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Abstract

This paper revisits the accuracy of inflation forecasting using activity and expectations

variables. We apply Bayesian-model averaging across different regression specifications

selected from a set of potential predictors that includes lagged values of inflation, a host

of real activity data, term structure data, nominal data, and surveys. In this model average,

we can entertain different channels of structural instability by incorporating stochastic

breaks in the regression parameters of each individual specification within this average,

allowing for breaks in the error variance of the overall model average, or both. Thus, our

framework simultaneously addresses structural change and model uncertainty that would

unavoidably affect any inflation forecast model. The different versions of our framework

are used to model U.S. PCE deflator and GDP deflator inflation rates for the 1960-2011

period. A real-time inflation forecast evaluation shows that averaging over many

predictors in a model that at least allows for structural breaks in the error variance 

 results in very accurate point and density forecasts, especially for the post-1984 period.

Our framework is especially useful when forecasting, in real-time, the likelihood of

lower-than-usual inflation rates over the medium term.
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1 Introduction

Control of inflation is at the core of monetary policymaking and, consequently, central

bankers have a great interest in reliable inflation forecasts to help them achieving this aim.

For other agents in the economy accurate inflation forecasts are likewise of importance,

either to be able to assess how policymakers will act in the future or to help them in

forming their inflation expectations when negotiating about wages, price contracts and so

on. And in the academic literature inflation predictability is assessed to get a gauge on

the characteristics of inflation dynamics in general.

The time series properties of inflation measures, however, have changed substantially

over time, as shown by Cogley and Sargent (2002, 2005) for the United States, by Benati

(2004) for the United Kingdom and by Levin and Piger (2004) for twelve main OECD

economies, all of which document significant time-variation in the mean and persistence

of inflation. Related to that, Cogley and Sargent (2002) and Haldane and Quah (1999)

document substantial shifts in the traditional U.S. and U.K. Phillips curve correlations

between inflation and unemployment over the post-WWII period. There is also evidence

that macroeconomic time series have experienced variance breaks over the post-WWII

period that were unrelated to shifts in the mean. Cogley and Sargent (2005) and Cogley

et al. (2010), for example, use a time-varying VAR model for U.S. inflation, unemploy-

ment and the interest rate with a stochastic volatility specification for the corresponding

disturbance covariance matrix. Sensier and van Dijk (2004) find that for 80% of 214 U.S.

macroeconomic time series over the 1959-1999 period most of the observed reduction in

volatility is due to breaks in conditional volatility rather than breaks in the conditional

mean. In addition, Sims and Zha (2006) claim using structural Bayesian VAR models with

Markov switching time-variation that the observed time-variation in U.S. macroeconomic

dynamics are entirely due to breaks in the variance of shocks and not in regression param-

eters.

This suggest that adding structural change to time series models may help to im-

prove forecasting inflation. Stock and Watson (2007, 2008) show that U.S. inflation is

well described by a univariate unobserved component model with a stochastic volatility

specification for the disturbances. The out-of-sample performance of this particular model

appears to be hard to beat by a range of alternative models. More generally, Koop and

Potter (2007), through change-point models, and Pesaran et al. (2006), through a hierar-

chical hidden Markov chain model, show that forecast models that incorporate structural

breaks exhibit good out-of-sample forecasting performance for a range of macroeconomic

series.

Another issue for inflation forecasting is how to choose the predictor variables for future

1



inflation. For example, a reduced form version of the Phillips curve relationship implies

for forecasting a model where inflation depends on its lags, a measure of real activity

(which approximates the degree of ‘economic slack’ or excess demand in the economy)

and, possibly, a measure of inflation expectations. Typically unemployment is used as

the ‘slack measure’ in such an inflation forecasting model. There is, however, a lot of

uncertainty about the ‘appropriate’ measure of real activity that can be used in such

a forecasting model. In fact, Stock and Watson (1999) show that unemployment-based

Phillips curve models are frequently outperformed by models using alternative real activity

measures. They consider two approaches. One is based on a forecast combination of the

different, possible choices of Phillips curve forecasting models. Next, they also consider

a single Phillips curve-based model that uses a principal component extracted from all

possible ‘economic slack’ variables as the real activity measure.

Stock and Watson (1999) show that the out-of-sample performance of these approaches

are favorable compared to autoregressive (AR) specifications, in particular in case of the

factor-based approach. Wright (2009) applies a form of Bayesian model averaging across

93 potential specifications, each using one alternative activity measure, to forecast differ-

ent quarterly U.S. inflation measures out-of-sample, and he is able to beat AR inflation

forecasts out-of-sample. Atkeson and Ohanian (2001), on the other hand, apply the Stock

and Watson (1999) exercise on a longer U.S. sample. They use Phillips curve specifications

based on unemployment as well as the Chicago Fed Economic Activity index, which sum-

marizes information across a range of activity variables, across a large gird of lag orders

of the predictor variables. In the Atkeson and Ohanian (2001) case none of the inflation

forecasting models are able to outperform random walk forecasts for inflation.

Like Stock and Watson (1999), we use in this paper a forecasting model that is essen-

tially is an autoregressive model for inflation with added exogenous regressors (an ARX

model). But unlike the papers surveyed above, we use a framework that allows for both

instability in the relationship between inflation and predictor variables as well as uncer-

tainty regarding the inclusion of potential predictors in the inflation forecasting regression.

Bayesian model averaging [BMA] is used to deal with the latter model uncertainty, where

we average over the range of regression models that incorporate all the possible combina-

tions of predictor variables for inflation. To deal with instability, we allow for structural

breaks of random magnitude in either the regression parameters, the error variance of

the resulting model average, or both. Hence, our forecasting procedure simultaneously

incorporates the two major sources of uncertainty, which the literature has shown to be

relevant for forecasting and modeling inflation.

Our framework, described above, as well as other more regularly used approaches are
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used to model different definitions of U.S. inflation on a quarterly sample starting in 1960

and ending in 2011. A range of predictor variables are considered in the modeling exercise,

from real variables to nominal and financial variables as well as lags of inflation. The full

sample results show that our methodology has time-varying properties similar to existing

studies and it identifies inflation predictor variable combinations of different composition

and size for these U.S. inflation rates.

The different BMA-based specifications are then used to forecast the different inflation

measures, both in the current quarter and for a one-year ahead forecasting horizon. Where

necessary, we use in the out-of-sample forecasting experiments real-time data for inflation

and the predictor variables, i.e. the original vintage of data that was available at the time

of the forecast. The literature traditionally focuses on point forecast evaluation, see, e.g.,

Stock and Watson (2007, 2008, 2010) and Faust and Wright (2011), but given the inter-

est amongst practitioners in predicting the likelihood of exceptional inflation movements,

such as deflation or accelerating inflation, an assessment of the relative density forecast

performance amongst different inflation forecast models seems in order. Therefore, our

real-time inflation forecasting analysis will focus both on evaluating point forecasts as

well as density forecasts. Relative to the latter, Jore et al. (2010) and Clark (2011) are

closest to our exercise in that they assess density inflation forecasts from, respectively,

forecast combinations and four-variable VAR models based on real-time data that allow

for a limited degree of instability through rolling windows and the use of stochastic volatil-

ity specifications. However, relative to these studies we push to envelope further, as (i)

our BMA-based specifications more explicitly takes into account model uncertainty and

differing degrees of structural instability, and (ii) we consider a larger pool of alternative

inflation forecast models.

The remainder of this paper is organized as follows. In Section 2 we introduce the

framework for our BMA-based inflation models, which includes a detailed discussion of

the underlying Bayesian estimation methodology. In Section 3 we operationalize our mod-

els by determining the prior values and assess whether our BMA-based models are able to

replicate the aforementioned time-varying characteristics of U.S. inflation dynamics in the

post-WWII era. Next, we evaluate their real-time forecasting performance in Section 4 by

comparing them to other frequently used inflation forecasting models. We find that allow-

ing for model uncertainty in combination with some form of structural instability results

in superior point and density forecasts vis-à-vis other inflation forecasting approaches.

Finally, in Section 5 we conclude.
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2 A Bayesian Model Averaging Framework for Inflation

In this paper, we will use the following version of the Stock and Watson (1999) generalized

Phillips curve specification as the starting point for our inflation forecasting model:

yt+h =β0 +

k1∑
j=1

βaj ajt +

k2∑
j=0

βyj yt−j + σεt

=β0 +

k∑
j=1

βxjt + σεt; t = 1, . . . , T − h,

(1)

where T is the total number of time series observations in the sample. Variable yt in (1)

is the inflation measure, defined as yt = 100∆ ln(Pt) = 100(ln(Pt)− ln(Pt−1)) where Pt is

a particular price index and h > 0 is the forecast horizon with yt+h = 100∆ ln(Pt+h) =

100(ln(Pt+h)−ln(Pt+h−1)).1 The ajt’s are the k1 real activity, costs indicator, and inflation

expectation proxy variables and the model also contains k2 lagged values of yt. The

disturbance term εt in (1) is assumed to have εt ∼ NID(0, 1) and σ > 0. For the ease of

notation, we define (x1,t · · ·xk,t)′ = (a1,t · · · ak1,t yt · · · yt−k2)′ and thus k = k1 + k2.

Clearly, the number of potential predictor variables k in (1) can be large. It can

encompass traditional ‘cost-push’ drivers of inflation such as wage and production costs

(the latter amongst others related to energy and imports), as well as proxies for excess

demand in the economy that can push up inflation. A large number for k renders the

model inestimable and we therefore have to make a choice about which combination of

predictors to include under what circumstances. Hence, we have to adapt (1) such that it

incorporates this model uncertainty.

Also, it is not realistic to assume that the relationship between inflation and its po-

tential predictors in (1) has remained stable over time. Cogley and Sbordone (2008) and

Groen and Mumtaz (2008) show that an empirical New Keynesian Phillips curve model

that allows for shifts in the equilibrium inflation rates yields a time-varying reduced form

inflation-activity relationship, given unchanged ‘deep parameters’, for a number of G7

economies. Stock and Watson (2008, 2010), on the other hand, suggest that there are non-

linearities in the relationship between inflation and the amount of ‘slack’ in the economy,

which could result in time-variation in an inflation forecasting relationship such as in (1).

2.1 Our Framework

The previous discussion implies that for forecasting inflation we need to adapt the basic

regression model (1) such that it incorporates model uncertainty and structural breaks as

1Thus, we model the quarterly inflation rate in quarter t+ h.
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both inflation itself and the relationship between inflation and predictor variables likely

have changed over time.

In our context, model uncertainty implies the uncertainty about which combination

of predictor variables most accurately summarizes the impact of real activity, real costs

and expectations on inflation dynamics. To allow for model uncertainty we introduce in

(1) k variables δj ∈ {0, 1} which describe the inclusion of variable xjt in the regression

model for j = 1, . . . , k. Structural breaks in the regression parameters and the variance

are incorporated by introducing time-varying regression parameters βjt and σt in (1). This

results in

yt+h = β0t +

k∑
j=1

δjβjtxjt + σtεt; t = 1, . . . , T − h, (2)

where εt ∼ NID(0, 1), and where xjt may include lagged vales of inflation known at time t.

The vector D = (δ1, . . . , δk)
′ describes which regressors are included in the regression

model. It can take 2k different values, resulting in 2k different regression models. Model

selection is therefore defined in terms of variable selection, see George and McCulloch

(1993) and Kuo and Mallick (1998). Note that the intercept parameter β0t is always

included in the model.

The time varying parameters βjt and σt are described by

βjt = βj,t−1 + κjtηjt; j = 0, . . . , k,

lnσ2
t = lnσ2

t−1 + κk+1,tηk+1,t,
(3)

where ηt = (η0t, . . . , ηk+1,t)
′ ∼ NID(0, Q) with Q = diag(q2

1, . . . , q
2
k+1). The size of the

structural breaks is described by independent random shock ηjt with mean zero and vari-

ance q2
j for j = 0, . . . , k+ 1, see, for example, Koop and Potter (2007) and Giordani et al.

(2007) for a similar approach. To allow for occasional structural breaks we assume that

the k + 2 variables κjt are binary random variables which equal 1 in case of a structural

break in the jth parameter at time t and 0 otherwise for j = 0, . . . , k+ 1 and t = 1, . . . , T .

We assume that the vector κt = (κ0t, . . . , κkt, κk+1,t)
′ is a sequence of uncorrelated 0/1

processes with

Pr[κjt = 1] = πj ; j = 0, . . . , k + 1. (4)

This specification implies that a regression parameter βjt in (3) remains the same as its

previous value βj,t−1 unless κjt = 1 in which case it changes with ηjt, see, for example,

Koop and Potter (2007) and Giordani et al. (2007) for a similar approach. Stochastic

structural breaks in the variance parameter lnσ2
t comply to a similar structure as the

βjt parameters. The flexibility of the specification in (3) stems from the fact that the

parameters βjt and σ2
t are allowed to change every time period, but they are not imposed

to change at every point in time. Another attractive property of (3) is that the changes
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Table 1: BMA inflation model specifications for (2).
βjt lnσ2

t κjt κk+1,t

BMA-SBB-SBV as in (3) as in (3) as in (4) as in (4)
BMA-SBV βjt = βj∀t as in (3) – as in (4)
BMA-SBB as in (3) lnσ2

t = lnσ2∀t as in (4) -
BMA βjt = βj∀t lnσ2

t = lnσ2∀t – –
BMA-RWB-RWV as in (3) as in (3) κjt = 1∀j, t κk+1,t = 1∀t

in the individual parameters are not restricted to coincide but are allowed to occur at

different points in time.

The model presented in (2)–(4) is the most general specification we consider in this

paper. We will call this the BMA-SBB-SBV specification indicating that we consider

Bayesian model averaging [BMA], structural breaks in the regression parameters [SBB]

and structural breaks in the volatility [SBV]. We will also consider specifications where

κjt = 1 for all j and t in (4) in which case the parameters follow a random walk and

structural breaks occurs at every point in time. We will denote these specifications by

RWB and RWV for the regression parameters and volatility, respectively. The random

walk specification is useful to describe many small breaks where the discrete specification

can be used to describe occasional large breaks, see also Giordani and Villani (2010) for a

discussion. Table 1 provides an overview of the alternative specifications we entertain in

our framework, where different aspects of parameter and variance instability in the model

are switched off or altered.

2.2 Prior Specification

For parameter inference in (2)–(4), we opt for a Bayesian approach. Such an approach

allows us to incorporate parameter uncertainty when forecasting inflation in a natural

way. Also, Bayesian inference on D = (δ1, . . . , δk) leads to posterior probabilities for the

2k possible model specifications. We will use these posterior probabilities for Bayesian

model averaging to incorporate model uncertainty into a single inflation forecast. Finally,

the approach provides us with the posterior distribution of the unobserved κt processes

for t = 1, . . . , T − h, which can be used to incorporate uncertainty regarding the timing of

structural breaks. By definition, κt in (2) does not depend on D which implies that the

value of κt can be different across different values of D. Hence, structural breaks can occur

in different parameters at different time periods across different models, and we average

over the latter to obtain our final inflation forecasting relationship.

The parameters in the model (2)–(4) are the inclusion vector D = (δ1, . . . , δk)
′, the

structural break probabilities π = (π0, . . . , πk+1)′ and the vector of variances of the size of
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the breaks q2 = (q2
0, . . . , q

2
k+1)′. We collect the model parameters in a (3k+4)-dimensional

vector θ = (D′, π′, q2′)′.

For our Bayesian approach we need to specify the prior distributions for the model

parameters. For the variable inclusion parameters we take a Bernoulli distribution with

Pr[δj = 1] = λj for j = 1, . . . , k. (5)

Hence, the parameter λj reflect our prior belief about the inclusion of the jth explanatory

variable, see George and McCulloch (1993) and Kuo and Mallick (1998). For the structural

break probability parameters we take Beta distributions

πj ∼ Beta(aj , bj) for j = 0, . . . , k + 1. (6)

The parameters aj and bj can be set according to our prior belief about the occurrence

of structural breaks. The expected prior probability of a break is aj/(aj + bj). Finally,

for the variance parameters which reflect our prior beliefs about the size of the structural

breaks we take the inverted Gamma-2 prior with scale parameter ωj and degrees of freedom

parameter νj , that is,

q2
j ∼ IG-2(ωj , νj) for j = 0, . . . , k + 1. (7)

The expected prior variance of the break size is therefore ωj/(νj − 2) for νj > 2.

The density of the joint prior p(θ) is given by the product of the densities of the prior

specifications in (5)–(7).

2.3 Posterior Simulator

Posterior results are obtained using the Gibbs sampler of Geman and Geman (1984)

combined with the technique of data augmentation of Tanner and Wong (1987). The

latent variables B = {βt}T−ht=1 , with βt = (β0t, β1t, . . . , βkt)
′, S = {σ2

t }T−ht=1 , and K =

{κ0t, . . . , κk+1,t}T−ht=1 are simulated alongside the model parameters θ. To apply the Gibbs

sampler we need the complete data likelihood function, that is, the joint density of the

data and the latent variables

p(y,B, S,K|x, θ) =
T−h∏
t=1

(
p(yt+h|D,xt, βt, σ2

t )p(βt|βt−1, κt, Q)

p(lnσ2
t | lnσ2

t−1, κk+1,t, q
2
k+1)

k+1∏
j=0

π
κjt
j (1− πj)1−κjt

)
, (8)
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where y = (y1+h, . . . , yT ) and x = (x′1, . . . , x
′
T−h)′. The density functions are given by

p(yt+h|D,xt, βt, σ2
t ) =

1

σt
√

2π
exp

(
−

(yt+h − β0t −
∑k

j=1 δjβjtxjt)
2

2σ2
t

)
p(βt|βt−1, κt, Q) =

k∏
j=1

(
1

qj
√

2π
exp

(
− (βt − βt−1)2

2q2
j

))κjt
(δδδ(βt−1))1−κjt

p(lnσ2
t | lnσ2

t−1, κk+1,t, q
2
k+1) =

(
1

qk+1

√
2π

exp
(
−

(lnσ2
t − lnσ2

t−1)2

2q2
k+1

)
,

)κk+1,t

(δδδ(lnσ2
t−1))1−κk+1,t

(9)

where δδδ(·) is a dirac delta function.

If we combine (8) together with the prior density p(θ), we obtain the posterior density

function

p(θ,B, S,K|y, x) ∝ p(θ)p(y,D, S,K|x, θ). (10)

Our Gibbs sampler is a combination of the Kuo and Mallick (1998) algorithm for vari-

able selection and the efficient sampling algorithm of Gerlach et al. (2000) to handle

the structural breaks. If we define K = (Kβ Kσ) with Kβ = {κ0t, . . . , κkt}T−ht=1 and

Kσ = {κk+1,t}T−ht=1 , then in each iteration of the sampler we sequentially cycle through the

following steps:

1. Draw D conditional on B, S, K, π, q2, y and x.

2. Draw Kβ conditional on S, Kσ, θ, y and x.

3. Draw B conditional on S, K, θ, y and x.

4. Draw Kσ conditional on B, Kβ, θ, y and x.

5. Draw S conditional on B, K, θ, y and x.

6. Draw π conditional on D, B, S, K, q2, y and x.

7. Draw q2 conditional on D, B, S, K, π, y and x.

Note that we sample Kβ and B from their joint full conditional posterior distribution.

The same holds for and Kσ and S. A more detailed description of this Gibbs sampling

algorithm is provided in Appendix A.

2.4 Posterior Predictive Density

To forecast inflation, we use the posterior predictive density of model (2)–(4). This den-

sity accounts for uncertainty in the inclusion of the predictors xjt, uncertainty about the
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presence and size of structural breaks, and parameter uncertainty. The predictive density

of yT+1+h made at time T + 1 conditional on past data y and x is given by

p(yT+h+1|y, x) =

∫
· · ·
∫ ∑

D

∑
K

∑
κT+1

p(yT+h+1|D,xT+1, βT+1, σ
2
T+1)

p(βT+1|βT , κT+1, Q)p(lnσ2
T+1| lnσ2

T , κT+1, q
2
k+1)

k+1∏
j=0

π
κj,T+1

j (1− πj)1−κj,T+1

p(θ,B, S,K|y, x)dβT+1d lnσ2
T+1dBdSdπdq

2, (11)

where the posterior density p(θ,B, S,K|y, x) is given in (10) and p(yT+h+1|D,xT+1, βT+1, σ
2
T+1)

and p(βT+1|βT , κT+1, Q), p(lnσ2
T+1| lnσ2

T , κT+1, q
2
k+1) are given in (9). The predictive den-

sity (11) consists of a weighted average over all possible model specifications in (2) with

weights equal to the posterior model probabilities. Uncertainty regarding the timing of

structural breaks is reflected in (11) by the posterior distribution of the in-sample breaksK.

Computation of such a predictive distribution is straightforward using the aforementioned

Gibbs draws. We simulate in each Gibbs step yT+h+1 using (2)–(4) as data generating

process, where we replace the parameters and the in-sample latent variables by the draw

from the posterior distribution. As point forecast we use the posterior mean or median of

the predictive distribution depending on the chosen loss function.

3 Data, Prior Choices, and U.S. Inflation Dynamics

In this section we outline how we operationalize the different variants of our BMA frame-

work (2)–(4) on our dataset with an aim to describe the post-WWII behavior of two U.S.

inflation measures. In Section 3.1 we discuss this data, whereas in Section 3.2 we report

on the prior values we chose in order to be able to take our framework to the data in a

satisfactorily manner. Some in-sample posterior characteristics of the specifications from

Table 1 are discussed Section 3.3.

3.1 Data

We will consider two measures of U.S. inflation observed at a quarterly frequency ranging

from 1960Q1 to 2011Q2; these are the quarterly log changes in the Personal Consumption

Expenditures (PCE) deflator and the Gross Domestic Product (GDP) deflator. Although

both these inflation series tend to move together, there are substantial differences in their

respective compositions. It is therefore likely that the two inflation measures will exhibit

different short-to-medium run behavior and we thus may expect the optimal predictors

for the two measures to differ as well. Potentially there is wide array of predictors for

inflation that can be useful in the variant from our model (2). Stock and Watson (1999),
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for example, consider up to 132 potential indicator variables using dynamic factors and

forecast combination techniques. However, it is our aim to predict inflation in real-time.

As both our inflation measures of interest as well as many potential predictor variables are

revised over time, we need to restrict our pool of possible predictor variables to those for

which we have the original vintages of real time data. This limits the number of predictors

to about fifteen series.

The inflation measures and the set of potential predictors come either directly or are

constructed from five data sources. These are the Real-Time Data Set for Macroeconomists

(RTDSM) at the Federal Reserve Bank of Philadelphia, the Haver Analytics database,

the ALFREDr real-time database at the Federal Reserve Bank of St. Louis, the CRSP

database from Wharton Research Data Services, and the Reuters/University of Michigan

Survey of Consumers. We refer the reader to Appendix B for more details on the data

sources and data construction.

Our range of predictor variables can be divided into three groups. For real activity

and cost indicators we have real GDP in volume terms (ROUTP), real durable PCE

in volume terms (RCONS), real residential investment in volume terms (RINVR), the

import deflator (PIMP), the unemployment ratio (UNEMP), non-farm payrolls data on

employment (NFPR), housing starts (HSTS), the real spot price of oil (OIL), the real

food commodities price index (FOOD) and the real raw material commodities price index

(RAW). These variables provide information about either the degree of excess demand in

the economy or about the real costs that firms face.

We also include a number of nominal variables that are informative about the current

and future state of the economy. One of these variables is the M2 monetary aggregate,

which can reflect information on the current stance of monetary policy and liquidity in

the economy as well as spending in households and firms (increased M2 growth might

reflect increased spending by households and firms). In addition, we also use data on the

term structure of interest rates, as this contains market-based forward-looking information

about the business cycle, the stance of monetary policy and inflation expectations. It is

well known that the cross-section of the term structure can be approximated very well

by means of 2 to 3 factors, see, for example, Ang et al. (2006) and Diebold et al. (2006).

Following the literature we therefore approximate the term structure through three factors

constructed from data on Treasury Bill rates and zero-coupon bond yields: the level factor

(YL), the slope factor (TS) and curvature factor (CS).

Finally, we proxy inflation expectations through the one-year ahead inflation expec-

tations that come from the Reuters/Michigan Survey of Consumers (MS). Surveys can

give potentially a very good steer about agents’ expectations and indeed Ang et al. (2007)
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claim that in an out-of-sample context inflation expectation surveys are the most accurate

predictors for future U.S. inflation.

For most of these variables, we use the percentage change of the original series2 to re-

move possible stochastic and deterministic trends from the series. Exceptions are housing

starts, for which we use the logarithm of the respective levels, as well as the unemployment

ratio, the three term structure factors and the inflation expectations survey for which we

use the ‘raw’ levels of the series. An alternative way of removing trends from our predictor

variables would be to express them as ‘gap measures’, i.e., log deviations from some proxy

of a variable’s trend (like a quadratic deterministic trend, exponential smoothing, statis-

tical filters and so on). Orphanides and van Norden (2005), however, find that, in real

time, activity growth rates are more useful predictors for U.S. inflation than activity gap

measures. We standardize each predictor variable by dividing it by its standard deviation

in each vintage. The standardization is very useful to set priors because all the variables

can be treated a priori similarly in terms of breaks and break sizes in equations (2)–(3).3

3.2 Prior Choices and Posterior Convergence

For the empirical analysis in this paper, we use the 15 predictors as discussed in the

previous subsection and we also include four inflation lags (yt, . . . , yt−3) as potential ex-

planatory variables in the model. In order to be able to use the BMA-based framework

from Section 2, we need to take a stand on a proper calibration of the prior distributions

outlined in Section 2.2 and Table 2 provides an overview of these calibrations.

The parameter λj in (5) is set to 50% which means that every variable (including the

four inflation lags) has a 50% prior probability of being selected. The expected prior model

size is therefore 9.5.

We set a0 = 0.50 and b0 = 5 in (6), and ω0 = 1 and ν0 = 10 in (7) for the intercept

parameter, which suggests that we can expect, on average, an intercept break to occur

every 11 quarters of size 1/8. For the regression parameters we impose the view that they

are subject to less and smaller breaks than the intercept, and we therefore choose aj = 0.5

and bj = 30 (less breaks) and ωj = 0.01 and νj = 20 (smaller magnitude) for j = 1, ..., k.

This difference in prior settings reflects our interpretation of U.S. post-WWII history

where large shifts in the level of inflation coincided with changes in the monetary policy

regimes, such as, e.g., the shift in emphasis by the Federal Reserve System from monetary

accommodation in the 1970s to a strong preference for disinflation by the late 1970s early

1980s. It is our view that the intercept in (2) should reflect these particular type of shifts

2That is, 100 times the quarterly change of the logarithm of the original series.
3When we use non-standardized predictors in conjunction with priors that are proportional to the

predictor variable variances, we obtain similar results to the ones reported further on in this paper.
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Table 2: Prior parameters for the priors (5)–(7) of the BMA inflation models
Parameter Values Parameter Values

λj 0.50 for j = 1, . . . , k ν0 10
aj 0.50 for j = 0, . . . , k νj 20 for j = 1, . . . , k
b0 5 ω0 1
bj 30 for j = 1, . . . , k ωj 0.01 for j = 1, . . . , k
ak+1 0.80 νk+1 10
bk+1 2 ωk+1 0.50

in average inflation, where time-variation in the remaining regression parameters then can

pick-up changing correlations between inflation and its potential predictors across different

phases of the business cycle. To account for the larger value of ω0 than ωj we choose a

smaller value of ν0 than νj for j = 1, . . . , k.

The prior beliefs on the parameters concerning the variance equation reflect a larger

number of breaks than for the intercept, but with a smaller magnitude (ak+1 = 0.8,

bk+1 = 2, ωk+1 = 0.5 and νk+1 = 10). These parameters correspond to beliefs in other

time-varying inflation model specifications such as in, for example, Cogley and Sargent

(2005) and Primiceri (2005). Finally, the priors for the initial values of βjt and lnσt are

normal, see Appendix A for details.

The posterior simulator described in Section 2.3 in combination with the prior values

from Table 2 can easily be adapted to estimate variants of our BMA-based framework

other than the BMA-SBB-SBV specification, see Table 1, by simply switching off one

or all of the channels of structural instability. This is less trivial when we consider the

BMA-RWB-RWV version of our framework where κjt and κk+1,t are equal to 1 for all

j and t. In this case πj does not play any role and the information in q2
j using the

prior values from Table 2 is possible very large since it is always valid independently of πj .

Therefore, when estimating the BMA-RWB-RWV specification we decrease the prior value

of νj , j = 0, ..., k + 1 to 3, which is comparable to the prior choices made in other studies

that utilize a standard time-varying parameter specification, such as Cogley and Sargent

(2005). The priors for the initial values for the time-varying regression parameters in the

BMA-RWB-RWV specification are similar to those of the other BMA-based variants.

The posterior results for our BMA-based framework are not very sensitive to the prior

settings for the λ parameter that governs the prior distribution on the variable inclusion

parameters δj in (2). A different prior setting for the probability and size of the breaks,

however, can impact the different posterior results substantially as is also shown by a

simple prior sensitivity analysis in Appendix C on a simulated data set. The analysis in

Appendix C shows that the posterior inclusion probabilities are hardly affected by the prior

setting for the probability and size of breaks unless the prior on the expected break size on

12



the regression parameters is very large. Furthermore, the prior setting for the probability

and expected size of a break influences the posterior results of the timing and size of breaks.

A prior which does not match the true breaking process in either the intercept, regression

parameters or the variance influences posterior inference on the breaks both in the mean

equation as well as in the variance equation.

For our empirical application, unreported posterior results show that, if we take a

smaller prior value for ω0 (i.e., the break size in the intercept), the posterior estimates

of the intercept exhibit more frequent but smaller breaks than for the prior setting in

Table 2. As a consequence, this alternative prior setting results in a posterior mean of

the intercept parameter β0t that follows the inflation series more closely and this results

in a sharp decrease in the marginal posterior variable inclusion probabilities δj , as this

pattern in the intercept erroneously reduces the contribution of the predictor variables

in explaining inflation. If we set smaller prior values for bj and higher values for ωj

(j = 1, ..., k) for the regression parameters of the predictor variables than those outlined in

Table 2, implying a higher prior probability of exhibiting breaks of a higher prior expected

size, than the corresponding posterior parameter estimates will exhibit many small breaks

and the marginal posterior variable inclusion probabilities are low. The prior setting in

Table 2 turns out to be robust to different types of instability in the data and the data

are still informative about the model parameters. We discuss this in more detail in the

next subsection, but we observe, for example, that the posterior means of the probability

of a break in the intercept π0 are smaller than the prior means for both inflation rates at

h = 1 and h = 5, and for the other regression parameters the posterior means of πj are

always higher than the prior mean.

Posterior densities for the different variants of our BMA approach, see Table 1, are

computed using the prior calibrations from Table 2 and are based on 24000 iterations of

the MCMC sampler outlined in Section 2.3. Of these, we take 4000 iterations as the burn-

in period for the sampler and then select every 2nd draw of the remaining posterior draws.

However, in case of the BMA-RWB-RWV specification we use 44000 posterior draws with

a burn-in sample of 4000 and retaining every 4th draw of the remaining iterations. These

choices for the number of retained draws to be used for posterior inference are based on

the outcome of a range of convergence tests; see Appendix D for more details.

3.3 Some Implied Inflation Characteristics

In this subsection we report on some inflation characteristics as implied by estimates

of different specifications of our general forecasting model (2)–(3) over our full sample,

1960Q1–2011Q2, for both the PCE deflator and GDP deflator inflation measures. The
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purpose of this full-sample estimation is to investigate ex-post the properties of the different

BMA-based specifications, such as an analysis of the relevance of the different predictor

variables for inflation and whether our specifications can replicate some of the stylized facts

of post-WWII U.S. inflation dynamics that have been uncovered by the vast literature we

surveyed in the introduction. For the full sample estimation, we use the 2011Q3 data

vintage for all variables, which contains data up to in 2011Q2. We focus here, as well

as in the forecasting Section 4, on the most frequently used prediction horizons in this

literature, that is, the current quarter or nowcasting horizon (h = 1) and the one-year

horizon (h = 5).4

In Figure 1 we display the marginal posterior inclusion probabilities for each of our po-

tential predictor variables (excluding the intercept), that is, Pr[δj = 1|y, x] for j = 1, . . . , k,

for a number of variants of our framework outlined in Section 2.1. We notice some inter-

esting contrasts across these BMA-based specifications, which highlight the importance of

conditioning predictor variable selection and model averaging on structural breaks. When

structural breaks are ignored in the variable selection (this is the BMA variant), the in-

clusion probabilities are generally higher than the prior value, with the average inclusion

probability hovering around 80% across inflation rates and horizons which corresponds to

an average model size of about 15 to 16 predictors. The other extreme is where we combine

BMA with structural breaks in the regression parameters and a constant error variance

specification (BMA-SBB): inclusion probabilities are now much lower than the prior value

and the average inclusion probabilities range from 10% for PCE inflation at h = 1 to 17%

for GDP inflation at h = 1, suggesting an expected number of predictors of about 2 to 3.

The BMA-SBV and, more general, BMA-SBB-SBV specifications represent intermedi-

ate cases. For the BMA-SBV variant the average marginal inclusion probability in Figure 1

is approximately 39% for h = 1 and 42% for h = 5. In case of the BMA-SBB-SBV model

these average marginal inclusion probabilities are about 30% for h = 1 and about 15% for

h = 5, which suggests that the average model size for the BMA-SBB-SBV varies with the

forecasting horizon. For the BMA-SBB-SBV model, the expected number of explanatory

variables is in the 5 to 6 range for the current quarter horizon across inflation measures,

whereas for h = 5 this number fluctuates between 2 and 3. One can conclude from Fig-

ure 1 that allowing for structural breaks results in more parsimonious models. In particular

when we allow for breaks in the mean and variance, as in the BMA-SBB-SBV variant, the

model size seems to adapt more to the forecast horizon, with more parsimony at longer

horizons.

4More specifically, this means modeling the quarterly percentage change of the relevant price deflator
in the current quarter as well as in the quarter one year beyond the current quarter, respectively.
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Figure 1: Posterior variable inclusion probabilities: 1960Q1-2011Q2

(a) PCE deflator inflation, h = 1 – PCE deflator inflation, h = 5

(b) GDP deflator inflation, h = 1 – GDP deflator inflation, h = 5

Notes: The graphs depict the variable selection probabilities for specification BMA, BMA-SBB,

BMA-SBV, BMA-SBB-SBV of (2), see also Table 1.
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To shed more light on what combinations of explanatory variables dominate the Bayesian

model averaging, we can consider the top 10 models with the highest posterior model prob-

ability. In the interest of brevity we report these only for the BMA-SBB-SBV variant of

(2), see Table 3. In general, the conclusions drawn from the results in Figure 1 are con-

firmed, that is, the most selected variables do show up most frequently amongst those top

10 models. For example, for PCE and GDP deflator inflation the inflation expectations of

the Michigan Consumer survey is often part of the 10 best models, especially for h = 1.

And the real spot oil price as well as the real food and raw material commodities price

indices are not included in the best 10 models for h = 5 but are sometimes included in the

models for h = 1. Furthermore, we see again that the number of included predictors in the

models with h = 1 is in general larger than for the models with h = 5. The second best

model for GDP deflator inflation for h = 5, for example, only contains an intercept and

the Michigan survey. The role of the lagged values of inflation is more important in models

which describe quarterly inflation one year ahead than in the models which describe the

current quarter inflation rate.

Unreported results5 show that for both inflation series the model size for all selected

models within the BMA-SBB-SBV specification for the current quarter horizon fluctuates

between 2 and 14 with a posterior mode of 6 selected predictors. For the quarterly inflation

rate one-year ahead, the model size fluctuates for GDP deflator inflation between 1 and

9 (1 and 8 for PCE deflator inflation) and the posterior mode is 4 (3 for PCE deflator

inflation). Finally, the number of models with a posterior model probability larger than

0.1% is about 250 for both inflation series and both horizons. The variances in the values

of the posterior model probabilities are therefore larger for the models with the larger

forecast horizon.

The previous discussion might give some a priori insight in the potential success of

our BMA-based specifications in forecasting inflation out-of-sample, despite the fact that

they, in principle, are heavily parameterized models (see also the predictive density (11)).

In general, it is well known that Bayesian model selection prevents overfitting of the data

and leads to parsimonious models. For example, the Bayesian information criterion [BIC]

contains a penalty function for the number of parameters and the BIC values for different

models can be used to approximate their respective Bayes factors. It is also well known

that marginal likelihoods and one-step ahead predictive likelihoods are related, see, e.g.,

Geweke (2005, p. 67), and hence Bayesian model selection also takes into account the

forecasting performance of a model. Therefore, our finding that BMA-based approaches

combined with structural breaks will average over quite parsimonious regression specifi-

5These are available upon request from the authors.
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Table 3: BMA-SBB-SBV posterior model probabilities (top 10 best models):
1960Q1-2011Q2

GDP Deflator inflation h = 1
yt−2 ROUTP RCONS RINVR PIMP UNEMPL OIL MS 0.69
yt−2 yt−3 ROUTP RCONS PIMP UNEMPL NFPR MS 0.66
yt yt−3 ROUTP RCONS PIMP HSTS MS 0.50
ROUTP RCONS HSTS M2 FOOD MS 0.44
yt−3 RCONS HSTS FOOD MS 0.43
yt−2 RINVR HSTS NFPR MS 0.40
yt yt−1 yt−2 RINVR HSTS NFPR YL MS 0.39
yt yt−1 yt−2 RINVR HSTS NFPR YL MS 0.39
yt−2 RCONS RINVR PIMP UNEMPL YL RAW 0.38
yt yt−1 yt−2 NFPR 0.38

GDP Deflator inflation h = 5
yt yt−2 yt−3 RCONS PIMP UNEMPL HSTS 4.98
MS 3.09
yt yt−1 yt−2 yt−3 ROUTP PIMP UNEMPL HSTS 2.11
yt−1 RCONS PIMP UNEMPL HSTS 1.86
yt−1 yt−2 CS MS 1.52
yt−1 1.31
yt yt−2 yt−3 ROUTP RCONS RINVR HSTS M2 NFPR 1.07
yt yt−1 yt−2 yt−3 RCONS PIMP UNEMPL HSTS 1.03
yt PIMP HSTS M2 NFPR 0.96
yt−1 yt−3 RCONS RINVR M2 NFPR YL TS MS 0.94

PCE inflation h = 1
yt−3 ROUTP RINVR PIMP YL 0.56
yt ROUTP RCONS RINVR M2 CS 0.54
yt yt−1 yt−3 ROUTP RCONS RINVR PIMP HSTS NFPR YL FOOD MS 0.54
yt ROUTP RCONS RINVR M2 CS 0.53
yt yt−1 yt−3 ROUTP RCONS RINVR PIMP HSTS NFPR YL FOOD MS 0.53
yt−1 RCONS PIMP NFPR YL MS 0.51
yt−3 ROUTP UNEMPL HSTS 0.47
yt−1 ROUTP PIMP UNEMPL HSTS 0.45
yt yt−1 yt−2 RCONS PIMP UNEMPL NFPR CS MS 0.41
yt−1 ROUTP RCONS RINVR PIMP M2 YL 0.41

PCE inflation h = 5
yt yt−3 ROUTP PIMP UNEMPL HSTS 4.75
yt−2 4.54
yt−1 2.91
yt yt−2 ROUTP PIMP UNEMPL HSTS 2.82
yt−1 yt−3 RCONS UNEMPL NFPR TS MS 2.46
yt 2.35
yt yt−1 yt−2 yt−3 2.30
yt yt−2 yt−3 RCONS UNEMPL HSTS M2 1.88
yt yt−1 ROUTP RINVR YL TS MS 1.69
yt−1 yt−3 RCONS UNEMPL HSTS M2 1.62

Notes: See Section 3.1 for variable mnemonics.
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Table 4: BMA-SBB-SBV marginal posterior break probabilities πj :
1960Q1-2011Q2

PCE Deflator Inflation GDP Deflator Inflation
h = 1 h = 5 h = 1 h = 5

Intercept 0.01 0.01 0.00 0.02

yt 0.18 0.26 0.19 0.23
yt−1 0.18 0.24 0.15 0.21
yt−2 0.12 0.25 0.13 0.19
yt−3 0.12 0.19 0.09 0.15
ROUTP 0.14 0.23 0.15 0.20
RCONS 0.14 0.37 0.14 0.23
RINVR 0.12 0.22 0.10 0.14
PIMP 0.10 0.21 0.09 0.15
UNEMPL 0.08 0.21 0.18 0.19
HSTS 0.09 0.46 0.37 0.22
NFPR 0.13 0.15 0.09 0.17
M2 0.14 0.16 0.11 0.22
YL 0.10 0.13 0.09 0.22
TS 0.17 0.21 0.17 0.17
CS 0.15 0.20 0.13 0.14
OIL 0.26 0.16 0.06 0.17
FOOD 0.15 0.27 0.08 0.21
RAW 0.10 0.29 0.04 0.04
MS 0.08 0.11 0.04 0.10

σt 0.29 0.29 0.29 0.29

Notes: See Section 3.1 for variable mnemonics. The values in the table are
posterior means of πj for each j = 0, . . . , k + 1.

cations, especially in case of BMA-SBB-SBV at h = 5, might lead us to suspect that

they could do well in an out-of-sample context. Of course, in the end this is an empirical

question and we will revisit this in Section 4.3.

An analysis of the regression parameters and latent breaks for all 19 predictor variables

would be based on their marginal posterior distributions, which are averaged over all

possible model specifications, each of which may contain different predictor variables.

Therefore, in each of the individual regression specifications the regression parameter βjt

of a predictor j as well as the corresponding latent break variable κjt (which determines

the timing of a break in βjt) may be different. This complicates their interpretation unless

we condition on each individual regression specification, which is an arduous task given the
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number of specifications we consider in this paper.6 Nonetheless, there is some merit in

analyzing the posterior means of the individual break probabilities πj , which are averaged

across all entertained model specifications, as it allows us to assess how informative the

data has been in driving the posterior time variation in our BMA-based specifications. We

report these in Table 4.7

What immediately becomes clear from Table 4 is that at 1% the posterior means of

the break probability of the intercept π0 are well below the prior mean of 9% implied by

the prior settings in Table 2. In contrast, for our predictor variables the posterior means

of the corresponding πj parameters is on average equal to 13% for both inflation series at

h = 1, and for h = 5 they average to about 23% (18%) in case of PCE deflator inflation

(GDP deflator inflation). It is clear that this implies far more time-variation, on average,

in the regression parameters of our predictor variables than what is implied by our prior

settings, as these suggest that the corresponding prior mean break probabilities are about

2%. Only for the error variance the posterior mean break probability remains fairly close

to its prior counterpart. The patterns in Table 4 suggest that parameter time-variation

for the predictor variables increases with the forecast horizon, in particular for the real

activity series, and that there is quite a bit of heterogeneity amongst these variables.

For example, for PCE deflator inflation at h = 1, the posterior results suggests that the

regression parameter of the real oil price will break on average, over time and across all

possible regression specifications, about every 4 quarters, whereas for the survey-based

inflation expectations this is about every 13 quarters.

For the other BMA specifications with discrete breaks, BMA-SBB and BMA-SBV,

unreported results indicate qualitatively similar conclusions as for the BMA-SBB-SBV

case in Table 4. In case of BMA-SBB, the posterior mean break probability for the

intercept is essentially zero for the intercept and the average across predictor variables

is about 17% for both inflation series at h = 1, 28% (20%) for PCE deflator inflation

(GDP deflator inflation) at h = 5, with a similar degree of heterogeneity across predictors

as for BMA-SBB-SBV. The error standard deviation σt for the BMA-SBV specification

has a posterior mean break probability of 15% across both inflation rates and horizons,

which is below the corresponding prior mean of 28% based on the settings in Table 2.

Overall, we can conclude that the data appears to be very informative within our BMA-

based approach for posterior analysis on instability in all possible model specifications for

inflation forecasting.

6For example, our earlier analysis about variable selection makes it clear that in case of the BMA-SBB-
SBV specification we would have to do this for at least 250 models.

7We should note that if a variable is not selected, the posterior distribution of πj is equal to the prior
distribution.

19



The existing literature has focused a lot on documenting the time-varying properties

of inflation. Based on this literature, which we surveyed in the Introduction, we can

summarize these properties as follows:

• The persistence of U.S. inflation increased during the 1970s, reaching peaks around

1974-1975 and around 1980, and subsided after 1982–1983; see, e.g., Cogley and

Sargent (2005), Cogley et al. (2010).

• A majority of studies suggest that the downward shift in U.S. inflation variability

form the late 1980s, early 1990s onwards has been due to an exogenous variance

break unrelated to breaks in the mean and/or persistence; some studies claim this

also happened during the 1970s; see, e.g., Sensier and van Dijk (2004), Sims and Zha

(2006).

It is now our aim to investigate whether our BMA-based framework from Section 2.1

indeed implies similar inflation properties. The main purpose of this is to reassure us

that our framework does not provide counterintuitive results, which would influence the

interpretation of our real-time forecasting exercise in Section 4.

Figure 2 shows posterior estimates of inflation persistence for h = 1 given by the

BMA-SBB and BMA-SBB-SBV specifications of our framework, both of which allow for

time variation (in the form of breaks) in this persistence.8 In this figure we also dis-

play similar posterior results for a version of BMA-SBB-SBV where xt contains only

(yt, yt−1, yt−2, yt−3), which we will call the AR-BMA-SBB-SBV specification. The time-

varying average persistence and error variance terms produced by this AR-BMA-SBB-SBV

model can be seen as representative of those produced by existing studies, where one usu-

ally allows for structural change but does not condition on a large set (of combinations)

of additional explanatory variables. Additionally, Figure 3 displays posterior estimates

for the innovation standard deviations σt for h = 1 for model specifications BMA-SBV,

BMA-SBB-SBV and AR-BMA-SBB-SBV, respectively.

8In order to save space, we focus only h = 1, as this is comparable to the representations that are
typically used to assess the time-varying properties of inflation. The results for h = 5 are available from
the authors.
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Figure 2: Posterior estimates of time-varying inflation persistence
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Note: The solid lines represent the posterior medians of the persistence parameters for the BMA-SBB

(first column), BMA-SBB-SBV (second column) and AR-BMA-SBB-SBV (third column). Persistence is

computed by averaging the sum of the included autoregressive parameters across all model specifications

using the posterior model probabilities. The dashed lines denote the 25th and 75th percentiles of the

posterior distributions.
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Figure 3: Posterior estimates of the time-varying innovation standard deviation
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Note: The solid lines represent the posterior medians of the innovation standard deviation parameters for

the BMA-SBV (first column), BMA-SBB-SBV (second column) and AR-BMA-SBB-SBV (third column).

The dashed lines denote the 25th and 75th percentiles of the posterior distributions.

Figure 2 suggests a similar pattern for inflation persistence across models: relatively

low in the 1960’s, a substantial increase in the 1970’s, and reducing drastically in the

second part of the 1980’s. In case of the shock variance (Figure 3), all models exhibit

a downward shift from the late 1980s, early 1990s onwards. This variance moves up, of

course, towards the end of the sample as the 2007-2009 Great Recession starts to impact

the data. Both figures make it clear that members of our BMA family of models with

appropriate channels of time-variation are able to reproduce in a satisfactorily manner the

stylized facts on inflation persistence and volatility for the post-WWII U.S. period.

4 Real-Time Prediction of U.S. Inflation Rates

In this section we focus on the out-of-sample forecasting performance of our BMA family

of inflation models relative to other, often very parsimonious, models that are frequently

used for inflation forecasting. Section 4.1 provides an overview of these alternative models,

whereas the evaluation methodology is discussed in detail in Section 4.2. A discussion of

the out-of-sample forecasting results follows in Section 4.3.
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4.1 Forecasting Models

The starting point of our forecasting exercise will be the different variants of the BMA

framework outlined in Section 2.1: BMA across all possible models from xt that allows

for structural breaks in regression parameters and error variance (BMA-SBB-SBV), BMA

across all possible models from xt allowing for structural breaks in error variance only

(BMA-SBV), BMA across all possible models from xt allowing for structural breaks in the

regression parameters only (BMA-SBB), BMA across all possible models from xt allowing

for random walk-based time-variation in the regression parameters and error variance

(BMA-RWB-RWV), and, finally, BMA across all possible models from xt without allowing

for any structural change (BMA). We refer to Table 1 for an overview.

To assess how our different BMA models perform in real-time, we need to compare

them with viable alternative inflation forecasting models. First amongst these models is

the Atkeson and Ohanian (2001) random walk model (RW), which is traditionally seen as a

hard-to-beat model when it comes to out-of-sample inflation prediction. More specifically

this specification assumes that h-quarter ahead inflation is most optimally predicted by

the average inflation rate over the last 4 quarters in a given vintage of inflation data, i.e.,

yt+h =
1

4

3∑
i=0

yt−i + σεt+h; εt+h ∼ NID(0, 1). (12)

Also, time-invariant autoregressive specifications for inflation, using lag orders between

1 and 4, are considered as parsimonious alternatives:

yt+h = β0 +

p∗∑
j=1

βjyt−j+1 + σεt; εt+h ∼ NID(0, 1), (13)

with p∗ is the optimal lag order as determined by the Bayesian-Schwarz information cri-

terion (BIC) across lag orders up till 4 and thus we will refer to (13) as BIC-AR. Finally,

we take as a simple representation of the traditional Phillips curve model a version of (13)

augmented with the current unemployment rate UNEMPLt (BIC-AR-UR) in a given data

vintage, which gives

yt+h = β0 +

p∗∑
j=1

βjyt−j+1 + βp∗+1UNEMPLt + σεt+h; εt+h ∼ NID(0, 1), (14)

where again p∗ is the optimal lag order according to BIC.

The aforementioned approaches are naive in the sense that they do not allow explic-

itly for structural instability in the forecasting relationship, and also do not incorporate

information from many, additional, predictors. A simple way to achieve the latter, which

in practise has been found to have good forecasting properties, is the ridge regression ap-

proach. It encompasses a simple linear regression of the quarter-to-quarter inflation rate
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h quarters ahead on all 15 predictor variables described in the previous section plus four

inflation lags, that is,

yt+h = β0 +X ′tβj + σεt+h, (15)

where the predictor variables are assembled in the k × 1 vector Xt = (x1t, . . . , xkt)
′ and

εt+h ∼ NID(0, 1). The k × 1 parameter vector βj in (15) could now be estimated using a

ridge regression (shrinkage) estimator:

β̂j =

(
T−h∑
t=1

X̃tX̃
′
t + λIk

)−1(T−h∑
t=1

X̃tỹ
′
t+h

)
(16)

where ỹt+h, X̃t are demeaned inflation and predictor variables, respectively, to account

for the effect of the intercept term, and λ is the scalar shrinkage parameter.

De Mol et al. (2008) shows that a ridge regression like (15)–(16) boils down to a

regression of, in our case, h-quarter ahead quarterly inflation on a weighted average of

all the principal components from Xt, which can be used to model the impact of the

unobserved common factors in Xt on yt+h. We choose λ = 10 in (16), as De Mol et al.

(2008) show that the degree of shrinkage should be proportional to the number of regressors

to achieve the best forecasting performance in a data-rich context. A Gibbs sampler

based on an independent Normal-Gamma prior is utilized to estimate (15)–(16), with non-

informative priors on the intercept and σ2, and a shrinkage normal prior on the remaining

regression parameters N(0, λ−1Ik).

We also want to assess our range of BMA inflation forecasting models to alternatives

that explicitly model structural instability in the data. One such alternative is simply a

variation on our BMA-SBB-SBV model where we average solely over the inflation lags and

hence xt = (yt, yt−1, yt−2, yt−3) as discussed before in Section 3.3:

yt+h = β0t +

4∑
j=1

δjβjtyt−j+1 + σtεt+h with εt+1 ∼ NID(0, 1), (17)

together with (3)–(4). Hence, in this AR-BMA-SBB-SBV specification we use our stochas-

tic variable selection algorithm to determine the posterior probabilities of all possible in-

flation lag combinations and use these posterior probabilities for BMA.

Alternatively, we can use the resulting posterior model probabilities that correspond

with (17) to select the ‘best’ lag order for a given vintage of inflation data at forecast

horizon h and use the resulting model to forecast yt+h; we denote this as the AR-BVS-

SBB-SBV model (with BVS standing for Bayesian variable selection). We can apply this

approach also to our full set of 15 predictor variables and 4 quarterly inflation lags; that

is using the model posterior probabilities that result from the BMA-SBB-SBV MCMC

algorithm to select the best combination of predictor variables and inflation lags for the
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Table 5: Alternative models for forecasting inflation

name description specification
RW Random walk (12)
BIC-AR Autoregressive model with BIC lag order selection (13)
BIC-AR-UR Simple Phillips curve model with AR and BIC lag order selection (14)
Ridge Ridge regression with λ = 10 (15)–(16)
AR-BMA-SBB-SBV BMA-SBB-SBV specification with only 4 inflation lags in xt (17)
AR-BVS-SBB-SBV Specification of AR-BMA-SBB-SBV with highest posterior probability (17)
BVS-SBB-SBV Specification of BMA-SBB-SBV with highest posterior probability (2)
UCSV Unobserved component model with SV (18)

h-quarter ahead quarter-to-quarter inflation rate in a given vintage of data, and use only

this model to predict with stochastic breaks yt+h. This approach will be labeled as the

BVS-SBB-SBV model.

Another option is an inflation forecast model that has been successfully used by Stock

and Watson (2007, 2008) to predict inflation. They propose an unobserved components

model with stochastic volatility [UCSV] specification for the unobserved component of

inflation as well as the temporary deviation from it, i.e.,

yt = βt + σtεt lnσ2
t = lnσ2

t−1 + u1t

βt = βt−1 + ωtηt lnω2
t = lnω2

t−1 + u2t,
(18)

where εt ∼ NID(0, 1), ηt ∼ NID(0, 1) and ut = (u1t u2t)
′ ∼ NID(0, ρI2) with ρ a scalar

parameter controlling the smoothness of the stochastic volatility processes, and where εt,

ηt and ut are independent. We follow Stock and Watson (2007) and set in (18) ρ = 0.04;

Stock and Watson (2007) motivate their choice for ρ based on the fit of (18) for U.S.

inflation rates over the 1955–2004 sample. The resulting forecast for yt+h is set equal to

the filtered estimate of βt from (18) for a given data vintage of quarterly inflation rates.

Table 5 summarizes the above described range of models that serve as alternatives to

our BMA family of inflation forecasting models.

4.2 Forecast Evaluation Methodology

We use the models described in the previous subsection to obtain and evaluate one-quarter

and one-year ahead forecasts for the quarter-on-quarter inflation rate of both the PCE de-

flator and the GDP deflator in the United States. For computational reasons we obtain

the one-year ahead forecasts through direct forecasting.9 Each forecast is based on a re-

estimation of the underlying model using an expanding window of historical data. For

example, suppose the first one-quarter and one-year ahead forecasts are produced in quar-

ter t0. As we want to evaluate the forecasts in real-time, we use the original vintage of

data available at t0, containing data up to t0−1, to re-estimate the range of models on the

9Whether an iterative procedure provides more accurate forecasts than a direct approach is a matter of
ongoing debate, see the discussion in Marcellino et al. (2006).
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sample t = 1, . . . , t0 − h, with the forecast horizon h = 1 or 5. This results in a quarterly

inflation nowcast for quarter t0 (horizon h = 1) and a direct quarterly inflation forecast

for quarter t0 + 4 (horizon h = 5) using data on xjt for t = 1, . . . , t0− 1 and the parameter

estimates or the posterior draws from the estimation up to t0 − h10. These forecasts are

evaluated against the vintage of inflation data that is available h quarters ahead, i.e., the

vintage at t0 + h. We repeat this process of re-estimation and forecast generation for

t0 + 1, . . . , T − h. In the end we will have time series of forecasts (and in most cases their

distribution) and forecast errors for t = t0, . . . , T − h, which we use to compute several

forecast evaluation criteria.

We follow the usual practise in the literature, and evaluate the point forecasts from the

different models using both the square root of the mean squared forecast errors [RMSE]

and the mean of the absolute forecast errors [MAE]. In algebraic terms these can be

represented as, respectively,

RMSE =
√

MSE =

√√√√ 1

T − t0 − h

T−h∑
s=t0−1

ε̂2s+h, (19)

and

MAE =
1

T − t0 − h

T−h∑
s=t0−1

|ε̂s+h|, (20)

where the out-of-sample forecast error of a model for yt+h is defined ε̂t+h. The analysis

in Gneiting (2011) indicates that the RMSE is only a consistent evaluation measure when

the point forecast equals the mean of the distribution of forecasts, whereas the MAE is

consistent if the point forecast equals the median of the predictive distribution.

In case of a conditionally Gaussian distribution such as that implied by the RW model

(12) this distinction is not relevant as both the mean and median of the forecasts at t

equals 1
4

∑3
i=0 yt−i. However, when the forecasts are based on a non-Gaussian distribution

or posterior draws from a Gibbs sampler, such as in case of our family of BMA inflation

models, we will have to base the RMSE and MAE on, respectively, the mean and median

of the distribution of inflation predictions.

Any model is a mere approximation of reality, and thus to some degree misspecified,

and we therefore assess the forecasting performance of the models relative to a benchmark

model. Given the results in Stock and Watson (2007, 2008) it appears that the UCSV

model produces forecasts for U.S. inflation rates that are hard to beat by Phillips curve

and naive time series models (including the RW model). We therefore assess real-time

10Except for the RW, BIC-AR and BIC-AR-UR models, all other models are estimated using MCMC
simulation procedures. In case of the UCSV model, we use the Gibbs sampler as has been kindly made
available on Mark Watson’s homepage.
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inflation point forecasts in terms of the RMSE and MAE ratios for a model relative to

those of the UCSV, where a RMSE or MAE ratio smaller than 1 suggests that the mean

or median forecast of a model is better than that generated by the UCSV model.

Any assessment whether the resulting differences in either RMSE or MAE are statis-

tically significant or not is complicated by the fact that a lot of the models outlined in

Section 4.1 are nested, and in combination with parameter updating using an expand-

ing window of historical data this means that a test statistic like the one proposed by

Diebold and Mariano (1995) will have a non-standard limiting distribution; see Clark

and McCracken (2012) for an overview. Like Faust and Wright (2011) we follow a more

pragmatic approach, however, and build on Monte Carlo results in Clark and McCracken

(2012). They find that comparing the Harvey et al. (1997) small sample correction of the

Diebold and Mariano (1995) statistic to standard normal critical values results in a good

sized test of the null hypothesis of equal finite sample forecast precision for both nested

and non-nested models, including cases with expanded window-based model updating.

More specifically, we follow Harvey et al. (1997) and construct for each model relative

to forecast errors from the UCSV model the statistic:

tHLN =

√
(T − t0 − h) + 1− 2h+ (T − t0 − h)−1h(h− 1)

(T − t0 − h)
tDM ;

tDM =
√
T − t0 − h

(
d̄l − d̄UCSV

σ̂rect

)
(21)

with for each model l d̄l = MSEl or MAEl and similarly for d̄UCSV, and tDM is the

Diebold and Mariano (1995) test statistic. In (21) σ̂rect is a standard deviation based on

a heteroskedasticity and autocorrelation corrected [HAC] estimate of the variance σ̂2
rect of

either the squared forecast error differential (in case of RMSEs) or the absolute forecast

error differential (in case of MAEs). The HAC variance estimate encompasses a rectangular

window of lags of the aforementioned differentials with a lag truncation parameter set to

h (see, e.g., Clark and McCracken (2012) for more details). Once we constructed tHLN

for a model, we compare its value to one-sided critical values from the standard normal

distribution, and thus we test the null of equal finite sample forecast accuracy based on a

certain evaluation measure H0 : d̄l − d̄UCSV = 0 vis-à-vis the alternative that model l has

been more accurate, i.e., H1 : d̄l − d̄UCSV < 0.

Point forecasts of inflation, however, cannot provide insight into the uncertainty that is

associated with producing these forecasts, and inflation density forecasts are more useful for

this purpose. Density forecasts of inflation can also be used to assess the ability of a model

to predict unusual developments, such as the likelihood of deflation or accelerating inflation

given current information. We therefore will also evaluate density inflation forecasts from
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our family of BMA inflation models (see Table 1) as well as the range of alternative models

summarized in Table 5.

There are several measures available for density forecast evaluation of which the log

score, or the logarithm of the predictive density evaluated in the realization, is often used,

as it suggests a close relationship with the likelihood function of a model. There are,

however, also several drawbacks to using the log score in this context: it does not reward

values from the predictive density that are close but not equal to the realization (see, e.g.,

Gneiting and Raftery (2007)), it is very sensitive to outliers, and Gneiting and Ranjan

(2011) show that it is invalid to use weighted log scores to emphasize certain areas of the

distribution (such as the tails) in density forecast evaluation.

Gneiting and Raftery (2007) and Gneiting and Ranjan (2011) show that the continuous

ranked probability score (CRPS) is able to address the aforementioned drawbacks of the

log-score and we therefore use this measure to evaluate density forecasts from our inflation

models. The CRPS reads like:

CRPS(t+ h, l) =

∫ ∞
−∞

(F (z)− I{yt+h ≤ z})2 dz

= Ef |Yt+h,l − yt+h| −
1

2
Ef |Yt+h,l − Y ′t+h,l|,

(22)

where F is the cumulative distribution function (CDF) that corresponds to the predictive

density f of model l estimated at time t, I(.) takes a value 1 if yt+h 5 z and equals 0

otherwise, Ef is the expectation operator, and Yt+h,l and Y ′t+h,l are independent random

variables with common sampling density equal to the posterior predictive density of model

l for yt+h estimated at time t.

It is clear from (22) that the CRPS provides a measure of the distance between the

predictive CDF as implied by a model and the CDF of realizations h periods ahead, and

thus a relatively low CRPS value reflects a relatively good density forecast. Moreover, the

second equality in (22) suggests that the CRPS for a model l in practice can be computed

fairly easily in discrete terms by measuring the average absolute distance between the

empirical CDF of yt+h, which is simply a step function in yt+h, and the empirical CDF

that is associated with model l’s predictive density. The latter, in turn, can easily be

computed from the posterior draws of a MCMC sampler (draws from Y ′t+h can be obtained

by random resampling from these draws) or can be computed analytically when a Gaussian

approximation is used (as in the case of the RW model).

To assess the density forecasting performance of model l over a certain evaluation

sample, one can determine the historical average of (22) across the forecasts, i.e.,

avCRPSl =
1

T − t0 − h

T−h∑
s=t0−1

ˆCRPS(s+ h, l). (23)
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The real-time inflation density forecasts for a model relative to those of the UCSV is

therefore assessed using the ratio of the avCRPS of a model l relative to the avCRPS of

the UCSV model, where, a ratio smaller than 1 suggests that density forecasts from model

l are better than those from the UCSV model.

Finally, we want to assess how our range of models fares when different areas of their

predictive densities are emphasized in the forecast evaluation, such as the tails, as forecast-

ers are often very interested in predicting ‘risk events’ for inflation, such as the probability

of deflation given the current data or the likelihood of accelerating inflation. To do that

we will compute weighted averages of Gneiting and Raftery (2007) quantile scores (QS)

that are based on quantile forecasts that correspond to the predictive densities from the

different models, i.e.,

QS(α, t+ h, l) =
(
I{yt+h 5 F−1(α, l)} − α

) (
F−1(α, l)− yt+h

)
(24)

with F−1(α, l) is the quantile forecast h periods ahead using model l for level α ∈ (0, 1).

It can be shown that integrating (24) over α ∈ (0, 1) will result in the CRPS measure (22),

see Gneiting and Ranjan (2011).

Gneiting and Ranjan (2011) therefore propose to integrate weighted versions of (24)

over α, with these weights being fixed functions of α chosen such to emphasize in the

forecast evaluation a certain area of the underlying forecast density. In practice we will

have to use a discrete approximation to this integration and use weights that emphasize

the center, the right tail and the left tail of the predictive density of model l relative to

the inflation realization yt+h, which are than averaged over the evaluation sample. Thus,

we have

avQS-Cl =
1

T − t0 − h

T−h∑
s=t0−1

 1

99

99∑
j=1

αj(1− αj)QS(αj , s+ h, l)

 ,

avQS-Rl =
1

T − t0 − h

T−h∑
s=t0−1

 1

99

99∑
j=1

α2
jQS(αj , s+ h, l)

 ,

avQS-Ll =
1

T − t0 − h

T−h∑
s=t0−1

 1

99

99∑
j=1

(1− αj)2QS(αj , s+ h, l)

 ,

(25)

where αj = j/100 and QS(αj , s+ h, l) is defined in (24). In (25), avQS-C emphasizes the

center, avQS-R the right tail, and avQS-L the left tail of the predictive density relative

to the realization h periods ahead. We will report ratios of avQS-C, avQS-R and avQS-L

measures of a certain model relative to those of the UCSV, where a ratio smaller than 1

indicates that a model generates more precise predictions for certain parts of the (unknown)

distribution of future inflation rates.
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Based on the theoretical considerations in Amisano and Giacomini (2007), Gneiting

and Ranjan (2011) show that a statistic like tDM in (21) can be used to test whether the

difference in average CRPS and QS measures for two models is statistically significant by

comparing it to standard normal critical values. One of the most important conditions

for the Amisano and Giacomini (2007)-Gneiting and Ranjan (2011) result to hold is the

presence of non-vanishing parameter uncertainty, as the null is that of equal finite sample

forecast accuracy. This is typically only achieved by updating the different forecasting

models using fixed, rolling windows of data rather than expanding data windows, as in our

analysis. However, as in the case of the RMSE and MAE measures, we take a pragmatic

route in which we take the stance that comparing the tHLN from (21), based on either

the CRPS, QS-C, QS-R or QS-L differentials relative to the UCSV model, to (one-sided)

standard normal critical values will result in a decent sized test for the null-hypothesis of

equal finite sample forecasting performance.11

4.3 Out-of-Sample Results

The models discussed in Section 4.1 are used to generate quarter-on-quarter PCE deflator

and GDP deflator inflation forecasts for the current quarter (h = 1) and one-year ahead

(h = 5). These are evaluated by computing the forecast evaluation measures discussed in

Section 4.2 across two periods: 1980Q1–2011Q2 and 1985Q1–2011Q2. These evaluation

samples span a number of large events that potentially could have caused time-variation

in the dynamics of inflation rates, like, e.g., the ‘monetarist experiment’ by the Federal

Reserve under Volcker, the ‘Great Moderation’ during the late-1980s, the 1990s and early

2000s, the 9/11 catastrophe in 2001 and, of course, the ‘Great Recession’ of 2007–2009.

The longer period of 1980Q1–2011Q2 was chosen based on computational considera-

tions: 1979Q4 (i.e., the data from the 1980Q1 vintage) was the furthest we could have

gone back without compromising the proper estimation of models with stochastic struc-

tural breaks as well as due to the availability of proper real-time data. However, this

evaluation sample does encompass the early 1980s, which represents the end of the Great

11In an unreported exercise, we ran a Monte Carlo experiment similar to the one in Amisano and
Giacomini (2007, Section 5). Amisano and Giacomini (2007) use a DGP in which a random walk model
and a Phillips curve model, calibrated on data, have equal finite sample predictive power for the conditional
mean of inflation, while imposing identical conditional variance across all models and inflation. We follow
their set-up, where we use (12) and (14), recursively estimated in real-time on our data using an expanding
window, and asses the size of the tDM and tHLN statistics from (21) for the CRPS and avCRPS statistics
using standard normal critical values across these 2 artificial inflation forecasting models. We ran these
experiments for both h = 1 and h = 5 (we impose for the latter horizon a MA(4) in the innovation variance
of the artificial inflation rate) at different sample sizes, using a nominal size of 5% and 10000 iterations. In
general, the tHLN statistic kept the finite sample size fairly close to the nominal size, whereas in case of the
tDM statistic it became quite oversized at h = 5 and smaller samples. More detailed results are available
from the authors.
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Table 6: Forecast Evaluation PCE deflator inflation

Horizon: h = 1 Horizon: h = 5
RMSE MAE avCRPS RMSE MAE avCRPS

Forecast evaluation sample: 1980Q1-2011Q2
BMA-SBB-SBV 0.91 0.95 0.87∗∗ 1.00 1.04 0.92

(-0.85) (-0.76) (-1.90) (0.02) (0.39) (-0.81)
BMA-SBV 1.01 0.98 0.81∗∗∗ 1.06 1.09 0.88

(0.14) (-0.32) (-3.44) (0.43) (0.58) (-0.95)
BMA-SBB 1.03 1.01 0.83∗∗∗ 1.13 1.13 0.99

(0.79) (0.02) (-3.21) (1.04) (0.78) (-0.11)
BMA 1.09 1.09 0.89∗∗∗ 1.37 1.32 1.10

(2.30) (1.95) (-2.40) (1.56) (1.56) (0.58)
BMA-RWB-RWV 0.99 0.95∗ 0.82∗∗∗ 0.99 0.99 0.83∗∗

(-0.31) (-1.39) (-4.39) (-0.12) (-0.01) (-2.28)
RW 1.00 0.97 1.00 0.99 1.03 1.25

(0.12) (-0.63) (0.02) (-0.03) (1.18) (3.05)
BIC-AR 1.04 1.02 1.05 1.03 1.02 1.00

(3.47) (0.55) (0.92) (0.41) (0.28) (0.06)
BIC-AR-UR 1.06 1.03 1.06 1.05 1.03 1.02

(2.75) (0.83) (1.04) (0.78) (0.46) (0.22)
Ridge 0.99 0.95 3.84 1.15 1.34 21.06

(-0.22) (-1.16) (9.95) (1.45) (2.80) (15.24)
BVS-SBB-SBV 1.17 1.03 0.97 1.18 1.02 0.91

(1.66) (0.51) (-0.43) (1.23) (0.16) (-0.85)
AR-BMA-SBB-SBV 0.98 0.93 0.83∗∗∗ 0.96 0.99 0.84∗∗∗

(-0.84) (-1.21) (-3.36) (-0.95) (-0.16) (-2.39)
AR-BVS-SBB-SBV 0.98 0.93∗ 0.83∗∗∗ 0.94 0.99 0.79∗∗∗

(-0.90) (-1.33) (-3.32) (-1.13) (-0.02) (-3.06)

Forecast evaluation sample: 1985Q1-2011Q2
BMA-SBB-SBV 0.88 0.94 0.88∗ 0.88∗ 0.93∗∗ 0.83∗∗

(-0.94) (-0.84) (-1.55) (-1.45) (-1.78) (-1.89)
BMA-SBV 1.03 1.01 0.85∗∗∗ 1.03 1.02 0.85

(0.52) 0.18) (-2.49) (0.19) (0.12) (-1.22)
BMA-SBB 1.02 1.00 0.86∗∗∗ 1.02 0.98 0.92

(0.80) (0.01) (-2.63) (0.17) (-0.24) (-0.87)
BMA 1.08 1.09 0.90∗∗ 1.13 1.11 0.93

(2.19) (1.71) (-1.89) (0.74) (0.62) (-0.41)
BMA-RWB-RWV 0.96∗∗ 0.95∗ 0.83∗∗∗ 0.93∗ 0.93∗ 0.78∗∗∗

(-1.68) (-1.64) (-3.62) (-1.53) (-1.57) (-3.47)
RW 1.04 1.02 1.08 0.98 0.99 1.31

(0.91) (0.39) (1.10) (-0.56) (-0.25) (-3.56)
BIC-AR 1.05 1.03 1.12 1.08 1.05 1.06

(4.01) (0.77) (1.83) (1.22) (0.67) (0.80)
BIC-AR-UR 1.06 1.04 1.12 1.11 1.08 1.07

(2.59) (1.00) (1.86) (1.53) (0.99) (1.02)
Ridge 1.03 0.99 3.41 1.27 1.35 20.72

(1.10) (-0.06) (11.14) (2.50) (2.54) (26.26)
BVS-SBB-SBV 1.13 1.00 0.96 1.00 0.94 0.84∗∗

(1.13) (0.02) (-0.55) (0.06) (-0.71) (-1.93)
AR-BMA-SBB-SBV 1.01 0.99 0.87∗∗ 0.96 0.94 0.82∗∗∗

(0.30) (-0.23) (-2.30) (-0.68) (-0.92) (-2.42)
AR-BVS-SBB-SBV 1.01 0.99 0.88∗∗ 0.92∗ 0.92∗ 0.76∗∗∗

(0.51) (-0.28) (-2.15) (-1.44) (-1.28) (-3.56)

Notes: The numbers are ratios of the RMSE (19), MAE (20) or avCRPS (23) mea-
sure relative that of the USCV model; bold numbers indicates a better performance
than UCSV. In parentheses we report the tHLN statistic (21) for the null hypothesis
of equal finite sample prediction accuracy versus the alternative hypothesis that a
model outperforms UCSV for either of these measures, where ∗, ∗∗ and ∗∗∗ indicates
rejection of this null at the 10%, 5% and 1% level, respectively, based on one-sided
standard normal critical values. For model mnemonics, see Tables 1 and 5.
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Table 7: Forecast Evaluation GDP deflator inflation

Horizon: h = 1 Horizon: h = 5
RMSE MAE avCRPS RMSE MAE avCRPS

Forecast evaluation sample: 1980Q1-2011Q2
BMA-SBB-SBV 0.91∗∗∗ 0.90∗∗ 0.97 0.99 0.99 0.93

(-2.59) (-1.84) (-0.71) (-0.08) (-0.02) (-0.85)
BMA-SBV 0.95 0.92 0.83∗∗∗ 1.04 1.03 0.86

(-1.18) (-1.23) (-3.54) (0.29) (0.20) (-1.09)
BMA-SBB 0.97 0.99 0.90∗∗ 1.40 1.27 1.12

(-0.62) (-0.21) (-1.80) (1.25) (1.28) (1.07)
BMA 1.15 1.08 0.94 1.63 1.47 1.24

(1.37) (0.90) (-0.74) (1.65) (1.69) (0.96)
BMA-RWB-RWV 0.96 1.00 1.08 0.96 1.01 0.96

(-0.81) (0.03) (1.22) (-0.36) (0.09) (-0.30)
RW 0.91∗ 0.89∗ 1.21 0.96 0.96 1.43

(-1.48) (-1.51) (3.02) (-0.57) (-0.58) (4.43)
BIC-AR 0.97 0.98 1.32 0.99 1.02 1.13

(-0.52) (-0.28) (5.14) (-0.07) (0.24) (1.14)
BIC-AR-UR 0.96 0.97 1.32 0.99 1.00 1.12

(-0.73) (-0.40) (5.10) (-0.15) (0.02) (1.14)
Ridge 0.96 1.00 5.76 1.19 1.33 20.83

(-0.91) (0.04) (7.45) (1.80) (2.86) (16.23)
BVS-SBB-SBV 2.18 1.40 1.41 1.42 1.29 1.18

(13.42) (3.09) (4.37) (2.21) (2.34) (1.76)
AR-BMA-SBB-SBV 0.96 0.98 0.89∗∗ 0.98 1.05 0.89∗

(-0.88) (-0.30) (-1.87) (-0.28) (0.46) (-1.39)
AR-BVS-SBB-SBV 2.09 0.98 1.03 0.94 1.03 0.89∗

(14.28) (-0.26) (0.54) (-0.56) (0.28) (-1.38)

Forecast evaluation sample: 1985Q1-2011Q2
BMA-SBB-SBV 0.85∗∗∗ 0.89∗∗ 0.95 0.85∗ 0.86∗ 0.84∗∗

(-3.71) (-1.81) (-0.90) (-1.63) (-1.54) (-1.82)
BMA-SBV 0.93∗ 0.92 0.83∗∗∗ 0.99 0.95 0.83

(-1.51) (-1.05) (-2.80) (-0.03) (-0.26) (-1.07)
BMA-SBB 0.92∗ 0.97 0.92∗ 0.96 0.96 0.99

(-1.58) (-0.48) (-1.35) (-0.34) (-0.36) (-0.09)
BMA 1.03 0.99 0.88∗ 1.19 1.17 0.96

(0.36) (-0.03) (-1.60) (0.78) (0.79) (-0.20)
BMA-RWB-RWV 0.93 0.99 1.12 0.94 0.97 0.99

(-0.99) (-0.06) (1.62) (-0.71) (-0.27) (-0.10)
RW 0.88∗∗ 0.91 1.30 0.88∗∗ 0.89∗∗ 1.56

(-1.66) (-1.78) (3.76) (-1.82) (-0.37) (5.03)
BIC-AR 0.99 1.02 1.43 1.05 1.05 1.22

(-0.18) (0.21) (5.94) (0.67) (0.42) (2.06)
BIC-AR-UR 0.99 1.04 1.42 1.08 1.06 1.23

(-0.18) (0.43) (5.70) (0.86) (0.55) (2.20)
Ridge 0.96 1.03 5.01 1.28 1.30 21.79

(-0.59) (0.34) (6.41) (2.63) (2.28) (21.40)
BVS-SBB-SBV 2.39 1.27 1.34 1.27 1.15 1.11

(2.39) (2.32) (4.10) (2.02) (1.80) (1.10)
AR-BMA-SBB-SBV 0.96 1.01 0.91 0.98 0.98 0.87∗

(-0.69) (0.07) (-1.23) (-0.21) (-0.17) (-1.30)
AR-BVS-SBB-SBV 2.25 1.07 1.06 1.00 0.99 0.89

(12.88) (0.80) (0.90) (0.04) (-0.06) (-1.09)

Note: See the notes for Table 6.
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Inflation era but does not convey any information about the start of the Great Inflation.

It is for this reason that often in the literature, such as in, e.g., Atkeson and Ohanian

(2001) and Faust and Wright (2011), more attention is paid to inflation forecasting in

the post-1984 period, also because inflation was deemed to be hard to forecast during the

Great Moderation period. Therefore, we also analyze the predictive performance of our

inflation models over the 1985Q1–2011Q2 sample. The forecasts of our models are based

on estimates of the model parameters and, if relevant, the latent variables computed using

an expanding window of data, starting with 1960Q1–1979Q4 using the original 1980Q1

data vintages for the 1980Q1–2011Q2 sample and commencing with 1960Q1–1984Q4 using

the original 1985Q1 data vintages for the 1985Q1–2011Q2 sample. The range of forecasts

are used to assess the real-time out-of-sample performance of our models relative to the

Stock and Watson (2007, 2008) UCSV model (18).

Table 6 report for PCE deflator inflation ratios of the RMSE, MAE, and avCRPS

measures from Section 4.2 for our BMA family of inflation models and those summarized

in Table 5 relative to these measures produced by the UCSV model. When we focus first

on the point forecast evaluation based on the RMSE and MAE measures over the 1980Q1-

2011Q2 evaluation sample in the upper panel of this table, it appears that for h = 1 only

the BMA-RWB-RWV and AR-BVS-SBB-SBV specifications significantly outperformed

the UCSV model. For one-year ahead forecasts, the picture is even more bleak as none

of the models can produce more precise forecasts than the UCSV-based ones. In terms of

density forecasts, however, there is for both horizons evidence based on the CRPS measure

that a number of models are producing more precise density forecasts than the UCSV

model. All our BMA-based inflation models perform better when it comes to current

quarter inflation density predictions, and also the two autoregressive specifications with

stochastic structural breaks (AR-BMA-SBB-SBV and AR-BVS-SBB-SBV) perform well in

that case. At h = 5, the BMA-RWB-RWV, AR-BMA-SBB-SBV and AR-BVS-SBB-SBV

models exhibit significantly better density forecasts.

The lower panel of Table 6 reports on the forecast evaluation for PCE deflator in-

flation over the 1985Q1–2011Q2 period. Over this period, the BMA-RWB-RWV model

outperforms the UCSV model both in terms of point forecast accuracy and density forecast

accuracy at the two forecast horizons. The BMA-SBB-SBV member of our BMA-range

of inflation models performs at least as well as the BMA-RWB-RWV one when it comes

to one-year ahead prediction. Although these two specifications model structural instabil-

ity in a different manner, this only seems to matter vis-à-vis the UCSV model for point

forecasts of current quarter PCE deflator inflation. The remaining BMA-based inflation

models only do well in terms of h = 1 inflation density predictions. Of the alternatives to
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our BMA-based approaches, only the AR-BVS-SBB-SBV model seems to do well relative

to point and density forecasts from the UCSV model.

The results of a similar evaluation for GDP deflator inflation is summarized in Table 7.

For the 1980Q1–2011Q2 period both our BMA-SBB-SBV specification significantly outper-

formed the UCSV model in terms of h = 1 point forecasts; see the upper panel of Table 7.

Interestingly, in terms of current quarter GDP deflator inflation density forecasts the BMA-

based specifications that shut down either of the two channels for structural instability,

BMA-SBV and BMA-SBB, are the most successful ones according to the avCRPS ratios.

Of the alternative forecasting models, the RW model performs well for point forecasting

and AR-BMA-SBB-SBV do so for density forecasting. As for PCE deflator inflation, one-

year head GDP deflator inflation forecasting for the 1980Q1–2011Q2 sample is challenging

for the models under consideration, as they generally seem not to be able to improve upon

point and density predictions from the UCSV model. Our BMA-based approach domi-

nates when we conduct the forecast evaluation for the 1985Q1–2011Q2 sample, on which

we report in the lower panel of Table 7. When trading off point forecasts (as summarized

by the RMSE and MAE ratios) versus density forecasts (summarized by the avCRPS ra-

tios) our BMA-SBV model performs best relative to the UCSV model at h = 1, whereas

our BMA-SBB-SBV specification most clearly dominates UCSV-based point and density

inflation forecasts at h = 5.

In sum, the results in Tables 6 and 7 make it clear that the early 1980s appears to be

challenging in terms of inflation point forecast for both BMA-based and non-BMA-based

competitors of the UCSV model, but much less so in terms of PCE deflator inflation density

forecasts. When the focus is on the post-1984 sample, which still includes major events,

our BMA family of inflation models does quite well for predicting different inflation series

at both forecast horizons. For PCE deflator inflation the BMA-based specifications that

model time-variation in both the regression parameters and error variance, BMA-SBB-

SBV and BMA-RWB-RWV, generally seem to have the best forecasting performance. In

case of GDP deflator inflation, BMA with only stochastic structural breaks in the error

variance (BMA-SBV) is most dominant relative to the UCSV specification at h = 1,

whereas the BMA-SBB-SBV model does that for one-year ahead predictions. Finally, the

Tables 6 and 7 results seem to suggest that BMA in conjunction with some form break

modeling is particularly useful when the forecast density is evaluated. This warrants a

more detailed density forecast evaluation for both inflation rates, and the results of which

are summarized in Tables 8 and 9.

In Table 8 we report on density forecast evaluation of our BMA range of models for

PCE deflator inflation relative to UCSV-based density forecasts when different parts of
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Table 8: Detailed Density Forecast Evaluation PCE deflator inflation

Horizon: h = 1 Horizon: h = 5
avQS-C avQS-R avQS-L avQS-C avQS-R avQS-L

Forecast evaluation sample: 1980Q1-2011Q2
BMA-SBB-SBV 0.90∗ 0.94 0.80∗∗ 0.97 1.11 0.74∗∗

(-1.57) (-0.76) (-2.15) (-0.28) (0.61) (-1.99)
BMA-SBV 0.88∗∗ 0.80∗∗∗ 0.81∗∗∗ 0.97 0.97 0.74∗

(-2.26) (-2.87) (-3.44) (-0.25) (-0.19) (-1.57)
BMA-SBB 0.91∗∗ 0.84∗∗ 0.76∗∗∗ 1.07 1.15 0.80∗

(-1.86) (-2.14) (-3.57) (0.56) (0.80) (-1.47)
BMA 0.95 0.84∗∗ 0.82∗∗∗ 1.18 1.13 0.94

(-0.96) (-2.23) (-3.09) (1.05) (0.63) (-0.46)
BMA-RWB-RWV 0.88∗∗∗ 0.84∗∗ 0.75∗∗∗ 0.91 0.91 0.71∗∗∗

(-3.21) (-2.32) (-3.71) (-1.14) (-0.58) (-2.83)

Forecast evaluation sample: 1985Q1-2011Q2
BMA-SBB-SBV 0.91∗ 0.91 0.83∗ 0.88∗∗ 0.88 0.79∗

(-1.32) (-1.02) (-1.47) (-1.76) (-0.94) (-1.57)
BMA-SBV 0.92∗ 0.81∗∗∗ 0.85∗∗∗ 0.92 0.80∗ 0.83

(-1.42) (-2.39) (-2.49) (-0.59) (-1.38) (-1.18)
BMA-SBB 0.93∗ 0.84∗∗ 0.81∗∗∗ 0.97 0.94 0.86

(-1.45) (-1.96) (-2.63) (-0.30) (-0.40) (-1.08)
BMA 0.96 0.84∗∗ 0.86∗∗∗ 1.03 0.95 0.84

(-0.67) (-1.88) (-2.44) (0.18) (-0.25) (-1.02)
BMA-RWB-RWV 0.89∗∗∗ 0.83∗∗ 0.79∗∗∗ 0.86∗∗∗ 0.76∗∗ 0.75∗∗∗

(-2.83) (-2.18) (-2.79) (-2.73) (-1.79) (-2.61)

Note: See the notes for Table 6, but now for the avQS-C, avQS-R and avQS-L
measures in (25).

Table 9: Detailed Density Forecast Evaluation GDP deflator inflation

Horizon: h = 1 Horizon: h = 5
avQS-C avQS-R avQS-L avQS-C avQS-R avQS-L

Forecast evaluation sample: 1980Q1-2011Q2
BMA-SBB-SBV 0.95 1.18 0.83∗∗∗ 0.96 1.25 0.70∗∗

(-1.13) (2.59) (-2.46) (-0.47) (1.45) (-2.23)
BMA-SBV 0.87∗∗∗ 0.96 0.70∗∗∗ 0.93 1.09 0.67∗∗

(-2.51) (-0.64) (-4.85) (-0.51) (0.54) (-2.20)
BMA-SBB 0.95 1.06 0.74∗∗∗ 1.20 1.43 0.86

(-0.62) (-0.21) (-1.80) (1.39) (2.37) (-1.09)
BMA 0.99 1.03 0.79∗∗∗ 1.33 1.40 1.02

(-0.05) (0.30) (-2.47) (1.33) (1.41) (0.11)
BMA-RWB-RWV 1.09 1.33 0.87∗∗ 1.01 1.29 0.70∗∗

(1.54) (3.25) (-1.74) (0.12) (1.55) (-1.69)

Forecast evaluation sample: 1985Q1-2011Q2
BMA-SBB-SBV 0.93 1.14 0.83∗∗ 0.86∗∗ 0.99 0.71∗∗

(-1.26) (1.68) (-2.10) (-1.75) (-0.00) (-1.83)
BMA-SBV 0.87∗∗ 0.95 0.71∗∗∗ 0.88 0.95 0.70∗∗

(-2.01) (-0.55) (-3.89) (-0.68) (-0.29) (-1.75)
BMA-SBB 0.96 1.07 0.76∗∗∗ 1.01 1.19 0.83

(-0.69) (0.83) (-2.91) (0.10) (1.37) (-0.99)
BMA 0.95 1.01 0.74∗∗∗ 1.06 1.14 0.77

(-0.72) (0.11) (-3.10) (0.30) (0.48) (-1.21)
BMA-RWB-RWV 1.13 1.36 0.93 1.02 1.20 0.80

(1.81) (2.86) (-0.94) (0.20) (0.94) (-1.14)

Note: See the notes for Table 6, but now for the avQS-C, avQS-R and avQS-L
measures in (25).
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the underlying predictive densities are emphasized, i.e., the center, the right (upper) tail,

and the left (lower) tail. It is clear that for the 1980Q1-2011Q2 sample in the upper

panel of Table 8, the BMA family of inflation models provide more precise forecasts for

both tails of the current quarter inflation density, with in particular the BMA-SBV and

BMA-RWB-RWV models also being able to outperform the UCSV for the center of this

density. The improvement over UCSV density forecasts at h = 5 for this evaluation

sample is limited to the left (lower) tail for BMA models that incorporate some form

of structural instability. For the 1985Q1-2011Q2 sample, reported in the lower panel of

Table 8, we observe similar results at h = 1 relative to the 1980Q1-2011Q2 sample. At the

one-year ahead horizon, however, the results are now a bit more mixed: the BMA-SBB-

SBV specification outperforms the UCSV model when the center and the lower tail of the

forecast densities are emphasized, BMA-SBV based density forecasts are more precise than

UCSV ones for the upper tail, and the BMA-RWB-RWV model performs better across the

whole density.

Results of a similar detailed density forecast analysis for GDP deflator inflation can

be found in Table 9. As in the case of PCE deflator inflation, our BMA-based inflation

models provide significantly more precise predictions for the lower tail in terms of the

h = 1 inflation forecast density than the UCSV model, for both the 1980Q1-2011Q2 and

the 1985Q1-2011Q evaluation samples. Across both these evaluation periods only the

BMA-SBB-SBV and the BMA-SBV members of our BMA-range of inflation models are

able to outperform the UCSV model at the one-year ahead horizon (h = 5) when we

consider the lower tail of the respective forecast densities for GDP deflator inflation.

So what can we conclude from the results reported in Tables 6-9? Conditioning BMA

across a large number of potential inflation predictors on a form of break modeling that

at the very least incorporates structural variance breaks can result in very good inflation

point forecasts, especially for the post-1984 period. Moreover, the biggest pay-off of such an

approach occurs when one wants to predict the likelihood of excessive inflation movements,

particularly one-year ahead when emphasizing the likelihood of lower-than-usual inflation

rates.

The aforementioned results are reminiscent of the discussion in Stock and Watson

(2008) who link the predictive content of economic activity variables for inflation to ex-

tremes in economic activity over the business cycle. In fact, Stock and Watson (2010) make

this explicit and propose a forecasting model that relates inflation dynamics to recessional

downturns in unemployment and they thus effectively use a nonlinear inflation-slack re-

lationship. The time-variation in the predictive content of activity variables for inflation

as implied by specifications like BMA-SBB-SBV and BMA-SBV therefore seem to pick
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up similar nonlinear inflation-slack tradeoffs. The main difference is that specifications

like BMA-SBB-SBV and BMA-SBV incorporate model uncertainty, which possibly makes

these more robust when economic downturns in different periods imply different drivers

for inflation dynamics.

5 Conclusion

In this paper we have proposed an approach that entails Bayesian model averaging of

regression-based models with possible structural breaks to forecast U.S. inflation using

real time data. Bayesian model averaging is accomplished with a variable selection ap-

proach where we use about 15 potential predictors as well as lagged inflation rates to

predict quarterly PCE and GDP deflator inflation series. Within the resulting model

average we consider flexible discrete break specifications as well as a random walk speci-

fication to model different channels of structural instability, by allowing time-variation in

the regression parameters, the error variance of the overall model average, or both.

Posterior inference on the full 1960Q1 – 2011Q2 sample shows that there is substantial

uncertainty in the specification of the individual regressions across our different Bayesian

model averaging approaches. We find that combining Bayesian model averaging with a

form of structural breaks in the regression parameters and/or the innovation variance

results in a much smaller number of predictor variables in the individual regression specifi-

cations of the model average than when we do not incorporate these structural breaks. In

addition, Bayesian model averaging with structural breaks in both the regression parame-

ters and the innovation variance seems to adapt the parsimony of the individual regression

specifications to the forecast horizon, with more parsimony when one wants to forecast

further out. Our different Bayesian model averaging with breaks specifications captures

well the time-varying properties of inflation reported in previous studies.

The real time inflation forecasting performance of our different Bayesian model averag-

ing specifications are compared with several rival approaches including simple autoregres-

sive specifications, the random walk specification and ridge regression. The well-known

Stock and Watson (2007, 2008) UCSV model is taken as the benchmark for the real-time

forecasting exercise. We evaluate the relative forecasting performance across these differ-

ent approaches in terms of both point and density forecasts for quarterly (GDP or PCE

deflator) inflation rates in the current quarter as well as the quarter one year beyond the

current quarter. This comparison shows that Bayesian model averaging over a large num-

ber of predictors in a model that at least allows for structural breaks in the innovation

variance results in very accurate inflation point and density forecasts, especially for the

post-1984 period. Bayesian model averaging with breaks in the regression parameters and
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error variance performs especially well when predicting, in real-time, the possibility of

excessive negative inflation movements over the medium term.
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A Gibbs Sampler

In this section we derive the full conditional posterior distributions of the latent variables

and the model parameters as discussed in Section 2.3.

Step 1: Sampling the variable selection parameters in DDD

We follow Kuo and Mallick (1998), which is a simplified version of the George and McCul-

loch (1993) algorithm. Starting from the previous iteration, the variable D is drawn from

its full conditional posterior distribution. We compute the value of the posterior density

(10) for δj = 0 and δj = 1 given the value of the other parameters which results in pj0 and

pj1, respectively. The full conditional posterior simplifies to

Pr[δj = 1|D−j , π, q2, B, S,K, y, x] =

λj
∏T−h
t=1 p(yt+h|D−j , xt, βt, σ2

t )|δj=1

(1− λj)
∏T−h
t=1 p(yt+h|D−j , xt, βt, σ2

t )|δj=0 + λj
∏T−h
t=1 p(yt+h|D−j , xt, βt, σ2

t )|δj=1

, (A.1)

for j = 1, . . . , k, where D−j = (δ1, . . . , δj−1, δj+1, . . . , δk)
′ and where the density of yt+h is

given in (9). We randomly choose the order in which we sample the k δj parameters. As

starting value of the Gibbs sampler we consider a model which includes all k xt variables.

Step 2: Sampling KKKβββ

The structural breaks in the regression parameters B, measured by the latent variable

κjt, are drawn using the algorithm of Gerlach et al. (2000, Section 3), which derives its

efficiency from generating κjt without conditioning on the states βjt. The conditional

posterior density for κjt, t = 1, . . . , T , j = 0, . . . , k unconditional on B is

p(κ0t, . . . , κkt|Kβ,−t,Kσ, S, θ, y, x)

∝ p(y|K,S, θ, x)p(κ0t, . . . , κkt|Kβ,−t,Kσ, S, θ, x)

∝ p(yt+h+1, . . . , yT−h|yh+1, . . . , yt+h,K, S, θ, x)

p(yt+h|yh+1, . . . , yt+h−1, κ1, . . . , κt,Kσ, S, θ, x)p(κ0t, . . . , κkt|Kβ,−t,Kσ, S, θ, x),

(A.2)

where Kβ,−t = {{κjs}kj=0}
T−h
s=1,s6=t. The density p(κ0t, . . . , κkt|Kβ,−t,Kσ, S, θ, x) is equal

to
∏k
j=0 π

κjt
j (1 − πj)1−κjt since κjt does not depend on δj . The two remaining densities

p(yt+h+1, . . . , yT−h|yh+1, . . . , yt+h,K, S, θ, x) and p(yt+h|yh+1, . . . , yt+h−1, κ1, . . . , κt,Kσ, S, θ, x)

can easily be evaluated as shown in Gerlach et al. (2000, Section 3). Because κt can take a

finite number of values, the integrating constant can easily be computed by normalization.

When δj = 0, κjt for t = 1, . . . , T − h is sampled using (4).
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Step 3: Sampling the regression parameters in BBB

The full conditional posterior density for the latent regression parameters B is computed

using a simulation smoother. We follow Carter and Kohn (1994). The Kalman smoother

is applied to derive the conditional mean and variance of the latent factors. For the

initial values of β0, . . . , βk we use a multivariate normal prior with the mean equal to

the corresponding OLS parameter estimate and a covariance matrix equal to the diagonal

matrix of the covariance matrix of the OLS parameter estimates. These OLS parameter

estimates result from estimating a model that includes all potential predictor variables,

and is re-estimated in real-time when forecasting out-of-sample. When we have δj = 0, βjt

is recursively simulated according to (9) conditional on the values of κjt and the variance

q2
j .

Steps 4 and 5: Sampling the variance parameters KKKσσσ and SSS

To draw Kσ and S we want to follow a similar approach as above. As the model for

lnσ2
t does not result in a linear state space model the Kalman filter cannot be applied.

Therefore, we apply the approach of Giordani and Kohn (2008) and rewrite the model

(2)–(3) as

ln(yt+h − β0t −
k∑
j=1

δjβjtxjt)
2 = lnσ2

t + ut

lnσ2
t = lnσ2

t−1 + κk+1,tηk+1,t,

(A.3)

where ut = ln ε2
t has a log χ2 distribution with 1 degree of freedom. We follow Carter and

Kohn (1994, 1997), Shephard (1994) and Kim et al. (1998) and approximate the lnχ2(1)

distribution by a finite mixture of normal distributions. We consider a mixture of five

normal distributions such that the density of ut is given by

f(ut) =

5∑
s=1

ϕs
1

ωs
√

2π
exp

(
− (ut − µs)2

2ωs

)
(A.4)

with
∑5

s=1 ϕs = 1. The appropriate values for µs, ω
2
s and ϕs can be found in Carter and

Kohn (1997, Table 1). In each step of the Gibbs sampler we simulate for each observation

t a component of the mixture distribution from the distribution of the mixing distribution.

Given the value of the mixture component we can apply standard Kalman filter techniques.

Hence, the variables Kσ and S can be sampled in a similar way as Kβ and B in step 2

and 3. 2 For lnσ2
0 we take a normal prior with mean −1 and variance 0.1.

2If we consider the case were κjt = 1 for j = 0, . . . , k and all t, we use the Metropolis-within-Gibbs
MCMC algorithm as in Cogley and Sargent (2005), which combines Gibbs sampling steps for model co-
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Step 6: Sampling πππ

The full conditional posterior density of π is given by

p(π|D, q2, B, S,K, y, x) ∝
k+1∏
j=1

π
aj−1
j (1− pj)bj−1

T−h∏
t=1

π
κjt
j (1− πj)(1−κjt) (A.5)

and hence the individual πj parameter can be sampled from Beta distributions with pa-

rameters aj +
∑T−h

t=1 κjt and bj +
∑T−h

t=1 (1− κjt) for j = 0, . . . , k + 1.

Step 6: Sampling of q2q2q2

The full conditional posterior density of q2
j is given by

p(q2
j |D,π,B, S,K, y, x) ∝ q−νjj exp(− ωj

2q2
j

)
T−h∏
t=1

(
1

qj
exp(

−(βjt − βj,t−1)2

2q2
j

)

)κjt
(A.6)

for j = 0, . . . , k and

p(q2
k+1|D,π,B, S,K, y, x) ∝ q−νk+1

k+1 exp(− ωk+1

2q2
k+1

)
T−h∏
t=1

(
1

qk+1
exp(

−(lnσ2
t − lnσ2

t−1)2

2q2
k+1

)

)κk+1,t

(A.7)

and hence q2
j can be sampled from an inverted Gamma-2 distribution with the scale param-

eter set equal to ωj+
∑T−h

t=1 κjt(βjt−βj,t−1)2 for j = 0, . . . , k or ωk+1 +
∑T−h

t=1 κk+1,t(lnσ
2
t −

lnσ2
t−1)2 and degrees of freedom equal to νj +

∑T−h
t=1 κjt for j = 0, . . . , k + 1.

B Data Sources and Construction

Inflation rates

Our two dependent variables are inflation rates based on the gross domestic product (GDP)

deflator as well as the personal consumption expenditures (PCE) deflator. Both measures

get revised on a regular basis and we therefore do not retrieve our data from the usual data

sources. Instead, we get the original vintages of the underlying data from the ‘Real-Time

Data Set for Macroeconomists’ (RTDSM) at the Federal Reserve Bank of Philadelphia

(http://www.philadelphiafed.org/research-and-data/real-time-center/real-time-data). The

RTDSM proxies the original vintages for each quarter by selecting the data that was origi-

nally available around the middle of that quarter (as close as possible to the 15th day of the

efficients with the Metropolis algorithm as in Jacquier et al. (1994). Giordani and Kohn (2008) use a
Metropolis-within-Gibbs MCMC algorithm where Kβ and Kσ are sampled by an adaptive Metropolis al-
gorithm using a proper candidate. Our experiments did not show substantial increase in computing time
for the Cogley and Sargent (2005) approach, so we choose to work with the exact sampling version.
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middle month of a quarter). Vintages of inflation rates are constructed as the percentage

quarterly changes of the respective deflator series.3

Explanatory variables

We use in this paper an extensive set of activity and expectations measures to model in-

flation dynamics. Like the aforementioned inflation rates, the bulk of these variables gets

revised so we strive to use as much as possible the original vintages of underlying data.

Some of the measures can be directly retrieved from the respective real-time databases,

others need to be constructed. When necessary we transform the variables to render them

I(0) by computing the percentage quarterly change of a series. The decision to transfor-

mation is based on the following: for each variable we randomly take 30% of the available

vintages used in the forecasting analysis and apply the Elliott et al. (1996) unit root test

on the (log of) the level for each of these selected vintages, and we transform the variable if

in case of half or more of selected the vintages we cannot reject the null of non-stationarity.

Real output growth - ROUT We take the original quarterly data vintages for GDP in

volume terms from the RTDSM at the Federal Reserve Bank of Philadelphia. Based on

these we construct real output growth rates, i.e., the percentage quarterly change in real

GDP.

Real durable consumption growth - RCON We take the original quarterly data

vintages for real durable personal consumption expenditures (PCE) from the RTDSM

at the Federal Reserve Bank of Philadelphia. Based on these we construct real durable

consumption growth rates, i.e., percentage quarterly change in real durable PCE.

Real residential investment growth - RINV We take the original quarterly data

vintages for real residential investment from the RTDSM at the Federal Reserve Bank of

Philadelphia. Based on these we construct real residential investment growth rates, i.e.,

percentage quarterly change in the real residential investment level.

Import price inflation - PIMP We take the original quarterly data vintages for the

imports deflator from the RTDSM at the Federal Reserve Bank of Philadelphia. Based on

these we construct import price inflation, i.e., percentage quarterly change in the imports

deflator.

Non-farm payrolls growth rate - NFPR From the RTDSM database, we take as

quarterly vintages those monthly data vintages of non-farm payrolls employment that are

closest to the middle of quarter (where the quarterly vintage is the vintage of monthly

3We define percentage quarterly change as 100 times the quarterly change of the logarithm of the original
series.
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data for the second month of the quarter). We transform these data to the quarterly

frequency through averaging; finally, the non-farm payrolls growth rate is constructed as

the percentage quarterly change in non-farm payrolls.

Housing starts - HSTS We take the original quarterly data vintages of monthly housing

starts (where the quarterly vintage is the vintage of monthly data for the second month

of the quarter) from the RTDSM at the Federal Reserve Bank of Philadelphia. We trans-

form these data to the quarterly frequency through averaging; finally, we take the natural

logarithm of the ‘raw’ quarterly average of housing starts.

M2 growth rate - M2 The RTDSM database contains quarterly data vintages of monthly

M2 data (where the quarterly vintage is the vintage of monthly data for the second month

of the quarter). However, for the 1981Q1 and 1981Q2 vintages these data are incomplete

and we replace these vintages with M2 vintage for the first months of these quarters, which

we retrieve from the ALFREDr real-time database at the Federal Reserve Bank of St.

Louis. We transform these data to the quarterly frequency through averaging; finally, the

M2 growth rate is constructed as the percentage quarterly change in the M2 level.

Unemployment ratio - UNEMPL We take the original quarterly data vintages for

unemployment as a percentage of the labor force (UNEMP) from the RTDSM at the

Federal Reserve Bank of Philadelphia.

Level term structure factor - YL This is a proxy for the level factor describing the

dynamics in the term structure of interest rates. The term structure is approximated by

seven interest rates: the 3-month Treasury bill rate, the 6-month Treasury bill rate, both

are secondary market rates retrieved from the Haver Analytics database, as well as the

Fama and Bliss (1987) 1-year, 2-year, 3-year, 4-year and 5-year zero-coupon bond yields

from the CRSP database at Wharton Research Data Services. These are monthly data,

which are not revised as they are financial data. In order to get quarterly data we select

the aforementioned interest rates at the end of the second month of a quarter. The level

term structure factor equals the cross-sectional average across the above seven interest

rates for each quarter.

Slope term structure factor - TS This is a proxy for the slope factor describing the

dynamics in the term structure of interest rates. We use the same interest rates as for the

level term structure factor - see above. These are monthly data; in order to get quarterly

data we select the aforementioned interest rates at the end of the second month of a quarter.

The slope term structure factor equals the spread between the 5-year zero-coupon bond

yield and the 3-month T-bill rate for each quarter.

Curvature term structure factor - CS This is a proxy for the curvature factor de-

scribing the dynamics in the term structure of interest rates. We use the same interest

6



rates as for the level term structure factor - see above. These are monthly data; in order

to get quarterly data we select the aforementioned interest rates at the end of the second

month of a quarter. The curvature term structure factor equals for each quarter the spread

between two times the 2-year zero-coupon bond yield and the sum of the 3-month Treasury

bill rate and the 5-year zero-coupon bond yield.

Real oil price inflation - OIL To construct real oil prices, we first retrieve nominal oil

prices - for this we use the West Texas Intermediate oil spot price from the Haver Analytics

data base. Quarterly observations result by selecting in each quarter the observed oil spot

price closest to the middle of the quarter; as these data are market prices they are not

prone to revisions. Quarterly data vintages of real oil prices are constructed by deflating

the aforementioned oil spot price, which is unrevised, by either the GDP deflator or PCE

deflator for that vintage, depending on which inflation rate one wants to model. Vintages of

real oil price inflation are then equal to the percentage quarterly change in the constructed

real oil price level.

Real food commodities inflation - FOOD Vintages of real food commodities inflation

are constructed in a similar manner as those for real oil price inflation - see above. Only

now the construction is based on the Commodities Research Bureau (CRB) Index of

Foodstuffs commodity prices, which is based on the spot prices for butter, cocoa beans,

corn, cottonseed oil, hogs, lard, steers, sugar and wheat. The CRB Foodstuffs price index

is retrieved from the Haver Analytics data base.

Real raw industrial commodities inflation - RAW Vintages of real raw industrial

commodities inflation are constructed in a similar manner as those for real oil price inflation

- see above. Only now the construction is based on the CRB Index of Raw Industrials

commodity prices, which is based on the spot prices for burlap, copper scrap, cotton, hides,

lead scrap, print cloth, rosin, rubber, steel scrap tallow, tin, wool tops and zinc. The CRB

Raw Industrials price index is retrieved from the Haver Analytics data base.

Reuters/University of Michigan Survey of Consumers’ inflation expectations

- MS The Reuters/University of Michigan Survey of Consumers asks members of the

general public, amongst other, to give a quantitative assessment of expected inflation in

a year’s time. As this is a one-year ahead measure, we lag these series, which are never

revised, with four-quarters as to make them properly real-time. The quarterly data are

retrieved from http://www.sca.isr.umich.edu/main.php at the University of Michigan.

C Prior Sensitivity Analysis

We investigate in this appendix the properties of the MCMC algorithm outlined in Sec-

tion 2.3 and detailed in Appendix A and discuss the influence of prior values on posterior
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results. We base our results on the following data generating process [DGP]

yt+1 = β0,t + β1,tx1t + β2,tx2t + β3,tx3t + σtεt+1, for t = 1, . . . , 200 (C.1)

with εt+1 ∼ NID(0, 1) and xj,t ∼ NID(0, 1) for j = 1, . . . , 3. The β3,t = 0 for t = 1, . . . , 200

and hence x3,t is not included in the model. For the first regressor we take as parameters

β1,t = 0.4 for t = 1, . . . , 89, β1,t = 0.9 for t = 90, . . . , 139 and β1,t = 0.5 for t = 140, . . . , 200.

For the second regressor we have β2,t = 0.8 for t = 1, . . . , 89, β2,t = 0.4 for t = 90, . . . , 119

and β2,t = 0.2 for t = 140, . . . , 200. Furthermore, β0,t = 1/2 for all t and lnσ2
t = −2 for

t = 1, . . . , 89, lnσ2
t = −1 for t = 90, . . . , 139 and lnσ2

t = −1.5 for t = 140, . . . , 200. Hence,

we allow for breaks in the parameters at different points in time but we also include breaks

which occur at the same time.

We apply our Bayesian model averaging framework with structural breaks (2)–(3)

with h = 1, 24000 posterior draws (with a burn-in of 4000 draws and a thinning of 2),

and different prior settings to investigate the sensitivity of posterior results with respect

to prior specification. We consider x1t, x2t and x3t as potential regressors and allow for

breaks in all parameters including the variance. Note that the intercept is always included.

In the base case we take the prior parameter λj in (5) equal to 50% for j = 1, . . . , 3. We

set a0 = 0.50 and b0 = 100 in (6), and ω0 = 0.85 and ν0 = 100 in (7) for the intercept

parameter. For the other regression parameters we choose aj = 0.5, b1 = 100, b2 = b3 = 5,

ωj = 0.75 and νj = 50 for j = 1, ..., 3, which implies a smaller expected size of breaks and,

often, a lower break probability than for the intercept. The prior parameters concerning

the variance equation are a4 = 0.8, b4 = 5, ω4 = 0.2 and ν4 = 50, respectively. The base

case prior settings are such that the BMA-SBB-SBV approach provides the best fit for the

simulated data. For example, the posterior inclusion probabilities for our base case prior

settings are well in line with DGP (C.1) for the simulated data, i.e., they equal 0.988,

0.980, and 0.030 for x1t, x2t and x3t, respectively. As a further illustration of this, we

report in Figure C.1 posterior estimates of parameters β1t, β2t and σ1t (β3t = 0 always

as it is basically never selected) together with the corresponding DGP parameters. The

results from this figure show that our approach is quite accurate in estimating both the

timing and the size of the breaks, where the estimate of β2t is slightly more volatile due

to our prior choice for b2 that is lower than b1.

In our prior sensitivity analysis, we will consider four alternative prior specifications

where we decrease or increase the prior probability of a break and decrease or increase

the prior expectation of the size of the break. These changes in the priors are applied to,

respectively, the intercept, the regression parameters and the variance specification, which

implies that we consider 12 different prior specifications in total. A lower probability of

a break than in the base case means that we multiply bj by 10 and, correspondingly, a
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Figure C.1: Posterior estimates of the time-varying parameters implied by DGP (C.1):
Base case prior settings
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Notes: The solid lines represent the posterior medians of the β1t parameter (first column), β2t parameter

(second column) and σt parameter (third column). The dashed lines denote the 25th and 75th percentiles

of the posterior distributions. The dark solid line displays the values used to generate the data generating

process in DGP (C.1).

higher probability means that we divide bj by 10 for j = 1, ...4.4 A higher expected prior

break size than in the base case is obtained by multiplying ωj and νj ∀j by 5 and, thus, a

lower expected prior break size is obtained by dividing these parameters by 5. Table C.1

summarizes the prior settings. Note, some of the prior settings are quite extreme but they

serve to illustrate our prior sensitivity analysis.

Table C.1: Summary of the prior settings for the different cases

break exp. prior intercept prior regressors prior variance
prob. size a0 b0 ω0 ν0 a1:3 b1, b2:3 ω1:3 ν1:3 a4 b4 ω4 ν4

base base 0.50 100 0.85 100 0.5 100,5 0.75 50 0.8 5 0.2 50

low small 0.50 100 0.17 20 0.5 1000,50 0.15 10 0.8 50 0.04 10
low large 0.50 100 4.25 500 0.5 1000,50 3.75 250 0.8 50 1 250
high small 0.50 10 0.17 20 0.5 10,0.50 0.15 10 0.8 0.50 0.04 10
high large 0.50 10 4.25 500 0.5 10,0.50 3.75 250 0.8 0.50 1 250

We first focus on the posterior inclusion probabilities. Table C.2 report these probabil-

ities for the standard prior setting, which are shown in the first line of the table, together

with the 12 different cases. As mentioned earlier, the posterior inclusion probabilities for

x1t and x2t are close to 1 and for x3t are close to zero which corresponds with our DGP.

In columns 3–5 we consider situations where we only change the prior settings for the

intercept parameters. We see that the posterior inclusion are hardly affected by these

changes, even if the inclusion probabilities of x3t is in some examples slightly larger than

4The prior parameters b0 and b1 are already large so in the case of a lower probability of a break in the
base case we multiply these parameters by 1.5.
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for the base case. In the final three columns of the table we display the results where we

only change the prior settings of the variance parameters. Again, the posterior inclusion

probabilities are not affected much by these prior changes, except maybe for the case where

we consider both an increase in the prior break probability and the prior break size, as

the inclusion probabilities for x1t and x2t decline to levels just below 0.90. Columns 6–8,

finally, show that the posterior inclusion probabilities for x1t and x2t become substantially

smaller when we assume a larger expected size of the break in x-variables than for the

base case, especially when we also have a higher prior probability of a break.

Table C.2: Posterior variable inclusion probabilities for different prior specifications

prior sens. intercept prior sens. regressors prior sens. variance
break prob. exp. size x1t x2t x3t x1t x2t x3t x1t x2t x3t

base base 0.988 0.980 0.030 0.988 0.980 0.030 0.988 0.980 0.030

low small 0.995 0.992 0.000 1.000 0.992 0.056 0.988 0.974 0.123
low large 0.989 0.972 0.085 0.621 0.648 0.005 0.976 0.946 0.036
high small 0.995 0.977 0.004 1.000 0.993 0.000 0.997 0.989 0.021
high large 0.988 0.974 0.123 0.499 0.571 0.002 0.839 0.878 0.098

Posterior results for different prior break probability and expected prior size of a break, see Table C.1

From Table C.2 it is clear that when we increase the prior expected break size for the

predictor variables, irrespective of the prior break probability, relative to the base case,

the impact is the most substantial in terms of the posterior inclusion probabilities. This

coincides with a substantial deterioration of the posterior medians of the parameters in

(C.1) relative to the base case. For example, in case of a higher prior break probability

and a higher expected prior break size for the predictor variables, Figure C.2 reports the

posterior estimates of β1t, β2t and σt.
5 The figure makes it clear that for this case the

posterior medians of the parameter are quite off in terms of the timing of the breaks,

with a large uncertainty for the posterior estimates of β1t and β2t as well as a σt that is

significantly lower towards the end of the sample than is implied by the DGP.

Another interesting case that emerges from the posterior inclusion results in Table C.2

is if we assume for the error variance σ2
t a higher prior probability of breaks of larger

prior expected size than in the base case, as this leads to a slightly downward bias in the

posterior inclusion probabilities. Again, as before, this seems to be a symptom of severely

imprecise posterior parameter estimation results when the prior settings for, in this case,

the error variance is changed in such a way, and Figure C.3 summarizes them. From

5The posterior estimates for the case of a lower prior break probability and a higher expected prior
break size for the x variables are very similar.
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Figure C.2: Posterior estimates of the time-varying parameters implied by DGP (C.1):
Higher prior break probabilities and higher prior break sizes for the x-variables
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Note: See Figure C.1, but now the posterior results are based on a higher prior break probability as well

as a higher prior break size for the regressors x1t, x2t, and x3t than in the base case.

Figure C.3: Posterior estimates of the time-varying parameters implied by DGP (C.1):
Higher prior break probabilities and higher prior break sizes for σ2

t
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Note: See Figure C.1, but now the posterior results are based on a higher prior break probability as well

as a higher prior break size for σ2
t than in the base case.

Figure C.3 it is clear that assuming a priori large sized breaks in σ2
t will result in a very

uncertain posterior estimate of the error standard deviation and that the timing of breaks

in both β1t and β2t are biased relative to those implied by DGP (C.1).

Altering the prior assumptions for the intercept also can lead to peculiar posterior

estimation results. In Figure C.4 we report the posterior median and interquantile range

for β1t β2t and σt when we impose a low prior break probability of breaks of larger prior

expected size than in the base case. What becomes clear from this figure is that lowering

the prior break probability of the intercept and attempting to compensate for that by

increasing the corresponding prior expected break size, results in a process for β1t that

exhibits frequent smaller sized breaks than what we impose in the underlying DGP, which

thus often result in false break signals for this parameter. For β2t and σt not only the

posterior estimates of the break dates are wrong but also the parameter levels themselves

are often inconsistent with those from the DGP.
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Figure C.4: Posterior estimates of the time-varying parameters implied by DGP (C.1):
Lower prior break probabilities and higher prior break sizes for the intercept
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Note: See Figure C.1, but now the posterior results are based on a lower prior break probability and a

higher prior break size for the intercept than in the base case.

For the remaining prior sensitivity exercises,6 the effect on the posterior parameter

estimation results are less strong but nonetheless noticeable. Especially the estimated

sizes of the breaks in the variance are substantially affected. In several of these alternative

prior cases, the posterior medians of the variance parameters do not correspond to the true

value after a break has occurred, even if the timing of the break is determined correctly.

The regression parameters β0t, . . . , β2t seem to be less affected by the same prior cases,

although we did notice much more uncertainty in the estimate of the timing of the breaks

and there is often more posterior uncertainty in the estimated parameters. A general

pattern we observe is that when the prior settings correspond to a higher probability of

larger or smaller breaks than in the base case, the posterior medians of β1t and β2t are

much more volatile over time than in Figure C.1, and a lower prior probability of larger or

smaller breaks than in the base case increases the posterior uncertainty of these regression

parameter estimates.

D MCMC Convergence Analysis

To analyze how well the MCMC sampler from Section 2.3 and Appendix A converges, we

will report in this Appendix on the application of several MCMC convergence analysis

approaches on this sampler for the full BMA-SBB-SBV specification estimated for both

PCE and GDP deflator inflation rates at h = 1 and h = 5. More specifically, we followed

the procedures utilized in, e.g., Primiceri (2005), Justiniano and Primiceri (2008) and Clark

and Davig (2011). They consider computing inefficiency factors and t-tests for equality of

the means across subsamples of the MCMC chain.

6We do not report them in order to preserve space, but they are available upon request from the authors.
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For each individual parameter and latent variable, the simulation inefficiency factor

is estimated as (1 +
∑∞

f=1 ρf ), where ρf is the f -th order autocorrelation of the chain

of draws. This inefficiency factor equals the variance of the mean of the posterior draws

from the MCMC sampler, divided by the variance of the mean assuming independent

draws. Then, if we require that the variance of the mean of the MCMC posterior draws

should be limited to be at most 1% of the variation due to the data (measured by the

posterior variance), the inefficiency factor provides an indication of the minimum number

of MCMC draws to achieve this, see Kim et al. (1998). So, for example, an inefficiency

factor of 20 for a parameter suggests that one needs in theory at least 2000 draws from

the MCMC sampler for a reasonably accurate analysis of this parameter from the model.

When estimating these inefficiency factors, we use the Bartlett kernel as in Newey and

West (1987), with a bandwidth set to 4% of the sample of draws. Finally, we also compute

the p-value of the Geweke (1992) t-test for the null hypothesis of equality of the means

computed with the first 20 percent and last 40 percent of the sample of retained draws.

For this particular convergence diagnostic test we compute the variances of the respective

means using the Newey and West (1987) heteroskedasticity and autocorrelation robust

variance estimator with a bandwidth set to 4% of the utilized sample sizes.

The two aforementioned sets of statistics were applied on a range of choices for the

total number of posterior draws as well as burn-in period lengths and thinning for the

BMA-SBB-SBV specification for both inflation rates and forecasting horizons. Based on

this comparison we felt most comfortable that with the number of posterior draws set

equal to 24000 with a burn-in period of 2000 draws and thinning value of 2, yielding 10000

retained posterior draws, our MCMC sampler would perform satisfactorily. Tables D.1

and D.2 provide a summary of, respectively, the corresponding inefficiency factors and

Geweke (1992) diagnostic tests for this choice of the number of retained posterior draws

for the BMA-SBB-SBV specification. These inefficiency factors and convergence diagnostic

tests are computed for the full (1960Q1-2011Q2) sample estimates of the parameters and

latent variables, as well as the real-time estimates of the predictive densities at h = 1 and

h = 5 for each quarter in the 1980Q1-2011Q2 evaluation sample.

For most parameters and latent variables as well as the real-time estimated predictive

densities, the inefficiency factors in Table D.1 suggest that our MCMC sampler is very

efficient and that it requires far less than 10000 retained posterior draws to be able to do

a reasonably accurate inferential analysis. In case of the time-varying parameters B at

h = 5, with likely values in the 0.9-22 range, and, in particular, for the variable selection

parameters D our sampler is less efficient.7 Nonetheless, the corresponding inefficiency

7For both inflation rates at horizon h = 5, Figure 1 indicate that the real oil price and the two real
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factors suggest a minimum number of draws of less than 4000 to achieve an accurate

analysis of these parameters, less than our choice of 10000 retained draws. We nonetheless

felt that accurate inference for the density forecast evaluation in Section 4.3 would be

served better with our choice of 10000 retained draws. The convergence diagnostic tests

in Table D.2 indeed confirm our conclusions regarding efficiency based on the results in

Table D.1. For example, in the case of the D parameters the null hypothesis of equal

means across subsamples of these 10000 retained draws is hardly ever rejected.

Thus, inference in our BMA framework appears to be reasonably accurate when we

base posterior inference on 24000 draws with a burn-in of 4000 and thin value of 2. This

also helped us to reduce computing time, as our forecasting exercise with an expanding

data window and real-time data implied that we have to rerun our MCMC sampler many

times. We use a similar choice for the posterior draws for most of the other variants

of our BMA family of models, as unreported results of a similar convergence analysis as

discussed above for these models reached similar conclusions. However, in case of the

BMA-RWB-RWV specification, which assumes that κjt and κk+1,t are always equal to 1

for all j, the inefficiency factors and convergence diagnostic tests pointed to much less

efficient estimation when using only 24000 posterior draws. Hence, for the BMA-RWB-

RWV model we increased the number of draws to 44000, with 4000 initial draws and

selection of every 4th draw.

commodity price indices are basically never selected, which makes it impossible to check the three cor-
responding δj parameters for convergence. They are therefore not part of the convergence analysis at
h = 5.
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Table D.1: Summary of simulation inefficiency factors: BMA-SBB-SBV model

Parameters Median Mean Min Max 5% 95%

PCE Deflator Inflation
h = 1 B 4020 2.964 3.806 0.889 13.822 1.531 9.829

S 201 1.186 1.228 1.039 1.601 1.057 1.500
Kβ, Kσ 4221 4.377 4.425 0.765 9.466 1.051 8.202

D 19 28.760 29.008 22.625 38.255 22.997 36.308
p(yT+h+1|y, x) 126 1.174 1.201 0.821 2.072 0.946 1.604

h = 5 B 4020 3.371 5.122 0.813 27.227 0.939 22.700
S 201 1.308 1.315 0.983 1.696 1.107 1.552

Kβ, Kσ 4221 4.014 3.817 0.743 12.329 0.937 6.697
D 16 28.829 28.949 19.865 38.823 20.049 38.004

p(yT+h+1|y, x) 122 1.426 1.676 0.960 4.592 1.031 3.446

GDP Deflator Inflation
h = 1 B 4020 3.897 4.331 0.680 12.073 1.035 9.928

S 201 1.229 1.224 0.985 1.496 1.031 1.403
Kβ, Kσ 4221 4.170 4.259 0.782 10.578 0.983 8.626

D 19 29.721 28.795 21.269 35.331 21.704 35.311
p(yT+h+1|y, x) 126 1.107 1.147 0.789 1.904 0.916 1.495

h = 5 B 4020 2.795 4.612 0.791 27.251 0.972 20.652
S 201 1.294 1.291 1.036 1.742 1.109 1.436

Kβ, Kσ 4221 3.834 3.609 0.754 10.792 0.922 7.599
D 16 28.961 27.524 11.968 38.907 14.308 38.040

p(yT+h+1|y, x) 122 1.337 1.606 0.954 5.093 1.066 3.103

Note: The table summarizes the simulation inefficiency factors, (1 +
∑∞
f=1 ρf ), for the posterior values of

B = {βt}T−ht=1 with βt = (β0t, β1t, . . . , βkt)
′, S = {σ2

t }T−ht=1 , Kβ = {κ0t, . . . , κkt}T−ht=1 and Kσ = {κk+1,t}T−ht=1 ,
the variable inclusion parameters D = (δ1, . . . , δk)′, see Section 2.3, estimated over the 1960Q1-2011Q2
sample, as well as the predictive densities p(yT+h+1|y, x) in (11), estimated in real-time for each quarter
for the 1980Q1-2011Q2 sample. The estimated inefficiency factors are based on the Bartlett kernel as in
Newey and West (1987) with a bandwidth equal to 4% of the 10000 retained draws.
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Table D.2: Summary of convergence diagnostic tests: BMA-SBB-SBV model

Parameters 10% reject rate 5% rejection rate

PCE Deflator Inflation
h = 1 B 4020 0.000 0.000

S 201 0.000 0.000
Kβ, Kσ 4221 0.000 0.000

D 19 0.000 0.000
p(yT+h+1|y, x) 126 0.000 0.000

h = 5 B 4020 0.000 0.000
S 201 0.000 0.000

Kβ, Kσ 4221 0.000 0.000
D 16 0.000 0.000

p(yT+h+1|y, x) 122 0.000 0.000

GDP Deflator Inflation
h = 1 B 4020 0.001 0.000

S 201 0.005 0.000
Kβ, Kσ 4221 0.007 0.003

D 19 0.063 0.063
p(yT+h+1|y, x) 126 0.000 0.000

h = 5 B 4020 0.001 0.000
S 201 0.000 0.000

Kβ, Kσ 4221 0.000 0.000
D 16 0.000 0.000

p(yT+h+1|y, x) 122 0.000 0.000

Note: The table summarizes the convergence test results by reporting the percent-
age for which the null hypothesis is rejected at significance levels of 10% and 5%.
This is done for the posterior values of B = {βt}T−ht=1 with βt = (β0t, β1t, . . . , βkt)

′,
S = {σ2

t }T−ht=1 , Kβ = {κ0t, . . . , κkt}T−ht=1 and Kσ = {κk+1,t}T−ht=1 , the variable inclusion
parameters D = (δ1, . . . , δk)′, see Section 2.3, estimated over the 1960Q1-2011Q2 sam-
ple, as well as the predictive densities p(yT+h+1|y, x) in (11), estimated in real-time
for each quarter for the 1980Q1-2011Q2 sample. For each of these, we compute the
p-value of the Geweke (1992) t-test for the null hypothesis of equality of the means
computed for the first 20% and the last 40% of the retained 10000 draws. The variances
of the means are estimated with the Newey and West (1987) variance estimator using
a bandwidth of 4% of the respective sample sizes.
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