > Ot+1), as the �rm had

insu¢ cient works-in-process to �ll Ut, so some of those un�lled orders get carried over into t+1. If �1 > bF �t

then Ut+1 = Ot+1

In the National Income and Product Accounts (NIPA), �sales� are really total expenditures on �nal

goods. This corresponds to shipments St, i.e.

St = b�1F Xt = �t�1 + Et�1 fOtg �min
�
b�1F �1; �t�1

	
+min

�
b�1F �1; �t

	
(21)

= Ot ���t +�min
�
b�1F �1; �t

	
(22)

�Production�Yt is shipments plus the change in inventories, i.e.

Yt = �t�1 + Et�1 fOtg �min
�
b�1F �1; �t�1

	
+

min
�
b�1F �1; �t

	
+ bF max

�
b�1F �1 � �t; 0

	
� bF max

�
b�1F �1 � �t�1; 0

	
(23)
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It is easy to see that production can be more volatile than sales, in particular when the Ot process exhibits

positive serial correlation. Letting �t � min
�
b�1F �1; �t

	
; we can simplify the above expressions (using the

fact that max
�
b�1F �1 � �t; 0

	
= b�1F �1 � vt):

St = �t�1 + Et�1 fOtg+��t

Yt = �t�1 + Et�1 fOtg+ (1� bF )��t

Note that �vt is negatively correlated with �t�1 + Et�1 fOtg (at least for � � 0), which helps to explain

why the variance of production can exceed the variance of sales: Inventory investment covaries positively

with shipments. The focus in this paper, however, is not on this, but on how production and shipments

volatility vary with � .

Finally, what is �1? It is straightforward to show that it follows from the �rst-order condition:

�pPr (bFUt+1 > Mt +Dt+1=bM )� �c+ (24)

�2c [1� Pr (bFUt+1 > Mt +Dt+1=bM )] = 0: (25)

where c is as de�ned earlier, the total unit cost of producing the �nal good. Given

Ut+1 = �t +Ot+1 � vt (26)

we have

Ut+1 = Et fUt+1g+ �t+1: (27)

The probability is of a materials stockout at data t + 1, and also represents dEt (Xt+1) =dZt, the expected

impact on �completions�at t+1 from an additional order of materials at t. The intuition is that by ordering

an additional unit at date t at cost �c, with some probability the �rm gains an additional sale at date t+ 1

(the event of a work-in-process stockout at date t + 1), and with one minus that probability it results in

surplus stocks and an o¤setting decrease in materials orders at date t+ 1.

Suppose �t has a c.d.f. of G1. We then get

Pr
�
bF
�
Et fUt+1g+ �t+1

�
> Mt + Zt=bM

�
=
c (1� �)
p� �c (28)

which implies

�1 = bFG
�1
1

�
p� c
p� �c

�
: (29)
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which, as one would expect, is increasing in the markup and decreasing in the discount rate 1=� � 1.

2.2 Shorter or Longer Delivery Lags

2.2.1 Zero Lead Time

Now consider one extreme: No delivery lag, so Dt = Zt. With a little algebra, we can show that

Xt = bFOt (30)

Mt = 0 (31)

Zt = Dt = bMbFOt (32)

St = Ot�1 = Yt (33)

Clearly going from � = 1 to � = 0 changes the relationship between production and sales volatility. As we

shall see, for the realistic case in which Ot exhibits positive serial correlation, shrinking the delivery lag from

one to zero obviously reduces the gap between the variance of production and the variance of sales. This

case is relatively trivial, but nonetheless it provides some insight into why in the more general of shrinking

the length of the delivery lag has the same qualitative impact of reducing the volatility of both production

and shipments, but with the former declining more than the latter.

2.2.2 �-Period Lead Time (� > 1)

We now consider a delivery lag of � periods. We hypothesize a decision rule

Dt = Zt�� = bM [bFEt�� fUtg+ �� � Et�� fMt�1g] (34)

where, again, �� 6= �1 is to be determined. We then have

Xt = min fMt�1 + bFEt�� fUtg+ �� � Et�� fMt�1g ; bFUtg (35)

Ut+1 = Ot+1 +max
�
Ut � Et�� fUtg � b�1F �� � b�1F [Mt�1 � Et�� fMt�1g] ; 0

	
(36)

Mt = max f�� � [bF (Ut � Et�� fUtg)� (Mt�1 � Et�� fMt�1g)] ; 0g (37)

Let

rt;� =
��1X
s=0

0@ sX
j=0

�j

1A �t�s
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for � � 1. Also, let ut = min
�
b�1F �� ; rt;�

	
. With considerably more algebra than in the � = 1 case, we can

show (see Appendix) that

Ut = Ot +max
�
rt�1;� � b�1F �� ; 0

	
(38)

Mt = max f�� � bF rt;� ; 0g = bF max
�
b�1F �� � rt;� ; 0

	
(39)

= �� � bF min
�
b�1F �� ; rt;�

	
(40)

St = Ot +max
�
rt�1;� � b�1F �� ; 0

	
�max

�
rt;� � b�1F �� ; 0

	
(41)

= Ot ��rt;� +�min
�
b�1F �� ; rt;�

	
(42)

Yt = Ot ��rt;� + (1� bF )�min
�
b�1F �� ; rt;�

	
(43)

Determining �� is analogous to the � = 1 case: It is straightforward to show that it follows from the

�rst-order condition

pPr (bFUt+� > Mt+��1 +Dt+�=bM )� c+ �� c [1� Pr (bFUt+� > Mt+��1 +Dt+�=bM )] = 0: (44)

The probability is now of a works-in-process stockout at data t + � , and also represents dEt (Xt+� ) =dZt.

The intuition is that by ordering an additional unit at date t (to be delivered at date t+ �) at cost �� c, with

some probability the �rm gains an additional sale at date t + � (the event of a works-in-process stockout),

and with one minus that probability it results in surplus stocks and an o¤setting decrease in materials orders

at date t+ � : .Suppose rt;� has a c.d.f. of G� . We then get

Pr
�
rt+�;� >

Dt+�
bMbF

�
�
Et fUt+�g � b�1F Et fMt+��1g

��
=

c (1� �� )
p� �� c (45)

G�

�
Dt+�
bMbF

�
�
Et fUt+�g � b�1F Et fMt+��1g

��
=

p� c
p� �� c : (46)

So we have

Zt = bM [�� + bFEt fUt+�g � Et fMt+��1g] (47)

where

�� = bFG
�1
�

�
p� c
p� �� c

�
: (48)

Any di¤erence between �1 and �� would stem from the di¤erence in the relevant distribution function (G1

vs. G� ) and from the fact that excess materials orders are more costly because they take � periods to o¤set.

In addition, the �rm�s markup could di¤er in the two cases.
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Finally, what is bFEt fUt+�g � Et fMt+��1g? We have

bFEt fUt+�g � Et fMt+��1g

= bFEt
�
Ot+� +max

�
rt+��1;� � b�1F �� ; 0

	
�max

�
b�1F �� � rt+��1;� ; 0

	�
(49)

= bFEt fOt+� + rt+��1;�g � �� : (50)

So

Zt = bMbFEt fOt+� + rt+��1;�g (51)

If we compare (51) and (20) we see that now in addition to having to order based on two-period-ahead

expected orders, the date t innovation has a magni�ed impact (to the extent � > 0).

Regarding implications for inventory-sales ratios, it turns out that the model is incomplete: Absent a

theory of the markup p=c as a function of � , the relative size of inventory-sales ratios is ambiguous. But under

the reasonable intermediate assumption that (p (�)� c) =(p (�)� �� c) is invariant to � , then inventory-sales

ratios will be larger under � = 2, essentially because of the greater uncertainty at the time of ordering.

2.3 Aggregation

The solutions for the time series behavior output, shipments, and inventories are not realistic characteriza-

tions of any data that are likely to be observed. In practice, we observe aggregates, even when we look at

relatively disaggregated data. The data are typically aggregates of di¤erent goods, di¤erent locations, and

di¤erent �rms. Consequently we never see zeros of any stocks, whether of un�lled orders or inventories.

Fortunately the model is amenable to aggregation as follows. We now suppose a continuum of symmetric

�rms, each of which faces stochastic orders as above, but with an idiosyncratic shock vit. That is, for �rm

i,

Oit = (1� �) �O + �Ot�1 + �t + vit: (52)

where for concreteness we can assume that vit is normally distributed with mean zero and variance �2v, and

that
R1
�1 v� (v) = 0. Of course, the derivations of �� must now be revised to re�ect idiosyncratic risk. For

example, G1 in (29) should be the distribution function for �t + vit.
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First consider the � = 1 case. Let

�1t =

Z 1

�1
min

�
b�1F �1; �t + �vv

	
� (v) dv

=

Z b
�1
F

�1��t
��

�1
(�t + �vv)� (v) dv + b

�1
F �1

�
1� �

�
b�1F �1 � �t

�v

��
(53)

The idea here is that each �rm�s outcome varies depending on its idiosyncratic shock, so we integrate to get

the aggregate. But because of the linear technology, the �rms adjust and go into the next period looking

identical. So for aggregate inventories we have

Mt = max f�1 � bF �t; 0g (54)

= �1 � bF min
�
�t; b

�1
F �1

	
(55)

= �1 � bF �1t (56)

Similarly,

St = Ot ���t +��1t (57)

St +�Mt = Ot ���t + (1� bF )��1t

We can simplify further by linearizing �1t around �t = 0 :

�1t t �1
�
1� �

�
�1
�v

��
+�

�
�1
�v

�
�t = �1�t (58)

where

�1 � �
�
�1
�v

�
(59)

and we ignore the constant term, which is not relevant for the exercise of computing volatility. Note that

for �nite �1, �1 2 (0; 1). So we have

St = (1 + �� �1) �t�1 + �2Ot�2 + �1�t (60)

Yt = St +�Mt = (1 + �� �1 (1� bF )) �t�1 + �2Ot�2 + �1 (1� bF ) �t
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Var (St) = (1 + �� �1)2 �2� + �4�2�=
�
1� �2

�
+ �21�

2
�

Var (Yt) = (1 + �� �1 (1� bF ))2 �2� + �4�2�=
�
1� �2

�
+ �21 (1� bF )

2
�2�

So

[Var (Yt)�Var (St)] =�2� = (1 + �� �1 (1� bF ))2 � (1 + �� �1)2 + �21 (1� bF )
2 � �21 (61)

= 2�1bF (�� 2�1 + �1bF + 1) (62)

> 0 if 1 + � > (2� bF ) �1 (63)

So for su¢ ciently large � or bF , or small �1 (that is, small �1), production is more volatile than sales. Note

that � need not even be positive for this to be true.

With general � we de�ne (assuming for simplicity that idiosyncratic risk is i.i.d.):

��t =

Z 1

�1
min

�
b�1F �� ; rt� + �vv

	
� (v) dv (64)

=

Z b
�1
F

���rt�
�v

�1
(rt� + �vv)� (v) dv + ��

�
1� �

�
�� � rt�
�v

��
(65)

t �

�
��
�v

�
rt� = ��rt� (66)

We then get

Mt = max f�� � bF rt;� ; 0g (67)

= �� � bF min
�
rt;� ; b

�1
F �1

	
(68)

= �� � bF ��rt� (69)

and

St = Ot +max
�
rt�1;� � b�1F �� ; 0

	
�max

�
rt;� � b�1F �� ; 0

	
= Ot ��rt;� +�min

�
b�1F �� ; rt;�

	
= Ot ��rt;� +���t

t Ot � (1� �� )�rt;�
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Yt = Ot ��rt;� + (1� bF )���t (70)

t Ot � [1� (1� bF ) �� ]�rt;� : (71)

With � = 2; for example, we have

Var (S) =�2� = �6=
�
1� �2

�
+ �22

�
1 + �2

�
+
�
(1� �2) (1 + �) + �2

�2
(72)

Var (Y ) =�2� = �6=
�
1� �2

�
+ (1� bF )2 �22

�
1 + �2

�
+
�
(1� (1� bF ) �2) (1 + �) + �2

�2
(73)

and

[Var (Y )�Var (S)] =�2� = 2�2bF
�
�2 + �+ 1

�
(�� 2�2 + �2bF + 1) (74)

Now compare 2�bF (�� 2� + �bF + 1) versus 2�2bF
�
�2 + �+ 1

�
(�� 2�2 + �2bF + 1) : Clearly if the �rst

is positive, the second is larger for � > 0. So holding �xed the shock variance �2�, for parameters in the

empirically relevant range, a reduction in the delivery lag (i.e. the lead time for materials orders) results in

a reduction in both output and sales volatility, but a greater reduction in output volatility.

2.4 Simulations

We can get some feel for the capability of this approach to account for changes in volatility. We choose

parameters that roughly match the relevant characteristics of the data in the early part of the sample (1954-

1983) under the assumption that � = 3, and then compare that with � = 2. Given the reduction in lead

times indicated in Figure 6, this means a period corresponds to about three weeks; that is,. � = 3 corresponds

to 63 days, � = 2 to 42 days. Of course, there was not an abrupt change; the simulation exercise should be

thought of as comparing across steady states.

The benchmark simulation makes the following assumptions about the parameters: �2� = 0:07; � = 0:99;

�2� = 1, bF = 0:75; � = 0:99. Table 5 displays results for the benchmark assumptions and for alternative

values of � and p=c. The results are not at all sensitive, even quantitatively, to �2� , and qualitatively similar

across a range of the other parameters. The choice for � is intended to capture the strong persistence of

sales and output measures in the data. The value for �2� was chosen so that the simulation would roughly

match the pre-1984 standard deviation of output with � = 3.

Table 5 shows that the model yields sizeable reductions in the volatility of quarterly growth rates of

output, along with very small reductions in sales volatility. Neither is as large as in the data� a good thing,

as the intent is not to explain the entire Great Moderation. It also, as expected, does better at explaining

the high frequency facts than the lower frequency facts as represented by 4-quarter growth rates, though it
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does replicate the feature of the data that the decline of output volatility relative to that of sales volatility

is more modest with 4-quarter growth rates.

It should be emphasized that the model, while realistic in many dimensions, makes important simplifying

assumptions. In particular, the model lacks a production smoothing motive for inventories, which presum-

ably explains why the gap between the volatility of output growth and sales growth is much larger than in

the data. Nonetheless, the fact that it at least qualitatively matches the facts suggests that it may be a

reasonable basis for pursuing richer and more realistic general equilibrium extensions.

3 Discussion and Conclusions

In the decade since economists took notice of the decline in aggregate volatility, there have been surpris-

ingly few structural models geared to explaining the phenomenon. The most in�uential empirical e¤orts to

distinguish between di¤erent explanations (e.g. Stock and Watson, 2002; Justiniano and Primiceri, forth-

coming) have relied on the ability of small-scale models� either structural vector autoregressions (SVARS)

or dynamic stochastic general equilibrium models (DSGEs) to distinguish between shocks and propagation.

Such e¤orts seem inevitably to result in a �nding that reduced volatility of observable variables is due to the

reduced volatility of unobservable shocks. Although Justiniano and Primiceri do supplement their �nding

of an important decline in the volatility of �shocks speci�c to the equilibrium condition of investment�with

data on the volatility of the relative price of investment to consumption, it is worth noting as well that their

�investment�variable includes inventory investment. Thus, their �ndings are potentially consistent with an

important role for changing inventory behavior that they simply do not model.

Ramey and Vine (2004) o¤er another sort of explanation relying on an exogenous change in a stochastic

process. They provide a detailed analysis of automobile industry production decisions, and argue that a

reduction in the persistence of the sales process can explain the reduction in output volatility relative to

sales volatility. The change in persistence itself is left unexplained, nor is evidence provided to suggest

that their explanation applies to the rest of the durable goods sector. In particular it seems to �y in the

face of broader evidence (see Kahn and Davis, 2008, for example) that transitory shocks have diminished in

volatility.

One reason for the lack of detailed structural explanations for the Great Moderation is simply that

models that can explain volatility endogenously, without resort to exogenous changes in the parameters of

shocks, are inevitably complex, highly speci�c, and therefore unlikely to be able to explain the entire Great

Moderation. This would seem to be an unfair standard, as the Great Moderation is unlikely to have a single

�magic bullet� explanation. Giannone et al (2008) make a similar point when they argue that �typical
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macroeconomic models, looking only at a handful of variables, overstate the role of good luck.� They �nd

that when they look at models involving a larger set of explanatory variables �nd a greater role for changes

in propagation.

The model in this paper, while relatively simple in terms of the number of variables, exhibits a di¤erent

type of complexity in which the magnitudes of the �shocks�� at least what would appear to be shocks�

are themselves functions of structural parameters that could change over time. Propagation also changes

endogenously. In order to be able to solve the model analytically, and to isolate the impact of the proposed

structural, the model is simpli�ed in other ways: It is partial equilibrium, with only one source of shocks.

There is no production-smoothing motive for holding inventories, and the entire production technology is

simpli�ed. Future work will put the model in a more general framework, as a number of papers have done

with the model of �nished goods inventories in Kahn (1987).11 That work suggests that the qualitative

results in this paper� that empirically plausible improvements in supply chain management can account for

the patterns of volatility reductions during the Great Moderation� paper will survive. Of course there may

be other models that can account for the same pattern of facts, but explanations relying on purely exogenous

(or at least unexplained) changes in volatility or propagation arguably fall short of being true theories: They

o¤er no insight into the economic forces underlying the changes, little ability to predict out of sample, and

few if any testable implications.

11See, for example, Yi (2008), Bils and Kahn (2000), Kahn et al (2002).
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Appendix

This appendix provides a derivation of the result for a lead time of � periods, materials orders take the

form (34)

Dt = Zt�� = bM [bFEt�� fUtg+ �� � Et�� fMt�1g] ,

and that, consequently,

Mt = max f�� � bF rt;� ; 0g

St = Ot +max
�
rt�1;� � b�1F �� ; 0

	
�max

�
rt;� � b�1F �� ; 0

	
The strategy is to assume the form, derive the implications for the evolution of the endogenous variables,

and then show that (34) satis�es the �rst-order condition. Let

xt (�) � bF (Ut � Et�� fUtg)

zt (�) � Mt � Et��+1 fMtg

Then

Ut = Ot + b
�1
F max fxt�1 (�)� zt�2 (�)� �� ; 0g

Mt = max f�� � [xt (�)� zt�1 (�)] ; 0g :

Therefore (suppressing the � argument in x and z)

Ut � b�1F Mt�1 = Ot + b
�1
F (xt�1 � zt�2 � �� )

Et��
�
Ut � b�1F Mt�1

	
= Et��

�
Ot + b

�1
F (xt�1 � zt�2 � �� )

	
Ut � b�1F Mt�1 � Et��

�
Ut � b�1F Mt�1

	
= Ot � Et�� fOtg+ b�1F [xt�1 � Et�� fxt�1g � (zt�2 � Et�� fzt�2g)]

= Ot � Et�� fOtg+ (Ut�1 � Et���1 fUt�1g)�

Et�� f(Ut�1 � Et���1 fUt�1g)g

�b�1F (Mt�2 � Et���1 fMt�2g � Et�� fMt�2 � Et���1 fMt�2gg)

= Ot � Et�� fOtg+ Ut�1 � Et�� fUt�1g � b�1F (Mt�2 � Et�� fMt�2g)

Ut�1 � b�1F Mt�2 � Et���1
�
Ut�1 � b�1F Mt�2

	
= Ot�1 � Et���1 fOt�1g+ Ut�2 �

Et���1 fUt�2g � b�1F (Mt�3 � Et���1 fMt�3g)
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So

Mt = max f�� � [bF (Ut � Et�� fUtg)� (Mt�1 � Et�� fMt�1g)] ; 0g

= max
�
�� � bF

�
Ot � Et�� fOtg+ Ut�1 � Et�� fUt�1g � b�1F (Mt�2 � Et�� fMt�2g)

�
; 0
	

= max f�� � [bF (Ot � Et�� fOtg) + bF (Ut�1 � Et�� fUt�1g)� (Mt�2 � Et�� fMt�2g)] ; 0g

Ut = Ot + b
�1
F max fbF (Ut�1 � Et���1 fUt�1g)� (Mt�2 � Et���1 fMt�2g)� �� ; 0g

= Ot +max
�
Ut�1 � Et���1 fUt�1g � b�1F (Mt�2 � Et���1 fMt�2g)� b�1F �� ; 0

	
= Ot +max

�
Ot�1 � Et���1 fOt�1g+ Ut�2 � Et���1 fUt�2g � b�1F (Mt�3 � Et���1 fMt�3g)� b�1F �� ; 0

	
Let rt;� � Ut � b�1F Mt�1 � Et��

�
Ut � b�1F Mt�1

	
: Then we have

rt;� = rt�1;� +Ot � Et�� fOtg

rt�1;1 = 0

rt�1;2 = Ot�1 � Et�2 fOt�1g

Hence

rt;1 = �t

rt;2 = �t + (1 + �) �t�1

and, generally,

rt;� =
��1X
s=0

0@ sX
j=0

�j

1A �t�s
From the derivation above, we then have

Mt = max f�� � bF rt;� ; 0g

Ut = Ot +max
�
rt�1;� � b�1F �� ; 0

	
From our initial assumption about Dt, we then have

Dt=bM = bFEt�� fUtg+ �� � Et�� fMt�1g

= Et�� fbFOt +max fbF rt�1;� � �� ; 0g �max f�� � bF rt�1;� ; 0gg+ ��

= bFEt�� fOt + rt�1;�g

24



For example, if � = 2; rt�1;� = �t�1 + (1 + �) �t�2, and Et�� frt�1;�g = (1 + �) �t�2, so

Dt=bM = bF
�
1 + �+ �2

�
�t�2:

Finally

St = b�1F Xt

= b�1F min fMt�1 + bFEt�� fUtg+ �� � Et�� fMt�1g ; bFUtg

= Ut �max
�
rt;� � b�1F �� ; 0

	
= Ot +max

�
rt�1;� � b�1F �� ; 0

	
�max

�
rt;� � b�1F �� ; 0

	
Again if � = 2,

St = Ot +max
��
�t�1 + (1 + �) �t�2

�
� b�1F �2; 0

	
�max

��
�t + (1 + �) �t�1

�
� b�1F �2; 0

	
= Ot +max

�
rt�1;2 � b�1F �2; 0

	
�max

�
rt;2 � b�1F �2; 0

	
= Ot + (rt�1;2 � ut�1)� (rt;2 � ut)

= Et�2 fOtg+ �t + ��t�1 +�ut ��rt;2

= Et�2 fOtg+�ut + (1 + �) �t�2
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Table 1: GARCH results

Dependent variable

GDP growth Durables output growth

Const 2.250 2.249 2.313 4.581 4.697 5.010

(0.272) (0.310) (0.296) (0.742) (0.800) (0.832)

Lagged Dep Var. 0.317 0.309 0.303 0.087 0.101 0.086

(0.070) (0.074) (0.074) (0.067) (0.071) (0.074)

Variance equation

Const 6.515 11.118 12.911 251.83 303.24 182.08

(0.781) (2.139) (6.190) (6.901) (44.57) (68.66)

Resid2 0.096 0.057 0.125 0.035 0.027 0.062

(0.058) (0.063) (0.090) (0.041) (0.044) (0.058)

GARCH(-1) 0.713 0.658 0.334 0.566 0.477 0.468

(0.089) (0.149) (0.388) (0.079) (0.149) (0.249)

Trend -0.045 -0.121 -0.068 -1.788 -3.239 -1.415

(0.006) (0.012) (0.003) (0.207) (0.149) (0.068)

Trend2 8.03E-05 0.0003 1.97E-04 0.0033 0.0079 4.65E-04

3.95E-05 0.0001 (4.11E-06) (0.0010) (0.0015) 5.50E-05

10-year T-rate(-1) � 0.294 0.210 � 9.317 8.457

(0.202) (0.181) (4.008) (3.171)

Dummy(�1984.1) � � -7.001 � � -116.19

(5.192) (66.05)

Note: Estimated on the sample 1947Q1-2007Q3
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Table 2: Statistics from Detrended Data

Log levels (detrended) Growth Rates (annualized)

Durables Durables Durables Durables

GDP Output Sales GDP Output Sales

54.1-69.4 1.54 5.96 3.63 4.23 18.07 10.60

70.1-83.4 2.25 6.92 4.99 4.75 18.77 11.61

84.1-07.4 0.90 3.25 2.72 2.02 7.75 8.22
Note: The logarithmic series were detrended using an HP-�lter with parameter 1600.

Table 3: Frequency Domain Analysis

Durables Durables

GDP Output Sales

! range < 2�
32

�
2�
32 ;

2�
6

� �
2�
6 ; �

�
< 2�
32

�
2�
32 ;

2�
6

� �
2�
6 ; �

�
< 2�
32

�
2�
32 ;

2�
6

� �
2�
6 ; �

�
54.1-69.4 0.35 1.79 0.20 3.58 26.62 4.80 2.67 9.00 1.29

70.1-83.4 0.70 3.93 0.33 5.69 35.38 6.01 3.43 18.69 2.35

84.1-07.4 0.26 0.48 0.05 3.19 6.12 1.01 2.87 3.18 1.18

Durables Durables

GDP Output Sales

! range < 2�
12

�
2�
12 ; �

�
< 2�
12

�
2�
12 ; �

�
< 2�
12

�
2�
12 ; �

�
54.1-69.4 1.40 0.94 18.16 16.85 7.70 5.24

70.1-83.4 3.95 1.01 33.89 13.20 19.87 4.60

84.1-07.4 0.67y 0.12� 8.47y 1.86�� 5.61 1.62
�Reduction in normalized spectrum relative to 1954-69 period signi�cant at 10% level

��Reduction in normalized spectrum relative to 1954-69 period signi�cant at 5% level

yIncrease in normalized spectrum relative to 1954-69 period signi�cant at 10% level
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Table 4: Durable Goods Manufacturing Volatility

Industry (SIC code) S.D. of output growth S.D. of sales growth

1967-83 1984-97 1967-83 1984-97

Lumber (24) 23.15 17.18 20.36 13.70

Furniture/Fixtures (25) 15.38 8.77 14.57 7.41

Stone, Clay, Glass (32) 14.60 10.30 13.93 9.89

Primary Metals (33) 27.88 9.96 27.78 8.94

Fabricated Metals (34) 16.35 8.59 14.29 7.14

Industrial Machinery (35) 14.63 9.76 12.24 8.97

Electronic Machinery (36) 14.94 7.64 13.57 7.47

Motor Vehicles (371) 46.04 22.98 45.59 21.59

Other Transportation (37x) 23.37 17.09 17.14 16.19

Instruments (38) 11.42 7.22 10.84 5.79

Miscellaneous (39) 20.79 11.51 18.62 10.25

Durable Manufacturing 14.66 7.09 13.72 6.39

Durable Goods (aggregate) 17.34 8.02 10.92 8.60
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Table 5: Simulation Results

Simulation Data

Standard deviations� of

Output Sales 4-q output 4-q sales Output Sales 4-q output 4-q sales

� p=c � � growth growth growth growth Period growth growth growth growth

0.975 3 20.16 5.30 5.60 2.68 54.1-83.4 18.32 11.04 6.84 4.06

0.99 1.1 0.911 2 14.93 5.20 4.46 2.70 84.1-2007.4 7.80 8.26 2.78 2.98

0.993 3 19.96 5.33 5.56 2.67

0.99 1.2 0.954 2 14.67 5.20 4.41 2.67

0.992 3 18.85 5.33 5.24 2.58

0.95 1.2 0.953 2 14.14 5.18 4.23 2.59

�Units are annualized logarithmic annual rates�e.g. �output growth�is 400�ln(Y ). Simulations were based

on one million random draws.
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Figure 1a: Scaled Volatility by Major Output Category, Relative to GDP Volatility

Volatility is measured as a 5year rolling standard deviations of  grow th rates scaled by GDP share.
In each chart, the dotted line is the volatility of GDP. Shaded periods represent NBERdesignated recessions.
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Figure 1b: Scaled Volatility by Expenditure Category, Relative to GDP Volatility

Note: Volatility is measured as a 5year rolling standard deviations of growth rates scaled by GDP share.
In each chart, the dotted line is the volatility of GDP. Shaded periods represent NBERdesignated recessions
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Note: Volatility is measured as a 5year rolling standard deviations of growth rates.
Shaded periods represent NBERdesignated recessions.
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Figure 3: Contributions to the Volatility of Durable Goods Output

Note: Volatility is measured as a 5year rolling variances of
growth contributions.
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Figure 4: Inventory Sales Ratios in Durable Goods*
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Note: The discontinuities in the late 1990s are due to the change
in industry classfications from the SIC system to the NAICS.
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