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1 Introduction

Much of the empirical macroeconomic literature has been dominated by linear reduced form models (e.g.

AR or VAR models). Recently, there has been a great deal of interest in freeing up the symmetry restrictions

implicit in linear time series models. For instance, one may wish to examine whether the persistence

of shocks is di®erent in recessions and expansions. Much of this work has considered threshold type

nonlinear speci¯cations and found extensive, but not overwhelming, evidence for nonlinearity in many

key macroeconomic time series (see, among many others, Terasvirta and Anderson, 1992, Potter, 1995,

Beaudry and Koop, 1993, and Pesaran and Potter, 1997). However, there is an even larger literature that

searches for evidence of structural instability. For example, Stock and Watson (1996) ¯nd evidence for

structural instability in a wide range of series. Thus, in addition to the question of the importance of

these departures from linearity there is the question of whether the apparent evidence for nonlinearities is

just evidence that there are structural instabilities in time series relationships that linear ¯xed parameter

models cannot account for.

The importance to macroeconomics of answering these questions cannot be overemphasized. If linear

models provide an adequate representation of most economic time series then standard methodologies

(e.g. VAR methods) are suitable, and the stylized facts they produce (e.g. the widespread ¯nding of unit

roots with the implication that shocks have permanent e®ects) provide a good basis for policymaking and

theorizing. If important nonlinearities exist, however, then these should be incorporated in macro models

and the stylized facts generated by linear models are called into question. On the other hand, if widespread

structural instability exists in most macroeconomic aggregates then empirical analysis of macroeconomics

using ¯xed parameter time series methods is a dubious exercise at best.

In this paper, we describe a Bayesian method for testing and estimation in light of the issues raised

above. We consider the common case where the researcher is considering a certain nonlinear model (e.g.

a threshold autoregressive, TAR, or a Markov switching model) that is felt to accommodate potentially

important departures from linearity. In order to convince a wide audience of the usefulness of the nonlinear

model, the researcher must, of course, provide convincing evidence of departures from linearity. In addition,
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the author must convince the reader that apparent nonlinearities do not merely re°ect structural change.

Hence, we argue that the nonlinear time series econometrician must compare the nonlinear2 model both

to a linear model and to a model containing structural instability.

There are many ways of empirically implementing the general strategy outlined above. In this paper, we

base inference on variants and extensions of autoregressive models. We choose to focus on autoregressive

(AR hereafter) models because of their °exibility, computational simplicity and common usage in the

literature. We reason as follows: an AR model assumes that there is an invariant linear structure which

holds at all times; nonlinear extensions of AR models (e.g. TAR models) assume a linear structure which

changes in a way predicted by the past history of the time series. This suggests, when choosing a model

which re°ects structural instability, that we use a time-varying parameter (TVP) AR model where the

coe±cients evolve over time according to a random walk. Such a model would have a linear structure at

any point in time, but this structure will change in a way that is not predictable from the past history of

the time series. By basing our intuition on the degree of predictability of the linear structure, we can frame

a nonlinear model as lying between two extremes: one where perfect predictability exists (i.e. the linear

model where no change in structure occurs) and one where changes in structure are totally unpredictable.

In previous work (Koop and Potter (1999)), we recommend the use of Bayes factors for comparing

linear to nonlinear time series models: Bayes factors surmount Davies' problem (i.e. nuisance parameters

unidenti¯ed under the null) which plagues classical testing; have an Occam's razor property which is

important in light of Lindley's paradox (see Poirier (1995), p. 545); allow for easy comparison of non-

nested models and allow for pooling inferences from many models in the usual case where more than one

model receives sizeable support from the data. In the present work, we also adopt a Bayesian approach.

For most of our models, analytical tools can be used to calculate the marginal likelihoods that are necessary

to calculate Bayes factors or posterior model probabilities. For the time-varying parameter model, we show

how Markov chain Monte Carlo (MCMC) methods can be used to calculate the marginal likelihood.

We use our methods to investigate the presence of nonlinearities in several arti¯cial and real data series.

2Formally speaking, a structurally unstable model is \nonlinear". However, we will follow common practice and use the
term \nonlinear" time series model to refer to models such as the TAR where the change in linear stucture over time is at
least partially predictable.
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Our empirical ¯ndings indicate little support for threshold-type nonlinearities alone. Postwar quarterly US

GDP growth does not provide strong evidence for departures from linearity. Postwar quarterly US in°ation

appears to exhibit substantial structural instability as does a long annual UK industrial production series.

All of these series could be incorrectly missclassi¯ed as having threshold nonlinearities using traditional

approaches. We argue that our ¯ndings indicate both the importance of Bayesian methods (which lessen

the chances of data mining) and of comparing nonlinear models to both linear and structurally unstable

models (instead of just the former).

2 Models

The models considered in this paper are extensions of the standard AR(p) model:

yt = ®0 + ®1yt¡1 + ::: + ®pyt¡p + ¾"t (1)

where "t » I.I.D. N(0,1). We label this ML for linear model. It is parameterized by ® = (®0; :::; ®p)
0 and

¾2.

A simple way of extending this model is to allow for AR dynamics to di®er across various regimes,

where the regimes are de¯ned endogenously using past information in the system. There are many ways

in which one can do this, the simplest being the threshold autoregressive (TAR) model (see Potter, 1995)

which we will label MTAR. In this paper, we will focus on a two regime model:

yt =

½
®01 + ®11yt¡1 + : : : + ®p11yt¡p1 + ¾"t if Xt¡d > r;
®02 + ®12yt¡1 + : : : + ®p22yt¡p2 + ¾"t if Xt¡d · r;

(2)

Notice that the TAR allows for di®erent dynamics depending on whether a variable Xt¡d is above or below

a threshold r. Xt¡d is some function of data observed between periods t¡1 and t¡d inclusive. We choose

Xt¡d to be lags of the dependent variable, i.e. Xt¡d = yt¡d. r and d are treated as unknown parameters in

our analysis. To keep the number of models and parameters manageable, we set p1 = p2 ´ p and d · p:3

The TAR can be reparameterized using dummy variables as:

3The TAR could easily be extended to allow for heteroskedasticity. We do not do so in order to focus on nonlinearities in
the conditional mean of the series.
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yt = ®0D1t + ®1yt¡1D1t + ::: + ®pyt¡pD1t + °0D2t + °1yt¡1D2t + ::: + °pyt¡pD2t + ¾"t;

where D1t = 1 if Xt¡d · r, and = 0 otherwise and D2t = 1 if Xt¡d > r, and = 0 otherwise. Hence, the

parameters of the model are the same as the AR model except that r; d and ° = (°0; :::; °p)
0 are added.

The third class of models we consider also allows for the dynamics to di®er over time, but does not

allow for changes in structure to be predictable using past observables. This is a time varying parameter

model (MTV P ) which allows the coe±cients of a linear AR representation to evolve according to a random

walk:

yt = ®0t + ®1tyt¡1 + ::: + ®ptyt¡p + ¾"t;

where

®it = ®i;t¡1 + ¸i¾vit

and vit is assumed to be independent of "t and is distributed I.I.D. N(0,1) for i = 0; ::; p. We de¯ne

¸ = (¸0; :::; ¸p)
0: Note that evidence in favor of signi¯cant variations over time in the parameters is also

evidence of structural instability. If ¸ = 0; this model reduces to the linear AR model. Writing ®it =

®i0 + ¸i¾
Pt

j=1 vij , it can be seen that the ®0
i0s (i = 1; ::; p) are analogous to the AR coe±cients in ML.

Hence, MTV P can be parameterized in terms of ® = (®00; :::; ®p0)0; ¾2 and ¸:

Within these three classes of models (ML;MTAR;MTV P ); we allow for various submodels depending

on AR lag length. In our empirical section, we allow the lag length to range from 1 to 44

3 Priors and Bayes Factor Calculation

To calculate Bayes factors in the context of comparison of nested models, proper priors must be speci¯ed

(i.e. the prior must integrate to one). The use of °at (improper) priors typically results in degenerate

Bayes factors that always favor the restricted over the unrestricted model regardless of the data. The

4Preliminary data analysis indicated that no values of p greater than 4 received appreciable posterior support for any of
our series.
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use of informative priors is often criticized by non-Bayesian econometricians. In additional to the usual

Bayesian methodological arguments in favor of informative priors, we note that:

i) In the VAR forecasting work of Litterman and Sims, informative priors are found to greatly improve

forecasting performance. This occurs despite the fact that the priors are chosen mainly for computational

simplicity. Prior hyperparameters are chosen in a fairly crude way using only rough reduced form infor-

mation (e.g. macroeconomic series are probably roughly I(1), AR coe±cients are probably not too large,

distant lags of the series are probably less important than recent lags, etc.). That is, prior information can

be useful in an empirical modelling exercise even if the information is very inexact.

ii) Optimal solutions to Davies' problem require the elicitation of something that is essentially identical

to a prior (see Koop and Potter (1999)), so classical approaches are also dependent on informative priors.

iii) Bayes factors are usually robust to \reasonable" changes in the prior. In practice, we carry out a

sensitivity analysis.

iv) In this paper we are interested in comparing di®erent classes of models. These classes have many

common parameters (the AR coe±cients and error variance). We use the same prior for these parameters

in each class of models. It is only for the few parameters that are not common to all models (i.e. ° and ¸)

that prior information is potentially important. Loosely speaking, this means that it is less likely that the

prior is driving the Bayes factors obtained (i.e. since the prior is so similar, it must be likelihood di®erences

driving the Bayes factor results).

Throughout this paper, we condition on p initial observations and, hence, the AR model has the same

likelihood function as the Normal linear regression model.5 Accordingly, we make use of the Normal-

inverted Gamma natural conjugate prior for ® and ¾. Writing p(®; ¾) = p(®j¾)p(¾), we take p(®j¾) to be

N(0; ¾2A) and p(¾) to be inverted Gamma with hyperparameters ¹¾ and º¾ (we adopt the notation for the

inverted-Gamma given in Judge, Gri±ths, Hill, Lutkepohl and Lee (1985), pages 106-107). Prior degrees

of freedom are given by º¾ and the prior mode of ¾ is
q

º¾

º¾+1¹
¾
:With this prior, the marginal likelihood

has an analytical form (see, e.g., Judge, Gri±ths, Hill, Lutkepohl and Lee (1985), page 129). This su±ces

5From this point forth, we will write the data as running from period 1 to T , implicitly labelling the ¯rst p observations
as 1¡ p through 0.
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to describe the likelihood, prior and computational techniques for calculating the marginal likelihood for

ML:

For MTAR, we write the prior as: p(®; ¾; °; r; d) = p(®; °j¾)p(¾)p(rjd)p(d): We use a prior for ®; ° and

¾ which is analogous to that used for ML. In particular, we use a Normal-inverted Gamma prior for these

parameters where the inverted-Gamma part is identical to that given above. Furthermore, the prior for

the regression coe±cients, conditional on ¾2, is given by:

µ
®
°

¶
» N

µ
0; ¾2

·
A 0
0 A

¸¶
:

Flat priors are used for the parameters r and d. In particular, r is assumed to be a priori °at over all

possible values that imply that at least 15% of the observations lie in each regime and d is °at over the

integers 1; : : : ; p. Note that the prior is centered over the linear speci¯cation. The marginal likelihood for

this model can easily be calculated by noting that, conditional on r and d, MTAR is a linear regression model

and standard analytical results can be used. An unconditional marginal likelihood can be calculated by

evaluating the conditional marginal likelihood at every possible r,d combination and then averaging using

the priors for these latter two parameters. Koop and Potter (1998a,b) provide further details regarding

TAR models.

MTV P contains the same parameters as ML plus ¸. For the common parameters, we use the same

prior. ¸ is assumed to be independent of the common parameters. We assume p(¸) =
Qp+1

i=1 p(¸i) and

p(¸i) is inverted Gamma with hyperparameters ¹¸i and º¸i:

The marginal likelihood for MTV P is much more di±cult to calculate, since analytical results are not

available. However, as described below, a Gibbs sampler can be set up to take pseudo-random draws from

the posterior for this model. Given the output from this posterior simulator, the method of Chib (1995)

can be applied directly to calculate the Bayes factor.

3.1 Values for Prior Hyperparameters

In this paper we use either arti¯cially simulated data or real data. In order to simplify prior elicitation for

these various series, the arti¯cial data is simulated with ¾ = 1 and the real data is in growth rates and
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standardized to have mean zero and unit standard deviation. With all these data sets, it is reasonable

to use the same prior. The prior hyperparameters are selected to be intuitively reasonable, but fairly

noninformative. An appendix contains results from a sensitivity analysis where the prior hyperparameters

are varied.

Given that we are using demeaned, growth rate data, it is sensible to choose prior means of zero for

all regression coe±cients. The prior variance of these coe±cients, conditional on ¾2; is ¾2A. We set

A = 0:25 £ I. Given that ¾ is likely around 1, the prior standard deviation of the regression coe±cients

will be roughly .5 indicating that we think it unlikely that they are larger than 1 in absolute value. In

other words, we are fairly con¯dent (but not dogmatically so) that the AR coe±cients lie in the stationary

region.

For the error variance, we set ¹¾=1 and º¾ = 3. Since the degrees of freedom parameter can, loosely

speaking, be thought of as a prior sample size, this prior is fairly noninformative (i.e. it has roughly the

same information content as three data points) but it is centered near 1.

It is worthwhile to justify the prior for the ¸0
is in more detail and to distinguish between the case where

the data is in levels as opposed to growth rates. We begin by considering the case where p=0 (i.e. the model

contains only an intercept which follows a random walk). It is well-known that this model implies that yt

contains a unit root and that ¸0¾ is, loosely speaking, a measure of how large the unit root component is.

This forms the basis for several unit root tests (see, e.g., Kwiatkowski, Phillips, Schmidt and Shin, 1992).

This suggests that, if yt is a growth rate, ¸0 is likely quite small, since the I(2) component of the original

level series is likely quite small. On the other hand, if yt is a level series, it is possible that ¸0 is much

larger.

If p>0, then the evolving parameters include AR coe±cients, which are unlikely to change by much in

any period. Consider the case where p=1. If ®1t often changes by more than, say, 0.1 in any period it will,

with high probability, wander into the explosive region of the parameter space. Allowing for changes of this

magnitude is not reasonable for macroeconomic time series unless massive technical change is repeatedly

occurring. Such considerations hold regardless of whether yt is a growth rate or a levels series. In other
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words, ¸i should be very small for i=1,..,p.

These properties are illustrated in Figures 1 and 2, which plot six di®erent arti¯cial series with T=200

and p=1.6 All have ®00 = 0, ®10 = 0:5 and ¾ = 1; but vary in their choices of ¸0 and ¸1. All series are

normalized to have zero mean and unit variance. Figure 1 chooses small values for ¸0 which are typical of

growth rates, while Figure 2 sets ¸0 = 1. ¸1 is then varied in each ¯gure. These two ¯gures illustrate three

points: i) Setting ¸1 = :1 in either ¯gure allows the AR(1) coe±cient to wander o® into explosive regions.

This value seems to be too high for macroeconomic time series; ii) If we look at the cases where ¸1 = 0,

then we can see how ¸0 a®ects the trend properties of the series; and iii) Moderate values for ¸1 such as

0.05 do generate series which look like they could plausibly model real macroeconomic data.

Given these considerations, and the fact that we are using growth rates, we set ¹¸i = :1 and º¸i = 2

for i = 0; ::; p: This is a very noninformative prior. In particular, it has a median of .12. In other words,

this prior allocates roughly half its weight to the region we feel is plausible, [0,.1], but has an extremely

long tail so that some prior weight is allocated even to implausibly large values of ¸i.

4 MCMC Algorithm

The MCMC algorithm for MTV P can be obtained by modifying the existing literature on Bayesian literature

on state space models. That is, conditional on knowing the states (i.e. ®¤
i = (®i1; :::; ®iT )0 for i = 0; ::; p)

the distribution of the remaining parameters is simple to derive { it becomes a standard linear regression

model with natural conjugate prior. Furthermore, conditional on knowing the parameters of the model,

random draws of the states can be taken using established methods. This informal logic suggest a Gibbs

sampler with data augmentation can be used.

Formally, we can take random draws from p(®¤jData; ®; ¾; ¸), where ®¤ = (®¤
0; :::; ®

¤
p); using the tech-

niques of de Jong and Shephard (1995). Techniques for drawing from p(®; ¾jData; ®¤) are similarly easy

since this posterior conditional has the familiar Normal-inverted Gamma form. In particular, remember

that for MTV P ; ® is de¯ned as the initial states in the state equation and that ®it = ®i0 + ¸i¾
Pt

j=1 vit.

6All series are created with the same initial seed in the random number generator.
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Hence, the model can be written as:

y¤
t = ®00 + ®10yt¡1 + ::: + ®p0yt¡p + ¾"t;

where, conditional on knowing the states, y¤
t is known and is given by:

y¤
t = yt ¡ ¾f

tX

j=1

¸0v0j + yt¡1

tX

j=1

¸1v1j + ¢ ¢ ¢ + yt¡p

tX

j=1

¸pvpjg:

We choose this non-standard way of setting up the model since it becomes clear that, conditional on

knowing the states, the model becomes a linear regression model and, hence, the Normal-inverted Gamma

prior for (®; ¾) is (conditionally) natural conjugate.

It remains to derive the form of p(¸jData; ®;®¤; ¾). Using the inverted Gamma prior for this parameter

discussed in the previous section, it follows that the posterior conditional is also inverted Gamma (see, for

instance, Min (1992)).

Details on the Gibbs sampler and the marginal likelihood calculation for the TV P model are given in

Appendix A.

5 Application to Arti¯cial Data

Before working with real macroeconomic data, it is instructive to consider the performance of our Bayesian

methodology in arti¯cial data. Accordingly, in this section we simulate one data set of size 200 from each of

20 di®erent parmeter con¯gurations.7 In order to focus on the comparison between linear, TAR and TVP

models we always set p=1 and ¾=1. The other parameters are set in order to shed light on the following

questions:

1. Is it possible for TVP data generating processes to be misclassi¯ed as TAR models?

2. Is it possible for TAR data generating processes to be misclassi¯ed as TVP models?

Accordingly, we carry out two experiments. In Experiment 1, we generate arti¯cial data sets from

MTV P with ®00 = 0 and ®01 = :5 and ¸0 = ¸1. We then vary this common value for ¸ across data sets

7The same seed for the random number generator was used for every arti¯cial data set.
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over the region [0,0.08]. In our previous discussion on prior hyperparameter selection we have motivated

this as an interesting region of the parameter space. The case ¸0 = ¸1 = 0 corresponds to an AR(1) model

with coe±cient .5. The case ¸0 = ¸1=.08 has a large degree of coe±cient variation over time.

In Experiment 2, we generate arti¯cial data sets from MTAR with ®0 = ®1 = °0 = 0, r=0 and d=1. The

coe±cient °1 is allowed to vary across data sets over [0,0.9]. If °1 = 0 then the model is linear. However,

as °1 increases the dynamics in the two regimes become more and more di®erent.

Figures 3 and 4 present the results of our two experiments in graphical form, using the prior described

above. In order to visually highlight the information in these ¯gures we plot the logs of Bayes factors

comparing the TAR and TVP models to the linear model. Note that the log of the Bayes factor being zero

implies that the models under consideration receive equal support from the data, values greater than zero

support the linear model and values less than zero support either the TAR or TVP model.

Figures 3 and 4 indicate that Bayes factors do a reasonable job of supporting the correct model, but

have a strong reward for parsimony built in. In Figure 3, if ¸ is less than roughly 0.025 (i.e. there is a

small degree of structural instability), the linear model is supported over the TVP model. In Figure 4, the

di®erence in AR(1) coe±cients across regimes has to be greater than 0.2 for the TAR model to be preferred

to the linear model. In other words there has to be a fairly sizeable degree of nonlinearity or structural

instability before the Bayes factor will support these more parameter rich models.

With regards to the two questions posed at the beginning of this section, our results indicate that the

answers are Yes and No, respectively. In particular, Figure 3 indicates that if there is a large degree of

structural instability, then it is possible for the Bayes factor comparing the linear to the TAR model to

indicate substantial support for the latter. If we had omitted to consider MTV P , we could (incorrectly) have

concluded our arti¯cial data sets with ¸ = :07 or higher were generated from TAR models. In contrast,

Figure 4 indicates that there is no way that a threshold model could be mistaken for a structurally unstable

model. Even for large asymmetries between dynamics in the two regimes, our methodology always indicates

that the linear model beats the TVP model.

These results are, of course, suggestive rather than conclusive. Remember, we only generated one data
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set for each of a limited set of parameter con¯gurations. However, they do indicate that including both a

linear and a time-varying parameter model to compare with a candidate nonlinear model is potentially of

great importance.

6 Application to Real Data

The data used in this section is:

1. DGDP: Quarterly real US GDP growth from 1954Q2 through 1995Q1.

2. In°ation: Quarterly change in the US CPI from 1947Q2 through 1998Q3.

3. DIP: Annual change in UK industrial production from 1701-1992.

These three selections were made to re°ect the di®erent sorts of series macroeconomists often work

with. The DGDP series has been examined in a number of papers, which have found some (weak) evidence

of nonlinearity in this data set (see Pesaran and Potter, 1997 or Kapetanios, 1998 for a review). The

postwar behavior of in°ation indicates that structural instability could be a problem for any time series

model of this series. DIP is a long annual UK industrial production growth series. This latter series runs

from 1701-1992 and has been extensively investigated by economic historians (see Greasley and Oxley,

1994, and Mills and Crafts, 1996) who examine whether or not the industrial revolution was a distinct

epoch that re°ected a large degree of technical progress.

The data (normalized to have mean zero and variance 1) is plotted in Figure 5. Tables 1 through 3

present posterior model probabilities8 for each of the 3 models for each the four lag lengths. The three

series seem to exhibit quite di®erent behavior, so we discuss each in turn.

Table 1 indicates that there is almost no evidence in favor of structural instability for DGDP. That is,

the linear and TAR models receive virtually all of the posterior model probability, as do short lag lengths.

Overall, there does not seem to be enough data information to decide between ML or MTAR | both receive

appreciable support from the data (roughly 70% and 30%, respectively). However, there de¯nitely does

not seem to be the sort of overwhelming evidence which would lead one to abandon the well-understood

8We attach equal prior weight to each model, so the posterior model probabilities are merely renormalized marginal
likelihoods.
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Table 1: Posterior Model Probabilities for DGDP
ML MTAR MTV P Total

p=1 0.507 0.230 0.005 0.741
p=2 0.151 0.060 0.004 0.215
p=3 0.032 0.005 1.4£10-4 0.038
p=4 0.005 0.001 8.3£10-6 0.006
Total 0.696 0.296 0.009 1

Table 2: Posterior Model Probabilities for In°ation
ML MTAR MTV P Total

p=1 4.6£10¡14 2.2£10¡14 1.4£10¡10 1.4£10¡10

p=2 2.2£10¡13 1.5£10¡13 1.9£10¡9 1.9£10¡9

p=3 8.4£10¡12 3.9£10¡12 7.3£10¡8 7.3£10¡8

p=4 2.0£10¡10 2.1£10¡9 1.000 1.000
Total 2.0£10¡10 2.1£10¡9 1.000 1

linear class of models.

Table 2, on the other hand, ¯nds overwhelming evidence of structural instability in in°ation. MTV P

receives virtually all of the posterior model probability.9 A second important ¯nding is that, if we had

ignored MTV P and just compared ML and MTAR, we would have found reasonably strong evidence for

nonlinearity. That is, the Bayes factor comparing the threshold autoregressive model against the linear

autoregressive model is roughly 10. In other words, if we had ignored MTV P we could have been mislead

into concluding in°ation followed a TAR process, when in reality it exhibits structural instability.

Table 3 presents a mixed message and exhibits a pattern we have found common in our Bayesian work

with nonlinear time series models. That is, the data are often not informative to de¯nitively decide on a

particular class of models. The industrial production data likely exhibits structural instability (61%), but

threshold nonlinearity received appreciable support (37%) and even linearity is not ruled out completely

(2%).

In this section, we have considered only three di®erent macroeconomic series and a limited class of

9In fact, this ¯nding was so strong we were initially suspicious of it. However, an examination of the values of the likelihood
function at the MLE indicates the same pattern, i.e. the TVP model with p=4 yields a much higher likelihood function than
any of the other models.
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Table 3: Posterior Model Probabilities for DIP
ML MTAR MTV P Total

p=1 0.004 0.063 1.4£10¡4 0.067
p=2 0.011 0.062 0.013 0.086
p=3 0.004 0.224 0.094 0.321
p=4 0.001 0.022 0.503 0.525
Total 0.019 0.371 0.609 1

models (e.g. only the simplest two regime TAR). With this in mind, we would argue that our results are

cautionary for nonlinear time series econometricians. In previous work (Koop and Potter, 1999,1998a,b),

we have argued that classical econometric ¯ndings of predictable nonlinearities (e.g. of the sort implied

by various regime shift models such as TAR or Markov switching) could be fragile due to data mining.

We argued that a Bayesian approach which averages over all models and parameters is less subject to

this criticism and tends to indicate weaker support for nonlinearities. The present paper strengthens our

previous arguments and extends them to say that some apparently nonlinear time series could in fact merely

be structurally unstable. Note that none of our three widely di®ering series provide strong evidence for

the TAR models. However, if we had only compared ML and MTAR we would have concluded that there

was strong evidence for the latter class of models for two of the three time series considered. Furthermore,

classical econometric analyses have often found the third series, DGDP, to be nonlinear.

One reason for the poor performance of the TAR model is undoubtedly due to the fact that it is very

parameter rich and the Bayesian methodology we use here incorporates a strong reward for parsimony.

Hence, one message coming out of the present paper is that there might be gains in developing more

parsimonious nonlinear models. The endogenous delay threshold autoregressive model of Pesaran and

Potter (1997), further developed in Kapetanios (1998), o®ers promising initial results.

It is instructive to compare the present results to those in Koop and Potter (1998b). The latter paper

investigated whether apparent nonlinearities were due to simple structural breaks or outliers and used the

DGDP and DIP series. In terms of the conditional mean of these series, there seemed to be reasonable

support for linearity (and some support for models with outliers) for DGDP and strong support for the
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nonlinear TAR model (and very little support for outlier models) for DIP. The present paper modi¯es the

latter result by arguing that the apparent TAR ¯nding could be due to structural instability in the DIP

series.

We have argued in this paper that our prior choice is sensible and that results should not be sensitive

to reasonable variations to this choice. Readers who are skeptical of this claim are directed to Appendix B

where we use a prior which is much more noninformative than the present ones. Results are qualitatively

similar to those presented here.

7 Conclusions

In this paper we have done ¯ve things:

i) We have recommended a modelling/testing strategy for nonlinear time series. Rather than just

comparing linear to standard nonlinear models, we recommend also considering time-varying parameter

models. That is, the nonlinear model typically has linear dynamics which di®er across two or more regimes

in a way that is predictable using past data. This should be thought of as an intermediate case between

linear models (linear dynamics do not change at all over time) and time-varying parameter models (linear

dynamics change over time in a completely unpredictable way).

ii) We have argued for a methodology based on Bayes factors. In previous work (Koop and Potter, 1999),

we have presented many arguments in favor of such an approach. In the current paper, we additionally

emphasize the way that Bayes factors allow for the direct comparison of multiple models.

iii) We have shown how to operationalize the general ideas raised in i) and ii). In particular, we discuss

useful classes of models, practical techniques for prior elicitation and computational methods.

iv) We have shown that the methods can be implemented in practice in arti¯cial and real data.

v) We have shown that traditional methodologies, which do not consider the structurally unstable

model, would have lead us incorrectly to conclude that threshold nonlinearity was present in two of our

three series.
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8 Appendix A: Computational Details

The computational techniques necessary for Bayesian inference and marginal likelihood calculation for the

AR and TAR models are standard and will not be repeated here (see Koop and Potter, 1998a,b). For the

TV P model, the Gibbs sampler is composed of the following blocks:

p(®; ¾jData; ®¤) = p(®j¾;Data; ®¤)p(¾jData; ®¤);

where the former of these is the Normal density with mean:

® = (A¡1 + X 0X)X 0y¤

and variance:

¾2(A¡1 + X 0X)¡1:

In the previous expressions, y¤ is a vector with t0th element y¤
t (which is de¯ned in Section 4) and X is

a matrix with t0th row given by (1; yt¡1; :::; yt¡p). The conditional density for ¾ is inverted Gamma with

parameters À¾ = T + À¾ and

¹2
¾ =

À¾¹2
¾

+ (y¤ ¡ X®)0(y¤ ¡ X®) + ®0A¡1®

À¾
:

The second block in the Gibbs sampler is for p(¸jData; ®¤; ®; ¾) which is the product of p+1 inverted

Gamma distributions each with parameters À¸i = T + º¸i and

¹2
¸ =

¹2
¸

+ SSE¸i

À¸
;

where

SSE¸i =

PT
t=1(®it ¡ ®it¡1)

0(®it ¡ ®it¡1)

¾2
:

The remaining conditional is for ®¤ which is Normal. Drawing from this can be done directly using the

techniques of de Jong and Shephard (1995). Since these techniques are described in detail in the latter

paper, we do not repeat them here.
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With this speci¯cation involving three blocks, we can directly use the techniques described in section

2.1.2 of Chib (1995) to calculate the marginal likelihood. This requires the evaluation of the prior, likelihood

and posterior conditionals at a point in the parameter space. We select the posterior mean (based on an

initial run through the Gibbs sampler) as this point.

9 Appendix B: Prior Sensitivity Analysis

In this appendix we present results based on a prior which is similar to the one in the body of the paper,

but much more noninformative. Loosely speaking, we leave the prior located in roughly the same place

but increase the dispersion. In particular, all hyperparameters are the same except we now set A=1£I,

º¾ = :01 and º¸i = :01 for i=0,..,p: Note that this makes the prior on the AR coe±cients very °at,

allocating a great deal of weight to explosive regions of the parameter space. The prior degrees of freedom

parameters can be interpreted as a prior \sample size". Setting these values to 0.01 implies that our prior

has the same weight as one-hundredth of a data point, roughly speaking. In other words, these priors are

very noninformative and place a lot of weight in nonsensical areas of the parameter space (e.g. explosive

or regions with huge variation in AR coe±cients). Nevertheless, as can be seen from Tables B1, B2 and

B3, the qualitative results of the paper are not altered through using such a prior.

Table B1: Posterior Model Probabilities for DGDP
ML MTAR MTV P Total

p=1 0.748 0.113 0.001 0.862
p=2 0.111 0.013 0.001 0.125
p=3 0.012 2.9£10¡4 3.4£10¡5 0.012
p=4 0.001 7.4£10¡6 3.5£10¡11 0.001
Total 0.872 0.127 0.002 1
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Table B2: Posterior Model Probabilities for In°ation
ML MTAR MTV P Total

p=1 3.4£10¡9 2.2£10¡9 1.2£10¡8 1.8£10¡8

p=2 5.2£10¡9 1.8£10¡9 6.4£10¡8 7.1£10¡8

p=3 9.7£10¡8 5.7£10¡8 5.4£10¡7 6.9£10¡7

p=4 2.7£10¡6 4.0£10¡4 1.000 1.000
Total 1.8£10¡8 4.0£10¡4 1.000

Table B3: Posterior Model Probabilities for DIP
ML MTAR MTV P Total

p=1 0.019 0.208 5.7£10¡5 0.228
p=2 0.029 0.048 2.3£10¡5 0.077
p=3 0.005 0.041 0.174 0.221
p=4 3.7£10¡4 0.001 0.473 0.474
Total 0.054 0.299 0.647 1
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