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Abstract

We show how to price the time series and cross-section of the term structure of interest 
rates using a three-step linear regression approach. Our method allows computation-
ally fast estimation of term structure models with a large number of pricing factors. We 
present specifi cation tests favoring a model using fi ve principal components of yields as 
factors. We demonstrate that this model outperforms the Cochrane-Piazzesi (2008) four-
factor specifi cation in out-of-sample exercises, but generates similar in-sample term 
premium dynamics. Our regression approach can also incorporate unspanned factors and 
allows estimation of term structure models without observing a zero-coupon yield curve.
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1 Introduction

Affine models of the term structure of interest rates are a popular tool for the analysis of

bond pricing. The models typically start with three assumptions: 1) the pricing kernel

is exponentially affine in the shocks that drive the economy, 2) prices of risk are affine

in the state variables, and 3) innovations to state variables and log yield observation

errors are conditionally Gaussian (see Chen and Scott, 1993; Dai and Singleton, 2000;

Collin-Dufresne and Goldstein, 2002; Duffee, 2002; Kim and Wright, 2005 for examples).

These assumptions give rise to yields that are affine in the state variables, and whose

coefficients on the state variables are subject to constraints across maturities (see Duffie

and Kan, 1996; Piazzesi, 2003 and Singleton, 2006 for overviews). Empirically, the affine

term structure literature has primarily used maximum likelihood methods to estimate

coefficients and pricing factors, thus exploiting the distributional assumptions as well as

the no-arbitrage constraints.

In this paper, we propose an alternative, regression based approach to the pricing of

interest rates. We start with observable pricing factors and develop a three step ordinary

least squares estimator. In the first step, we decompose pricing factors into predictable

components and factor innovations by regressing factors on their lagged levels. In the

second step, we estimate exposures of Treasury returns with respect to lagged levels

of pricing factors and contemporaneous pricing factor innovations. In the third step,

we obtain the market price of risk parameters from a cross-sectional regression of the

exposures of returns to the lagged pricing factors onto exposures to contemporaneous

pricing factor innovations. We provide analytical standard errors that adjust for the

generated regressor uncertainty. We also discuss the advantages of our method with

respect to the recently suggested approaches by Joslin, Singleton and Zhu (2011) and

Hamilton and Wu (2012). In particular, we point out that the assumption of serially

uncorrelated yield pricing errors underlying these likelihood-based methods imply excess
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return predictability not captured by the pricing factors. In contrast, since our approach is

based on return regressions, we do not need to make assumptions about serial correlation

in yield pricing errors.

We report a specification with five principal components of zero coupon yields as

pricing factors. We show that models with fewer factors are rejected in specification tests.

The pricing errors in the five factor specification are remarkably small and return pricing

errors do not exhibit autocorrelation. We further find that level risk is priced and that

the time variation of level risk is best captured by the second (the slope factor) and fifth

principal components. The five factor specification exhibits substantial variation in risk

premiums and at the same time gives reasonable maximal Sharpe ratios.

We next present a four factor specification following Cochrane and Piazzesi (2008)

which includes the first three principal components of Treasury yields and a linear com-

bination of forward rates designed to predict Treasury returns (the CP factor) as pricing

factors. Unlike Cochrane and Piazzesi (2008), we allow for unconstrained prices of risk

and find that the CP factor significantly prices all factors except slope. The magnitude

and time pattern of the price of risk specification of the four factor CP model is akin

to that of the five factor model, indicating that the two models capture term premium

dynamics in a similar way. However, in-sample yield pricing errors are somewhat larger

in the four factor model.

To compare the four and five factor models, we perform two out-of-sample exercises.

In the first, we use the model-implied term premiums to infer the future path of average

short-term interest rates. In the second, we estimate the models using returns on bonds

maturing in less than or equal to ten years, and then impute the model-implied yields of

bonds with longer maturities. In both of these exercises, the five factor model outperforms

the four factor specification. Hence, we choose the five factor model to be our preferred

specification.

Our procedure can potentially be applied to any set of fixed income securities. In this
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paper, we use our approach to estimate an affine term structure model from returns on

maturity sorted portfolios of coupon bearing Treasury securities. The availability of a zero

coupon term structure is therefore not necessary to estimate the model. Yet, estimation

from the returns on maturity sorted bond portfolios with pricing factors extracted from

coupon bearing yields generates a zero coupon curve that is very similar to the Fama-Bliss

discount bond yields.

We present a number of extensions. First, we show how to estimate the model in

the presence of unspanned factors. Such factors do not improve the cross-sectional fit of

yields, but do affect the time variation of prices of risk through their predictive power for

the yield curve factors. In contrast to the four and five factor specifications, incorporating

an unspanned real activity factor produces a significant price of slope risk. Second, we

show how to impose linear restrictions on risk exposures and market prices of risk in the

estimation of the model. Third, we show that the maximal Sharpe ratios implied by the

four and five factor specifications are very reasonable, with an average level below one

and peaks below 2.5. Fourth, we explain how the model can be used to fit the yield curve

at the daily frequency. Finally, we show that the implied principal component loadings

from the term structure model are statistically indistinguishable from the actual principal

component loadings.

Our paper is organized as follows. In Section 2, we present the model and our three step

estimator, and show how to obtain model-implied yields from the estimated parameters.

We further discuss the relation between our approach and other estimation methods in

the literature. In Section 3, we present our main empirical findings. Section 4 discusses

extensions and robustness checks. Section 5 concludes.
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2 The model

In this section, we derive the data generating process for arbitrage-free excess holding

period returns from a dynamic asset pricing model with an exponentially affine pricing

kernel. We then show how to estimate the model parameters via three step linear regres-

sions, present their asymptotic distributions, and derive the no-arbitrage cross equation

constraints for bond yields.

2.1 State variables and expected returns

We assume that the dynamics of a K × 1 vector of state variables Xt evolve according to

the following vector autoregression (VAR):

Xt+1 = µ+ ΦXt + vt+1. (1)

This specification of the dynamic evolution of the state variables can be interpreted as

a discrete time analog to the intertemporal capital asset pricing model (ICAPM) state

variable dynamics of Merton (1973) or the general equilibrium setup of Cox, Ingersoll and

Ross (1985). We assume that the shocks vt+1 conditionally follow a Gaussian distribution

with variance-covariance matrix Σ:

vt+1| {Xs}ts=0 ∼ N (0,Σ) , (2)

where {Xs}ts=0 denotes the history of Xt. We denote P
(n)
t the zero coupon Treasury bond

price with maturity n at time t. The assumption of no-arbitrage implies (see Dybvig and

Ross (1987)) that there exists a pricing kernel Mt such that

P
(n)
t = Et

[
Mt+1P

(n−1)
t+1

]
. (3)
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We assume that the pricing kernel Mt+1 is exponentially affine:

Mt+1 = exp

(
−rt −

1

2
λ′tλt − λ′tΣ−1/2vt+1

)
, (4)

where rt = lnP
(1)
t is the continuously compounded risk free rate. We further assume that

market prices of risk are of the essentially affine form as suggested in Duffee (2002):

λt = Σ−1/2 (λ0 + λ1Xt) . (5)

We denote rx
(n−1)
t+1 the log excess holding return of a bond maturing in n periods:

rx
(n−1)
t+1 = lnP

(n−1)
t+1 − lnP

(n)
t − rt. (6)

Using Eq. (4) and Eq. (6) in Eq. (3) yields:

1 = Et

[
exp

(
rx

(n−1)
t+1 − 1

2
λ′tλt − λ′tΣ−1/2vt+1

)]
. (7)

Assuming that
{
rx

(n−1)
t+1 , vt+1

}
are jointly normally distributed, we then find:

Et

[
rx

(n−1)
t+1

]
= Covt

[
rx

(n−1)
t+1 , v′t+1Σ−1/2λt

]
− 1

2
V art

[
rx

(n−1)
t+1

]
. (8)

We denote

β
(n−1)′
t = Covt

[
rx

(n−1)
t+1 , v′t+1

]
Σ−1, (9)

and using Eq. (5) we obtain:

Et

[
rx

(n−1)
t+1

]
= β

(n−1)′
t (λ0 + λ1Xt)−

1

2
V art

[
rx

(n−1)
t+1

]
. (10)
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We can decompose the unexpected excess return into a component that is correlated with

vt+1, and another component that is conditionally orthogonal. Then we find:

rx
(n−1)
t+1 − Et

[
rx

(n−1)
t+1

]
= γ

(n−1)′
t vt+1 + e

(n−1)
t+1 . (11)

It is straightforward to show that γ
(n−1)
t = β

(n−1)
t using Eq. (9). We assume that the

return pricing errors e
(n−1)
t+1 are conditionally independently and identically distributed

with variance σ2.

In our baseline specifications, we will use linear combinations of log yields (such as

principal components) as observable factors Xt and estimate the model parameters using

holding period returns based on the same set of yields. Per construction, this implies that

βt = β ∀t. We will thus proceed with the assumption that β is constant.

The return generating process for log excess holding period returns is then:

rx
(n−1)
t+1 = β(n−1)′ (λ0 + λ1Xt)︸ ︷︷ ︸

Expected

Return

−1

2

(
β(n−1)′Σβ(n−1) + σ2

)︸ ︷︷ ︸
Convexity

Adjustment

+ β(n−1)′vt+1︸ ︷︷ ︸
Priced Return

Innovation

+ e
(n−1)
t+1︸ ︷︷ ︸

Return Pricing

Error

(12)

Stacking this system across maturities and time periods, we rewrite it as

rx = β′(λ0ι
′
T + λ1X−)− 1

2
(B?vec (Σ) + σ2ιN)ι′T+β′V + E (13)

where rx is a N×T matrix of excess returns, β = [β(1) β(2) · · · β(N)] is a K× N matrix of

factor loadings, ιT and ιN are a T ×1 and N ×1 vectors of ones, X− = [X0 X1 · · · XT−1]

is a K × T matrix of lagged pricing factors, B? =
[
vec
(
β(1)β(1)′) · · · vec

(
β(N)β(N)′)]′ is

an N ×K2 matrix, V is a K × T matrix, and E is an N × T matrix.
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2.2 Estimation

Based on Eq. (13) above, we propose the following simple three step regression based

estimator for the parameters of the model.1

1. We begin by estimating Eq. (1) via ordinary least squares (OLS). This allows

the decomposition of Xt+1 into a predictable component and an estimate of the

innovation v̂t+1. We stack these innovations into the matrix V̂ and construct an

estimator of the state variable variance-covariance matrix Σ̂ = V̂ V̂ ′
/
T .

2. Next we regress excess returns on a constant, lagged pricing factors and contempo-

raneous pricing factor innovations according to:

rx = aι′T + β′V̂ + cX− + E. (14)

Collecting the regressors into the (2K + 1) × T matrix Z̃ = [ιT V̂ ′ X ′−]′ , our

estimators become [
â β̂

′
ĉ
]

= rxZ̃ ′
(
Z̃Z̃ ′

)−1

. (15)

We collect the residuals from this regression into the N × T matrix Ê. We then

estimate σ̂2 = trace
(
ÊÊ ′

)/
NT . We construct B̂? from β̂.

3. We estimate the price of risk parameters λ0 and λ1 via cross-sectional regression.

We know from Eq. (13) that a = β′λ0 − 1
2

(B?vec (Σ) + σ2ιN) and c = β′λ1. We

use these expressions to obtain the following estimators for λ0 and λ1:

λ̂0 =
(
β̂β̂
′)−1

β̂

(
â +

1

2

(
B̂?vec

(
Σ̂
)

+ σ̂2ιN

))
(16)

λ̂1 =
(
β̂β̂
′)−1

β̂ĉ. (17)

1For a regression based approach using a linear pricing kernel specification, see Adrian, Crump and
Moench (2012).
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2.3 Inference

Denoting the matrix Λ = [λ0 λ1], we can write the price of risk estimator in the single

expression

Λ̂ =
(
β̂β̂
′)−1

β̂

[
rx+

1

2
B̂?vec(Σ̂)ι′T +

1

2
σ̂2ιN ι

′
T

]
MV̂Z−

(
Z−MV̂Z

′
−
)−1

, (18)

where Z− = [ιT X ′−]′ and where MV̂ = IT − V̂ ′
(
V̂ V̂ ′

)−1

V̂ . The equivalence of Eq. (18)

with Eq. (16) and Eq. (17) follows from observing that ι′TMV̂Z−
(
Z−MV̂Z

′
−
)−1

= %′1

where %1 is a (K + 1)× 1 vector with first element equal to one and zeros elsewhere and

since [â ĉ] = rxMV̂Z−
(
Z−MV̂Z

′
−
)−1

.

We show in the Appendix that β and Λ have the joint limiting distribution:

√
T

 vec
(
β̂ − β

)
vec
(

Λ̂− Λ
)
 d−→ N

(0

0

)
,

 Vβ C ′Λ,β

CΛ,β VΛ


 , (19)

with

Vβ = σ2
(
I ⊗ Σ−1

)
. (20)

We provide the analytical expressions for VΛ and CΛ,β in the Appendix. We note here

that the asymptotic variance of the factor risk exposures β only depends on the variance

of the return pricing errors in the regression of excess returns on lagged factors and factor

innovations as well as on the variance of the VAR innovations of the pricing factors, but

not on β or Λ. This implies that we may conduct inference about whether a given pricing

factor is a significant explanatory variable for bond returns without estimating the full

set of model parameters.
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2.4 Affine yields

From the estimated model parameters, we can generate a zero coupon yield curve. Under

the assumptions we have made so far, we can show that bond prices are exponentially

affine in the vector of state variables:

lnP
(n)
t = An +B′nXt + u

(n)
t . (21)

By replacing Eq. (21) into Eq. (6), we see that

rx
(n−1)
t+1 = An−1 +B′n−1Xt+1 + u

(n−1)
t+1 − An −B′nXt − u(n)

t + A1 +B′1Xt + u
(1)
t . (22)

Equating this expression for excess returns with the return generating expression in Eq.

(12), we find:

An−1+B′n−1 (µ+ΦXt+vt+1)+u
(n−1)
t+1 −An−B′nXt−u(n)

t +A1+B′1Xt+u
(1)
t (23)

=β(n−1)′ (λ0+λ1Xt+vt+1)−
1

2

(
β(n−1)′Σβ(n−1)+σ2

)
+e

(n−1)
t+1 . (24)

This equation has to hold state by state. Let A1 = −δ0 and B1 = −δ1. Matching

terms, we obtain the following system of recursive linear restrictions for the bond pricing

parameters:

An = An−1 +B′n−1 (µ− λ0) +
1

2

(
B′n−1ΣBn−1 + σ2

)
− δ0, (25a)

B′n = B′n−1 (Φ− λ1)− δ′1, (25b)

A0 = 0, B′0 = 0, (25c)

β(n)′ = B′n. (25d)

9



We also obtain the following expression for the log bond pricing errors:

u
(n−1)
t+1 − u(n)

t + u
(1)
t︸ ︷︷ ︸

Log Yield

Pricing Error

= e
(n−1)
t+1︸ ︷︷ ︸

Return Pricing

Error

(26)

Several remarks are in order. First, note that the derivation of log bond prices is exact,

provided that β(n)′ = B′n. Second, the recursions in Eq. (25a) and Eq. (25b) are the

standard linear difference equations for affine term structure models with homoskedastic

shocks. The only difference with respect to the standard formulation is the appearance of

the term 1
2
σ2 in Eq. (25a). This arises due to the fact that we allow for a maturity specific

return fitting error that is conditionally orthogonal to the state variable innovations. Our

approach thus incorporates pricing errors explicitly into the no arbitrage recursions.

Eq. (26) implies that if yield pricing errors are iid, then return pricing errors are

cross-sectionally and serially correlated. Likelihood-based estimation approaches for affine

term structure models typically assume serially uncorrelated yield pricing errors and thus

implicitly assume return pricing errors to be serially correlated. We return to this issue

in the next section.

Setting the price of risk parameters λ0 and λ1 to zero in the recursions in Eq. (25a)

and Eq. (25b) generates the risk-adjusted bond pricing parameters ARFn and BRF
n . These

parameters have the property that − 1
n

(
ARFn +BRF ′

n Xt

)
equals the time t expectation

of average future short rates over the next n periods. These risk-neutral yields are of

independent economic interest, as the term premium can be calculated as the difference

between the risk neutral yield and model-implied fitted yield.
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2.5 Discussion of related literature

While Gaussian affine term structure models have historically been estimated using com-

putationally intensive maximum likelihood techniques, two other papers have recently

proposed alternative, faster, estimation approaches. We now briefly compare these recent

contributions to the literature with the approach introduced here.

Joslin, Singleton and Zhu (2011) (JSZ henceforth) propose a normalization of affine

models such that linear combinations of yields can be used as observable pricing factors.

Under their normalization, the model parameters can be split into two subsets. The first

subset summarizes the parameters governing the evolution of the pricing factors under

the historical measure. JSZ show that for this subset, the ML estimator coincides with

the OLS estimator of a VAR(1) of the pricing factors. Hence, they suggest a two step

estimation approach. In the first step, they estimate the parameters of the VAR(1) via

OLS. Then, in the second step, they estimate the remaining model parameters which

govern the evolution of pricing factors under the risk-neutral measure, via numerical

solution of the likelihood function taking as given the OLS estimates of the first step.

We see several advantages of our method with respect to that of JSZ. First, JSZ need

to assume that the yield fitting errors are conditionally independent of lagged values of

yield fitting errors. This assumption allows them to separate the two sets of parameters

in the likelihood function. However, Eq. (26) above shows that serially uncorrelated yield

pricing errors give rise to autocorrelation of the return pricing errors. Serially correlated

return pricing errors, in turn, generate excess return predictability not captured by the

pricing factors. We think that this is an undesirable assumption and indeed our empirical

results suggest that there is a strong level of serial correlation in yield fitting errors

while there is little to no autocorrelation in return pricing errors. Second, the estimation

approach suggested by JSZ requires a particular normalization of affine models, while

our approach does not need a canonical form but can be readily applied to any affine
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model with observable (and economically interpretable) pricing factors. Third, while the

approach in JSZ estimates a subset of parameters via OLS, it still requires estimation of

a number of parameters via numerical methods. These could be prone to issues related

to the convergence to the global maximum of the likelihood function. By contrast, our

approach relies exclusively on linear regressions which greatly alleviates such concerns.

Finally, as in this paper JSZ use principal components of yields as pricing factors in the

application of their method. However, they assume that the principal components are

observed without error, while the yields themselves are observed with error, giving rise

to an internal inconsistency. In contrast, our approach does not impose the constraint

that principal components must be priced perfectly. Consequently, there is a potential

inconsistency between actual and model-implied principal components. However, we show

in Section 4.5 below that any such inconsistency is numerically negligible in our preferred

five factor specification.

Hamilton and Wu (2012) (HW henceforth) have recently proposed another multi-step

estimation method for affine models which combines OLS regressions with numerical opti-

mization. While their method does not require a particular normalization of the model, it

is also based on the assumption that exactly K linear combinations of yields are observed

and priced without error while the remaining yields are observed with error. Based on

this assumption, HW first run an OLS regression of the vector of observed yields on their

contemporaneous and lagged values. In further estimation steps, they then back out the

remaining model parameters by numerically minimizing a chi-squared objective function

which summarizes the deviations of the structural from the reduced form parameters, an

approach which is asymptotically equivalent to full information maximum likelihood. As

in JSZ, HW require that yield fitting errors are not serially correlated, which as we dis-

cuss above has strong implications for the properties of the return pricing errors. Indeed,

Hamilton and Wu (2011) show that popular affine term structure models feature serially

correlated yield fitting errors. Moreover, it does not appear that the HW method can be
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readily applied to specifications which feature unspanned factors in the term structure

of interest rates which we show is easy in our setup. Finally, the HW approach requires

numerical optimization which our method avoids.

3 Empirical results

In this section, we provide estimation results from our regression approach for different

specifications of affine term structure models. We start by testing for the number of factors

necessary to explain the time series and cross-section of Treasury returns. To demonstrate

the robustness of these results with respect to the choice of data, we do so using different

combinations of Treasury yield and return data which have previously been employed

in the literature. The results of this analysis, discussed in Section 3.2 below, show that

the first five principal components of Treasury yields are needed to explain Treasury

returns. We therefore choose a K = 5 factor specification as our baseline example and

discuss its properties and implications in Section 3.3 below. We also estimate a model

with K = 4 factors in the style of Cochrane and Piazzesi (2008) which employs the first

three principal components of Treasury yields and a return forecasting factor as pricing

factors. This model is presented in Section 3.4. We compare the two model specifications

in Section 3.5 and find that the five factor model outperforms the four factor model in

economically important dimensions.

Both models use bond returns inferred from fitted zero coupon yield curves. However, a

distinguishing feature of our estimation approach is that it does not require the availability

of zero coupon yield data. Instead, given a risk-free short term rate as well as a set of

pricing factors which span the cross-section of bond yields, we can obtain estimates of

fitted zero coupon yield curves without actually observing these curves. To illustrate this

capability, our third specification combines excess returns obtained from maturity sorted

portfolios of coupon bearing bonds with the first five principal components extracted from
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the set of Treasury yields published in the Federal Reserve’s H.15 release. We discuss

estimation results for this specification in Section 3.6.

3.1 Data

We estimate our baseline four and five factor specifications using the zero coupon yield

data constructed by Gurkaynak, Sack and Wright (2007) (henceforth GSW).2 These data

are based on fitted Nelson-Siegel-Svensson curves, the parameters of which are published

along with the estimated zero coupon curve. We use these parameters to back out the

cross-section of yields for maturities n = 3, . . . , 120 months. From these yields we extract

principal components. Taking as the risk free rate the n = 1 month yield we calculate

excess returns for n = 6, 18, 24, . . . , 60, 84, and 120 month zero coupon bonds directly

from Eq. (6), giving a cross-section of N = 12 maturities.

Our third specification uses factors extracted from the constant maturity yields from

the Federal Reserve Board’s H.15 release and excess returns of Fama maturity sorted bond

portfolios and the Fama one-month risk free rate, available from the Center for Research

in Security Prices (CRSP). The Fama bond portfolios are sorted into six month maturity

buckets with n = 1 − 6, 7 − 12, . . . , 55 − 60 months in addition to a portfolio grouping

maturities 61− 120 months, for a total of N = 11 maturity groups. From the Fama risk

free rate Rf
t and the monthly portfolio returns R

(n−1)
t+1 , we calculate log excess returns

according to

rx
(n−1)
t+1 = log

(
1 +R

(n−1)
t+1

)
− log(1 +Rf

t ). (27)

We estimate all models over the sample period 1987:01-2011:12, which provides us

with a total of T = 300 monthly observations. Taken as given the set of pricing factors,

we estimate the parameters (Φ,Σ, σ, β, λ0, λ1) using our three step estimation approach.

We further obtain estimates of the short rate parameters δ0 and δ1 by regressing the one-

2We thank the authors for making these data available for download on the website http://www.

federalreserve.gov/Pubs/feds/2006/200628/feds200628.xls
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month T-bill on the pricing factors. We then feed all parameter estimates into Eq. (25a)

and Eq. (25b) to obtain the recursive pricing parameters and use the latter to compute

model-implied yields of the maturities of interest.

3.2 Model specification tests and identification

We start by testing for the number of pricing factors. While early research by Scheinkman

and Litterman (1991) and Chapter 16 of Garbade (1996) pointed out that three factors

are enough to explain the cross-sectional variation of yields, more recent papers such as

Cochrane and Piazzesi (2005), Cochrane and Piazzesi (2008), and Duffee (2011) have

emphasized the importance of additional factors to explain Treasury returns.

Our estimation approach uses return regressions to fit the cross-section of yields, and

allows for direct tests of the number of pricing factors. Whether the pricing factors explain

return variation is important for the identification of the price of risk parameters. This

is easy to see in the three step regression approach. Recall from Eq. (16) and Eq. (17)

that the market price of risk parameters are obtained via regressions onto the matrix of

factor risk exposures. Identification of prices of risk thus requires that the stacked factor

loadings β′ are of full column rank.3

Since the asymptotic variance of β is of a simple OLS form (see Eq. (20)), we can

apply standard tools to assess the rank of β. We test for the possible rank deficiency using

the Anderson (1951) canonical correlations test. We denote the sample partial canonical

correlation between V and rx conditional on X− by ρi for i = 1, ..., K factors. Then,

under the null hypothesis that rank(β) ≤ r < K, the Anderson test statistic is

rkr = −T
K∑

i=r+1

ln(1− ρ2
i )

a∼ χ2((K − r)(N − r)). (28)

3See Kleibergen (2009) and Burnside (2012) for a related discussion in the context of static Fama-
MacBeth equity pricing models.
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We can also test for the presence of unspanned or useless factors by checking whether

particular columns of β′ are equal to zero. This is straightforward to do based on the

asymptotic distribution of the factor risk exposures β from Eq. (20). Let βi be the ith

column of β′. Then, under the null that βi = 0N×1, the Wald statistic is

Wβi = β̂′iV̂−1
βi
β̂i

a∼ χ2(N). (29)

Table 1 displays the results of both test statistics for model specifications with three to

five factors using various combinations of Treasury return and yield data. In particular, we

report the Anderson test for the hypothesis that the rank of β in a K factor model is less

than or equal to K − 1 (denoted rkK−1) and the Wald statistic for the null that the Kth

column of β′ is equal to zero. In the first panel of Table 1, we provide the test statistics for

our benchmark specification which uses both GSW returns and yields. The second panel

reports tests for the number of factors using the same yield data as Duffee (2010), who

merges Fama-Bliss yields of n = 3, 12, 24, ..., 60 months with GSW yields of maturities

n = 72 and n = 120 months. The third panel uses principal components extracted from

the Federal Reserve H.15 release, selecting maturities n = 6, 12, 24, 36, 60, 84 and 120

months.4 Finally, the fourth panel extracts factors from the CRSP constant maturity

Treasury yield database using maturities n = 12, 24, 60, 84 and 120 to which we append

the 3-month and 6-month T-bill from the CRSP Fama-Bliss discount bond yield data.

The specifications on the left hand side are estimated using excess returns on zero coupon

bonds calculated from the GSW dataset. The specifications on the right hand side are

estimated using excess returns on Fama maturity sorted Treasury portfolios.

The tests unanimously support a five factor specification across the different data sets.

Indeed, the Wald tests overwhelmingly reject that the last column of β′ equals zero in

the five factor specification. The Anderson rank statistics also broadly support a five

4Joslin, Singleton and Zhu (2011) also use H.15 yields, but first extract the implied zero coupon yield
curve. Our estimation procedure does not require this additional step.
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factor model. We conclude from these results that a five factor specification of an affine

term structure model is likely to provide a better fit of bond returns and hence bond risk

premiums than specifications with fewer factors. Importantly, this result is obtained for

the different combinations of U.S. Treasury yield and return data which have been used

in the extant literature and is therefore not driven by the particular dataset we use in our

preferred five factor specification.

3.3 Estimation of a five factor model

Following the evidence in favor of a five factor model from the tests above, we use it as

our baseline specification. We will now document that this specification fits the yield

curve close to perfectly and gives rise to substantial time variation in the prices of risk.

Since traditional term structure models are estimated imposing nonlinear cross-equation

restrictions, estimation of these models with more than three factors becomes computa-

tionally demanding. In contrast, adding factors to the regression based approach comes

at no computational cost.

Table 2 reports the time series properties of the yield pricing errors implied by the five

factor specification of the model. We set µ = 0 since principal components are extracted

from demeaned yields. The average yield pricing errors are very small, not exceeding

0.4 basis points in absolute value. Moreover, the standard deviation of the yield pricing

errors is tiny, remaining below one basis point for all maturities. Finally, consistent

with our decomposition of yield pricing errors in Eq. (26), we find evidence of strong

serial correlation in yield pricing errors while the return pricing errors have essentially no

autocorrelation.

The upper two panels of Fig. 1 show the time series of observed and fitted yields for

the two and ten year Treasury notes. These plots show that the five factor specification

provides an extremely tight fit to yields. It is worth emphasizing that the model has
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been fitted to returns. All parameters have been obtained via linear regressions, without

imposing the cross-equation recursions in Eq. (25a) and Eq. (25b). These equations have

only been used ex post, to allow the computation of all maturities of the yield curve. Our

results therefore suggest that traditional estimation approaches in which latent pricing

factors are jointly estimated with the model parameters by explicitly imposing the cross-

equation constraints provide little or no gains in terms of fitting the yield curve.

The bottom two charts in Fig. 1 show the observed and fitted one month excess

holding returns on the same two maturities. The actual excess returns are shown as solid

blue lines. The fitted excess returns are given by the expression B̂′n−1

(
λ̂0 + λ̂1Xt

)
−

1
2

(
B̂′n−1Σ̂B̂n−1 + σ̂2

)
+ B̂′n−1v̂t+1 and are shown as dashed green lines. Both are almost

indistinguishable from one another suggesting that the dynamics of excess bond returns

are close to perfectly captured by the five factor model. We superimpose as dashed red

lines the expected excess return component B̂′n−1

(
λ̂0 + λ̂1Xt

)
−1

2

(
B̂′n−1Σ̂B̂n−1 + σ̂2

)
which captures the risk premium investors demand for holding a bond with n months to

maturity for one month. The charts show that risk premiums in the five factor specification

exhibit substantial time variation.

We now investigate the role of each of the factors in pricing the various components

of interest rate risk in the five factor model. To that end, Table 3 reports the esti-

mated elements of λ0 and λ1 as well as the corresponding t-statistics. Note that here and

throughout the standard errors are calculated under the assumption that µ is unknown

to accommodate the sampling uncertainty from using demeaned yields. Looking at these

estimates, we see that the price of level risk has a significant negative constant compo-

nent (the top element in the vector λ0). Recalling that excess return betas are negative

multiples of the yield loadings bn = − 1
n
Bn, this implies that investors on average require

a positive expected excess return for holding the level portfolio. In addition to level risk

being nonzero unconditionally, we also find that it varies significantly as a function of the

slope and the fifth factor. The loading of level risk on the slope factor has a negative
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sign. The model therefore implies that a higher slope is associated with higher expected

excess returns. Indeed, as can be seen in the lower right hand panel of Fig. 2, expected

excess returns load positively on the slope factor with coefficients more or less linearly

increasing in maturity. This is in line with prior evidence on the predictive power of yield

spreads for bond returns as e.g. in Campbell and Shiller (1991). We further find that the

fifth principal component enters the price of level risk with a strongly significant positive

coefficient. This underscores that factors with negligible contemporaneous effects on the

yield curve can have strong predictive power for future excess returns, consistent with the

findings of e.g. Cochrane and Piazzesi (2008) and Duffee (2011). The estimated price of

risk coefficients are also economically important. For example, the coefficient of the fifth

principal component in the price of level risk is estimated to be 0.03. This implies that a

one standard deviation decline in the fifth principal components increases the annualized

expected excess return on the ten-year Treasury bond by about 6%.

We can conveniently summarize the pricing implications of the model by testing the

null hypothesis that the different rows of Λ (which combines λ0 and λ1) are equal to zero.

Given the asymptotic distribution of the estimator derived in Section 2.3, a Wald test

can be used to that effect. In particular, let λ′i· be the ith row of Λ. Then, under the null

that λ′i· = 01×(K+1), the Wald statistic

WΛi· = λ̂′i·V̂−1
λi·
λ̂i·

a∼ χ2(K + 1) (30)

has an asymptotic chi-square distribution with K+1 degrees of freedom. In a similar vein,

we can test whether the price of risk associated with a given factor features significant

time variation by testing if the corresponding row of λ1 is jointly equal to zero. Let λ′1i·

be the ith row of λ1. Then, under the null that λ′1i· = 01×K , the Wald statistic

Wλ1i· = λ̂′1i·V̂−1
λ1i·
λ̂1i·

a∼ χ2(K) (31)
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has an asymptotic chi-square distribution with K degrees of freedom. The last two

columns in Table 3 provide these Wald statistics as well as the corresponding p−values

for the rows of Λ and λ1, respectively. In line with the individual significance of the price

of risk parameters, these Wald statistics show that level risk is priced significantly both

unconditionally and conditionally.

Slope risk is not priced in the five factor model. Indeed, none of the individual elements

of the second row of Λ are significantly different from zero and both Wald statistics

indicate that these coefficients are also jointly indistinguishable from zero. This result

appears surprising given that slope captures the second largest share of the cross-sectional

variation of yields. We will return to this issue in Section 4.1 below.

While slope risk is not priced in the five factor model, curvature risk, as measured

by the exposure to the third principal component of Treasury yields, carries a significant

price of risk. Indeed, the level factor, the curvature factor itself, as well as the fourth

principal component of yields all significantly affect the price of curvature risk over time.

The coefficient of the price of curvature risk on the level factor is negative, indicating that

expected excess returns on a portfolio that is long in short term and long term government

bonds and short in intermediate maturities, tend to be increasing in the level of rates.

While the price of level risk is significantly determined by the fifth principal component,

the price of curvature risk strongly varies with the fourth principal component, which

again highlights the role of higher order principal components for expected bond returns.

The upper two panels of Fig. 2 provide a plot of unconditional first and second

moments of yields across maturities as observed and fitted by the five factor model. The

charts show that the specification fits both moments very well. The lower left panel of

Fig. 2 provides a plot of the estimated yield loadings bn. While these graphs reinforce

the common interpretation of the first three principal components of yields as level, slope,

and curvature, they also highlight why higher order principal components of yields have

been given much less attention in the literature. Indeed, the lower left panel of Fig. 2
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shows that the loadings of yields on the fourth and fifth principal components are very

small. This is in sharp contrast to the the lower right panel of Fig. 2 which shows

the loadings B′nλ1 of expected excess returns on all model factors. There we see that

the loadings on the fourth and fifth principal component exhibit strong variation across

maturities. In fact, expected returns are explained nearly entirely by the second, fourth,

and fifth principal component, while yields are explained almost exclusively by the first

three principal components.

We can assess the economic significance of the various risk prices by computing their

contribution to the variability of the pricing kernel. Recalling that

lnMt+1 = −rt −
1

2
λ′tλt − λ′tΣ−1/2νt+1, (32)

it is straightforward to decompose the conditional volatility of the pricing kernel into the

contributions due to each price of risk according to

Vart (lnMt+1) = λ′tλt =
K∑
j=1

λ2
jt. (33)

Doing so, we find that risk prices of all five factors contribute to the time variation of the

pricing kernel, see the upper left chart in Fig. 3. However, given that the exposure of

long term bonds to risks other than level risk is fairly small, the statistical significance of

their market prices of risk does not translate into a sizeable impact on expected excess

returns on those bonds. Indeed, as the lower left chart in Fig. 3 shows it is primarily, but

not exclusively, the time variation of level risk that contributes to time varying expected

excess returns on the 10-year Treasury bond. This time variation in turn is largely, but

not exclusively, driven by movements in the slope and the fifth principal component, as

shown in the lower right chart of Fig. 2.

Recall that we have derived the recursive pricing formulas in Eq. (25a) and Eq. (25b)
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by equating our return generating process in Eq. (12) with the definition of excess returns

in Eq. (6) under the assumption that log bond prices are linear in the state variables X.

The matching of terms implies that our recursive bond pricing parameters Bn, which are

functions of the parameters Φ,Σ, σ, δ0, δ1, λ0, and λ1, must be equal to the coefficients β(n)

from the time series regressions of excess returns on the estimated factor innovations v̂ for

all maturities n. The restriction is not imposed in the estimation. Indeed, the difference

between the imputed recursive pricing parameters B̂n and the regression coefficients β̂(n)

can serve as a diagnostic of how well the affine model can replicate Treasury return

dynamics.

Fig. 4 provides plots of the two sets of coefficients. They are visually indistinguishable

for all maturities for the first three factors. While they differ slightly for the fourth and

fifth factor, that difference is economically negligible. Analytic standard error bands for

β are plotted in gray. The tight intervals indicate that these elements are estimated very

precisely. To summarize, the five factor specification of our affine term structure model

appears to be able to replicate the dynamics of Treasury yields and returns very well.

3.4 Four factor specification

The results above show that the predominant share of the variation of expected excess

bond returns in the five factor specification is driven by the second, fourth and fifth

principal components of Treasury yields. However, Cochrane and Piazzesi (2008) (CP

henceforth) find that a single return forecasting factor is able to explain the bulk of the

predictability in excess returns. They augment this factor with the first three principal

components of orthogonalized yields and estimate an affine term structure model, positing

a highly restricted form for the price of risk matrix Λ. In their model, only the upper

element of λ0 and the loading of level risk on the return forecasting factor are allowed

to be non-zero. These restrictions effectively imply that only level is allowed to be a
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priced risk factor and only the return forecasting factor drives time variation in bond risk

premiums.

We estimate a four factor model similar to the one in Cochrane and Piazzesi (2008)

within our regression based framework. This allows us to directly assess the statistical and

economic evidence towards such a specification. We compare the results obtained from

the four factor model to that obtained from our baseline five factor model and discuss the

interpretation of the price of risk estimates.

To generate a factor which summarizes one-month excess return predictability opti-

mally in-sample among linear combinations of bond yields, we calculate our version of the

CP factor by regressing monthly GSW excess returns onto the vector of ten one month

lagged GSW one-year forward rates Ft according to

rxt+1 = γ0 + ΓFt + ηt+1. (34)

The average R2 across these individual predictive return regressions is 7.5%. Follow-

ing Cochrane and Piazzesi (2008), we define the CP factor xt to be the first principal

component of the fitted values Γ̂Ft, standardized to zero mean and unit variance. The

first principal component explains 94.65% of the cross-sectional variance of all fitted one-

month excess returns. We estimate the model by augmenting this factor with the first

three principal components extracted from the cross-section of Treasury yields.

Our approach differs in a few regards from that employed by Cochrane and Piazzesi

(2008). Most importantly, their factor is constructed by placing one-year excess holding

period returns on the left hand side of the regression. However, because the specification

in Eq. (12) only holds exactly for monthly excess returns, we prefer to extract a factor

which best predicts returns at this frequency. Also in contrast to CP, we use ten annual

GSW forward rates instead of five Fama-Bliss annual forward rates. This is because we

find that the GSW data provide a better in-sample fit for excess returns at the monthly
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frequency. Finally, unlike CP, we do not orthogonalize yields with respect to the return

forecasting factor before extracting principal components. Instead, we define level, slope,

and curvature as the first three principal components of the Treasury yields in our dataset.

We do so to guarantee that the three factors are identical across the model specifications

that we compare.

Table 4 reports summary statistics for the yield and return pricing errors of the four

factor model. These indicate that the in-sample fit is somewhat less precise in the four

factor model than in the five factor model, but with average pricing errors no larger than

2.9 basis points in absolute value, and standard deviations of these errors of less than five

basis points, the fit is quite good. The return pricing errors continue to display little serial

correlation whereas yield pricing errors are highly autocorrelated. The upper panels of

Fig. 5 plot the observed and fitted values of the two and ten year Treasuries, showing that

the fitting error is economically negligible. The lower panels of Fig. 5 plot the observed

and fitted excess returns as well as the predicted excess returns in red. The predicted

excess returns display significant time variation, comparable to the dynamics observed in

the five factor model.

Table 5 shows that the CP factor is a significant determinant of the prices of risk of all

pricing factors except for slope. In fact, for level risk, the CP factor is the only significant

pricing factor, driving out the significance of the slope factor that had been present in the

five factor specification. This is in line with the specification in Cochrane and Piazzesi

(2008) which restrict this coefficient to be the only nonzero element in λ1. As in the five

factor model, the estimated price of risk coefficients are economically important in the

four factor specification. In particular, the −0.043 coefficient of the CP factor in the

price of level risk implies that a positive one standard deviation shock to the CP factor

increases the annualized expected excess return on the ten-year Treasury bond by 8.7%.

The slope factor is not significant for any of the price of risk parameters in the four factor

specification, also in line with CP. However, the level and curvature factors continue to

24



remain significant determinants of the price of curvature risk. This implies that the CP

factor does not entirely subsume the variation of expected bond returns that is captured

by the principal components in the five factor specification.

These results suggest that the parameterization chosen by Cochrane and Piazzesi

(2008) for the price of risk dynamics might be overly restrictive. Indeed, using a Wald

statistic akin to Eq. (30), we can explicitly test for the joint significance of the elements

of Λ that CP restrict to be zero. We overwhelmingly reject the null that these elements

are jointly equal to zero with a p-value of 10−6. Hence, we find that the tight restrictions

imposed by Cochrane and Piazzesi (2008) on the price of risk dynamics are clearly not

supported in the model on statistical terms. Moreover, imposing the CP restriction on

Λ using the minimum distance estimator discussed in Section 4.2 below, we find that the

fit of the four factor model deteriorates, with yield pricing errors increasing substantially

across all maturities but especially at the long end of the yield curve.

That being said, the predictability in excess returns is clearly dominated by the CP

factor within the four factor specification. As can be seen in the lower right panel of

Fig. 6, the CP factor predicts positive excess returns across the yield curve in a manner

increasing in maturity. This closely matches the pattern documented by Cochrane and

Piazzesi (2008) for one-year excess returns.

Given these findings and the results from the five factor model, it is instructive to study

the relation between the CP factor and the principal components of Treasury yields.

Interestingly, we find that even five principal components fail to entirely span the CP

factor: a regression of xt on the five PCs from our benchmark model yields an R2 of only

65.6%. This is especially striking given that 99.99% of variation in yields are explained

by the first five principal components, considering that xt is constructed as a linear

combination of these yields. The pairwise correlations between the return forecasting

factor and the first five principal components of Treasury yields in our dataset are 5%,

45%, 19%, -17%, and -62%, respectively. This corroborates the findings of the previous
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section where we have shown that the fifth principal component is a predominant driver

of risk premiums in the five factor specification, followed by the second, third, and fourth

principal components.

We finally note that the curvature and CP factors are both found to be priced in the

four factor specification, as indicated by the corresponding Wald statistics. This is in

contrast to the restrictions imposed by Cochrane and Piazzesi (2008), who force these

risk prices to be zero.

We again assess the economic significance of the various risk prices by computing their

contribution to the variability of the pricing kernel. We find that risk prices of all four

factors contribute to the volatility of the pricing kernel, see the upper right chart in Fig.

3. Yet, as in the five factor model only the exposure of long term bonds to level risk is

sizeable. Hence, the market prices of risk of the remaining factors have a modest impact,

at best, on expected excess returns. Indeed, as Fig. 3 shows, it is primarily the time

variation of level risk that contributes to time varying expected excess returns on the

10-year Treasury bond. This time variation, in turn, is largely but not exclusively driven

by movements in the CP factor, as highlighted in the lower right panel of Fig. 6.

To summarize, the results in this section have documented that there is strong support

for the importance of a Cochrane-Piazzesi type return forecasting factor in explaining

Treasury return dynamics. However, the tight parametric restrictions that CP impose on

risk price dynamics are statistically not supported by our estimates. Finally, comparing

the term premium implied by the four factor specification with that of the five factor

model, we conclude that the unrestricted four factor CP specification captures similar term

premium dynamics as the five principal component specification but implies somewhat

larger in-sample yield fitting errors.
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3.5 Comparing the five and four factor specifications

The evidence presented thus far does not appear sufficient to designate which of the two

models provides a better representation of the data. In this section, we consider their out-

of-sample performance both in the cross-section and in the time series. We find that the

five factor model outperforms the four factor model across both dimensions. To provide an

additional benchmark we also report results for a four factor model with CP treated as an

unspanned factor and a five factor model with PC4 and PC5 treated as unspanned factors

(Section 4.1 below explains how to impose the unspanning restriction in the estimation).

In the upper-left panel of Fig. 7 we show that the in-sample term premium dynamics are

very similar across all specifications. In particular, the five factor models and the four

factor models exhibit closely aligned term premiums. Term premiums are of economic

interest because they allow to infer risk-adjusted expectations of the path of future short-

term interest rates. Thus, a natural way to compare the different models is to investigate

their ability to predict future short term interest rates. To generate these forecasts,

we begin by using the period 1987:01-1991:12 as a training sample, and then proceed

to re-estimate each model at monthly intervals with an expanding estimation window

and compare their average short-rate predictions up to five years ahead to the realized

data. For comparison, we also include the average forecast error from a simple random

walk of the one-month T-bill. In the upper-right panel of Fig. 7 we display the root

mean square prediction error of average short rates at forecast horizons from one month

through five years. The chart shows that the five factor model and the model with PC4

and PC5 treated as unspanned factors outperform the random walk across all horizons.

In contrast, the four factor model and the model with CP treated as an unspanned factor

display somewhat larger forecast errors, most notably at longer horizons. This short rate

prediction exercise thus suggests that the five factor model provides a better forecast

performance in the time series than the four factor model.
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To assess the cross-sectional performance of the different model specifications we per-

form the following exercise. We continue to estimate each model using returns on bonds

with maturities up to 10 years. We then compare the model-implied yields on bonds with

maturities up to 20 years relative to their actual values. In the lower-left panel of Fig. 7

we plot the results from this analysis. Although the four factor model produces a good in-

sample fit to maturities up to 10 years, the chart shows that the model-implied yields for

longer maturities are far below their realized values. This is not the case for the five factor

specification which produces slightly higher average yields than in the realized data, but

closer to the realized data than either of the specifications using unspanned factors. This

suggests that the four factor model strongly understates the degree of persistence of the

pricing factors under the risk-neutral measure whereas the five factor model only slightly

overstates it. Interestingly, Joslin, Singleton and Zhu (2011), using their likelihood-based

estimation approach, find that a model using all of the first five principal components of

yields as pricing factors and estimated without observations on longer maturity bonds,

produces implausible average bond yields on very long maturity bonds. Here we show,

using our methodology, that this is not a general feature of five factor models. As a ro-

bustness check, the lower-right panel of Fig. 7 displays the in-sample fit when each model

is estimated using returns on bonds with maturities up to 20 years. In this case, the five

factor model is very close to the observed yields, whereas the four factor model exhibits

more pronounced deviations.

In sum, the results presented in this section suggest that relative to the four factor

model with three principal components of yields and the CP factor, the five factor model

produces better out-of-sample forecasts of future short rates and is more robust to the

choice of maturities used in estimation. While all of these specifications capture term

premium dynamics in similar ways, the superior out-of-sample performance of the five

factor model leads us to designate it as our preferred specification.
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3.6 Estimation using maturity sorted portfolios

So far, we have seen that different specifications of multi-factor affine models estimated

using our regression based approach are able to tightly match data obtained from a smooth

zero coupon yield curve. As discussed earlier, however, an important feature of our

estimation approach is that the availability of a wide cross-section of zero coupon bonds

is not necessary for the estimation of the term structure: the only data required for our

procedure are a panel of excess returns and a corresponding set of return spanning factors.

Our third benchmark specification highlights this attractive feature of the regression based

approach. Here, we generate a no-arbitrage zero coupon yield curve from a cross-section

of K = 5 principal components extracted from the Federal Reserve’s H.15 Treasury yield

data and N = 11 excess returns on Fama maturity sorted bond portfolios from CRSP.

We note that both sets of data are constructed from coupon bearing bonds. This reduces

estimation error with respect to the standard practice of fitting term structure models to

zero coupon yields.

Given the excess holding period returns as well as the pricing factors, we estimate

the model parameters (Φ,Σ, σ, λ0, λ1) using our three step estimation approach outlined

above. We further estimate δ0 and δ1 by regressing the log Fama one-month T-bill on the

pricing factors. Based on these parameters, we can then use Eq. (25a) and Eq. (25b) to

compute the loadings An and Bn, which, along with the pricing factors X, allow us to

impute zero coupon yields for bonds of any maturity.

The upper panels of Fig. 8 plot the two-year and five-year maturities implied by the

model against the corresponding Fama-Bliss discount bond yields, displaying a visually

close fit. It is important to note that this is not by construction, as the two sets of zero

coupon yields have been estimated using different methodologies. Indeed, the Fama-Bliss

discount bond yields are fitted to the cross-section of Treasury bonds period by period.

Instead, our estimated zero curve is directly implied by a no-arbitrage term structure
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model which imposes internal consistency between the time series and the cross-section

of yields. The lower panels of Fig. 8 show that the model-implied excess returns for

zero coupon bonds closely match the observed excess returns of Fama maturity sorted

portfolios. In sum, we see it as a particular strength of our estimation approach to generate

a model based zero coupon yield curve from returns on coupon bearing securities.

The use of excess returns from maturity sorted portfolios could cause problems due

to the changing composition of underlying securities. To address this concern, we first

employ the test of parameter stability described by Andrews (1993). The GMM frame-

work of Andrews (1993) is easily applied to the OLS regression in Eq. (15). We obtain

a value of 31.70 for the sup−LM statistic (we choose a standard calculation window

of π = (15%, 85%)), which is well below the corresponding 90% critical value. In ad-

dition to assessing the stability of estimated betas for each portfolios’ return, we also

approximate the portfolios’ betas at every point in time by the weighted average of the

betas corresponding to the individual cashflows of the underlying securities (principal and

coupon payments). Doing so, we see that the betas at the portfolio level are very stable

for maturities up to ten years, but exhibit pronounced time variation for the portfolio

containing bonds that mature in 10 years or more. This latter result is not surprising as

there are large differences in duration between the different securities in that portfolio,

and hence the interest rate sensitivity of that portfolio can vary considerably over time.

Consequently, we use the maturity sorted portfolios up to ten years and drop the Fama

portfolio with maturities above ten years in the estimation.
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4 Extensions

4.1 Unspanned factors

Recent models of the yield curve have featured “unspanned” factors which do not affect

the dynamics of bonds under the pricing measure, but do affect them under the historical

measure (see Joslin et al. 2010; Duffee 2011 and Wright 2011). The predictability under

the historical measure is consistent with previous work which finds that macroeconomic

factors have forecasting power for the term structure (see e.g. Moench 2008, Ludvigson

and Ng 2009). The assumption that a given factor does not affect bond yields under the

pricing measure can be implemented by imposing the restriction that the corresponding

elements of {Bn, n = 1, . . . , N} be exactly equal to zero.

This restriction can be readily incorporated in our regression based setting. Partition

the factors into spanned factors Xs
t with nonzero risk exposures and unspanned factors

Xu
t which have zero risk exposures. The factors continue to follow a joint VAR process

under the historical measure: Xs
t

Xu
t

 = µ+ Φ

 Xs
t−1

Xu
t−1

+

 vst

vut

 , (35)

where Xs
t is of dimension Ks × 1 and where Xu

t is of dimension Ku × 1, and where µ and

Φ are partitioned accordingly. The spanning restriction is that the risk exposures of the

unspanned factors are equal to zero, i.e. β(n) = [β
(n)′
s 0]′ for all n = 1 . . . N . Using Eq.

(25b) and Eq. (25d), this restriction implies δ′1 = [δs′1 0], so that the short rate does not

load on any unspanned factors. It further implies that the upper right Ks ×Ku block of

the risk-neutral transition matrix Φ? = (Φ− λ1) is zero, i.e.

Φ? =

 Φss − λss1 0

Φus − λus1 Φuu − λ1
uu

 . (36)
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With this restriction, the return generating process can be rewritten as

rx
(n−1)
t+1 =β(n−1)′

(
λ0
s+λ1Xt+vt+1

)
− 1

2

(
β(n−1)′Σβ(n−1)+σ2

)
+e

(n−1)
t+1 (37)

=β(n−1)′
(
λ0+λ1Xt+Xt+1−ΦXt−µ

)
− 1

2

(
β(n−1)′Σβ(n−1)+σ2

)
+e

(n−1)
t+1 (38)

=−β(n−1)′

s (µ?s+Φ?
ssX

s
t)−

1

2

(
β(n−1)′

s Σssβ
(n−1)
s +σ2

)
+β(n−1)′

s Xs
t+1+e

(n−1)
t+1 (39)

where µ?s denotes the upper Ks × 1 subvector of the risk neutral mean µ? = (µ− λ0),

Φ?
ss denotes the upper left Ks ×Ks block of Φ?, and where Σss is equal to the upper left

Ks × Ks block of Σ. Estimation of this model proceeds with only a slight modification

of the three step procedure. As before, we obtain estimates of the VAR parameters and

innovations in Eq. (35) v̂t+1 using OLS. Denote Xs
− and Xs as the stacked lagged and

contemporaneous values of spanned factors. We then estimate the regression

rx = asι
′
T + csX

s
− + β′sX

s + E, (40)

where as is an N × 1 vector, and β′s and cs are N ×Ks matrices. We see from Eq. (37)

above that now as = −β′sµ?s − 1
2

(B?svec (Σss) + σ2ιN) with B?s the first K2
s columns of

B?. We can also see that cs = −β′s Φ?
ss. We can then estimate the parameters governing

the risk-neutral dynamics of the pricing factors according to

µ̂?s = −
(
β̂sβ̂

′
s

)−1

β̂s

(
âs +

1

2

(
B̂?svec

(
Σ̂ss

)
+ σ̂2ιN

))
(41)

Φ̂?
ss = −

(
β̂sβ̂

′
s

)−1

β̂sĉs. (42)

Denoting Ψ̂?
ss =

[
µ̂?s Φ̂?

ss

]
, we can write these estimators in the single expression

Ψ̂?
ss=−

(
β̂sβ̂

′
s

)−1

β̂s

(
rx+

1

2

(
B̂?svec

(
Σ̂ss

)
+σ̂2ιN

)
ι′T

)
M s

xZ
s′
−
(
Zs
−M

s
xZ

s′
−
)−1

. (43)
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where Zs
− =

[
ιT Xs′

−
]′

and where M s
x = IT −Xs′ (XsXs′)−1Xs. We then obtain

Λ̂ss = Ψ̂ss − Ψ̂?
ss (44)

We further set

λ̂su1 = Φ̂su (45)

in accordance with the spanning restriction in Eq. (36) above. Note that the parameters

µ?u and Φ?
u· are not identified in this model. They do not matter for bond pricing, so

we adopt the convention of setting the corresponding prices of risk λ̂u0 and λ̂u·1 equal to

zero. This is equivalent to setting the risk neutral parameters equal to the physical VAR

estimates µ̂u and Φ̂u.

We can see from Eq. (44) and Eq. (45) above that the estimator of market prices

of risk in the unspanned factor case is a linear combination of estimated parameters

governing the historical and risk-neutral dynamics of pricing factors. We show that the

two estimators have the joint limiting distribution:

√
T

 vec
(

Λ̂ss − Λss

)
vec
(
λ̂su1 − λsu1

)
 d−→ N

(0

0

)
,

 VssΛ Css,suΛ,λ1

Css,su′Λ,λ1
Vsuλ1


 , (46)

where VssΛ , Vsuλ1
and Css,suΛ,λ1

are provided in the Appendix.

We illustrate estimation of an affine model with unspanned macroeconomic factors by

using the specification in Joslin, Priebsch and Singleton (2010). Their model features as

pricing factors the first three principal components of Treasury yields as well as the first

principal component of monthly core CPI inflation and monthly core PCE inflation and

the real activity index from the Federal Reserve Bank of Chicago (CFNAI) as unspanned

macroeconomic factors. According to a Wald test of the significance of columns of beta

obtained by including the additional factors in the regression in Eq. (15), we do not reject
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the null that the inflation factor has zero betas with p = 88.63. Similarly, we also do not

reject that the betas for the exponentially smoothed CFNAI equal zero with p = 96.81.

These findings thus justify the assumption of treating these macroeconomic factors as

unspanned in a specification that also features the first three principal components of

Treasury yields.

Unreported results show that the unspanned macro factor specification provides a

somewhat poorer fit to the cross-section of Treasury yields than the four and five factor

specifications. Estimates of the market prices of risk and the corresponding test statistics

are provided in Table 6. They differ in some ways from the ones already discussed. As

in the five factor specification, the second principal component significantly drives time

variation in slope risk. Nonetheless, we can only reject that the first row of λ1 is equal to

zero at a 10% level. This is at odds with the implications of the five and four factor models

above which show substantial amounts of time variation in level risk that are largely due

to movements in higher order principal components or the CP factor, respectively. This

suggests that the specification proposed by Joslin, Priebsch and Singleton (2010), which

uses the first three principal components of yields and two macroeconomic variables as

pricing factors, does not fully capture the dynamics of the price of level risk implied by

the yield factor based specifications. Furthermore, the coefficient of the price of slope risk

on the CFNAI series is highly statistically significant and as a consequence, slope risk is

priced in this model specification. This is consistent with the results of Joslin, Priebsch

and Singleton (2010), but is in contrast to the pricing implications of the four and five

factor models. This can be interpreted as indicating that the information contained in the

yield curve is insufficient to completely characterize the time variation in the price of slope

risk. Due to the ease of estimation of the term structure model in the regression based

approach, alternative specifications with other unspanned factors are straightforward to

estimate.
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4.2 Restricted market prices of risk

Numerous authors have considered affine term structure models where certain elements

of Λ are set equal to zero. These models may be easily estimated in our framework using a

minimum distance procedure as follows. Let θ =
(
vec (Λ)′ , vec (β)′ , vec (Φ)′ , σ2, vech (Σ)

)′
and θ̂ similarly, where vech (·) is the vector-half operator. Let H be a q × p known ma-

trix with full row rank where p = (K (K + 1) +NK +K2 + 1 + K (K + 1)/ 2). This

matrix contains the linear restrictions we would like to place on Λ. For example, if we

wanted to impose a linear restriction only on the second element of λ0 we would choose

H = [0 1 0 · · · 0].

Under these restrictions, the minimum distance estimator solves,

min
θ
T ·
(
θ̂ − θ

)′
WT

(
θ̂ − θ

)
s.t. Hθ = 0, (47)

where WT is a p × p positive definite weighting matrix. Since the restrictions on θ are

linear, the solution to this optimization problem is,

θ̂md = θ̂ −W−1
T H ′

(
HW−1

T H ′
)−1

Hθ̂. (48)

Then, by construction Hθ̂md = 0 so we have new estimators for the parameters which

satisfy the desired restrictions. The optimal choice of weighting matrix is a consistent

estimator of the inverse of the asymptotic variance of the unconstrained estimator θ̂ (i.e.,

if Vθ is the asymptotic variance of θ̂, then WT →p V−1
θ ). In the Appendix we provide the

elements of Vθ. Under this choice of weighting matrix,

√
T
(
θ̂md − θ

)
d−→ N

(
0,Vθ − VθH ′ (HVθH ′)−1

HVθ
)

. (49)
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4.3 Sharpe ratios

From Eq. (8), the conditional Sharpe ratio can be expressed as

Et

[
rx

(n−1)
t+1

]
+ 1

2
V art

[
rx

(n−1)
t+1

]
√
V art

[
rx

(n−1)
t+1

] =
Covt

[
rx

(n−1)
t+1 , lnMt+1

]
√
V art

[
rx

(n−1)
t+1

] . (50)

The Sharpe ratio in Eq. (50) is maximized for a hypothetical return to a portfolio of bonds

that replicates the payoff to the log pricing kernel exactly. The model-implied maximal

Sharpe ratio is therefore √
V art [lnMt+1] =

√
λ′tλt. (51)

The maximal Sharpe ratio provides a useful diagnostic of the validity of the SDF. Duffee

(2010) argues that five factor affine models of the term structure can give rise to excessively

high maximal Sharpe ratios due to overfitting. However, we do not find unreasonable

maximal Sharpe ratios in our four and five factor specifications, as can be seen in Fig.

9. For the five factor specification, the peak in the maximal Sharpe ratio is 2.30, with a

sample average maximal Sharpe ratio below 1.

As Eq. (51) shows, the maximal Sharpe ratio implied by an affine term structure

model depends on the inner product of the market prices of risk and hence on the price

of risk parameters λ0 and λ1. As discussed in Section 4.1, a subset of the latter are

not identified in the presence of unspanned factors. We know that the fourth and fifth

principal components are only weakly spanned by bond yields since level, slope, and

curvature explain almost all of the cross-sectional variation of yields. Accordingly, the

rows of λ0 and λ1 corresponding to the fourth and fifth principal component in the five

factor specification of the model could only be weakly identified, thus potentially resulting

in somewhat higher maximal conditional Sharpe ratios than what one can perceive as

reasonable.
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To assess whether this weak spanning of the fourth and fifth principal component

is a potential concern in the model, we perform the following robustness check. We

make the extreme assumption that the fourth and fifth principal component are entirely

unspanned and hence the corresponding market price of risk parameters unidentified.

We then reestimate the five factor specification of the model by imposing the spanning

restrictions outlined above to the fourth and fifth principal components, effectively setting

to zero the lower two rows of λ0 and λ1 and fixing the upper right block of λ1 to be equal

to the respective block of Φ̂. As can be seen in the lower left panel of Fig. 9, the resulting

Sharpe ratio is indeed estimated at slightly lower values. However, as we have seen in

Section 3.5 above, the term premium implied by the restricted five factor model is very

similar when the fourth and fifth principal components are treated as unspanned. In

unreported results, we also computed the maximal Sharpe ratio of the five factor model

where we impose the restriction that the second and fourth principal components are

not priced. Consistent with our finding that the prices of risk of these two factors are

statistically indistinguishable from zero in the full five factor model, this specification

produces a very similar time series of the maximal Sharpe ratio as in the upper-left panel

of 9.

We also show the Sharpe ratio of the four factor CP specification in the upper right

panel of Fig. 9. While it is comparable in magnitude to that of the five factor model, the

time series patterns of the two Sharpe ratios do at times differ substantially. For example,

during the financial crisis, the Sharpe ratio implied by the four factor model tends to be

higher than that of the five factor model, while that of the five factor model is higher

during the late 1980s. The lower right hand panel of Fig. 9 shows the Sharpe ratios of the

unspanned macro factor model. This time series of maximal Sharpe ratios is somewhat

smoother than the ones implied by the five and four factor specifications, but otherwise

shows similar dynamics.
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4.4 Term structure estimation in real time

As we fit the model using simple linear regressions, estimation is extremely fast. This

is in sharp contrast to traditional likelihood based estimation of such models subject to

nonlinear cross-equation restrictions which typically require a long numerical optimization

process. The simplicity and the speed at which it is estimated makes our approach

particularly appealing for the real time analysis of term structure dynamics. In this

section, we document how we fit an affine model to the US Treasury yield curve at the

daily frequency. This allows us to interpret yield curve movements in terms of risk-neutral

yield versus term premiums dynamics in real time.

Estimation at the daily frequency requires a slight modification of the empirical ap-

proach outlined so far. In the daily application of the model, we use the daily yields of

maturities from n = 3, . . . , 120 months obtained from Gurkaynak, Sack and Wright (2007).

We aggregate the daily yields to the monthly frequency by selecting end-of-month values

and extract principal components from these monthly yields. We then apply the weights

from the monthly principal components to the daily yields to obtain daily estimates of

our pricing factors.5

We continue to compute log excess holding period returns at the monthly frequency

and obtain estimates of the parameters of the model as outlined in Sections 2.2 and 2.4.

Finally, we use the estimated parameters and the daily yield factors to impute model-

implied yields and term premiums at the daily frequency. To illustrate the ability of the

model to fit daily term structures, Fig. 10 shows for the K = 5 factor specification the

daily observed and model-implied yields for the two-year, five-year, and ten-year Treasury

notes since August 2009. The model prices all three maturities very precisely.

Perhaps more interesting is an analysis of term premiums over this sample period.

5Note that since we extract the principal components from demeaned monthly yields, we need to make
an adjustment to the daily factors. Precisely, we apply the monthly principal components weights to the
sample average of the monthly yields and then substract this vector from the daily factors obtained as
described before.
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As discussed in Section 2.4 above, we can use the model to achieve a decomposition of

interest rates into risk neutral yields and term premiums. The lower right panel of Fig. 10

displays the estimated term premium for the 10-year Treasury along with the one-month

MOVE index. The latter is a measure of implied volatilities from options on Treasury

futures constructed by Merrill Lynch. The plot shows that our term premium estimate

and the MOVE index exhibit a strong correlation. This is striking since the model is

estimated without using any option data. We interpret the correlation between the two

time series as evidence that our term premium estimate indeed reflects the risk of holding

Treasury securities.

4.5 Consistency of principal components as observable factors

Traditional estimation methods for affine term structure models typically treat pricing

factors as latent variables that are backed out from observed yields using filtering or ob-

servation equation inversion techniques. Our estimation approach is different in that it

requires the pricing factors X to be observed. We treat principal components extracted

from yields as observed, thus ignoring the fitting error associated with the principal com-

ponent extraction. This potentially gives rise to an inconsistency between actual and

model-implied principal components. However, we will see that this inconsistency is neg-

ligible.

Let X be the K × T matrix of principal components of yields y. We can write

X = PyMι. (52)

where Mι = IT×T − 1
T
ιT ι
′
T is the T×T time series demeaning operator and P is the K×N

matrix of principal component loadings. Actual observed yields can be decomposed into

fitted yields and fitting errors: y
(n)
t = ŷ

(n)
t + ε̂

(n)
t . Then, since model-implied yields

are assumed to be affine in the pricing factors X we have y
(n)
t = ân + b̂′nXt + ε̂

(n)
t =
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− 1
n

(
Ân + B̂′nXt + û

(n)
t

)
. We can thus expand Eq. (52) to find

X = PyMι = P (â · ι′T + b̂′X + ε̂)Mι = P b̂′X + P ε̂Mι (53)

where we have used the fact that ι′TMι = 0 and that X is mean zero by construction. For

equality to hold over arbitrary values of X, the model must thus satisfy the consistency

conditions

P b̂′ = IK , and P ε̂Mι = 0. (54)

We find that P ε̂Mι is extremely close to zero since the yield fitting error ε̂ is tiny, as shown

in Table 2. Moreover, the condition P b̂′ = IK is satisfied to a high degree of precision in

the five factor specification of the model.

We reach this conclusion using the following Monte Carlo procedure. Because their

standard errors do not have a simple closed form, we compute bootstrapped distribu-

tions of the recursive pricing parameters Bn. We construct the bootstrap by saving the

residuals v̂ and ê from the three step regression estimation of the model parameters as

well as the residuals from the regression of the one-month T-bill on the pricing factors.

We resample all three sets of residuals using the same random time indexation to ob-

tain an artificial sample of pricing factors and log excess holding period returns. Based

on these, we reestimate the model parameters using the three step regression approach

and compute recursive pricing parameters Bn from Eq. (25b). We repeat this procedure

1, 000 times. We find that the identity matrix is well within the one standard deviation

confidence interval around the mean of the empirical distribution of P b̂′. To illustrate

this graphically, Fig. 11 plots the five principal components used as pricing factors along

with the bootstrapped 95% confidence interval of the quantity P b̂′X. As the plots show,

these distributions are extremely tight. The principal components are visually almost in-

distinguishable from their model-implied 95% confidence intervals. Indeed, the sampling
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error of the principal components is comparable in magnitude to the error that arises due

to fitting zero coupon curves to actual bond data. We therefore believe that the incon-

sistency that is implied by treating pricing factors as observed is numerically negligible.

These results suggest that deviations from Eq. (53) in the model are fully explained by

observation error in yields and excess returns.

5 Conclusion

We outline an empirical approach to the estimation of dynamic term structure models.

Our approach is computationally fast, gives rise to small pricing errors, and provides

asymptotic standard errors for the model parameters of interest. Our method can be

used for applications with observable factors, and allows for unspanned factors.

Our empirical analysis uncovers a number of new results, and revisits certain controver-

sies. First of all, we show in specification tests that the first three principal components

of Treasury yields are not sufficient to span the cross section of Treasury returns. We

therefore study a baseline specification that uses the first five principal components as

pricing factors. Second, we show that the five factor model gives rise to similar risk pre-

miums and pricing kernel dynamics as a specification with three principal components

and the Cochrane and Piazzesi (2008) forecasting factor. In both specifications, we find

that practically all of the time variation in risk premiums is associated with level risk.

However, the dynamics of the risk premium are mainly explained by the second and fifth

principal component in the five factor model, and by the CP factor in the four factor

model. Nevertheless, we reject the restriction that the CP factor only influences the price

of risk of the level shock, and find that it significantly prices other sources of risk as well.

For both the five factor and the four factor specifications, we find that slope risk is not

priced. When comparing the two models based on out-of-sample predictions, we find that

the five factor model outperforms the four factor model. We therefore designate it as our
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preferred specification.

We also allow for certain factors to be unspanned and provide asymptotic standard

errors in this case. Once we add unspanned macroeconomic factors to a model with the

first three principal components as pricing factors, we find that slope risk is significantly

time varying as a function of a real activity indicator. This result suggests that there is

time variation in the pricing kernel that is not spanned by the yield curve.

Our estimation method can be easily adapted and extended, as it solely relies on

linear regressions. We present several examples of such extensions in the paper. First,

we demonstrate that affine term structure models can be estimated even if zero coupon

yields are not available. We estimate such a model by using five principal components of

coupon bearing yields to price the cross section of maturity sorted returns. The resulting

zero coupon yield curve is very similar to the Fama-Bliss discount curve, even though the

estimation methods are vastly different. We furthermore present estimation results at the

daily frequency, which are readily computed due to the ease of our estimation method. We

leave it to future work to adapt the model to further applications, such as the estimation

of inflation risk premiums, or to credit risk models.

A Appendix

A.1 Asymptotic variance: no unspanned factors

Here we will derive explicit expressions for VΛ, Vβ and CΛ,β given in Eq. (19) and the remaining variances
and covariances required for the minimum distance estimator of Section 4.2. Before proceeding we will
require some definitions. Let f = [a c] and define the NK ×N matrix Aβ as Aβ = diag(β(1), . . . , β(N)).
Also, define Υzz = plimT→∞

(
Z−Z

′
−
/
T
)

and Υxx = plimT→∞
(
X−X

′
−
/
T
)
. For a m × n matrix A

the mn×mn commutation matrix κm,n satisfies vec (A′) = κm,nvec (A). For a symmetric n× n matrix
A the n2 × (n (n+ 1)/ 2) duplication matrix Gn satisfies vec (A) = Gnvech (A). Finally, denote the
Moore-Penrose inverse of Gn by G+

n .
We will first focus on VΛ. We may decompose the estimator as,

√
T Λ̂ = T1 + T2 + T3, (A.1)
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where

T1 =
√
T
(
β̂β̂
′)−1

β̂

[
rx+

1

2

(
B?vec (Σ) + σ2ιN

)
ι′T

]
MV̂ Z

′
−
(
Z−MV̂ Z

′
−
)−1

, (A.2)

T2 =
1

2
·
(
β̂β̂
′)−1

β̂
[√

T
(
B̂?vec

(
Σ̂
)
−B?vec (Σ)

)]
%′1, (A.3)

T3 =
1

2
·
(
β̂β̂
′)−1

β̂
[√

T
(
σ̂2 − σ2

)]
ιN%

′
1. (A.4)

Let us first consider T1. We may further decompose T1 as,

T1 = T1,1 + T1,2 + T1,3 + T1,4 + T1,5, (A.5)

where

T1,1 =
√
TΛ, (A.6)

T1,2 =
√
TVMV̂ Z

′
−
(
Z−MV̂ Z

′
−
)−1

, (A.7)

T1,3 =
√
T
(
β̂β̂
′)−1

β̂EMV̂ Z
′
−
(
Z−MV̂ Z

′
−
)−1

, (A.8)

T1,4 = −
√
T
(
β̂β̂
′)−1

β̂
(
β̂ − β

)′
Λ, (A.9)

T1,5 = −
√
T
(
β̂β̂
′)−1

β̂
(
β̂ − β

)′
VMV̂ Z

′
−
(
Z−MV̂ Z

′
−
)−1

. (A.10)

T1,1 is already simplified. The properties of T1,2 depend on whether the assumption that µ = 0 is
imposed. When the assumption is not imposed then MV̂ Z

′
− = Z ′− and,

T1,2,µ =
(
V Z ′−

/√
T
)

Υ−1
zz + op (1) . (A.11)

When the assumption that µ = 0 is imposed we have,

T1,2,0 =
[
0K×1

(
V X ′−

/√
T
)]

Υ−1
zz + op (1) . (A.12)

This follows since(
VMV̂ Z

′
−
/√

T
)

=
(
V Z ′−

/√
T
)
−
(
V V̂ ′

/
T
)(

V̂ V̂ ′
/
T
)−1 (

V̂ Z ′−

/√
T
)

(A.13)

=
[
0K×1

(
V X ′−

/√
T
)]

+ op (1) , (A.14)

and (
Z−MV̂ Z

′
−
/
T
)

=
(
ZZ ′−

/
T
)
−
(
ZV̂ ′

/
T
)(

V̂ V̂ ′
/
T
)−1 (

V̂ Z ′−

/
T
)

(A.15)

= Υzz + op (1) . (A.16)

Next T1,3 is

T1,3 =
(
β̂β̂
′)−1

β̂
(
EMV̂ Z

′
−
/√

T
) (

Z−MV̂ Z
′
−
/
T
)−1

=
(
ββ′
)−1

β
[√

T
(
f̂ − f

)]
+ op (1) , (A.17)

by our assumptions. Similarly, T1,4 is,

T1,4 = −
√
T
(
β̂β̂
′)−1

β̂
(
β̂ − β

)′
Λ = −

(
ββ′
)−1

β
[√

T
(
β̂ − β

)]′
Λ + op (1) . (A.18)
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Finally, it is straightforward to show that T1,5 = op (1).
We will now consider T2. First note that

√
T
(
B̂?vec

(
Σ̂
)
−B?vec (Σ)

)
(A.19)

=
√
T
(
B̂?vec

(
Σ̂
)
− B̂?vec (Σ) + B̂?vec (Σ)−B?vec (Σ)

)
(A.20)

= B?
(√

T (vec (V V ′/T )− vec (Σ))
)

+
√
T
(
B̂? −B?

)
vec (Σ) + op (1) , (A.21)

since V̂ V̂ ′/T = V V ′/T +Op
(
T−1

)
under our assumptions. Thus,

T2 =
1

2
·
(
β̂β̂
′)−1

β̂
[√

T
(
B̂?vec

(
Σ̂
)
−B?vec (Σ)

)]
%′1 (A.22)

=
1

2
·
(
ββ′
)−1

β
[√

T
(
B̂?vec

(
Σ̂
)
−B?vec (Σ)

)]
%′1 + op (1) (A.23)

= T2,1 + T2,2 + op (1) , (A.24)

where

T2,1 =
1

2
·
(
ββ′
)−1

β
[√

T
(
B̂? −B?

)
vec (Σ)

]
%′1, (A.25)

T2,2 =
1

2
·
(
ββ′
)−1

βB?
(√

T (vec (V V ′/T )− vec (Σ))
)
%′1. (A.26)

The ith element of the interior matrix of T2,1 is

√
T
(
β̂(i)′Σ̂β̂(i) − β(i)′Σβ(i)

)
= 2
√
Tβ(i)′Σ

(
β̂(i) − β(i)

)
+ op (1) . (A.27)

Thus, √
T
(
B̂? −B?

)
vec (Σ) = 2A′β (IN ⊗ Σ) vec

(√
T
(
β̂ − β

))
+ op (1) , (A.28)

and
T2,1 =

(
ββ′
)−1

βA′β (IN ⊗ Σ) vec
(√

T
(
β̂ − β

))
%′1 + op (1) . (A.29)

T2,2 does not require any further simplification. Finally, consider T3. Since ÊÊ′/T = EE′/T+Op
(
T−1

)
,

T3 =
1

2
·
(
β̂β̂
′)−1

β̂
[√

T
(
σ̂2 − σ2

)]
ιN%

′
1 (A.30)

=
1

2
·
(
ββ′
)−1

β
[√

T
(
σ̂2 − σ2

)]
ιN%

′
1 + op (1) (A.31)

=
1

2
·
(
ββ′
)−1

β
[√

T
(

tr (EE′)/NT − σ2
)]
ιN%

′
1 + op (1) . (A.32)

Combining these results we have

√
T
(

vec
(

Λ̂
)
− vec (Λ)

)
= vec (T1,2 + T1,3 + T1,4 + T2,1 + T2,2 + T3) + op (1) , (A.33)
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where

vec (T1,2,µ) =
(
Υ−1
zz ⊗ IK

)
vec
(
V Z ′−

/√
T
)

+ op (1) (A.34)

vec (T1,2,0) =
(
Υ−1
zz ⊗ IK

)
vec
([

0K×1

(
V X ′−/

√
T
)])

+ op (1) (A.35)

vec (T1,3) =
(
IK+1 ⊗

(
ββ′
)−1

β
)

vec
(√

T
(
f̂ − f

))
+ op (1) (A.36)

vec (T1,4) = −
(

Λ′ ⊗
(
ββ′
)−1

β
)
κK,Nvec

(√
T
(
β̂ − β

))
+ op (1) (A.37)

vec (T2,1) =
(
%1 ⊗

(
ββ′
)−1

βA′β (IN ⊗ Σ)
)

vec
(√

T
(
β̂ − β

))
+ op (1) (A.38)

vec (T2,2) =
1

2
·
(
%1 ⊗

(
ββ′
)−1

βB?
) [√

Tvec ((V V ′/T )− Σ)
]

+ op (1) (A.39)

vec (T3) =
1

2

(
%1 ⊗

(
ββ′
)−1

β
)
ιN ·
√
T
(

tr (EE′)/NT − σ2
)

+ op (1) . (A.40)

Note next that under our assumptions vec
(
V Z ′−

/√
T
)
→d N (0,Υzz ⊗ Σ),

√
Tvec ((V V ′/T )− Σ) →d

N (0, (IK2 + κK,K) (Σ⊗ Σ)),
√
T
(

tr (EE′)/NT − σ2
)
→d N

(
0, 2σ4

)
. These are all asymptotically

independent of,  vec
(√

T
(
f̂ − f

))
vec

(√
T
(
β̂ − β

)′)
→d N

(
0, σ2 ·

([
Υ−1
zz 0
0 Σ−1

]
⊗ IN

))
, (A.41)

since

plimT→∞

(
Z̃Z̃ ′

T

)
=

[
Υzz 0

0 Σ

]
. (A.42)

Thus, the only asymptotic covariance term we need to consider is between T1,4 and T2,1 which implies

that
√
Tvec

((
Λ̂− Λ

))
→d N (0,VΛ) where VΛ = VΛ,T + CΛ,T + C′Λ,T ,

CΛ,T = asycovT→∞ (T1,4, T2,1) (A.43)

= −
(

Λ′ ⊗
(
ββ′
)−1

β
)
κK,N

[
σ2 ·

(
IN ⊗ Σ−1

)] (
%1 ⊗

(
ββ′
)−1

βA′β (IN ⊗ Σ)
)′

, (A.44)

and VΛ,T = VΛ,T ,1 + VΛ,T ,2 + VΛ,T ,3 + VΛ,T ,4 + VΛ,T ,5 + VΛ,T ,6. If µ = 0 is imposed then

VΛ,T ,1 = asyvarT→∞ (T1,2,0) =
(
Υ−1
zz ⊗ IK

)([ 0 01×K
0K×1 Υxx

]
⊗ Σ

)(
Υ−1
zz ⊗ IK

)′
, (A.45)

and otherwise

VΛ,T ,1 = asyvarT→∞ (T1,2,µ) =
(
Υ−1
zz ⊗ IK

)
(Υzz ⊗ Σ)

(
Υ−1
zz ⊗ IK

)′
=
(
Υ−1
zz ⊗ Σ

)
. (A.46)
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The other terms are,

VΛ,T ,2 = asyvarT→∞ (T1,3) = σ2 ·
(

Υ−1
zz ⊗

(
ββ′
)−1
)

, (A.47)

VΛ,T ,3 = asyvarT→∞ (T1,4) = σ2 ·
(

Λ′Σ−1Λ⊗
(
ββ′
)−1
)

, (A.48)

VΛ,T ,4 = asyvarT→∞ (T2,1) = σ2 ·
(
%1%
′
1 ⊗

(
ββ′
)−1

βA′β (IN ⊗ Σ)Aββ
′ (ββ′)−1

)
, (A.49)

VΛ,T ,5 = asyvarT→∞ (T2,2) (A.50)

=
1

4
·
(
%1%
′
1 ⊗

(
ββ′
)−1

βB? (IK2 + κK,K) (Σ⊗ Σ)B?′β′
(
ββ′
)−1
)

, (A.51)

VΛ,T ,6 = asyvarT→∞ (T3) =
σ4

2
·
(
%1%
′
1 ⊗

(
ββ′
)−1

βιN ι
′
Nβ
′ (ββ′)−1

)
. (A.52)

It is clear from Eq. (A.41) that Vβ = σ2 ·
(
IN ⊗ Σ−1

)
. Finally, we need only calculate CΛ,β . From our

above results we have that the only asymptotic covariance term between Λ̂ and β̂ will come from T1,4

and T2,1. Thus,

asycovT→∞

(
vec (T1,4) , vec

(
β̂
))

= −
(

Λ′ ⊗
(
ββ′
)−1

β
)
κK,N

[
σ2 ·

(
IN ⊗ Σ−1

)]
(A.53)

= −σ2 · κK+1,K

((
ββ′
)−1

β ⊗ Λ′Σ−1
)

, (A.54)

and

asycovT→∞

(
vec (T2,1) , vec

(
β̂
))

=
(
%1 ⊗

(
ββ′
)−1

βA′β (IN ⊗ Σ)
) [
σ2 ·

(
IN ⊗ Σ−1

)]
(A.55)

= σ2 ·
(
%1 ⊗

(
ββ′
)−1

βA′β

)
. (A.56)

Thus,

CΛ,β = asycovT→∞

(
vec
(

Λ̂
)
, vec

(
β̂
))

(A.57)

= −σ2 · κK+1,K

((
ββ′
)−1

β ⊗ Λ′Σ−1
)

+ σ2 ·
(
%1 ⊗

(
ββ′
)−1

βA′β

)
. (A.58)

Finally, we provide the remaining asymptotic variances and covariances necessary to construct Vθ from
Section 4.2. Let CΛ,σ2 and Vσ2 be the asymptotic covariance between Λ̂ and σ̂2 and the asymptotic
variance of σ̂2, respectively, and similarly for the other parameters. Note first that Cβ,Ψ, Cβ,σ2 , Cβ,Σ,
CΨ,σ2 , CΨ,Σ, and Cσ2,Σ are all equal to the zero matrix of the appropriate dimensions. Since we impose
the assumption that µ = 0 when estimating the VAR but not when we calculate the asymptotic variance
of Λ̂ then, √

Tvec
(

Φ̂− Φ
)

=
(
Υ−1
xx ⊗ IK

)
vec
(
V X ′−

/√
T
)

+ op (1) , (A.59)

and
CΛ,Φ = asycovT→∞

(
vec
(

Λ̂
)
, vec

(
Φ̂
))

=
(
Υ−1
zz ⊗ IK

)
[(Υzz ⊗ Σ)]2

(
Υ−1
xx ⊗ IK

)
, (A.60)

where [(Υzz ⊗ Σ)]2 is the K (K + 1)×K2 sub-matrix formed by extracting the last K2 columns from the
matrix (Υzz ⊗ Σ). Next, we have that

CΛ,σ2 = asycovT→∞

(
vec
(

Λ̂
)
, vec

(
σ̂2
))

= σ4
(
%1 ⊗

(
ββ′
)−1

β
)
ιN , (A.61)
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and

CΛ,Σ = asycovT→∞

(
vec
(

Λ̂
)
, vech

(
Σ̂
))

(A.62)

=
1

2
·
(
%1 ⊗

(
ββ′
)−1

βB?
)
GKG

+
K (IK2 + κK,K) (Σ⊗ Σ)

(
G+
K

)′
(A.63)

=
(
%1 ⊗

(
ββ′
)−1

βB?
)
GKG

+
K (Σ⊗ Σ)

(
G+
K

)′
, (A.64)

by properties of the duplication matrix. Since the assumption that µ = 0 is imposed when we estimate
the VAR, then, VΦ,0 =

(
Υ−1
xx ⊗ Σ

)
. As given above, Vσ2 = 2σ4 and by properties of the duplication

matrix, VΣ = 2G+
K (Σ⊗ Σ)

(
G+
K

)′
.

A.2 Asymptotic variance: unspanned factors

Here we will derive explicit expressions for VssΛ , Vsuλ1
and Css,suΛ,λ1

given in Eq. (46). In the unspanned case
we may write the equation as,

rx = fsZ
s
− + β′sX

s + E, fs = [as cs] , (A.65)

where Zs− =
[
ιT Xs′

−
]′

. Under our assumptions, the OLS estimators of fs and β′s satisfy

√
T

 vec
(
f̂s − fs

)
vec

((
β̂s − βs

)′)
 d−→ N

(
0,Vsfβ

)
, (A.66)

where

Vsfβ = σ2 ·
(

plimT→∞

(
Z̃sZ̃s′

/
T
)−1

⊗ IN
)

, Z̃s =
[
Zs′− Xs′]′ . (A.67)

Our estimator is,

Ψ̂?
ss = −

(
β̂sβ̂

′
s

)−1

β̂s

(
rx+

1

2

(
B̂?svec

(
Σ̂ss

)
+ σ̂2ιN

)
ι′T

)
Ms
xZ

s′
−
(
Zs−M

s
xZ

s′
−
)−1

, (A.68)

which may be decomposed as √
T Ψ̂?

ss = T s1 + T s2 , (A.69)

where

T s1 = −
√
T
(
β̂sβ̂

′
s

)−1

β̂s

(
rx+

1

2

(
B?svec (Σss) + σ2ιN

)
ι′T

)
Ms
xZ

s′
−
(
Zs−M

s
xZ

s′
−
)−1

, (A.70)

T s2 = −
√
T
(
β̂sβ̂

′
s

)−1

β̂s

(
1

2

(
B̂?svec

(
Σ̂ss

)
−B?svec (Σss) +

(
σ̂2 − σ2

)
ιN

))
%s′1 , (A.71)

where %s1 = (1, 0, . . . , 0)
′

is (Ks + 1)× 1. Then, T s1 may be further decomposed as

T s1 = T s1,1 + T s1,2 + T s1,3, (A.72)

where

T s1,1 =
√
TΨ?

ss (A.73)

T s1,2 = −
√
T
(
β̂sβ̂

′
s

)−1

β̂s

(
β̂s − βs

)′
Ψ?
ss (A.74)

T s1,3 = −
√
T
(
β̂sβ̂

′
s

)−1

β̂sEM
s
xZ

s′
−
(
Zs−M

s
xZ

s′
−
)−1

. (A.75)
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T s1,1 requires no further simplification. T s1,2 is,

T s1,2 = −
√
T
(
β̂sβ̂

′
s

)−1

β̂s

(
β̂s − βs

)′
Ψ?
ss = − (βsβ

′
s)
−1
βs

[√
T
(
β̂s − βs

)]′
Ψ?
ss + op (1) , (A.76)

and T s1,3 is

T s1,3 = −
√
T
(
β̂sβ̂

′
s

)−1

β̂sEM
s
xZ

s′
−
(
Zs−M

s
xZ

s′
−
)−1

= − (βsβ
′
s)
−1
βs

[√
T
(
f̂s − fs

)]
+ op (1) . (A.77)

Next, note that T s2 may be decomposed as

T s2 = T s2,1 + T s2,2 + op (1) , (A.78)

where

T s2,1 = −1

2
· (βsβ′s)

−1
βs

(√
T
(
B̂?svec

(
Σ̂ss

)
−B?svec (Σss)

))
%s′1 , (A.79)

T s2,2 = −1

2
· (βsβ′s)

−1
βs

(√
T
(
σ̂2 − σ2

)
ιN

)
%s′1 . (A.80)

Similar to the derivation in Section A.1 we may show that T s2,1 = T s2,1,1 + T s2,1,2 + op (1) where

T s2,1,1 = (βsβ
′
s)
−1
βsA

′
βs

(IN ⊗ Σss) vec
(√

T
(
β̂s − βs

))
%s′1 , (A.81)

T s2,1,2 = −1

2
· (βsβ′s)

−1
βsB

?s
[√

T (vec (V sV s′/T )− vec (Σss))
]
%s′1 , (A.82)

and

T s2,2 = −1

2
· (βsβ′s)

−1
βs

(√
T
(
tr (EE′/ (NT ))− σ2

))
%s′1 + op (1) . (A.83)

Putting all these results together we have,

√
Tvec

(
Ψ̂?
ss −Ψ?

ss

)
= vec

(
T s1,2 + T s1,3 + T s2,1,1 + T s2,1,2 + T s2,2

)
, (A.84)

where

vec
(
T s1,2

)
=−

(
Ψ?′
ss ⊗ (βsβ

′
s)
−1
βs

)
κKs,Nvec

(√
T
(
β̂s − βs

))
+ op (1) (A.85)

vec
(
T s1,3

)
=−

(
I(Ks+1) ⊗ (βsβ

′
s)
−1
βs

)
vec
(√

T
(
f̂s − fs

))
+ op (1) (A.86)

vec
(
T s2,1,1

)
=−

(
%s1 ⊗ (βsβ

′
s)
−1
βsA

′
βs

(IN ⊗ Σss)
)

vec
(√

T
(
β̂s − βs

))
+ op (1) (A.87)

vec
(
T s2,1,2

)
=−1

2
·
(
%s1 ⊗ (βsβ

′
s)
−1
βsB

?s
) [√

T (vec (V sV s′/T )− vec (Σss))
]

+ op (1) (A.88)

vec
(
T s2,2

)
=−1

2
·
(
%s1 ⊗ (βsβ

′
s)
−1
βs

)
ιN ·
√
T
(
tr (EE′/ (NT ))− σ2

)
+ op (1) . (A.89)

Then, √
Tvec

(
Ψ̂?
ss −Ψ?

ss

)
→d N

(
0,VΨ?

ss

)
, (A.90)

where

VΨ?
ss

=
∑5

j=1
VΨ?

ss,T ,j+CΨ?
ss,T ,1 +

(
CΨ?

ss,T ,1
)′

+CΨ?
ss,T ,2 +

(
CΨ?

ss,T ,2
)′

+CΨ?
ss,T ,3 +

(
CΨ?

ss,,T ,3
)′

. (A.91)
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Let us partition Vsfβ conformably

Vsfβ =

[
Vsfβ,11 Vsfβ,12

Vs′fβ,12 Vsfβ,22

]
, (A.92)

and

VΨ?
ss,T ,1 =asyvarT→∞

(
T s1,2

)
=
(

Ψ?′
ss ⊗ (βsβ

′
s)
−1
βs

)
Vsfβ,22

(
Ψ?′
ss ⊗ (βsβ

′
s)
−1
βs

)′
(A.93)

VΨ?
ss,T ,2 =asyvarT→∞

(
T s1,3

)
(A.94)

=
(
I(Ks+1) ⊗ (βsβ

′
s)
−1
βs

)
Vsfβ,11

(
I(Ks+1) ⊗ (βsβ

′
s)
−1
βs

)′
(A.95)

VΨ?
ss,T ,3 =asyvarT→∞

(
T s2,1,1

)
(A.96)

=
(
%s1 ⊗ (βsβ

′
s)
−1
βsA

′
βs

(IN ⊗ Σss)
)
κN,Ks

Vsfβ,22κ
′
N,Ks

× (A.97)(
%s1 ⊗ (βsβ

′
s)
−1
βsA

′
βs

(IN ⊗ Σss)
)′

(A.98)

VΨ?
ss,T ,4 =asyvarT→∞

(
T s2,1,2

)
(A.99)

=
1

4
·
(
%s1%

s′
1 ⊗ (βsβ

′
s)
−1
βsB

?s
(
IK2

s
+ κKs,Ks

)
(Σss ⊗ Σss)B

?s′β′s (βsβ
′
s)
−1
)

(A.100)

VΨ?
ss,T ,5 =asyvarT→∞

(
T s2,2

)
=
σ4

2
·
(
%s1%

s′
1 ⊗ (βsβ

′
s)
−1
βsιN ι

′
Nβ
′
s (βsβ

′
s)
−1
)

, (A.101)

and

CΨ?
ss,T ,1 =asycovT→∞

(
T s1,2, T s1,3

)
(A.102)

=
(

Ψ?′
ss ⊗ (βsβ

′
s)
−1
βs

)
Vs′fβ,12

(
I(Ks+1) ⊗ (βsβ

′
s)
−1
βs

)′
(A.103)

CΨ?
ss,T ,2 =asycovT→∞

(
T s1,2, T s2,1,1

)
(A.104)

=
(

Ψ?′
ss ⊗ (βsβ

′
s)
−1
βs

)
Vsfβ,22κ

′
N,Ks

(
%s1 ⊗ (βsβ

′
s)
−1
βsA

′
βs

(IN ⊗ Σss)
)′

(A.105)

CΨ?
ss,T ,3 =asycovT→∞

(
T s1,3, T s2,1,1

)
(A.106)

=
(
I(Ks+1) ⊗ (βsβ

′
s)
−1
βs

)
Vsfβ,12κ

′
N,Ks

(
%s1 ⊗ (βsβ

′
s)
−1
βsA

′
βs

(IN ⊗ Σss)
)′

. (A.107)

Recall that our estimators are Λ̂ss = Ψ̂ss − Ψ̂?
ss and λ̂su1 = Φ̂su. Under our assumptions, Ψ̂?

ss and Ψ̂ are
asymptotically independent and so

asyvarT→∞

vec
(

Λ̂ss

)
vec
(
λ̂su1

) (A.108)

=

 VΨ?
ss

+ asyvarT→∞vec
(

Ψ̂ss

)
−asycovT→∞

(
vec
(

Ψ̂ss

)
, vec

(
Φ̂su

))
−asycovT→∞

(
vec
(

Φ̂su

)
, vec

(
Ψ̂ss

))
asyvarT→∞vec

(
Φ̂su

) . (A.109)

Thus we only require VΨ = asyvarT→∞(Ψ̂) =
(
Υ−1
zz ⊗ Σ

)
. When µ = 0 is imposed then (Λ̂ss, λ̂

su
1 ) should

be adjusted accordingly and VΦ,0 =
(
Υ−1
xx ⊗ Σ

)
should be used for the analogous result to Eq. (A.109).
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Table 1: Identification Tests

This table reports the results of the identification tests described in Section 3.2. rkk−1 is the Anderson (1951) statistic for

the hypothesis that the rank of β in a K factor model is K − 1 or smaller. Wβ is the Wald statistic for the hypothesis

that the last row of β equals zero. These test statistics follow χ2 (N −K + 1) and χ2 (N) distributions, respectively.

Corresponding p-values are reported in parentheses. The four panels present alternative models estimated using different

numbers of yield principal components as pricing factors. The first panel reports test results for specifications using GSW

yields to extract principal components. The second panel is based on a combination of Fama-Bliss and GSW yields, as in

Duffee (2010). The third panel uses Federal Reserve H.15 yields. The final panel uses CRSP Constant-Maturity Treasury

yields. Specifications in the left column are estimated using excess returns from GSW zero coupon yields. Specifications in

the right column are estimated using excess returns on Fama maturity-sorted portfolios.

GSW Returns CRSP Fama Returns

rkk−1 Wβ rkk−1 Wβ

Panel 1: GSW Yields

K = 3 577.580 11216.622 333.092 2176.506

p (0.000) (0.000) (0.000) (0.000)

K = 4 629.077 4643.528 104.281 231.140

p (0.000) (0.000) (0.000) (0.000)

K = 5 885.261 21831.991 34.991 25.139

p (0.000) (0.000) (0.000) (0.009)

Panel 2: Fama-Bliss Yields + GSW 6 & 10 Year

K = 3 228.202 9105.729 103.634 2090.322

p (0.000) (0.000) (0.000) (0.000)

K = 4 155.195 6194.862 86.344 889.096

p (0.000) (0.000) (0.000) (0.000)

K = 5 34.348 166.716 32.952 86.717

p (0.000) (0.000) (0.000) (0.000)

Panel 3: H.15 Yields

K = 3 242.768 384.954 189.816 454.848

p (0.000) (0.000) (0.000) (0.000)

K = 4 61.473 279.181 101.817 44.675

p (0.000) (0.000) (0.000) (0.000)

K = 5 18.845 55.866 63.757 68.442

p (0.009) (0.000) (0.000) (0.000)

Panel 4: CRSP Constant-Maturity Yields

K = 3 164.237 1154.031 68.376 1328.303

p (0.000) (0.000) (0.000) (0.000)

K = 4 152.737 462.968 61.836 728.340

p (0.000) (0.000) (0.000) (0.000)

K = 5 22.550 72.438 23.945 188.009

p (0.002) (0.000) (0.001) (0.000)
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Table 2: Five Factor Model: Fit Diagnostics

This table summarizes the time series properties of the pricing errors implied by the five factor specification. The sample

period is 1987:01-2011:12. ”mean”, ”std”, ”skew”, and ”kurt” refer to the sample mean, standard deviation, skewness, and

kurtosis of the errors; ρ(1), ρ(6) denote their autocorrelation coefficients of order one and six. Panel 1 reports properties of

the yield pricing errors û and Panel 2 reports properties of the return pricing errors ê.

n = 12 n = 24 n = 36 n = 60 n = 84 n = 120

Panel 1: Yield Pricing Errors

mean -0.001 0.000 -0.001 -0.003 -0.003 -0.004

std 0.004 0.006 0.006 0.004 0.004 0.008

skew -0.342 0.420 -0.086 -0.069 0.305 -0.133

kurt 3.245 2.932 2.414 2.205 2.545 2.726

ρ(1) 0.793 0.803 0.879 0.936 0.853 0.818

ρ(6) 0.565 0.526 0.745 0.718 0.657 0.442

Panel 2: Return Pricing Errors

mean 0.000 -0.000 -0.000 -0.000 -0.000 -0.000

std 0.000 0.000 0.000 0.000 0.000 0.001

skew 4.183 1.000 3.016 1.310 0.396 0.248

kurt 46.489 9.708 40.674 12.555 5.685 7.981

ρ(1) -0.001 0.175 -0.140 0.001 -0.162 -0.157

ρ(6) 0.104 0.098 0.083 -0.014 0.015 0.012

Table 3: Five Factor Model: Market Prices of Risk

This table summarizes the estimates of the market price of risk parameters λ0 and λ1 for the five factor specification.

t-statistics are reported in parentheses. The standard errors have been computed according to the formulas from Section

2.3. Wald statistics for tests of the rows of Λ and of λ1 being different from zero are reported along each row, with the

corresponding p-values in parentheses below.

λ0 λ1.1 λ1.2 λ1.3 λ1.4 λ1.5 WΛ Wλ1

PC1 -0.019 -0.003 -0.016 -0.005 0.012 0.030 30.367 23.705

t-stat (-2.566) (-0.443) (-2.160) (-0.648) (1.605) (3.987) (0.000) (0.000)

PC2 0.013 0.027 -0.011 -0.003 -0.011 0.015 7.097 6.167

t-stat (0.951) (1.914) (-0.818) (-0.213) (-0.792) (1.077) (0.312) (0.290)

PC3 -0.030 -0.077 -0.001 -0.093 -0.132 -0.056 37.170 36.277

t-stat (-0.951) (-2.466) (-0.029) (-2.987) (-4.244) (-1.783) (0.000) (0.000)

PC4 0.042 0.064 -0.007 0.015 -0.058 -0.086 10.444 9.374

t-stat (1.062) (1.594) (-0.189) (0.367) (-1.461) (-2.147) (0.107) (0.095)

PC5 0.005 -0.105 0.012 -0.004 -0.073 -0.324 45.691 45.688

t-stat (0.097) (-2.028) (0.243) (-0.070) (-1.431) (-6.287) (0.000) (0.000)
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Table 4: Four Factor Model: Fit Diagnostics

This table summarizes the time series properties of the pricing errors implied by the four factor specification. The sample

period is 1987:01-2011:12. ”mean”, ”std”, ”skew”, and ”kurt” refer to the sample mean, standard deviation, skewness, and

kurtosis of the errors; ρ(1), ρ(6) denote their autocorrelation coefficients of order one and six. Panel 1 reports properties of

the yield pricing errors û and Panel 2 reports properties of the return pricing errors ê.

n = 12 n = 24 n = 36 n = 60 n = 84 n = 120

Panel 1: Yield Pricing Errors

mean 0.028 0.010 -0.013 -0.029 -0.018 0.015

std 0.048 0.030 0.026 0.029 0.021 0.028

skew 0.653 0.179 -0.358 -0.995 -0.399 0.662

kurt 6.540 2.638 2.842 4.282 3.605 3.718

ρ(1) 0.769 0.843 0.912 0.858 0.877 0.748

ρ(6) 0.612 0.532 0.780 0.606 0.630 0.478

Panel 2: Return Pricing Errors

mean 0.000 -0.000 -0.000 -0.000 0.000 0.000

std 0.000 0.000 0.000 0.001 0.001 0.002

skew 2.042 0.384 0.566 0.126 0.592 -0.308

kurt 18.013 5.534 5.386 4.411 5.144 6.829

ρ(1) -0.073 -0.055 0.027 -0.147 -0.128 -0.337

ρ(6) 0.228 0.142 0.171 0.057 0.072 -0.017

Table 5: Four Factor Model: Market Prices of Risk

This table summarizes the estimates of the market price of risk parameters λ0 and λ1 for the four factor specification.

t-statistics are reported in parentheses. The standard errors have been computed according to the formulas from Section

2.3. Wald statistics for tests of the rows of Λ and of λ1 being different from zero are reported along each row, with the

corresponding p-values in parentheses below.

λ0 λ1.1 λ1.2 λ1.3 λ1.4 WΛ Wλ1

PC1 -0.019 -0.001 0.003 0.003 -0.043 37.239 30.393

t-stat (-2.597) (-0.195) (0.325) (0.420) (-5.002) (0.000) (0.000)

PC2 0.012 0.026 0.000 0.002 -0.025 6.746 5.981

t-stat (0.865) (1.801) (0.005) (0.113) (-1.524) (0.240) (0.201)

PC3 -0.015 -0.063 -0.051 -0.109 0.111 18.326 18.110

t-stat (-0.454) (-1.862) (-1.366) (-3.186) (2.861) (0.003) (0.001)

CP -0.087 0.019 0.098 -0.010 -0.291 27.851 25.546

t-stat (-1.728) (0.374) (1.753) (-0.188) (-4.872) (0.000) (0.000)
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Table 6: Macro Factor Model: Market Prices of Risk

This table summarizes the estimates of the market price of risk parameters λ0 and λ1 for the unspanned macro specification.

t-statistics are reported in parentheses. Standard errors have been computed according to the formulas from Section 4.1.

Wald statistics for tests of the rows of Λ and of λ1 being different from zero are reported along each row, with the

corresponding p-values in parentheses.

λ0 λ1.1 λ1.2 λ1.3 λ1.4 λ1.5 WΛ Wλ1

PC1 -0.019 -0.028 -0.018 -0.005 -0.022 0.017 15.746 9.423

t-stat (-2.492) (-1.719) (-2.062) (-0.541) (-1.360) (1.835) (0.015) (0.093)

PC2 0.010 0.025 -0.028 -0.030 -0.028 -0.057 18.764 18.264

t-stat (0.700) (0.850) (-1.837) (-1.853) (-0.975) (-3.412) (0.005) (0.003)

PC3 0.000 -0.093 -0.019 -0.099 -0.057 -0.030 9.972 9.972

t-stat (0.000) (-1.373) (-0.528) (-2.621) (-0.865) (-0.797) (0.126) (0.076)
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Figure 1: Five Factor Model: Observed and Model-Implied Time Series
This figure provides plots of the yields and excess one-month holding returns for the 2-year and 10-year maturities as

observed and implied by the five factor specification. The observed yields and returns are plotted by solid lines, whereas

dashed green lines correspond to model-implied yields and returns. Dashed red lines show model-implied term premiums

in the upper two charts and expected excess holding period returns in the lower two charts.

2-year yield 10-year yield

2000
−2

0

2

4

6

8

10
Yield Fitting and Term Premium Estimates of Maturity n = 24 Months

 

 

Observed
Fitted
Term Premium

2000
0

1

2

3

4

5

6

7

8

9

10
Yield Fitting and Term Premium Estimates of Maturity n = 120 Months

 

 

Observed
Fitted
Term Premium

2-year return 10-year return

1990 1995 2000 2005 2010
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02
Observed and Model−Implied One−Month Holding Return for n = 24 Months

1990 1995 2000 2005 2010
−0.1

−0.05

0

0.05

0.1

0.15
Observed and Model−Implied One−Month Holding Return for n = 120 Months

56



Figure 2: Five Factor Model: Cross Sectional Diagnostics

This figure provides graphs exhibiting the cross-sectional fit and interpretation of the factors in the five factor specification.

The upper two panels plot unconditional means and standard deviations of yields against those implied by the model. The

lower left panel plots the implied yield loadings − 1
n
Bn. These coefficients can be interpreted as the response of the n-month

yield to a contemporaneous shock to the respective factor. The lower right panel plots the expected return loadings B′nλ1.

These coefficients can be interpreted as the response of the expected one-month excess holding return on an n-month bond

to a contemporaneous shock to the respective factor.
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Figure 3: Pricing Kernel Variance Decomposition
This figure shows decompositions of the conditional volatility of the pricing kernel and the expected excess return in the

four and five factor specification for the 10-year Treasury. The upper two panels decompose λ′tλt into its K components.

The lower panels decompose expected excess returns, β′ΛZt = (βi1Λ1 + · · ·+ βiKΛk)Zt where βij is the jth element of βi

and Λk denotes the kth row of Λ.
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Figure 4: Regression Coefficients β(n) versus recursive pricing parameters Bn

This figure provides plots of the coefficients β̂(n) from the regression Eq. (15) of log excess holding pe-

riod returns on the state variable innovations versus the recursive pricing parameters Bn used to generate fit-

ted yields given in Eq. (25b) for the five factor specification. The red diamonds represent the former while

the solid blue lines correspond to the latter. The confidence intervals for β̂(n) are plotted as gray bands.
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Figure 5: Four Factor Model: Observed and Model-Implied Time Series
This figure provides plots of the yields and excess one-month holding returns for the 2-year and 10-year zero coupon

maturities as observed and implied by the four factor specification. The observed yields and returns are plotted by solid

lines, whereas dashed green lines correspond to model-implied yields and returns. Dashed red lines show model-implied

term premiums in the upper two charts and expected excess holding period returns in the lower two charts.
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Figure 6: Four Factor Model: Cross Sectional Diagnostics
This figure provides graphs exhibiting the cross-sectional fit and interpretation of the factors in the four factor specification.

The upper two panels plot the unconditional means and standard deviations of observed yields against those implied by the

model. The lower left panel plots the implied yield loadings − 1
n
Bn. These coefficients can be interpreted as the response

of the n-month yield to a contemponeous shock to the respective factor. The lower right panel plots the expected return

loadings B′nλ1. These coefficients can be interpreted as the response of the expected one-month excess holding return on

an n-month bond to a contemporaneous shock to the respective factor.
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Figure 7: Model Comparison
This figure shows the model comparison diagnostics discussed in Section 3.5. The upper left panel plots the ten year

Treasury term premium implied by the five factor model, the four factor model, a five factor model where PC4, PC5

are restricted to be unspanned, and a four factor model where the CP factor is restricted to be unspanned. The upper

right panel shows the out-of-sample root mean squared forecast error (RMSE) for average future short rates up to

five years in the future as implied by the four model specifications. It also provides the RMSE for a simple random

walk model of the short rate. The lower left panel shows the average yields implied by the four models for maturities

up to 20 years where the models have been estimated using only maturities up to ten years. The lower right chart

shows the average yields implied by the four models when maturities up to 20 years have been used in the estimation.
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Figure 8: Fama Maturity Sorted Portfolio Model: Observed and Model-Implied
Time Series
This figure provides plots of the model-implied yields for the 2-year and 5-year maturities from the Fama maturity-sorted

portfolio specification detailed in Section 3.6. Excess returns on maturity-sorted Fama bond portfolios are regressed on a

set of spanning factors extracted from principal components of H.15 bond yields. The top two panels plot the fitted yields

from this specification against the Fama-Bliss zero coupon yields. The bottom two panels plot the observed excess returns

on Fama maturity-sorted Treasury portfolios (solid blue lines) against the model-implied fitted returns (dashed green lines).

The dashed red lines show model-implied term premiums in the upper two charts and expected excess holding period returns

in the lower two charts.
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Figure 9: Model-Implied Maximal Sharpe Ratios

This figure provides plots of the time series of the Sharpe ratio diagnostic
√
λ′tλt as described in Section 4.3. The upper left

panel plots the Sharpe ratio for the standard five factor specification and the upper right panel plots the Sharpe ratio for

the four factor specification. The lower left panel plots the Sharpe ratio for a specification using five principal components

as factors but where the fourth and fifth principal components are estimated as unspanned factors. The lower right panel

plots the Sharpe ratio for the unspanned macro factor specification.
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Figure 10: Five Factor Model: Observed and Model-Implied Daily Yields

This figure provides plots of daily yields for the two, five and ten year maturities as outlined in Section 4.4 fitted by the

five factor specification. Loadings from monthly principal components are applied to daily yields to obtain daily factors.

Solid blue lines plot observed yields while dashed green lines plot yields as implied by the model. The lower right panel

compares the standardized five factor model-implied 10-year term premium in blue to the standardized 1-month MOVE

index in green.
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Figure 11: Consistency of Observed Factors

This figure provides plots of bootstrapped 95% confidence intervals around the yield principal components. Principal

components from the fitted yields are constructed according to the bootstrap procedure in Section 4.5.

First Factor Second Factor

1990 1995 2000 2005 2010
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
PC1: Bootstrapped Confidence Interval

1990 1995 2000 2005 2010
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
PC2: Bootstrapped Confidence Interval

Third Factor Fourth Factor

1990 1995 2000 2005 2010
−3

−2

−1

0

1

2

3

4

5
PC3: Bootstrapped Confidence Interval

1990 1995 2000 2005 2010
−4

−3

−2

−1

0

1

2

3

4
PC4: Bootstrapped Confidence Interval

Fifth Factor

1990 1995 2000 2005 2010
−6

−4

−2

0

2

4

6
PC5: Bootstrapped Confidence Interval

66


