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Abstract

We present an affi ne term structure model for the joint pricing of Treasury Infl ation-Pro-
tected Securities (TIPS) and Treasury yield curves that adjusts for TIPS’ relative illiquid-
ity. Our estimation using linear regressions is computationally very fast and can accom-
modate unspanned factors. The baseline specifi cation with six principal components 
extracted from Treasury and TIPS yields, in combination with a liquidity factor, generates 
negligibly small pricing errors for both real and nominal yields. Model-implied expected 
infl ation provides a better prediction of actual infl ation than breakeven infl ation. The 
value of the defl ation fl oor calculated from the model is generally small in magnitude, but 
spiked during the recent crisis.
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1 Introduction

The evolution of inflation expectations is an important input to monetary policy decisions

and is closely watched by financial market participants. Breakeven inflation - the difference

between nominal yields from Treasuries and real yields from TIPS for a given maturity

- reflects inflation expectations, but is subject to two important biases. First, TIPS are

often perceived to be less liquid than Treasuries, especially in times of financial market

stress. Second, breakeven inflation incorporates compensation for bearing inflation risk, the

so-called inflation risk premium.

In this paper, we present a Gaussian affine term structure model (ATSM) for the joint

pricing of the Treasury and TIPS yield curves that adjusts for the illiquidity of TIPS and

generates estimates of inflation risk premiums at various maturities. Our approach has a

number of advantages relative to the existing literature. First, we adjust for TIPS illiquidity

in a fashion that is internally consistent within the model based on an observable illiquidity

factor. A second advantage of our approach is that it allows for a large number of pricing

factors to be included in the model without impairing computational feasibility. This is

because our estimation approach is based on linear regressions which are easy and fast to

implement. Finally, the pricing errors implied by our model are negligibly small allowing us

to decompose breakeven inflation rates into its components with almost no error.

We fit our pricing model to the joint term structures of TIPS and Treasuries. ATSMs cap-

ture the P� and Q�dynamics of the term structure explicitly as vector autoregressions.

The traditional estimation approach for this class of models is to estimate parameters via

maximum likelihood, and factors via the Kalman Filter (see Piazzesi (2003) and Singleton

(2006) for surveys). While the traditional estimation approach has theoretical appeal, these

models prove challenging to estimate in practice for several reasons (see Kim (2009)). First,

the optimization problem is of high dimensionality, quadratic in the number of factors, mak-

ing it hard to ever know for sure whether numerical solutions represent global optima. The

second problem with the filtering approach is that it tends to be computationally intensive.

In fact, the likelihood function often turns out to be very flat, lengthening the optimization

process, a serious issue for policy applications where models need to be updated quickly.
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Figure 1: This figure shows the decomposition of breakeven inflation rates into the model-
implied expected inflation, the inflation risk premium as well as the liquidity components.
The left-hand panel shows this decomposition for 5-10 year forward breakeven inflation
whereas the right-hand panel displays the decomposition for the 10 year horizon.

Third, likelihood based estimation approaches assume yield observation errors to be serially

uncorrelated. However, as demonstrated in Adrian, Crump and Moench (2012), the assump-

tion of serially uncorrelated yield pricing errors implies excess return predictability which

violates that returns are arbitrage free.

In this paper, we apply a variant of the three step linear regression estimator introduced

by Adrian, Crump and Moench (2012) to the joint pricing of TIPS and Treasuries. In the

first step, we decompose observable pricing factors into predictable components and factor

innovations by regressing factors on their lagged levels. In the second step, we estimate

exposures of Treasury and TIPS excess returns with respect to lagged levels of pricing factors

and contemporaneous pricing factor innovations. In the third step, we obtain the market

price of risk parameters from a cross-sectional regression of the exposures of returns to the

lagged pricing factors onto exposures to contemporaneous pricing factor innovations. As our

pricing factors, we employ the first six principal components extracted from the joint cross-

section of Treasury and TIPS yields as well as an illiquidity factor. The latter is constructed

as the average absolute fitting errors from the Nelson and Siegel (1987) curve for TIPS

relative to the absolute fitting error for Treasuries.
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An important implication from our model relates to the decomposition of far in the future

breakevens into expected inflation, the inflation risk premium, and an illiquidity component.

It has long been argued that variations of 5-10 year forward rates mainly reflect changes in

risk and illiquidity premia, not in inflation expectations (see Sack and Elsasser (2004) and

Dudley, Roush and Ezer (2009)). Our model confirms that conjecture. The left-hand panel

of Figure 1 shows that model implied expected 5-10 year forward inflation is very stable,

while the variation in the forward breakeven rates mainly captures variation in the estimated

inflation risk premium. Note that the picture looks very different for the decomposition of

10 year breakeven inflation (the right-hand panel). In fact, for the 10 year decomposition,

both expected inflation and the inflation risk premium vary considerably. The liquidity

adjustment is quantitatively important for both the 5-10 year and the 10 year maturities

during the fall of 2008.

While our inflation risk premium is a linear combination of the factors used in our model,

we find that it is highly correlated with a number of observable macroeconomic and financial

time series such as disagreement about future inflation amongst professional forecasters,

consumer confidence, as well as measures of option-implied Treasury volatility. We compare

inflation forecasts from our model to the forecasts from breakeven inflation rates and show

that the risk premium and illiquidity adjustment of the breakevens leads to better inflation

forecasts than using unadjusted breakevens or a random walk. We also use the model to

estimate the value of the deflation floor embedded in TIPS. We find that although the value of

this option is generally very small, in the recent financial crisis the option value represented a

significant portion of TIPS prices as market-based measures of inflation expectations dropped

considerably.

The remainder of the paper is organized as follows. In Section 2 we introduce our joint

model for Treasury and TIPS yields. In Section 3 we discuss the econometric procedure.

Section 4 summarizes the estimation results and the model fit. In Section 5 we then use the

model for a number of applications relevant to policy makers and practitioners. Section 6

reviews the related literature and Section 7 concludes. Detailed derivations are relegated to

an appendix.
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2 The Model

2.1 State variable dynamics and pricing kernel

We begin with a review of the distributional assumptions made under the Gaussian ATSM

framework. An introduction to this class of models in continuous time is presented by

Piazzesi (2003). We cover the main results succinctly to familiarize the reader with our no-

tation. Suppose that a K⇥1 vector of pricing factors evolves according to the autoregression

Xt+1 = µ+ �Xt + ⌫t+1 (1)

where ⌫t are i.i.d. Gaussian with Et [⌫t+1] = 0K⇥1 andVt [⌫t+1] = ⌃ satisfying rank(⌃) = K.

Suppose also that assets are priced by the stochastic discount factor

Mt = exp

✓
�rt �

1

2

�

0
t�t � �t⌃

�1/2
⌫t+1

◆
. (2)

We follow Duffee (2002) in assuming that the K⇥1 price of risk vector �t takes the essentially

affine form

�t = ⌃

�1/2
(�0 + �1Xt+1) . (3)

From these assumptions it is straightforward to calculate that under the risk neutral proba-

bility measure Q, Xt evolves according to the autoregression

Xt+1 = µ̃+

˜

�Xt + ⌫

?
t+1 (4)

where µ̃ = µ � �0,
˜

� = � � �1, ⌫

?
t+1 = ⌫t+1 + ⌃

�1/2
�t, and that under Q the innovations

⌫

?
t+1 are i.i.d. Gaussian with EQ

t

⇥
⌫

?
t+1

⇤
= 0K⇥1 and VQ

t

⇥
⌫

?
t+1

⇤
= ⌃.
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2.2 No-Arbitrage Pricing

2.2.1 Treasuries

Assume that log prices of risk free discount bonds (henceforth Treasuries) take the form

logP

(n)
t = An +B

0
nXt. (5)

This assumption carries the implication that the risk free nominal short rate is affine in the

state variables as well, denoted by the short rate parameters

rt = �0 + �1Xt. (6)

From the absence of arbitrage it follows that the coefficients in equation (5) must be deter-

mined cross-sectionally by the following difference equations:

An = An�1 +B

0
n�1µ̃+

1

2

B

0
n�1⌃Bn�1 � �0 (7)

B

0
n = B

0
n�1

˜

�� �1 (8)

A0 = 0, B0 = 0. (9)

2.2.2 Inflation-Indexed Securities

We expand the ordinary Gaussian ATSM framework to allow the pricing of inflation-indexed

securities jointly with nominal securities so that both yield curves are affine in the state

variables. A wide variety of similar models have been studied before in both continuous and

discrete time, and Section 6 discusses the relationship of our model to several others.

Let Qt be a price index at time t, and let P

(n)
t,R denote the price at time t of an inflation-

indexed bond with face value 1, paying out the quantity Qt+n

Qt
at time t+n. Per construction

of Q, the price of such a bond satisfies

P

(n)
t,R = EQ

t


exp (�rt � ...� rt+n�1)

Qt+n

Qt

�
. (10)
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Denote one period log inflation by ⇡t = ln

⇣
Qt

Qt�1

⌘
, so that

Qt+n

Qt
= exp

 
nX

i=1

⇡t+i

!
. (11)

Assume that log prices of inflation-indexed bonds are also affine in the state variables, sat-

isfying

logP

(n)
t,R = An,R +B

0
n,RXt (12)

and finally assume that inflation itself is also a linear function of the pricing factors, denoted

by the inflation short rate parameters

⇡t = ⇡0 + ⇡1Xt. (13)

In order to derive the pricing recursions for inflation-indexed bonds, we rewrite equation (10)

in terms of an indexed bond purchased one period ahead. This gives

P

(n)
t,R = EQ

t

h
exp (�rt + ⇡t+1)P

(n�1)
t+1,R

i
. (14)

Under our assumptions, taking logs on both sides of (14), and making use of the fact that

⌫

?
t+1 ⇠ N(0,⌃) under Q, we can calculate the expectation explicitly. After matching coeffi-

cients we find that the coefficients in equation (12) are determined by the recursive equations

An,R = An�1,R +

�
B

0
n�1,R + ⇡1

�
µ̃+

1

2

�
B

0
n�1,R + ⇡1

�
⌃ (Bn�1,R + ⇡

0
1)� �0,R (15)

B

0
n,R =

�
B

0
n�1,R + ⇡1

�
˜

�� �1 (16)

A0,R = 0, B0,R = 0K⇥1 (17)

where we have defined �0,R = �0 � ⇡0.
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2.3 Expected Inflation

The model can be used to compute expected inflation under both the risk-neutral and the

physical measure at any horizon. The difference between the two measures of inflation

expectations constitutes the inflation risk premium. Define the n-period average of expected

log inflation under the physical measure as

⇡

(n)
t = � 1

n

lnEP
t


Qt

Qt+n

�
. (18)

Assume that expected inflation is affine in the state variables according to

lnEP
t


Qt

Qt+n

�
= �An,⇡ � B

0
n,⇡Xt. (19)

Then by expanding the left hand side, it can be shown that the coefficients follow the recursive

relations

An,⇡ = An�1,⇡ +
�
⇡1 +B

0
n�1,⇡

�
µ� 1

2

�
⇡1 +B

0
n�1,⇡

�
⌃ (⇡

0
1 +Bn�1,⇡) + ⇡0 (20)

B

0
n,⇡ =

�
⇡1 +B

0
n�1,⇡

�
� (21)

A0,⇡ = 0, B0,⇡ = 0. (22)

Similarly, we can obtain the n-period average of expected log inflation under the risk-neutral

measure as

lnEQ
t


Qt

Qt+n

�
= �A

?
n,⇡ � B

?0
n,⇡Xt. (23)

where

A

?
n,⇡ = A

?
n�1,⇡ +

�
⇡1 +B

?0
n�1,⇡

�
µ̃� 1

2

�
⇡1 +B

?0
n�1,⇡

�
⌃

�
⇡

0
1 +B

?
n�1,⇡

�
+ ⇡0 (24)

B

?0
n,⇡ =

�
⇡1 +B

?0
n�1,⇡

�
˜

� (25)

Then, the inflation risk premium is simply

'

(n)
t = An,⇡ +B

0
n,⇡Xt � A

?
n,⇡ � B

?0
n,⇡Xt (26)
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2.4 TIPS Liquidity Effects

As documented by Pflueger and Viceira (2011), the liqudity of TIPS appears to be system-

atically priced. We denote this liquidity pricing as deviation by the term liquidity effects.

Examples of the pricing of liquidity in TIPS have manifested themselves towards the be-

ginning of the program prior to 2003, when the Treasury reaffirmed its commitment to the

TIPS program (Sack and Elsasser, 2004), and in the aftermath of the Lehman bankruptcy

in late 2008, when considerable TIPS inventory was sold into the market (Campbell, Shiller

and Viceira, 2009). Liquidity effects are also present in nominal Treasuries, for example

as captured by the on-the-run/off-the-run spread. However, measuring both absolute TIPS

liquidity effects and absolute Treasury liquidity effects and taking the difference is equiva-

lent to modeling the liquidity of these securities in purely relative terms. Our method of

identification thus attributes the entire liquidity premium to TIPS yields.

Let Lt be a Kl ⇥ 1 vector of liquidity factors which we assume to be observed. We can then

model the liquidity effect `

(n)
t = `0 + `1Lt as a deviation from no arbitrage according to

P

(n)
t,R e

�`
(n)
t

= EQ
t

h
exp(�rt)P

(n�1)
t+1,R e

�`
(n�1)
t

i
(27)

We can thus simply expand the state space to include L, so that

X

L
T+1 =

⇥
X

0
t+1 Lt+1

⇤0
. (28)

Augmenting the dimensions of �, µ, �, �, and all other variables accordingly, we find that

log

⇣
P

(n)
t,R e

�`
(n)
t

⌘
= An,R +B

0
n,RX

L
t (29)

where the same recursive restrictions on the TIPS yield parameters as in equations (15)

and (16) above.1 As mentioned earlier, our identification of liquidity effects assumes that

Treasury yields do not have a liquidity component. We can impose this assumption in our

model by treating the liquidity factors as ’unspanned’ factors for Treasuries. In particular,
1With some abuse of notation we continue to use the parameters An,R and Bn,R despite the fact that we

now use a larger state space.
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this implies that ˜

� takes the block form

2

4 �

?
XX 0

�

?
XL �

?
LL

3

5

and that the elements in �1 corresponding to the liquidity factors are all zero. As discussed in

Adrian, Crump and Moench (2012), this restriction may be imposed by a slight modification

of the three-step estimator.

3 Estimation

Estimation of the model is in the spirit of Adrian, Crump and Moench (2012) using a three-

step least-squares estimator for the parameters �0 and �1. This estimator may be viewed as

a generalization of the Fama and MacBeth (1973) procedure allowing for time varying prices

of risk. Contrary to traditional approaches to estimating Gaussian ATSMs, this approach

uses excess holding period returns to estimate the model parameters.

3.1 Zero Coupon Excess Returns

Log excess one period holding returns on Treasuries are defined as

rx

(n�1)
t+1 = logP

(n�1)
t+1 � logP

(n)
t + logP

(1)
t . (30)

Following Adrian, Crump and Moench (2012), we expand this expression in terms of the

state variables Xt and innovations ⌫t+1

rx

(n�1)
t+1 = An�1 +B

0
n�1Xt+1 � An � B

0
nXt � �0 � �1Xt (31)

= an�1 + cn�1Xt + �

0
n�1⌫t+1
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where

an�1 = B

0
n�1�0 �

1

2

B

0
n�1⌃Bn�1 (32)

cn�1 = B

0
n�1�1 (33)

�n�1 = Bn�1. (34)

Log excess one period holding returns on inflation indexed securities are defined as

rx

(n�1)
t+1,R = log

Qt+1

Qt
P

(n�1)
t+1,R � logP

(n)
t,R + logP

(1)
t . (35)

A decomposition similar to the one above gives the expression

rx

(n�1)
t+1,R = an�1,R + cn�1,RXt + �

0
n�1,R⌫t+1 (36)

where

an�1,R =

�
B

0
n�1,R + ⇡1

�
�0 �

1

2

�
B

0
n�1,R + ⇡1

�
⌃ (Bn�1,R + ⇡

0
1) (37)

cn�1,R =

�
B

0
n�1,R + ⇡1

�
�1 (38)

�n�1,R = Bn�1,R + ⇡

0
1. (39)

3.2 Three Step Regression Approach

We now present our three-step procedure for estimating the model parameters using ordinary

least squares exploiting the above representations for excess returns. This procedure parallels

the estimation approach introduced by Adrian, Crump and Moench (2012) for Gaussian

ATSMs without inflation-indexed bonds.

1. Given a set of pricing factors, the state equation (1) can be estimated using OLS to

obtain µ̂,

ˆ

�, ⌫̂ and ˆ

⌃. We obtain the short-rate parameters ˆ

� and ⇡̂ by regressing the

nominal short rate and inflation on contemporaneous pricing factors.

2. Second, we estimate the following time series regressions for each of N selected Treasury

10



excess return maturities and NR selected inflation-indexed excess return maturities:

rx

(n)
t+1 = an�1 + cn�1Xt + �

0
n�1⌫̂t+1 + e

(n�1)
t+1 (40)

rx

(n�1)
t+1,R = an�1,R + cn�1,RXt + �

0
n�1,R⌫̂t+1 + e

(n�1)
t+1,R. (41)

The estimated coefficients are stacked into the N ⇥ 1 matrix ˆa,the NR ⇥ 1 matrix ˆaR,

the N ⇥K matrices ˆc and ˆ

�

0 and the NR ⇥K matrices ˆcR and ˆ

�

0
R. We also calculate

the matrices ˆ

B

?
=

h
vec

ˆ

�1
ˆ

�

0
1 . . . vec

ˆ

�N
ˆ

�

0
N

i0
and the analogously-defined ˆ

B

?
R.

3. Third, we estimate the price of risk parameters �0 and �1 via cross sectional regression.

This is done by stacking the joint systems of excess return coefficients (32)-(33) and

(37)-(38). This system of equations takes the form

2

4 �

0

�

0
R

3

5
[�0 �1] =

2

4 a+

1
2�

?
vec(⌃)

aR +

1
2�

?
Rvec(⌃)

c

cR

3

5 (42)

and can be more compactly written as

B0
⇤ = [A C] . (43)

Replacing these values with their sample estimates obtained in steps (1) and (2), we

propose the estimator
ˆ

⇤ =

⇣
B̂B̂0

⌘�1

B̂0
h
ˆA ˆC

i
. (44)

Adrian, Crump and Moench (2012) show that under standard distributional assump-

tions the estimator ˆ

⇤ is consistent and asymptotically normal. With the estimated

parameters in hand we are now able to generate the bond price loadings via the recur-

sions obtained in Section 2.2.
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3.3 Iterative Estimation

Recall that real excess returns for equation (41) are calculated according to

rx

(n�1)
t+1,R = log

Qt+1

Qt
P

(n�1)
t+1,R � logP

(n)
t,R + logP

(1)
t

Due to the CPI release lag, the price index Qt for TIPS is the two-month-lagged value of

the price index. However, when regressing lagged inflation on our contemporaneous pricing

factors we find that the fit of that regression is poor.2 We thus take as our measure of

inflation a projection of ⇡t onto contemporaneous pricing factors according to equation (13).

We refer to the fitted coefficients as ⇡̂1. The long-term average of inflation is not well

identified in our short sample covering less than 13 years of monthly data. We therefore

fix ⇡0 in this regression to (2/12)%, thus implicitly assuming that the long run mean of

annualized monthly inflation implied by our model is 2%. Note that while fixing ⇡0 does not

impact the cross sectional fit of the model, it does influence the mean of the inflation risk

premium implied by our model.

Excess returns on TIPS depend on ⇡1, which needs to be estimated. We employ an iterative

procedure to do so. The procedure consists of an estimation algorithm which maximizes the

model fit for TIPS yields. This is done in the following way. As we show in Appendix B the

recursions for TIPS yields are quadratic functions of ⇡1. Given estimates of the remaining

model parameters, we can thus perform a simple numerical optimization to find a new

estimate b̂⇡1 of the inflation factor loadings that minimizes the squared deviations between

actual and model-implied TIPS yields. We update real excess returns using this new value

for ⇡ and repeat the three-step estimation as described above. In practice, we iterate this

procedure until convergence. This is generally achieved in fewer than 25 iterations, the

whole process requiring approximately 6-8 seconds of computation on a standard personal

computer.
2Kim (2009) also studies the relationship of inflation to the term structure in depth, finding that monthly

changes to the CPI are unspanned by the term structure, whereas useful information about the trend
component is embedded in yields. Our estimation supports this finding - the necessity of optimizing over
the inflation parameters ⇡1 is unsurprising if we do not expect information about monthly CPI inflation to
be spanned by the Treasury yield curve or the long-run TIPS yield curve.
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4 Empirical Results

In this section, we provide results from the estimation of our joint term structure model. We

first discuss the data sources as well as our choice of pricing factors. We next characterize the

fit of the model for both the Treasury and the TIPS curve and present results on the estimated

prices of risk. Finally, we decompose long-term breakeven inflation into its constituents:

inflation expectations, the inflation risk premium, and a liquidity component.

4.1 Data and Factor Construction

We obtain our monthly zero coupon bond yields from the Gurkaynak, Sack and Wright (2007,

2010) datasets (GSW hereafter) which can be obtained from the Federal Reserve Board of

Governors research data page.3 These data are based on fitted Nelson-Siegel-Svensson curves,

the parameters of which are published along with the estimated zero coupon curve. We use

these parameters to back out the cross-section of nominal and real zero-coupon yields for

maturities up to 10 years for TIPS and Treasuries, taking end-of-month observations from

1999:01-2012:08 for a total of T = 163 observations. We use the one-month Treasury yield

from GSW as the nominal risk free rate. The price index Qt used to calculate TIPS payouts is

seasonally unadjusted CPI-U, which is available from the Bureau of Labor Statistics website.

In the regression (44) we select a cross section of N = 11 Treasury excess returns for ma-

turities n = 6, 12, 24, . . . , 120 months and NR = 8 excess returns on TIPS with maturities

n = 36, . . . 120 months. As in Adrian, Crump and Moench (2012), we use as pricing factors

the principal components extracted from yields. In addition, here we add liquidity factors to

account for the deviations from no-arbitrage pricing observed in TIPS. In order to be able

to disentangle the differential impact of yield curve factors and liquidity factors on TIPS

yields, we partial out the latter before extracting principal components. Specifically, we first

orthogonalize TIPS yields to the first three principal components of nominal Treasury yields.

We then regress these orthogonalized TIPS yields onto the liquidity factors and finally ex-

tract principal components from the joint cross section of nominal yields and the residuals

from this regression.
3See http://www.federalreserve.gov/econresdata/researchdata.htm
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In our baseline specification we extract the first six principal components from the joint

cross-section of Treasuries and regression residuals and use as our single liquidity factor

the average absolute TIPS yield curve fitting error from the model of Gurkaynak, Sack and

Wright (2010) and obtained from the Board of Governors.4 Notably, this series shows a sharp

spike in late 2008. Given this set of factors as well as the excess holding period Treasury

returns and TIPS returns, we then estimate the parameters of our model according to the

procedure described above.5

4.2 Model Fit and Parameter Estimates

We start by discussing the fit of the model for Treasury and TIPS yields and study the

estimates of the price of risk parameters. We show that our model fits both yield curves

extremely well and gives rise to substantial time variation in the prices of risk. Since tra-

ditional term structure models are estimated imposing nonlinear cross-equation restrictions,

estimation of these models with a large number of factors is computationally demanding. In

contrast, adding factors to our regression based approach comes at no computational cost.

Table 1 reports the time series properties of the yield pricing errors for the Treasury curve

implied by the model. We see that the average yield pricing errors are very small, not ex-

ceeding 2.8 basis points in absolute value. They also exhibit little variability as the standard

deviations of Treasury yield fitting errors are of the order of at most 7 basis points. While

these Treasury yield fitting errors are slightly larger than those implied by the five factor

model for Treasuries only of Adrian, Crump and Moench (2012), it is important to bear in

mind that we are here jointly fitting the cross-section of Treasury and TIPS yields with only

six yield factors. In line with the discussion of the relationship between yield and return

pricing errors in Adrian, Crump and Moench (2012) we find that the yield pricing errors

are strongly serially correlated whereas the return pricing errors show little autocorrelation.

Table 2 reports analogous results for yield and return fitting errors of TIPS. Interestingly,
4We use monthly maturities from three months to ten years for nominal Treasuries and from three years

to ten years for the TIPS regression residuals. We start at a maturity of three years because GSW do
not publish TIPS maturities with very short maturities owing to the “carry” distortion caused by the CPI
indexation lag.

5Note that we set µ= 0 in the estimation since all factors have been demeaned.
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our model fits TIPS yields better than Treasuries as the average yield pricing error for TIPS

does not exceed 1.1 basis points across the maturity spectrum with similarly low standard

deviations. As in the previous table, the yield pricing errors display a notable degree of

serial correlation while the return pricing errors at least for shorter maturities are essentially

serially uncorrelated.

Figures 2 and 4 provide a number of different visual diagnostics of the time series fit of

the model for both curves. In particular, the upper two panels of these figures show the

observed and model-implied time series of yields at different maturities for the Treasury and

TIPS curve, respectively. Consistent with the results in Tables 1 and 2 discussed above,

the two lines are almost visually indistinguishable in all of these charts. The lower two

panels in the figures plot the observed and model-implied excess holding period returns. We

also superimpose the model-implied expected excess returns to demonstrate that there is

substantial time variation in the model-implied compensation for risk.

The upper two panels of Figures 3 and 5 provide plots of unconditional first and second

moments of both yield curves as observed and fitted by the model. The charts reinforce

that the model fits both moments very well for both yield curves. The lower left panel of

Figures 3 and 5 provide plots of the estimated yield loadings Bn for Treasuries and Bn,R

for TIPS. These allow us to interpret the different factors according to their respective

loadings on different sectors of both yield curves. In line with the previous literature, the

first principal component clearly represents a level factor for both the Treasury and the TIPS

term structure. Similarly, the third principal component represents a slope factor featuring

positive loadings on long maturities and negative loadings on short maturities in both curves.

The second and fourth principal components capture additional level and slope effects present

in the two term structures that are not captured by the first and third components. The

lower right panels of both figures show the corresponding excess return loadings Bn�1 for

Treasuries and Bn,R�1 for TIPS. These show that the fifth and sixth principal components

extracted from the joint cross-section are the main drivers of expected excess returns in our

model. This is qualitatively consistent with the evidence presented in e.g. Cochrane and

Piazzesi (2005) and Adrian, Crump and Moench (2012).

Table 3 provides the estimated market price of risk parameters for our model. These reinforce
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the finding that the fifth and sixth principal components are important drivers of risk premia

in our model. Interestingly, the liquidity factor does not significantly add to time variation

in market prices of risk.

Given the pricing factors and the estimated model parameters, we can decompose breakeven

inflation rates at any horizon into its three constituents: expected inflation, the inflation risk

premium, as well as a liquidity adjustment. Figure 1 shows the time series of these compo-

nents for both the 10 year breakeven inflation as well as the 5-10 year forward breakeven

inflation rate. These charts highlight the two main conclusions from our model. First, while

expected inflation explains some of the variation of average inflation over the next ten years,

it is very close to constant at very long forward horizons. This implies that the bulk of the

dynamics of long-term forward breakeven inflation rates is driven by inflation risk premia.

Second, while liquidity effects have played only a minor role over most of the sample period,

they have strongly contributed to the dynamics of breakeven rates in the recent financial

crisis period. In particular, our model largely attributes the collapse of long-term forward

breakeven inflation rates in the crisis to liquidity effects rather than changes in underlying

inflation expectations.

5 Applications

In this section, we illustrate how the model can be used to extract quantities of interest to

policy makers as well as fixed income investors. We start by studying the dynamics of our

estimated inflation risk premium relative to relevant financial and economic time series. We

then document that our breakeven inflation rates adjusted for the inflation risk premium

provide a better indicator of the level of future inflation than observed breakevens. Finally,

we derive the option value of the deflation floor embedded in TIPS.

5.1 Interpreting the Estimated Inflation Risk Premium

The inflation risk premium implied by our model is a linear combination of the six yield

components as well as the liquidity factor. It is therefore difficult to directly interpret its
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dynamics. Instead, we correlate our estimated inflation risk premium with a number of

observable macroeconomic and financial variables the choices of which are motivated by

economic theory. In particular, we consider 1) the cross-sectional standard deviation of

individual inflation four quarters ahead from the Blue Chip Financial Forecasts survey; 2)

the difference between the 85th and 15th percentile of one quarter ahead inflation forecasts

from the same survey; 3) the three-month swaption implied Treasury volatility from Merrill

Lynch; 4) the unemployment rate; 5) year-over-year core CPI inflation; and 6) consumer

confidence as measured by the Conference Board survey.

Figure 4 plots the estimated two-year inflation risk premium along with each of these series.

Perhaps not surprisingly, the inflation risk premium tends to comove with the two survey

measures of forecaster disagreement about future inflation. This implies that market partic-

ipants command higher inflation compensation at times when there is broad disagreement

about the inflation outlook. We also find that swaption-implied Treasury volatility comoves

with inflation risk premiums, suggesting that the expected volatility of Treasury securities

to some extent reflects movements in the required compensation for bearing inflation risk

demanded by investors. The estimated inflation risk premium further shows some comove-

ment with the unemployment rate over our sample. This is consistent with the idea that

risk premia are countercyclical. We see a somewhat smaller correlation between the inflation

risk premium and core inflation which is somewhat surprising given that core inflation is

generally perceived as a good measure of the underlying trend in inflation. Finally, there is

a clear negative relationship between the inflation risk premium and the level of consumer

confidence, which might loosely be interpreted as evidence for the welfare costs of price

instability.

Table 4 provides estimation results for a number of regression specifications in which we

relate the two-year inflation risk premium to the above variables. It should be emphasized

that given the high degree of persistence in a number of these series, the reported standard

errors need to be interpreted with caution. We therefore focus our discussion on assessing

the degree of (partial) correlations between these variables. In order to do so we standardize

the variables such that we can interpret the regression coefficients in relative terms. We first

note that the estimated individual correlation coefficients are relatively similar in absolute
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magnitude with consumer confidence having the strongest absolute correlation with the in-

flation risk premium. This result continues to hold true in a joint regression, where consumer

confidence is most strongly negatively correlated with the inflation risk premium while the

difference between the 85th and 15th percentile of one quarter ahead inflation forecasts from

the Blue Chip survey is the most positively correlated.

5.2 Inflation Forecasting

Breakeven inflation rates are the primary market based measure of inflation expectations

and are therefore of considerable interest to policy makers and market participants alike.

However, breakeven inflation dynamics may also be influenced by changes in the degree of

liquidity as well as inflation risk premia. Since our model allows us to separate these effects,

it is natural to assess its performance in terms of predicting future inflation. We compute our

model-implied average expected inflation over the next six, twelve, 24 and 36 months using

the results from Section 2.3. We compare these predictions with those implied by actual

observed zero-coupon breakeven inflation rates as well as those implied by a simple random

walk. The results of this exercise are provided in Table 5 which shows the root mean squared

error (RMSE) implied by the different forecasts for two sample periods: one that covers the

entire estimation sample from 1999 : 01� 2012 : 08 and one that excludes crisis period from

2007 : 09� 2009 : 05. Considering the full sample, our model forecast outperforms both the

unadjusted breakevens as well as the random walk forecast at all horizons, with the relative

improvement over the unadjusted breakevens declining as the forecast horizon increases.6

However, even at the three year horizon, the outperformance with respect to unadjusted

breakevens is substantial with a reduction of RMSE of approximately 24%. When we ex-

clude the crisis period, our model continues to forecast better than unadjusted breakevens

and the random walk at short horizons. However, at forecast horizons beyond one year

ahead the random walk now produces somewhat lower RMSEs. Since our model explicitly

accounts for risk premia and liquidity effects we expect it to do well in crisis periods when
6Note that the actual breakeven inflation rates at the six and twelve month horizon are subject to

substantial volatility resulting from issues related to the fitting of zero coupon TIPS yields by the Nelson-
Siegel-Svensson methodology. Consequently, unadjusted breakeven forecasts at these horizons should be
interpreted with caution.
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these components play an important role. Figure 8 displays the inflation forecasts implied

by the different models along with future average inflation over different forecast horizons.

These charts show that our model forecasts for inflation are generally smoother than observed

breakevens and visibly closer to actual inflation especially in the recent crisis period. More-

over, consistent with the above discussion, the random walk forecast actually rises through

the crisis period when market-based measures of inflation were sharply declining.

5.3 TIPS Optionality

Although the principal of a TIPS is adjusted for monthly accrued inflation, the final payouts

include an embedded option.7 At maturity, the value of the bond will be the greater of the

nominal principal ($100,000) or the principal adjusted for cumulative CPI-U inflation since

issuance. Grishchenko, Vanden and Zhang (2011) exploit this feature to extract risk-neutral

deflation probability forecasts from Treasury and TIPS prices and find that the time-varying

value of this option has predictive content for several economic variables, most notably

inflation. Following their approach, we can quantify the value of the embedded deflation

floor within our model. Appendix A provides the derivation and gives an explicit formula

for the value of the option in terms of the parameters of our model. Figure 10 plots the time

series of the option value for the five and ten year TIPS under different assumptions about

the remaining time to maturity. Of course, in periods when past inflation has been positive

a shorter remaining time to maturity reduces the probability of seeing cumulative deflation

over the lifetime of the bond. As the charts in Figure 10 show, except during the financial

crisis the value of the embedded option is small, generally amounting to less than 1% of

the principal. However, in the recent financial crisis when breakeven inflation expectations

declined sharply the value of this option became much greater, approaching a maximum of

8% of principal among our observed maturities not taking into account the accrual of past

inflation.
7It is important to note that TIPS coupon payments are not subject to this optionality.
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6 Related Literature

The body of related literature extracting inflation expectations from the joint pricing of

TIPS and Treasury yield curves is growing rapidly. Early papers on the topic include Chen,

Liu and Cheng (2005), Grishchenko and Huang (2008), Hördahl and Tristani (2008), and

Adrian and Wu (2009). Most of the papers - as we do - use the zero coupon yield curves of

Gurkaynak, Sack and Wright (2007) and Gurkaynak, Sack and Wright (2010) to fit Gaussian

ATSMs. Prices of zero-coupon bonds have cleaner theoretical behavior than coupon-bearing

securities, and fitting a zero curve adjusts for the differences in duration due to the coupon

structures of various issuances.

An important difference between our approach and alternative research is in the illiquidity

adjustment of TIPS. Our illiquidity adjustment is most closely related to Pflueger and Vi-

ceira (2011), who use observable factors in order to adjust TIPS returns. While Pflueger

and Viceira (2011) only conduct return forecasting using these illiquidity proxies, we are

embedding the modeling of the illiquidity premium directly within the ATSM model. In

fact, we allow our illiquidity factor to enter the pricing of risk of TIPS, which is equivalent

to a return forecasting regression. However, we focus on only one illiquidity variable (the

GSW absolute fitting error of TIPS relative to the absolute GSW fitting errors of the Trea-

sury yield curve), as we find that the other variables of Pflueger and Viceira (2011) do not

significantly improve our ability to fit. The absolute yield curve fitting errors have been used

by practitioners and policy makers as a proxy of illiquidity for some time, first appearing in

an academic paper by Hu, Pan and Wang (2010).

A number of papers have pointed out that TIPS have been less liquid than off the run

Treasury securities until about 2003 (see Sack and Elsasser (2004) and Dudley, Roush and

Ezer (2009)) which generated an illiquidity premium in breakeven inflation. Pflueger and

Viceira (2011) attempt to capture this illiquidity premium by including the relative volume

of TIPS versus Treasury securities as conditioning variable, while D’Amico, Kim and Wei

(2010) model this type of illiquidity as a latent factor in an ATSM. The reported estimates

by D’Amico, Kim and Wei (2010) end prior to the financial turbulence of 2008 so that it

is not clear to what extent the illiquidity of the TIPS market in the Fall of 2008 would be
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picked up by the model. In contrast, our illiquidity factor explicitly captures the market

dislocations of 2008.

Christensen, Lopez and Rudebusch (2010) report estimates from an ATSM model with three

nominal factors (level, slope and curvature) and one real factor (level). Their model is par-

simonious, as the prices of risk are restricted so as to be consistent with a Nelson and Siegel

(1987) yield curve (see Christensen, Diebold and Rudebusch (2011) for the relation between

the ATSM models and the Nelson-Siegel curve). The parsimony of the approach of Chris-

tensen, Lopez and Rudebusch (2010) can be viewed as an alternative to our regression based

approach to overcome the computational challenges of estimating ATSMs. However, the

price of risk restrictions that are imposed in the setup of Christensen, Lopez and Rudebusch

(2010) are likely rejected empirically. We find that our specification using six yield factors

and a liquidity factor generates pricing errors that are considerably smaller than the ones

reported by Christensen, Lopez and Rudebusch (2010). Our usage of a greater number of

pricing factors is also justified from the literature on nominal yield curves, which points to

the fact that the level, slope and curvature factors are not sufficient to explain the time series

and cross section of nominal yields (see Cochrane and Piazzesi (2008) and Adrian, Crump

and Moench (2012)). Furthermore, as Christensen, Lopez and Rudebusch (2010) do not

adjust for TIPS illiquidity, their measure of expected inflation is hard to interpret during

the financial crisis.

Haubrich, Pennacchi and Ritchken (2012) present a model that uses inflation swaps, actual

inflation, and survey inflation in addition to the TIPS and Treasury yield curves. Similar to

an earlier paper by Adrian and Wu (2009), Haubrich, Pennacchi and Ritchken (2012) allow

for heteroskedasticity explicitly by estimating a GARCH model for the yield processes. Prices

of risk are restricted to be functions of these estimated second moments. While the model of

Haubrich, Pennacchi and Ritchken (2012) combines the different data sources elegantly, the

resulting inflation risk premium differs sharply from our estimates. In fact, the inflation risk

premium is close to constant over time, implying that far in the future breakeven forward

rates reflect changes in inflation expectations. In contrast, in our model, the inflation risk

premium varies substantially over time, while far in the future expected inflation is constant.

We view our finding as a desirable feature, and it is indeed fully consistent with the intuitions
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of Sack and Elsasser (2004) and Dudley, Roush and Ezer (2009) suggesting that variations

in 5-10 year forward breakevens mainly reflects changes in inflation risk premia.

Chernov and Mueller (2012) present an ATSM model where a “hidden factor” is extracted

from inflation surveys. They show that this hidden inflation survey factor is a significant

price of risk factor. While we do not incorporate any survey inflation expectations, our

framework would allow the introduction of Chernov and Mueller’s hidden factor as an un-

spanned factor in a straightforward manner. Such unspanned factors would affect the pricing

of risk, but not the cross sectional fit of the yield curve (i.e. it would change the P�dynamics,

but not the Q�dynamics). We leave it to future research to include unspanned risk factors.

D’Amico, Kim and Wei (2010), Haubrich, Pennacchi and Ritchken (2012), and Grishchenko

and Huang (2012) also incorporate survey inflation expectations in their estimates of the

inflation risk premium. However, those papers consider the inflation forecasts as true prob-

ability assessments, while Chernov and Mueller (2012) consider the forecasts of inflation to

be subjective and possibly different from the ATSM implied inflation estimate.

A commonality among the alternative approaches by D’Amico, Kim and Wei (2010), Chris-

tensen, Lopez and Rudebusch (2010), Haubrich, Pennacchi and Ritchken (2012), and Cher-

nov and Mueller (2012) is that they all use maximum likelihood estimation for the parameter

estimates and a Kalman filter for the factor extraction. As discussed earlier, such estimates

are computationally costly, and convergence to a global maximum is generally difficult to

verify. In contrast, our approach relies only on linear regressions, which is numerically fast,

computationally robust, and allows the straightforward extension of the model to include

additional factors.
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7 Conclusion

We present a joint Gaussian affine term structure model for the cross section of TIPS and

Treasury securities that has a number of desirable features relative to the existing literature.

We are adjusting for the relative illiquidity of TIPS during times of crisis by using the

absolute pricing errors of TIPS relative to Treasuries from a Nelson-Siegel-Svenson curve in a

model consistent way. Our estimation approach is regression based, allowing straightforward

reestimation, and making the model easily adaptable to questions that require additional

conditioning variables. Our methodology also allows us to fix the unconditional average of

inflation, which is necessary given the short time series history for TIPS. Relative to other

models in the literature, our pricing errors are extremely small, allowing the decomposition

of breakeven inflation into an inflation risk premium, expected inflation, and an illiquidity

premium with almost no error. Importantly, we find that the majority of variation in the

5-10 year forward breakeven inflation is due to variation in risk and liquidity premia, while

the 10 year inflation rate is also considerably influenced by changes in inflation expectations.
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A Price of Embedded Deflation Floors
We denote a the price of a deflation floor by
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where S1
t,n and S2

t,n combine the remaining terms from (46) and (47). The above expectations are of a
standard form and can be computed explicitly. Denoting by N(·) the standard normal cumulative distribution
function, by standard properties of the normal and lognormal distribution we have:
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Applying equation (49) to the expectations in equation (48), we obtain
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B Expansion for ⇡ Optimization
Given the structure of the model, one can estimate ⇡0 and ⇡1 by using information contained in the entire
cross-section of TIPS yields rather than the real short rate alone.

B.1 Recursion Expansion
We flatten the no-arbitrage recursions as follows.
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This formula for y(n)t,R shows that real yields are quadratic in the inflation loadings ⇡1. It is straightforward
to setup a quadratic least squares optimization problem, minimizing the difference between observed yields
and the fitted yields as a function of ⇡1.
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C Tables and Figures

Table 1: Treasuries: Fit Diagnostics

This table summarizes the time series properties of the pricing errors implied by our benchmark model. The
sample period is 1999:01-2012:08. "Mean", "std", "skew", and "kurt" refer to the sample mean, standard
deviation, skewness, and kurtosis of the errors; ⇢(1), ⇢(6) denote their autocorrelation coefficients of order
one and six. Panel 1 reports properties of the yield pricing errors and Panel 2 reports properties of the excess
return pricing errors.

n = 12 n = 24 n = 36 n = 60 n = 84 n = 120
Panel 1: Yield Pricing Errors

mean -0.019 -0.021 -0.028 -0.023 -0.004 -0.002
std 0.069 0.047 0.043 0.034 0.027 0.034
skew -0.982 0.407 0.207 -0.192 -0.158 0.126
kurt 4.458 2.925 3.479 3.169 2.479 2.815
⇢(1) 0.890 0.813 0.868 0.848 0.897 0.801
⇢(6) 0.654 0.477 0.577 0.682 0.778 0.503

Panel 2: Return Pricing Errors
mean -0.000 -0.000 -0.000 -0.000 -0.000 -0.000
std 0.000 0.001 0.001 0.001 0.001 0.002
skew 0.270 -0.255 0.074 0.022 0.179 -0.186
kurt 6.054 4.051 4.095 3.479 3.361 3.533
⇢(1) -0.131 -0.169 -0.107 -0.202 -0.271 -0.224
⇢(6) 0.143 0.147 0.029 0.147 0.067 0.049
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Table 2: TIPS: Fit Diagnostics

This table summarizes the time series properties of the pricing errors implied by our benchmark model. The
sample period is 1999:01-2012:08. "Mean", "std", "skew", and "kurt" refer to the sample mean, standard
deviation, skewness, and kurtosis of the errors; ⇢(1), ⇢(6) denote their autocorrelation coefficients of order
one and six. Panel 1 reports properties of the yield pricing errors and Panel 2 reports properties of the excess
return pricing errors.

n = 36 n = 60 n = 84 n = 120
Panel 1: Yield Pricing Errors

mean -0.004 0.011 0.004 -0.006
std 0.041 0.013 0.013 0.024
skew 1.970 1.190 -1.488 -1.835
kurt 15.168 5.036 7.225 8.446
⇢(1) 0.718 0.770 0.803 0.857
⇢(6) 0.279 0.470 0.351 0.358

Panel 2: Return Pricing Errors
mean 0.001 0.001 0.001 0.001
std 0.007 0.004 0.002 0.002
skew -0.317 -0.987 -0.548 -0.725
kurt 17.295 10.659 3.173 3.708
⇢(1) 0.143 -0.004 0.765 0.815
⇢(6) 0.130 0.136 0.585 0.623

Table 3: Market Prices of Risk

This table summarizes the estimates of the market price of risk parameters �0 and �1 for the benchmark
specification. t-statistics are reported in parentheses. The standard errors have been approximated using the
DAPM formulas found in Adrian, Crump and Moench (2012). Wald statistics for tests of the rows of ⇤ and
of �1 being different from zero are reported along each row, with the corresponding p-values in parentheses
below.

�0 �1.1 �1.2 �1.3 �1.4 �1.5 �1.6 �1.7 W⇤ W�1

X1 0.189 0.001 0.039 0.124 -0.252 -0.503 0.484 -0.003 10.797 9.910
t-stat (0.691) (0.078) (1.635) (1.399) (-1.663) (-1.115) (0.913) (-0.071) (0.213) (0.194)
X2 0.197 0.030 -0.163 0.024 0.796 -0.262 -0.097 0.074 22.849 21.159
t-stat (0.357) (0.826) (-3.432) (0.135) (2.611) (-0.288) (-0.091) (0.746) (0.004) (0.004)
X3 -0.039 -0.010 0.017 -0.005 -0.016 0.055 0.036 -0.010 16.097 13.709
t-stat (-0.522) (-2.071) (2.654) (-0.206) (-0.387) (0.448) (0.252) (-0.752) (0.041) (0.057)
X4 -0.132 -0.002 0.019 -0.105 -0.208 0.248 -0.407 0.013 28.903 27.777
t-stat (-1.154) (-0.311) (1.892) (-2.825) (-3.296) (1.318) (-1.840) (0.612) (0.000) (0.000)
X5 -0.010 0.000 -0.004 -0.006 -0.023 -0.260 0.004 -0.001 21.680 21.411
t-stat (-0.279) (0.165) (-1.201) (-0.527) (-1.130) (-4.259) (0.056) (-0.155) (0.006) (0.003)
X6 -0.001 0.002 0.002 -0.014 -0.003 -0.074 -0.160 -0.002 20.333 20.026
t-stat (-0.029) (1.008) (0.918) (-1.571) (-0.219) (-1.672) (-3.067) (-0.462) (0.009) (0.006)
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Table 4: Inflation Risk Premium Regressions

This table displays results from linear regressions of the 2-year inflation risk premium implied by our model
on various observable macroeconomic and financial indicators. These are 1) the cross-sectional standard
deviation of individual inflation four quarters ahead from the Blue Chip Financial Forecasts survey; 2) the
difference between the 85th and 15th percentile of one quarter ahead inflation forecasts from the same survey;
3) the three-month swaption implied Treasury volatility from Merrill Lynch; 4) the unemployment rate; 5)
year-over-year core CPI inflation; and 6) consumer confidence as measured by the Conference Board survey.
The sample period is January 1999-August 2012.

2yIRP 2yIRP 2yIRP 2yIRP 2yIRP 2yIRP 2yIRP 2yIRP
4-qtr ahead BC st. dev. 0.48 0.07 -0.05

(0.10) (0.10) (0.08)
1-qtr ahead BC disagreement 0.56 0.39 0.27

(0.10) (0.11) (0.10)
3-month swaption MOVE 0.49 0.26 0.17

(0.08) (0.08) (0.08)
Unemplyoment rate 0.42 -0.28

(0.07) (0.12)
Core CPI annual inflation -0.33 -0.20

(0.06) (0.07)
Consumer confidence -0.62 -0.56

(0.07) (0.12)
Constant 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(0.07) (0.07) (0.07) (0.07) (0.07) (0.06) (0.06) (0.06)
R2 0.23 0.32 0.24 0.18 0.11 0.39 0.38 0.51
N 163 163 163 163 163 163 163 163

Note: Robust heteroskedasticity adjusted standard errors in parenthesis. Variables are standardized so that

regression coefficients are partial correlations.
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Table 5: Inflation Forecasting

This table compares the root mean squared error of three methods for predicting future inflation. The first
method uses the model-implied inflation expectations derived in Section 2.3. The second method takes TIPS
breakevens as a predictor of continously-compounded inflation. The third method, a ’random walk’ forecast,
takes average realized inflation over the prior n months as a prediction of average inflation over the next n

months. Forecasts are performed over horizons from 6 to 36 months, and forecasting errors are computed
using overlapping observations. The first panel reports forecasting RMSE for the full sample from January
1999-August 2012 whereas the second panel reports the forecasting RMSE excluding the crisis period, taken
to be September 2007-May 2009.

6m 12m 24m 36m
Panel A: Full Sample

Model Forecast 2.641 1.605 1.055 0.884
Breakevens 3.435 1.798 1.240 1.155
Random Walk Forecast 4.268 2.106 1.336 1.130

Panel B: Excluding Crisis Period
Model Forecast 2.097 1.418 1.101 1.018
Breakevens 2.428 1.458 1.086 1.061
Random Walk Forecast 3.169 1.473 0.981 0.839
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Figure 2: Treasuries: Observed and Model-Implied Time Series

This figure provides time series plots of observed and model-implied Treasury yields and excess returns. The
upper panels plot zero coupon Treasury yields at 2-year and 10-year maturities and the bottom panels plot
excess holding period returns at 2-year and 10-year maturities. The observed yields and returns are plotted
by solid lines, whereas dashed green lines correspond to model-implied yields and returns. Dashed red lines
in the lower panels track model-implied expected excess holding period returns.
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Figure 3: Treasuries: Cross Sectional Diagnostics

This figure provides graphs exhibiting the cross-sectional fit and interpretation of the factors as drivers of
Treasury yields. The upper two panels plot the unconditional means and standard deviations of observed
yields against those implied by the model. The lower left panel plots the implied yield loadings � 1

nBn.
These coefficients can be interpreted as the response of the n-month yield to a contemporary shock to the
respective factor. The lower right panel plots the expected return loadings B0

n�1. These coefficients can
be interpreted as the response of the expected one-month excess holding return on an n-month bond to a
contemporary shock to the respective factor.
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Figure 4: TIPS: Observed and Model-Implied Time Series

This figure provides time series plots of observed and model-implied TIPS yields and excess returns. The
upper panels plot zero coupon yields at 2-year and 10-year maturities and the bottom panels plot excess
holding period returns at 2-year and 10-year maturities. The observed yields and returns are plotted by solid
blue lines, whereas dashed green lines correspond to model-implied yields and returns. Dashed red lines in
the lower panels track model-implied expected excess holding period returns.

5-year yield 10-year yield

2000 2002 2004 2006 2008 2010 2012
−2

−1

0

1

2

3

4

5
Observed and Model−Implied TIPS Yield of Maturity n = 60 Months

2000 2002 2004 2006 2008 2010 2012
−1

0

1

2

3

4

5
Observed and Model−Implied TIPS Yield of Maturity n = 120 Months

5-year return 10-year return

2000 2002 2004 2006 2008 2010 2012
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06
Observed and Model−Implied One−Month TIPS Return for n = 60 Months

2000 2002 2004 2006 2008 2010 2012
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08
Observed and Model−Implied One−Month TIPS Return for n = 120 Months

36



Figure 5: TIPS: Cross Sectional Diagnostics

This figure provides graphs exhibiting the cross-sectional fit and interpretation of the factors as drivers of
TIPS yields. The upper two panels plot unconditional means and standard deviations of yields against those
implied by the model. The lower left panel plots the implied yield loadings � 1

nBn,R. These coefficients can
be interpreted as the response of the n-month yield to a contemporary shock to the respective factor. The
lower right panel plots the expected return loadings B0

n,R�1. These coefficients can be interpreted as the
response of the expected one-month excess holding return on an n-month bond to a contemporary shock to
the respective factor.
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Figure 6: Treasury and TIPS Term Premia

This figure provides plots of the Treasury term premium and TIPS term premium across maturities. The
upper panels plot decompositions of ten year Treasury and TIPS yields into the expected future short rate and
the respective nominal and real term premium. A black dotted line represents the TIPS liquidity adjustment.
The lower left panel plots the ten year Treasury and TIPS term premia together. The difference between
the measures is the inflation risk premium. The lower right panel plots the decomposition of Treasury-TIPS
breakevens into expected inflation in green and the inflation risk premium in red.
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Figure 7: Pricing Factors: Observed Time Series

This figure plots the time series of each of the six principal components extracted from the cross section of
Treasury and TIPS yields.
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Figure 8: Inflation Forecasting

This figure plots the results of the inflation forecasting exercises; each panel displays the result at a different
forecasting horizon. The first method, plotted in blue, is the forecast generated by our model and given by
equations (20)-(21). The second method, plotted in green, take zero-coupon Treasury-TIPS breakevens as
estimates of future inflation. The final forecasting methodology, plotted in red, is a random walk forecast.
This method takes realized inflation over the previous n months as a forecast of average n-month future
inflation. Realized CPI inflation is plotted in black. The crisis period of September 2007 - May 2009 is
shaded in gray.
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Figure 9: Interpretation of Inflation Risk Premium

This figure plots the two-year inflation risk premium generated by our benchmark specification beside several
macroeconomic series. The upper two panels use the disagreement in inflation forecasts; the left plots the
difference between the 85th percentile and the 15th percentile of the 1-quarter ahead Blue Chip forecasts,
the right plots the standard deviation of the 4-quarter ahead Blue Chip forecasts. The middle two panels
plot the three-month Merrill Lynch Swaption Volatility Expectations and the unemployment rate. The lower
two panels plot 12-month Core CPI inflation and the Consumer Confidence Index.
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Figure 10: TIPS Optionality

This figure plots the value of the inflation floors embedded in TIPS as a fraction of the principal. The
ten-year inflation floor is plotted in blue and the five-year inflation floor is plotted in green. The upper left
panel plots the option value in the case that the bond is a new issuance. The upper right panel plots the
option value in the case that the bond was issued 12 months ago, and the inflation realized over that period
has been incorporated into the option. Similarly, the lower panels plot the price of floors with 24 months
and 36 months of accrued inflation.
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