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Abstract

This paper proposes a flexible framework for analyzing the joint time series properties of the
level and volatility of expected excess stock returns.  An unobservable dynamic factor is
constructed as a nonlinear proxy for the market risk premia with its first moment and conditional
volatility driven by a latent Markov variable. The model allows for the possibility that the risk-
return relationship may not be constant across the Markov states or over time.  We find a distinct
business cycle pattern in the conditional expectation and variance of the monthly value-weighted
excess return.  Typically, the conditional mean decreases a couple of months before or at the peak
of expansions, and increases before the end of recessions. On the other hand, the conditional
volatility rises considerably during economic recessions.  With respect to the contemporaneous
risk-return dynamics, we find an overall significantly negative relationship. However, their
correlation is not stable, but instead varies according to the stage of the business cycle.  In
particular, around the beginning of recessions, volatility increases substantially reflecting great
uncertainty associated with these periods, while expected returns decrease anticipating a decline
in earnings.  Thus, around economic peaks there is a negative relationship between conditional
expectation and variance.  However, towards the end of a recession expected returns are at its
highest value as an anticipation of the economic recovery, and volatility is still very high in
anticipation of the end of the contraction. That is, the risk-return relation is positive around
business cycle troughs. This time-varying behavior also holds for non-contemporaneous
correlations of these two conditional moments.

KEY WORDS: Expected Excess Return, Risk premia, Conditional Variance, Dynamic Factor,
Markov Process.

JEL Classification Code: C32 , E32, E44, G12

                                                       
1 The views expressed in this paper are those of the authors and do not necessarily reflect the views of the Federal Reserve
Bank of New York or the Federal Reserve System.  We thank participants in the 1998 Meetings of the Society of Economic
Dynamics for helpful comments.
2 Department of Economics, University of California, Riverside,  CA 92521-0247; phone: (909) 787-5037 x1587; fax: (909)
787-5685; email: chauvet@mail.ucr.edu.
3 Federal Reserve Bank of New York, 33 Liberty St., New York, NY 10045-0001; phone: (212) 720-6309; fax: (212) 720-1844;
email: simon.potter@ny.frb.org.



1

1.  INTRODUCTION

In the last twenty years great progress has been made in modeling the relation between

risk and expected return.  Most of this research has focused on the single-period risk-return

tradeoff among different securities.  There is general agreement that riskier securities are

rewarded by larger expected returns, within a given time period.  However, there are less obvious

conclusions about the joint dynamics of risk and return over time.  On a market-wide level, there

is no consensus in most related empirical work concerning the temporal behavior of both stock

market returns and their volatility, although there is substantial evidence of nonlinearity in their

dynamics.1  In particular, recent findings show that a distinct pattern is revealed in expected stock

returns and their conditional variances when they are grouped according to the state of the

business cycle.2  This implies that stocks may bear more risk at some times than others, but it is

not indisputable whether investors require larger risk premium on average during times when

stocks are more risky.

Theory also does not yield unambiguous insights about the relationship between risk and

excess return.  Backus and Gregory (1993), for example, find that theoretical models are

consistent with virtually any sort of relationship between excess return and its conditional variance

proxying for risk, depending on model preferences and the probability structure across states.

Further, using equilibrium asset pricing models, one would expect the relationship between excess

return and variables proxying for corporate cash flows and investors’ discount rates to be

nonlinear.

Related empirical research has focused on modeling the dynamics of time-varying

conditional second moments of stock returns as proxies for risk premia.  From a theoretical point

                                                       
11 Fama and Schwert (1977), Campbell (1987), Nelson (1991) or Glosten, Jagannathan, and Runkle (1993), among others, find

a negative relation between conditional expected stock return and variance.  On the other hand, Chan, Karolyi, and Stulz

(1992) find no statistically significant relationship between expected return and conditional variance in the U.S. stock market.

Others, such as French, Schwert, and Stambaugh (1987) and Campbell and Hentschel (1992) find a positive relation between

expected returns and conditional second moments.
2 For example, Whitelaw (1994), Fama and French (1989) and particularly Perez-Quiros and Timmermann (1996) find

evidence of a significant state dependence in the conditional distribution of stock returns, with financial variables proxying for

risk forecasting business cycle phases.
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of view the predictability of the level and volatility of returns should be connected.3  Thus, rather

than modeling them separately, considerable effort has gone into modeling their joint dynamic

behavior.  New models such as ARCH, GARCH and stochastic volatility (SV) have been

developed to capture the persistence in the volatility of returns.  The main empirical framework of

the joint determination of the conditional mean and variance of returns is the ARCH-M, in which

time varying conditional second moments account for changes in risk premia. The underlying

assumption of these models is that risk premium on assets can be represented as linear increasing

functions of their conditional covariance with the market.4

In this paper we are particularly interested in constructing an empirical framework that

does not impose an a priori structure between the conditional mean and volatility of stock returns.

We estimate an unobservable dynamic factor as a nonlinear proxy for the market risk premia with

first and second conditional moments driven by a latent two-state Markov variable.  That is, we

consider the possibility that market return and its volatility are not necessarily related together

directly but are a function of a third variable - the Markov process, which represents the state of

financial market conditions.

In addition to offering a flexible description of the joint time series properties of the level

and volatility of expected stock returns, our approach captures potential asymmetric responses by

investors to changes in risk, depending on their perception of the state of business conditions.

The two Markov states can be interpreted as bull and bear markets.5  These values could be

associated with an increasing relation between mean and variance for the market returns.

However, they could be associated with low mean and high variance and high mean and low

variance as well.  In our framework, expected stock returns can be higher or lower during periods

when the market is more volatile. It could be the case, for example, that in those times investors

desiring to hedge against risk might move back and forth from stock to bonds, driving changes in

                                                       
3 That is, predictability of the level implies predictability of volatility.  However, if the level of returns is difficult to predict, it

does not imply that the volatility should be.
4  Further, the ARCH-M restricts the conditional mean of excess returns to be positive despite the evidence from regressions

that in certain periods the excess return is predicted to be negative (e.g. Whitelaw 1994, Perez-Quiros and Timmerman 1996,

Pesaran and Timmerman 1995, among others).
5  In stock market jargon, bear market are periods of persistent decrease in stock prices. Thus, bear markets are also associated

with periods when the excess return is negative.
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expected stock returns and the direction of the risk-return relation according to the stage of the

economy.

The proposed framework allows the use of multivariate information with a parsimonious

variance-covariance structure to produce the sort of predictions obtained from regression models.

In contrast, most ARCH, GARCH and SV models use only the information contained in returns.

The multivariate information is introduced by constructing a stock market index, subject to

switches between bull and bear markets, from a range of financial variables, as in Chauvet and

Potter (1997).  We also examine the risk-return relationship for stocks from different firm sizes,

which captures potential asymmetric behavior of returns across financial states, depending on

different market capitalization.  Ultimately, forecasts of excess returns can be obtained from

forecasts of the mean and volatility of the stock market index, which allows analysis of their

behavior across the Markov states.  We study the dynamics of their contemporaneous correlation

as well as correlations at leads and lags.

In terms of results, we find a significant asymmetric behavior of conditional excess returns

according to firm size.  In particular, excess returns on stocks of small firms, as proxied by the

CRSP equal-weighted index, are more reactive to changes in the state of financial markets than

large firms.  In addition, a business cycle pattern is present in the conditional expectation and

variance of the value-weighted excess return.  Typically, the conditional mean decreases a couple

of months before or at the peak of expansions, and increases before the end of recessions. On the

other hand, the conditional volatility rises considerably during economic recessions.

With respect to the risk-return relation, during bear markets expected excess returns are

low while the conditional volatility is high.  In bull markets, the conditional mean increases while

the volatility decreases.  However, the contemporaneous correlation is not stable, but varies

according to the state of the business cycle.  In particular, around the beginning of recessions,

volatility increases substantially reflecting great uncertainty associated with these periods, while

expected returns decrease anticipating a decline in earnings.  Thus, around economic peaks there

is a negative relationship between conditional expectation and variance.  However, towards the

end of a recession expected returns are at its highest value as an anticipation of the economic

recovery, and volatility is still very high in anticipation of the near end of the contraction. That is,
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the risk-return relation is positive around business cycle troughs.    This time-varying behavior

also holds for non-contemporaneous correlations of these two conditional moments.

The paper is organized as follows.  The second section describes the model and interprets

nonlinear risk premium within the Markov switching dynamic factor framework.  The third and

fourth sections discuss estimation and analytical description of the updating and conditional

variances of the excess returns.  In the fifth section, the empirical results are presented and

compared to extant literature.  The sixth section concludes and suggests directions for future

research.

2.  MODEL DESCRIPTION

We propose modeling expected excess returns on stocks, Ykt,  as a function of a common

unobserved dynamic factor, Ft, and individual idiosyncratic noises, εkt.  The factor captures

market-wide comovements underlying these stocks, and it is a parsimonious proxy for the market

risk premium:

(1) Ykt = λjkFt + εkt,   k = 1,...,4; j =0,1

εkt ~  i.i.d.N(0, Σ).

In a first specification, Ykt is a 4x1 vector of monthly excess stock return (defined as the

difference between continuously compounded stock returns and a T-bill rate) on the valued-

weighted index, the equal-weighted index, IBM stock, and GM stock.  In a second specification,

Ykt includes other financial variables such as price-earnings ratio, dividend yield, the 3-month T-

bill rate, in addition to the excess return on the valued-weighted index.  The factor loadings λjk,

measure the sensitivity of the kth series to the market risk premia, Ft in Markov state j. The factor

loading for the value-weighted excess return is set equal to one in both states to provide a scale

for the unobservable variable Ft.
6

In order to examine potential changes in conditional excess return and in its volatility

across different states of the financial markets, we allow the first and second moments of the

                                                       
6 Generally, researchers set the factor variance to one or give it a scale in the same units as one of their regression coefficients.

For the case in which only the mean switches, normalization can be achieved by setting the factor variance to one.  For the

models we are interested here, with a switching factor variance, normalization is attained by setting one of the factor loadings

to unity.
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factor to switch regimes according to a Markov variable, St, representing the state of financial

conditions:

(2) Ft = α1  + α0St + φFt-1 + ηSt
    St = 0,1 

Ft ~( µSt
,θSt

) ηSt
~ i.i.d.  N(0, σηSt

2 ),   

that is, financial markets can be either in an expansion period (bull market), St=0; or in a

contraction state (bear market), St=1, with the switching ruled by the transition probabilities of the

first-order two-state Markov process, pij=Prob[St=j|St-1=i], p i, j 1.
ijj=∑ = =

0

1
1 0, ,  The dynamic

factor is, therefore, a representation of nonlinear market risk across Markov states.  Cyclical

variation in the nonlinear risk is generated from shocks common to each of the Ykt observable

variables, ηt, and all idiosyncratic movements arise from the term εkt.  That is, we assume that ηt

and εkt are mutually independent at all leads and lags, for all k = 1,…,4, for each model

specification.

The dynamic factor is the common element among the financial variables and is produced

as a nonlinear combination of the observable variables Ykt.  This factor has a time-varying

conditional mean and variance and, therefore, should play a role in determining the time series

behavior of market risk premia.  This framework does not impose a priori relation between the

level and volatility of excess returns. Thus, conditional volatility could either be higher or lower in

the bear market than in the bull market.

Different specifications are estimated in which the factor loadings λjk may or may not

switch across states.  Modeling the factor loadings as state dependent allows the model to capture

potential asymmetric behavior of returns across financial market states, depending on the size of

the firm.  We use the excess returns on IBM and GM stocks to represent large firms, and the

excess returns on the equal-weighted index to proxy for the dynamic behavior of small firms. The

excess return on the value-weighted index represents market premium.

3.  ESTIMATION AND ANALYSIS OF CONDITIONAL MOMENTS

The parameters of the model are estimated using a nonlinear discrete version of the

Kalman filter combined with Hamilton’s (1989) nonlinear filter in one algorithm, as suggested by

Kim (1994).  The model is cast in state-space form, where equations (1) and (2) are, respectively,
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the measurement and transition equations  The goal of the nonlinear filter is to form forecasts of

the factor and the associated mean squared error matrices, based not only on information available

up to time t-1, It-1≡ [Y’
t-1, Y’t-2,..., Y’1]’, but also on the Markov state St taking on the value j, and

on St-1 taking on the value i.  That is:

(3) Ft|t -1
(i, j)  = E(Ft | It-1, St = j, St-1 = i)

(4) θt|t -1
(i, j)    =   E[(Ft - Ft|t-1)(Ft - Ft|t-1)'| It-1, St = j, St-1 = i)],

where Ft|t-1 = E(Ft | It-1).  The nonlinear Kalman filter is:

( )
( )
5

6

F =  + F

=   +

t|t -1
(i, j)

j t-1|t-1
i

t|t-1
(i, j)

t -1|t-1
i

st

α φ

θ φ θ σ2 2
(prediction equations)

( )
( )
7

8

F =  F  +  K N

=  (I - K )

t|t
(i, j)

t|t-1
(i, j)

t
(i, j)

t|t -1
(i, j)

t|t
(i, j)

t
(i, j)

t|t -1
(i, j)θ λ θj

(updating equations)

where αj=α0+α1
j , K t

(i, j) = θ λt|t
(i, j)

t
(i, j) 1'[Q ]−

−
1 j is the Kalman Gain, N t|t -1

(i, j) = Yt - λj Ft|t -1
(i, j)  is the conditional

forecast error of Yt, and Q =t
(i, j)

t|t 1
(i, j)λ θ λj j− '  + Σ is its conditional variance.  Hamilton’s nonlinear

filter is:

(9) Prob(S t-1 = i, St = j |I t-1)= pij h=∑ 0

1
Prob(St-2 = h, St-1 = i | It-1)

From this joint conditional probabilities, the density of Yt conditional on St-1, St, and It-1 is:

(10) f(Yt| St-1 = i, St = j, It-1)= {(2 ) Q N Q N-k /2
t
(i, j)

t|t 1
(i, j)'

t
(i, j)

t|t 1
(i, j)π | | exp( )}/−

−
−

−−1 2 11

2

The joint probability density of states and observations is then calculated by multiplying each

element of  (9) by the corresponding element of (10):

(11) f(Yt, St-1=i, St=j|It-1) = f(Yt| St-1=i, St=j, It-1) Prob(St-1=i,St=j | It-1)

The probability density of Yt given It-1 is:

(12) f(Yt | It-1) = 
ij == ∑∑ 0

1

0

1
f(Yt, St-1 = i, St = j | It-1)

The joint probability density of states is calculated by dividing each element of (11) by the

corresponding element of (12):

(13)  Prob(St-1 = i, St = j | It)= f(Yt, St-1 = i, St = j | It-1) / f(Yt | It-1)
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Finally, summing over the states in (13), we obtain the filtered probabilities of bull or bear

markets:

(14) Prob(St = j | It)= 
i=∑ 0

1
Prob(St-1 = i, St = j | It)

The link between the two filters arises as an approximation introduced through Ft|t
j and

θt|t
j , which truncates the forecasts at each iteration.  The approximation is required to make the

filter computationally tractable, since at each date t the nonlinear filter computes 4 forecasts, and

at each iteration the number of possible cases is multiplied by the number of states. The

approximation consists of a weighted average of the updating procedures by the probabilities of

the Markov state:

(15)

F
Prob S i,S j|I F

Prob S j|I ]

Prob S i,S j|I F F F F

Prob S j|I ]

t|t
j t 1 t t t|t

(i, j)

t t

t|t
j t 1 t t t|t

(i, j)
t|t
j

t|t
(i, j)

t|t
j

t|t
(i, j)

t t

=
= =

=

=
= = + − −

=

−=

−=

∑

∑

[ ]

[
,

[ ]{ ( )( )'}

[
.

i

M

i

M

1

1θ
θ

The nonlinear filter allows recursive calculation of the predicted equations using only

observations on {Ykt ,k=1,…,4} given values for the parameters in φ, λj, αj, pij, Σ and σηSt

2 , and

initial inferences for the factor, Ft|t
j , the mean squared error,θt|t

j , and the joint probability of the

Markov-switching states.  The outputs are their one-step updated values. This permits estimation

of the unobserved state vector as well as the probabilities associated with the latent Markov state.

A by-product of this algorithm is the conditional likelihood of the observable variable, which can

be evaluated at each t.  The log likelihood function is:

(16) Log f(YT,YT-1,...|I0)) =

log | | exp( )}/

t

T

j i= = =
−

−
−

−∑ ∑ ∑ −
1 0

1

0

1 1 2 11

2
{(2 Q N Q N-k/2

t
(i, j)

t|t 1
(i, j)'

t
(i, j)

t|t 1
(i, j)π Prob(St-1=i,St=j | It-1).

The filter evaluates this likelihood function at each t, which can be maximized with respect to the

model parameters using a nonlinear optimization algorithm.  Thus, the factor is constructed as a

nonlinear combination of the observable variables weighted by the probabilities of the Markov

state, using information available through time t:

(17) Ft|t = E(Ft|It) = 
j=∑ 0

1
Prob(St=j | It) Ft|t

j
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The conditional moments of the excess returns are obtained from forecasts of the mean

and volatility of the dynamic factor.  From equations (1), (2) and from the nonlinear algorithm,

the conditional expectation of excess returns are:

(18) E(Yt|It-1) = 
j

∑ λj{αj + φ E(Ft-1|It-1)} Prob(St = j|It-1)

Notice that the value-weighted market excess return, E( ert
vw |It) = E(Ft|It) given that its

corresponding factor loading is set to one, λvw=1.  The conditional variances of excess returns are

obtained from the Kalman iterations:

(19) Var(Yt|It-1) = 
ij

∑∑ λj{θ t|t -1
(i, j)  Prob(St = j, St-1 = i|It-1)}λj’ + Σ,

which corresponds to the conditional variance of the forecast error of Yt.

As seen in equations (18) and (19), the model does not impose a priori relation between

the level and volatility of excess returns.  In fact, expected excess return and its conditional

volatility may not be related together directly but may be a nonlinear function of the state of

financial market conditions, as represented by the Markov process.  Thus, expected excess returns

and conditional volatility could be positively or negatively associated or, they could exhibit no

relationship at all.

4.  EMPIRICAL RESULTS

Data and Models

Three specifications of the nonlinear dynamic factor model are estimated for monthly data

from 1954.02 to 1997.12, in an application to the post-war U.S. financial market.  In Models 1

and 2 Ykt is composed of the excess return on the CRSP value-weighted index (VW), on the

CRSP equal-weighted index (EW), on the IBM stock, and on the GM stock. The excess return is

defined as the difference between continuously compounded stock returns and the 3-month T-bill

rate in annual terms.  In Model 3, Ykt includes the 3-month T-bill rate (TB3), the S&P 500 price-

earnings ratio (P/E) and dividend yield (Dyield), in addition to the value-weighted excess return.

These data are from the 1997 release of the DRI Basic Economic Database.  For state dependent

factor loadings, as in Model 2, equation (1) is rewritten as:
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   Ykt               λk
st                  εkt

 (1’)

er

er

er

er

vwt

ewt

ibmt

gmt

   =    

1

λ
λ
λ

vew
st

vibm
st

vgm
st

 Ft    +   

ε
ε
ε
ε

vwt

ewt

ibmt

gmt

.

For state dependent factor loadings and using financial variables other than excess returns, as in

Model 3, equation (1) is substituted by:

       Ykt                λk
st               εkt

(1”)

er

dyield

TB

P E

t
vw

t

t

t

∆
∆

∆

ln

( / )

3
= 

1

3

λ
λ
λ

dyield
st

tb
st

p e
st

/

 Ft +

ε
ε
ε
ε

wt

dyieldt

tb t

p et

3

/

4.1. The Dynamic Financial Factors

In Models 1 and 2, excess returns are conditioned on the Markov process and on a latent

factor that captures comovements on past values of different measures of excess returns.  In

Model 1, the mean and the volatility of the dynamic factor switch regimes, while in Model 2 we

also allow the factor loadings to vary across the Markov states.  Thus, we can examine the risk-

return relationship for stocks from different firm sizes, and compare the results for potential

asymmetric behavior of returns across financial states, depending on different market

capitalization.  In Model 3, excess return on the value-weighted index is conditioned on a

switching latent factor constructed from comovements underlying past values of other financial

variables, as described above.  This framework, as in Chauvet and Potter (1997), allows the use of

multivariate information with a parsimonious variance-covariance structure to produce the sort of

predictions obtained from regression models __   but in a nonlinear setting.

The maximum likelihood estimates are shown in Table 1.  In all models, the two Markov

states are statistically significant: state 0 exhibits negative mean, high volatility and a shorter

average duration, which is associated with the short lasted and nervous bear markets.  State 1 has

a positive mean, low volatility and a longer average duration, capturing the features of bull
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markets. These results are similar to those found in Chauvet and Potter (1997) and Chauvet

(1998b).

The likelihood ratio test for the null of one state model against the alternative of a

Markov switching model has an unknown sampling distribution, since several of the classical

assumptions of asymptotic distribution theory do not hold.  Thus, we test for the number of states

using the approach proposed by Garcia (1998), which is based on Hansen (1993).  This likelihood

ratio test provides strong evidence for the two-state model.7

With respect to the model assumptions, Brock, Dechert, and Scheinkman’s (1996) BDS

test for nonlinear models fails to reject the hypothesis of i.i.d. disturbances.8  In addition, the one-

step ahead forecast errors are not predictable by lags of the observable variables and their pairwise

covariances are approximately zero.

Figure 1 plots the dynamic factor obtained from Model 2 against the value-weighted and

equal-weighted excess stock returns.9  The dynamic factor is highly correlated with these

observed excess returns, particularly at turning points, representing bear and bull markets.  Figure

2 shows the actual and conditional excess return on the value-weighted from Model 3.  A

remarkable feature of this model in comparison with linear regression models of excess returns is

that here the expected excess returns mimic closely the volatility of the realized excess returns.

In all models, we set the factor loading of the value-weighted index to one (λvw=1).10

Thus, we can compare the sensitivity of the other components to the factor in the same units as

the value-weighted excess returns.  Model 1 captures the empirical observation that small firms,

as represented by the equal-weighted excess returns, are more reactive to the market (λew=1.14),

while stock returns on large firms such as IBM (λibm=0.96) or GM (λGM=0.97) are less correlated

with the market risk.

                                                       
7 Although Garcia's critical values are designed for a univariate AR(1) regime switching model and the test is parameter

dependent, the value of the likelihood ratios obtained here are about 3 times larger than the highest value in Garcia’s table for

the 1% significance level.
8  For a vector εt

m = εt, εt+1,..., εt+m-1, we use m=2, 3 and we set the distance d between any two vectors, εt
m and εs

m equal to the

standard deviation of εt.  The test estimates the probability that these vectors are within the distance d.
9  The dynamic factors obtained from each of the models are qualitatively similar.

10  The normalization affects only the scale of the factor.  None of the time series properties of the dynamic factor or the

correlation with its components is affected by the choice of the parameter scale.
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Allowing the factor loadings to switch regimes, as in Model 2, we can capture the

asymmetric behavior of returns depending on the size of the firm across financial market states.

Table 2 summarizes these findings.  While in bull markets excess stock returns of large and small

firms exhibit a similar behavior (λ values around one), in bear markets firm size makes a

difference.  That is, during periods of low market excess return, small firms are the most reactive

to market risk (λew=1.41), while large firms are much less sensitive to the market (λIBM=0.85,

λGM=0.98).  That is, stock returns of large firms decrease less than small firm returns during bear

markets.

To verify these results further, we fit an AR(0) univariate Markov switching model to each

of the four components of the factor in Models 1 and 2, allowing both the mean and the volatility

of the variables to switch regime. The estimated filtered probabilities of bear markets are plotted

against NBER-dated recessions in Figure 3.  The results confirm the nonlinearities underlying the

factor model.  The probabilities of bear markets from excess returns on small firms, as proxied by

the equal-weighted index, are the most volatile and strongly react to most of the economic

recessions in the sample data.  On the other hand, the probabilities of bear markets for IBM and

GM excess stock returns are less volatile and correspond less closely to the NBER dated

economic recessions.

 Table 3 reports dating of the U.S. stock market cycle phases. The framework adopted in

this paper provides probabilities that can be used as filtering rules for dating turning points. We

use information from the frequency distribution of the smoothing probabilities from Model 2 to

define turning points: a peak (trough) occurs if the smoothing probabilities of bear markets are

greater (smaller) than their mean plus one-half their standard deviation.  The results for our

sample data confirm the empirical observation that there have been more bear markets (10) than

recessions (7), as measured by the NBER.  With the exception of the 1960-61 recession, all others

in the sample data were associated with a bear market.  Generally, bear markets begin a couple of

months before a recession and end in the middle of it, anticipating economic recovery.  These

findings are illustrated in Figure 4, which shows the smoothed probabilities of bear markets and

the NBER recessions.

4.2. Conditional Moments of the Financial Factors
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In order to empirically investigate the relationship between conditional expected excess

return and its volatility, we derive these moments as described in Equations 18 and 19 of Section

3.  Given the richer framework provided by state dependent factor loadings, we will analyze the

findings from Models 2 and 3.11  The models yield first and second conditional moments for each

of the four components of the dynamic factor.  In Model 2, the dynamic risk-return relationship

for the value-weighted (VW), equal-weighted (EW), IBM, and GM stocks are all very similar.

Thus, we will focus mainly on the results for the value-weighted excess return factor.

Figures 5 and 6 plot the conditional expectation and variance of the value-weighted excess

return factor and NBER-dated recessions obtained from Models 2 and 3, respectively.  Typically,

the conditional mean decreases a couple of months before or at the peak of expansions, and

increases before the end of recessions. On the other hand, the conditional volatility increases

during economic recessions.

The conditional volatilities are very similar for both models, although the conditional

expectations are less so.  The results suggest that when conditioned only to past values of excess

returns and to the state of the economy as proxied by the Markov process (Model 2), expected

excess returns exhibit a very distinct bull and bear markets pattern.  In particular, it has

approximately the same unconditional mean (0.06 a year) and median (0.10 a year) as the realized

value-weighted excess returns, and most values of the conditional expectation are close to the

realized unconditional median.  In contrast, when conditioned on other financial variables in

addition to the Markov process (Model 3), expected excess return is less concentrated around the

median.  It mimics more closely the realized value-weighted excess return, particularly the

amplitude of its oscillations  (Figures 2 and 6).  In both models expected excess return conditional

on financial variables also displays business cycle dynamics __ it decreases during expansions until

reaching a minimum in the middle of a recession, and increases in the second half of a recession,

reaching a maximum at its trough.

The counter-cyclical behavior of the conditional variance is also found by Whitelaw

(1994), Timmerman and Perez-Quiros (1996), Harrison and Zhang (1997), Schwert (1989) or

Kandell and Stambaugh (1990).  However, the results in the literature for the conditional

                                                       
11  The likelihood ratio between Models 1 and 2 rejects Model 1 at the 0.5% significance level.
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expectation are mixed. For example, Harrison and Zhang report procyclical or countercyclical

expected returns depending on the conditioning variables.12  Fama and French (1989), Whitelaw,

and Timmerman and Perez-Quiros find a pattern for expected excess returns similar to ours,

particularly for the results from Model 3.

Contemporaneous Relationship

Figure 7 plots scatter diagrams for the conditional expectation and conditional variance

obtained from Model 2, for bear and bull markets as dated in Table 3.13  During bear markets,

expected excess returns are low while the conditional volatility is high.  In bull markets, the

conditional mean increases while the volatility decreases.14  These findings are summarized in

Figure 8, which shows the covariance of the conditional mean and variance in the form of a

scatter-plot.  That is, when the level and volatility of expected return are conditioned only to a

Markov state variable and no a priori association is imposed on them, we find a significant

contemporaneous negative risk-return relationship at the monthly frequency.

A negative but weak relationship is also found by Glosten, Jagannathan, and Runkle

(1993), using a GARCH-M model.  As discussed in Backus and Gregory (1993), negative,

nonmonotonic or positive relationship between the first and second conditional moments of stock

returns can arise from equilibrium models.  The empirical literature reports mixed findings

depending on the way the moments are modeled and the conditional variables used.  The analysis

of conditional moments from Model 2 can add to the discussion in that it reflects expectations

based only of past information on different measures of excess returns and on the state of the

economy,  as  represented  by  the  Markov  process.   If  the  history of excess return subsumes to

some extent all publicly available information from financial and economic variables, Model 2 has

the advantage of tapering the problem of obtaining different results depending on the conditional

                                                       
12  The role of conditioning and mis-specification in determining the direction of the relationship is discussed by Glosten,

Jagannathan, and Runkle (1993), Harvey (1991), and Pagan and Hong (1991), among others, particularly when a symmetric

relation between risk-return is imposed.
13  These results hold if we use different procedures to date bear/bull markets as well, such as different threshold values for

calling a turn, or using the smoothing probabilities from Model 3, or using the bear market dating suggested by Niemira and

Klein (1994).
14 As discussed in Chauvet (1998b), stock market phases are closely associated with economic fluctuations.
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financial variables chosen.

Using financial variables in addition to the Markov state, as in Model 3, allows us to study

the role of conditioning variables and to compare our results to existing literature.  As in Chauvet

and Potter (1997), we condition excess stock returns on other financial variables that proxy for

the market risk premia, such as price-earnings, dividend yield, and interest rates.  These variables

have been extensively used in related empirical work to verify the risk-return relationship.  Figure

9 plots scatter diagrams for the mean and volatility of the excess return on the value-weighted

conditional on financial variables for the whole sample.  Notice that although the overall

contemporaneous relation is still negative, the relation between these two moments is  weaker

than as found in Model 2, in which stock returns are conditioned only to the state of the economy.

In particular, during bear markets the conditional expectation decreases and the volatility

increases for low values of the conditional expectation.  In bull markets the reverse occurs, also

for low values of the conditional expectation (Figure 10).  In fact, a closer examination of these

diagrams suggest that there is a nonlinear behavior of these moments, depending on whether

conditional expectations are positive or negative.  Dividing the sample into periods when the

conditional expectation is positive or negative shows a remarkable result __ the risk-return relation

is weakly positive if we exclude periods of negative conditional excess returns, and significantly

negative otherwise (Figure 10).  This nonlinear behavior may be behind the diversity of empirical

results found in the literature regarding the risk-return relation.

Table 4 summarizes these results, showing the contemporaneous correlation between

conditional expectation and variance of excess returns across financial cycle phases.  For Model 2,

the relation is negative independently on the stage of the financial cycle.  However, when excess

returns is conditioned on other financial variables in addition to the Markov state, the correlation

is -0.91 for times when the conditional expectation is negative and 0.44 for periods when it is

positive.

This finding may arise from the dynamics of conditional expected return near the trough of

business cycle recessions, when expected return is at its highest value as an anticipation of the end

of the recession, and volatility is still very high.  In fact, we find that the conditional volatility is

also at its highest values near peaks and troughs of business cycles (Figures 5 and 6).
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Even though some would claim that intuition may point to a positive risk-return relation __

during times of high volatility, investors might move from stock to bonds, driving expected

returns up, the direction of the relation seems to depend on the state of the economy.  Our results

do not contradict this intuition, but indicates that it holds for some periods and not for others.

First, we find that conditional variance moves up and down during economic recessions, reflecting

the great uncertainty of these periods.  The net effect is an increase in volatility during those

times.  Second, immediately before and during economic recessions, expected excess return reach

its minimum and its maximum values. In addition, similar to the conditional volatility, expected

excess returns also display up and down movements during bad times.  Since the decrease in the

expected excess returns is substantial (reaching negative values) at the peak of economic

expansions, a net negative contemporaneous relationship between risk-return dominates for the

whole sample.  That is, the relation is strongly negative in the first half of recessions, and positive

in the second half.  This suggests that the risk-return dynamic relationship can be better

understood if studied within and as a function of the different stages of the economy.

This result can also be illustrated by examining whether the Sharpe ratio is stable over

time.  To investigate this, we examine the linkages between the Sharpe ratio and fluctuations in

economic activity.  The Sharpe ratio or the price of risk corresponds to the conditional mean

divided by the square root of the variance:

SR = E(Yt|It-1)/√Var(Yt|It-1).

Table 5 reports a series of regressions of the price of risk on measures of business cycles, such as

a 0/1 dummy variable representing recessions as dated by the NBER, changes in industrial

production, and changes in the business cycle indicator generated by Chauvet (1998a).15  We find

that the regression coefficients are statistically significant in all the regressions and the Sharpe

ratio displays a strong countercyclical business pattern (negative for the NBER recession dummy

and positive for the others).  This is also illustrated in Figures 11 and 12: in bear markets the

conditional mean is low and the volatility is high, implying that the Sharpe ratio is low, while  in

bull markets, with a high conditional mean and low volatility, the Sharpe ratio is much higher, for

both Models 2 and 3.

                                                       
15 This monthly coincident indicator is constructed from a Markov switching dynamic factor using economic variables that

move contemporaneously with business cycles, such as: sales, personal income, industrial production, and employment.
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This time-varying risk-return relationship over the business cycle is also found in excess

returns on large firms, as represented by IBM and GM stocks, and in small firms, as proxied by

the excess returns on the equal-weighted index.  Figure 13 plots the Sharpe ratio for the IBM,

GM, and equal-weighted excess returns, respectively.  Again, the price of risk falls during bear

markets and increases in bull markets for each of the four components of the dynamic factor.

Non-Contemporaneous Correlations

We find that the contemporaneous relationship between expected excess returns and the

conditional variance is time-varying within economic recessions. We further examine their

correlation at leads and lags.  Tables 6 and 7 and Figure 14 show the cross-correlogram between

conditional excess return and variance for 30-month leads and lags of the conditional variance.

For Model 2, their cross-correlation is negative and significant up to 9 months for leads and lags

and weakly positive for leads and lags from 20 to 30 months.  The offset correlations are

symmetric implying that cyclical variations in risk and return are negatively related but coincident.

Also, conditional variance seems to slightly lead its expected excess return.  For Model 3, the

relation is weaker.   It is significantly negative up to two lags of the conditional variance and

statistically insignificant for higher lags.  For leads of the conditional variance, the relation is

negative and significant up to 9 months.  This result is also seen in Figure 14, which plots the

cross-correlation between conditional expectation and variance against 30 leads and lags of the

conditional variance.  For Model 3, there is a negative and significant correlation between these

two moments for  small leads and lags, but using Granger causality and spectral analysis we find

that expected excess return slightly leads volatility.  No strong conclusion can be drawn from this,

since the relationship between these two moments may be driven by a third variable - the state of

the economy, as examined here.  However, it seems that when excess returns are expected to be

low, an immediate increase in market volatility follows as investors seek to move their position to

hedge against noise, reflecting learning about the data as the state of the economy changes.  This

result is in contrast with Whitelaw (1994), who finds a weak contemporaneous relation, but a

strong offset correlation, in which volatility leads expected returns across business cycle phases.

On the other hand, Harrrison and Zhang (1995) find small and negative contemporaneous and

offset correlations at the monthly frequency.  Using spectral analysis, these authors find that there

is no significant lead or lag relationship between the conditional moments, but a time-varying
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contemporaneous relationship. The difference in the results may arise from the alternative

conditioning variables underlying these studies and the fact that Whitelaw assumes a linear risk-

return relation.

Based on the findings of the previous session, an interesting question is whether the non-

contemporaneous relationship is also non-stable for subsamples of the data.  Table 8 reports the

cross-correlation for periods of negative or positive conditional expectation.  In fact, when the

conditional expectation is positive, we find that offset correlations are positive and significant for

up to 2 leads and lags. However, restricting the sample for times when the conditional expectation

is negative, the offset correlation is significant and negative up to 2 leads and lags (Figure 15).

5.  CONCLUSIONS

This paper proposes an empirical framework that offers a flexible description of the joint

time series properties of the level and volatility of expected stock returns.  An unobservable

dynamic factor is built as a nonlinear proxy for the market risk premia with first moment and

conditional volatility driven by a latent Markov variable.  That is, we consider the possibility that

the market expected return and its conditional volatility are not necessarily related together

directly but are a function of a third variable __ the two-states Markov process, which can be

interpreted as bull and bear markets.

We find a significant asymmetric behavior of conditional excess returns according to firm

size.  In particular, excess returns on small firm stocks are more reactive to changes in the state of

financial markets than large firms.  In addition, a business cycle pattern is present in the

conditional expectation and variance of the value-weighted excess return factor.  Typically, the

conditional mean decreases a couple of months before or at the peak of expansions, and increases

before the end of recessions. On the other hand, the conditional volatility rises considerably during

economic recessions.

With respect to the risk-return relation, during bear markets expected excess returns

decrease while the conditional volatility increases.  In bull markets, the conditional mean increases

while the volatility decreases.  That is, when the level and volatility of expected return are

conditioned only to a Markov state variable and no a priori association is imposed on them, we

find an overall contemporaneous negative risk-return relationship at the monthly frequency.  This

negative relation is less significant if other conditional financial variables are included.
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However, this contemporaneous correlation is not stable, but instead varies according to

the state of the business cycle.  Around peaks and during the first half of economic recessions as

measured by the NBER, their relation is negative.  However, during the second half of economic

recessions, the trade-off between risk and return is positive.  This result arises from the dynamics

of conditional expected returns near business cycle peaks and trough.  Around the beginning of

recessions, volatility increases considerably reflecting great uncertainty associated with these

periods, while expected returns decrease anticipating a decrease in earnings.  Thus, there is a

negative relationship between conditional expectation and variance.  Towards the end of a

recession, expected returns are at its highest value as an anticipation of the economic recovery,

and volatility is still very high in anticipation of the end of the contraction.   In fact, we find that

the conditional volatility is at its highest values near peaks and troughs of business cycles.  Thus,

during times of high volatility, investors might move back and forth from stock to bonds, driving

changes in expected returns and the direction of the relation depending on the stage of the

economy.  This time-varying behavior also holds for non-contemporaneous correlations. When

the conditional expectation is positive, we find that offset correlations between conditional mean

and variance are positive and significant for shorter leads and lags. However, restricting the

sample for times when the conditional expectation is negative, the offset correlation is significant

and negative.  The results suggest that the contemporaneous and offset risk-return relationship

change over time, as a result of the dynamics of conditional expected returns around business

cycle peaks and troughs.
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Table 1: Maximum Likelihood Estimates
1954.2-1997.12

  Model 1:           Model 2: Model 3:

  Ykt = λk Ft + εkt           Ykt = λk
st + Ft + εkt Ykt = λk

st + Ft + εkt

  Ft =  α1 + α0St + φFt-1 + ηSt
   St=0,1           Ft =  α1 + α0St + φFt-1 + ηSt

   St=0,1 Ft =  α1 + α0St + φFt-1 + ηSt
   St=0,1

  k = Excess Returns on VW, EW, GM, IBM          k = Excess Returns on VW, EW, GM, IBM k = Excess Returns on VW, Changes in

Dividend Yield, TB-3 month, P/E

 ___________________________________________________________________________________
Parameters Model 1 Parameters Model 2 Parameters Model 3
αα1 0.117 αα1 0.131 αα1 0.038

(0.027) (0.024) (0.015)

αα0 -0.351 αα0 -0.356 αα0 -0.113
(0.172) (0.137) (0.079)

φφ 0.018 φφ -0.010 φφ 0.295
(0.062) (0.041) (0.049)

σσ2εεvw 0.013 σσ2εεvw 0.013 σσ2εεvw 0.135
(0.006) (0.006) (0.009)

σσ2εεew 0.098 σσ2εεew 0.094 σσ2εεdy 1.359
(0.010) (0.009) (0.350)

σσ2εεgm 0.363 σσ2εεgm 0.363 σσ2εεtb3 61.218
(0.023) (0.023) (3.794)

σσ2εεibm 0.396 σσ2εεibm 0.394 σσ2εεp/e 5.621
(0.025) (0.025) (0.514)

λλvw 1 λλ0
vw 1 λλ0

vw 1
- - -

λλew 1.138 λλ0
ew 1.317 λλ0

dy -9.134
(0.041) (0.067) (0.737)

λλgm 0.974 λλ0
gm 0.969 λλ0

tb3 -3.589
(0.061) (0.108) (1.704)

λλibm 0.964 λλ0
ibm 0.887 λλ0

p/e 10.070
(0.060) (0.098) (0.892)

p11 0.957 λλ1
vw 1 λλ1

vw 1
(0.023) - -

p00 0.756 λλ1
ew 1.003 λλ1

dy -11.204
(0.153) (0.055) (1.001)

σσ2
ηη1 0.145 λλ1

gm 0.978 λλ1
tb3 -2.683

(0.019) (0.097) (1.922)

σσ2
ηη0 0.608 λλ1

ibm 1.021 λλ1
p/e 10.859

(0.174) (0.089) (1.036)
p11 0.960 p11 0.948

(0.018) (0.023)
p00 0.814 p00 0.703

(0.093) (0.133)
σσ2

ηη1 0.149 σσ2
ηη1 0.066

(0.016) (0.012)

σσ2
ηη0 0.512 σσ2

ηη0 0.306
(0.100) (0.090)

_____________________________________________________________________________________________________________

LogL(θθ) -1525.06 LogL(θθ) -1517.82 LogL(θθ) -4671.76
_____________________________________________________________________________________________________________
 Asymptotic standard errors in parentheses correspond to the diagonal elements of the inverse hessian obtained through numerical calculation.
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Table  2 - Firm Size Asymmetries Across States         Table 3 -  Dating of the U.S. Bear Markets
    (Model 2)               Smoothed Probabilities, Model 2

________________________________________        _______________________________________
Asymmetries Bear Market Bull Market NBER Recessions Bear Markets

Peak Trough Peak Trough
________________________________________        _______________________________________
Market: λλvw 1 1 1957:08 1958:04 1957:08 1957:12
Large Firms: λλIBM 0.887 1.021 1960:04 1961:02 - -
Large Firms: λλGM 0.969 0.978 - - 1962:03 1962:10
Small Firms: λλew 1.317 1.003 - - 1966:05 1966:09

ααst /σ /σst -0.314 0.339 1969:12 1970:11 1969:02 1970:09
1973:11 1975:03 1973:01 1975:02

________________________________________ - - 1978:08 1978:11
1980:01 1980:07 1979:09 1980:04
1981:07 1982:11 1981:06 1982:02

- - 1987:09 1987:11
1990:07 1991:03 1990:07 1990:10

       _______________________________________
         The stock market is assumed to be in a Bear Market if  the
         smoothed probabilities of bear markets, P(St=0|ΙT), is greater
         than their mean + ½ their standard deviation.

Table 4 - Contemporaneous Correlation Between Conditional
       Expectation and Conditional Variance of VW Excess Returns

       Across Business and Financial Cycles
       ______________________________________________________

Correlation:
CE and CV during↓↓

Model 2 Model 3

           ______________________________________________________
Bear Market -0.505 -0.443
Bull Market -0.978 -0.152
Bear Market PN -0.995 -0.766
Bull Market PN -0.998 -0.098
CE<0 -0.985 -0.906
CE>0 -0.971 0.438
Full Sample -0.995 -0.399

         ______________________________________________________
           NBER refers  to a 0/1 dummy variable taking the value 1 during recessions and 0
           during expansions, as dated by the NBER.  Bear and Bull markets refer  to the
           smoothed probabilities of bear and bull markets, respectively, obtained from each model.

Table  5 - Individual Regressions of the Sharpe Ratio on Economic Variables
________________________________________________________________________________

Model 2 Model 3
Independent
Variable→→

NBER ∆∆lnIP SFC NBER ∆∆lnIP SFC

________________________________________________________________________________
Coefficien

t
-1.214 0.294 0.020 -1.199 0.311 0.011

(-12.115) (6.873) (8.416) (-3.743) (2.324) (2.805)
Adj. R2 0.217 0.086 0.130 0.021 0.009 0.015

________________________________________________________________________________
t- statistic inside parentheses.  NBER is a 0/1 dummy variable taking the value of  one at NBER-dated recessions, ∆lnIP
is the log first difference of Industrial Production, and SFC is a business cycle index built from a switching dynamic factor
 which is highly correlated with the log first difference of GDP (see Chauvet 1998a).  We ran three simple regression of the
Sharpe Ratio on a constant and each of the independent variables, for Models 2 and 3.  The constant term is positive and
significant in all equations.
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Table 6 - Model 2  Table 7 - Model 3
Correlogram: Conditional Expectation (CE) and               Correlogram: Conditional Expectation (CE) and
Conditional Variance (CV) of the VW Conditional Variance (CV) of the of the VW
_________________________________________
___________________________________________

i CE of VW, CV of
VW(-i)

CE of VW, CV of
VW(+i)

i CE of VW, CV of
VW(-i)

CE of VW, CV of
VW(+i)

_________________________________________
___________________________________________

 0 -0.9950 -0.9950 0 -0.3993 -0.3993
 1 -0.7631 -0.7336  1 -0.3330 -0.1192
 2 -0.5475 -0.5195  2 -0.2066 -0.0164
 3 -0.4402 -0.4213  3 -0.1358 -0.0011
 4 -0.4191 -0.4018  4 -0.1500  0.0058
 5 -0.3931 -0.3708  5 -0.2220  0.0083
 6 -0.3136 -0.2912  6 -0.1948  0.0549
 7 -0.2319 -0.2206  7 -0.1561  0.0261
 8 -0.1886 -0.1799  8 -0.1550  0.0188
 9 -0.1678 -0.1636  9 -0.1077  0.0126

 10 -0.1437 -0.1350  10 -0.0524  0.0611
 11 -0.1127 -0.1061  11 -0.0266  0.1109
 12 -0.1296 -0.1292  12 -0.0549  0.0988
 13 -0.1332 -0.1294  13 -0.0892  0.0514
 14 -0.1364 -0.1322  14 -0.0330  0.0644
 15 -0.1049 -0.1126  15  0.0139  0.0403
 16 -0.0967 -0.1022  16  0.0235  0.0149
 17 -0.0922 -0.0894  17  0.0021  0.0263
 18 -0.0720 -0.0621  18 -0.0313  0.0414
 19 -0.0497 -0.0405  19  0.0279  0.0424
 20 -0.0139 -0.0142  20  0.0071  0.0091
 21  0.0195  0.0186  21 -0.0479  0.0046
 22  0.0481  0.0465  22  0.0148  0.0091
 23  0.0502  0.0391  23  0.0472 -0.0194
 24  0.0640  0.0586  24  0.0305 -0.0643
25  0.0758  0.0727 25  0.0338 -0.0902
26  0.0801  0.0802 26  0.0070 -0.0744
27  0.0977  0.0977 27 -0.0217 -0.0537
28  0.0873  0.0863  28  0.0035 -0.0188
29  0.0713  0.0668 29 -0.0238 -0.0079
30  0.0570  0.0498 30 -0.0589  0.0220

________________________________________      ________________________________________

Table 8 - Model 3
Correlogram: Conditional Expectation (CE) and Conditional Variance

    (CV) of the Value-Weighted Excess Return 
              ________________________________________________________

i CE of VW, CV
of VW(-i)
CE<0

CE of VW, CV
of VW(-i)
CE>0

CE of VW, CV
of VW(+i)
CE<0

CE of VW, CV
of VW(+i)
CE>0

              ________________________________________________________
0 -0.9064  0.4383 -0.9064  0.4383
1 -0.3151  0.1756 -0.2111  0.1267
2 -0.1193  0.0820 -0.0702  0.0046
3 -0.0837  0.0347 -0.0542 -0.0109
4 -0.0975 -0.0572 -0.0614  0.1021
5 -0.1117 -0.0502 -0.0566  0.0304
6  0.0156 -0.0376  0.0063  0.0744
7 -0.0592 -0.0248 -0.0710 -0.0274
8 -0.0914  0.0002 -0.0764 -0.0333
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9 -0.0837  0.0148 -0.0473  0.0173
10 -0.0610 -0.0156 -0.0421  0.0461

________________________________________________________
Figure 1 - Model 2 - Excess Return Factor (___),  Value-Weighted Excess Returns (- - -), Equal-
Weighted

    Excess Returns (
_ _ _

) Smoothed Using H-P Filter (λλ=1) and NBER Dated Recessions
(Shaded

    Area)
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 Figure 2 - Model 3 - Excess Return Factor (___), Conditional Expectation of the Value-Weighted
    Excess Return (- - -), and NBER Dated Recessions (Shaded Area)
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Figure 3 - Smoothed Probabilities of Bear Market from Fitting a Univariate AR(0) Markov Switching
    Model to the Factor Components, and NBER Dated Recessions(Shaded Area)

Value-Weighted Excess Returns  Equal Weighted Excess Return

0.0

0.2

0.4

0.6

0.8

1.0

55 60 65 70 75 80 85 90 95

0.2

0.4

0.6

0.8

1.0

55 60 65 70 75 80 85 90 95

GM Excess Returns IBM Excess Return

0.0

0.2

0.4

0.6

0.8

1.0

55 60 65 70 75 80 85 90 95
0.0

0.2

0.4

0.6

0.8

1.0

55 60 65 70 75 80 85 90 95

Figure 4 - Smoothed Probabilities of Bear Market from Model 3 and NBER Dated Recessions
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Figure 5 - Model 2 - Conditional Expectation (CE) and Conditional Variance (CV) of the VW Excess
    Return (___), and NBER Dated Recessions (Shaded Area)
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Figure 6 - Model 3 - Conditional Expectation (CE) (Estimated Series and Smoothed Series Using H-P
    Filter λλ=10), Conditional Variance (CV) of the VW Excess Return, and NBER Dated
    Recessions(Shaded Area)
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Figure 7 - Model 2: Scatter Diagrams - Conditional Expectation (CE) and Conditional Variance (CV)
of

   the VW Excess Return - Bear and Bull Markets
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Figure 8 - Model 2: Scatter Diagram - Conditional Expectation (CE) and Conditional Variance (CV) of
   the VW Excess Return - Full Sample
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Figure 9 - Model 3: Scatter Diagram - Conditional Expectation (CE) and Conditional Variance (CV)
     of the VW Excess Return for the Full Sample
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Figure 10 - Model 3: Scatter Diagrams - Conditional Expectation (CE) and Conditional Variance (CV)
     of the VW Excess Return - Bear and Bull Markets:
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Figure 11 - Model 2: Sharpe Ratio of the VW Excess Return Factor (___), Model 2, and NBER Dated
     Recessions (Shaded Area)



31

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

55 60 65 70 75 80 85 90 95

Figure 12 -  Model 2 - Sharpe Ratio of the Components of the Factor (___), Model 2,  and NBER Dated
      Recessions (Shaded Area)
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Figure 13 - Model 3: Sharpe Ratio of the VW Excess Return (Estimated Series and Smoothed Series
     Using H-P Filter λλ=10), and NBER Dated Recessions (Shaded Area)
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Figure 14 -  Cross-Correlogram of Conditional Expectation (CE) and Conditional Variance (CV) of the
       VW Excess Return for 30 Lags (____) and Leads (- - -) of the Conditional Variance
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Figure 15 -  Cross-Correlogram of Conditional Expectation (CE) and Conditional Variance (CV) of the
       VW Excess Return for 30 Lags (____) and Leads (- - -) of the Conditional Variance
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