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1 Introduction

Macroeconomists engage in considerable debate over the time series properties of macroeconomics

variables as represented in impulse response functions. The debate until recently has been ex-

clusively based on the foundation that the economy's dynamic behavior is well approximated by

(Gaussian) random impulses being propagated over time by an invariant linear structure. As

discussed by Gallant, Rossi and Tauchen (1993) (GRT hereafter) there is no reason to restrict the

analysis of dynamics to linear time series. They extend the notion of impulse response functions

to the nonlinear time series case. This paper further develops the theory of impulse response

functions for nonlinear time series.1

GRT considered the extension of one common de�nition of impulse response functions for

linear time series to the nonlinear case. I extend the de�nitions of the four types of impulse

response functions in the macroeconomic literature. For linear time series the four de�nitions all

contain the same information. In the nonlinear case they all contain di�erent information. Call

this the �rst reporting problem.2 Instead of developing techniques for all four de�nitions I resolve

the �rst reporting problem by arguing that one of the de�nitions has a number of advantages over

the other three in the nonlinear context and call it a Generalized Impulse Response Function (GI

hereafter).

If a time series is linear one can normalize the GI to produce a nonrandom function. It

is not possible to construct such a nonrandom function for the GI of a nonlinear time series.

Thus, there is a second reporting problem for nonlinear time series: Is the reported response

a very general feature of the dynamics of the nonlinear time series? GRT took an informal

approach to the second reporting problem for their de�nition of impulse response functions by

considering visually the behavior of bundles of impulse response functions. I am able to formalize

this approach by treating the GI as a random variable on the underlying probability space of

the time series. This property of the GI is used to develop a number of solutions to the second

reporting problem based on stochastic dominance measures of the size of random variables.

The outline of the rest of the paper is as follows. Section 2 develops some notation and

some conventions. Section 3 extends the four standard de�nitions of linear impulse response

1I concentrate exclusively on the univariate case. Koop, Pesaran and Potter (1996) extend the use of the impulse response functions
as de�ned in this paper to the case of multiple time series.

2The reporting problems I examine in this paper are in addition to that usually encountered in linear impulse response function
analysis. When presenting impulse response functions from estimated models there is sampling uncertainty associated with parameters
de�ning the impulse response function. One set of possible classical solutions are described by GRT. Another set of possible Bayesian
solutions are described by Koop (1995).
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functions to the nonlinear case. Section 4 de�nes a special nonlinear time series model and

illustrates the restrictions imposed by the use of Wold Representation of a time series. Section 5

develops the random variable interpretation of the GI. Section 6 provides a number of de�nitions

of persistence. Section 7 considers various conditional versions of the GI. Section 8 contains an

empirical application to persistence in U.S. GNP. Section 9 gives some brief conclusions. A short

appendix contains proofs of results in the main text.

2 Notation and Conventions

All random variables are assumed to be de�ned on the probability space (
;F ;P): Throughout

the paper the convention will be maintained that lower case letters refer to a realization of a

random variable (unless the argument ! of the random variable is made explicit) and upper case

letters to the random variable. In order to clarify the notation with respect to the expectations

operator, the double bar convention of Billingsley (1986) will be used. Thus, E[Yt+njjG] will mean

the random variable called the conditional expected value of the integrable random variable Yt+n

given that G is a ���eld in F such that

1. E[Yt+njjG] is measurable G and integrable.

2. E[Yt+njjG] satis�es the functional equation:
Z
G

E[Yt+njjG]dP =

Z
G

Yt+ndP; 8G 2 G:

For example, if G = f0;
g then clearly measurability and integrability are satis�ed and E[Yt+njjG] =

E[Yt+n] since this �-�eld contains no information on individual realizations. Below it will be

important to distinguish between realizations of the conditional expectation operator and the

random variable itself. The value of E[Yt+njjG]! at ! 2 
 is interpreted as the expected value of

Yt+n given that one knows for each G 2 G whether or not it contains the point !.

The focus will be on the sequence of increasing Borel (B) ���elds,

Ft = �(: : : ; Y�1; Y0; Y1; : : : ; Yt):

Hence E[Yt+njjFt]! is the value of the conditional expectation of Yt+n given information up to time

t. For n � 0 the value will be the observed realization of the time series, for n > 0 we will denote

its value by E[Yt+njyt(!)]: Here yt(!) identi�es the individual realization of the time series up to
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time t at !, i.e., yt(!) = (yt : : : ; y1; y0; y�1; : : :). y1(!) will represent a complete realization of the time

series.

In order to simplify the exposition I will concentrate on the case of strictly stationary time

series, although some of the basic de�nitions below will also apply to the nonstationary case with

minor modi�cation. Nonstationarity due to deterministic components or integration of stationary

time series will be directly allowed for. Vt will represent independent and identically distributed

random sequences, Wt will represent martingale di�erence sequences, Ut will represent sequences

of uncorrelated random variables (white noise).

We will use the notation X �SSD Y for the statement that the random variable X second

order stochastically dominates the random variable Y and X �SSD Y for the statement that X

does not second order stochastically dominate Y .3 Similarly we use the notation X �FSD Y for the

statement that the random variable X �rst order stochastically dominates the random variable Y

and X �FSD Y for the statement that X does not �rst order stochastically dominate Y .4

The Wold Decomposition of any covariance stationary time series is given by:

Yt = �(t) +

1X
i=0

 iUt�i;

where
P1

i=0  
2
i <1;  0 = 1 and �(t) is a purely deterministic covariance stationary sequence.

The Wold Representation is the time series minus the purely deterministic component.

3 Four De�nitions of Impulse Response Functions

3.1 Linear Impulse Response Functions

De�ne the operator Ln(yt(!)) as the linear predictor of Yt+n given the realization of (yt; yt�1; : : :):

Using the Wold Decomposition the linear predictor is given by:

Ln(y
t(!)) = �(t+ n) +

1X
i=0

 n+iut�i

3If X and Y are two random variables with the same mean and distribution functions FX ; FY respectively then X second order
stochastically dominates Y if and only if

R
���

FX(�) � FY (�)d� � 0; 8� 2 R. Second Order Stochastic Dominance is an example of

a partial ordering on the a set of distribution functions. A partial ordering on a given set D of distribution functions,F1; F2; F3; : : : is a
binary relation satisfying three axioms:

1. F1 � F1 (reexivity).

2. If F1 � F2 and F2 � F3 then F1 � F3 (transitivity).

3. If F1 � F2 and F2 � F1 then F1 = F2 (anti-symmetry)

When applied directly to random variables as done here the last statement de�nes an equivalence class rather than equality.
4If X and Y are two random variables with distribution functions FX ; FY respectively then X �rst order stochastically dominates Y

if and only if FX(�) � FY (�) � 0; 8� 2 R.
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Consider the following three operations on the linear predictor:

1. The linear impulse response function (lirfn), it answers the question how does my linear forecast

of Yt+n change if today's realization of yt changes by �:

lirfn(�) = Ln(yt + �; yt�1; : : :)� Ln(yt; yt�1; : : :) =  n�:

2. Instead of considering the perturbation, �, one can examine the derivative of the linear predictor

(dlirfn). This gives the slope of the linear forecast of Yt+n with respect to yt. In the discussion

of persistence of univariate time series the limiting behavior of this derivative has been of great

interest.

dlirfn =
@Ln(yt; yt�1; : : :)

@yt
=  n:

3. The linear updating function (ludfn) is a crucial part of linear rational expectations models

where the change in today's behavior is determined by the change in linear forecasts of the future

given the arrival of information at time t:

ludfn(Ut(!)) = Ln(y
t(!))� Ln+1(y

t�1(!)) =  nUt(!):

It is trivial to de�ned scaled versions of lirfn; ludfn that are equal to lirfn and remove

any randomness from the linear impulse response functions. All of the three functions share a

symmetry property with respect to the value of the shock and an independence from the realization

of the process before time t.

4. All three are also equivalent to what one might call the sample path operator. Consider two

sample paths of fUtg; u1(!); u1(!0); that are same except at time t when they di�er by �.

Yt(!) = �(t) +

1X
i=1

 iUt�i(!) + Ut(!);

Yt(!
0) = �(t) +

1X
i=1

 iUt�i(!
0) + Ut(!

0);

yt+n(!)� yt+n(!
0) =  n(Ut(!)� Ut(!

0)) =  n�:

This is a de�nition of an impulse response function that is used by economists examining linear

models under perfect foresight where the di�erence in the sample path reects an `unanticipated

shock'.

3.2 Nonlinear Impulse Response Functions

The most di�cult operation to extend to the nonlinear case in a rigorous manner is the sample

path one. Assume that there exists a sequence of IID random variables fVtg de�ned on the same
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probability space as the time series such that �(Vt; Vt�1; : : : ; ) = Ft. De�ne two in�nite sequences of

the realized values of the IID random variable, v1(!); v1(!0), that di�er only in their t-th element

by �. Then a formal de�nition of the sample path operator would be:

E[Yt+njv
1(!)]�E[Yt+njv

1(!0)]:

Suppose Yt = f(Yt�1) + Vt; where f(�) is a non-a�ne function. Consider the value of the

sample path operator at n = 2:

Yt(!) = f(Yt�1(!)) + Vt(!); Yt(!
0) = f(Yt�1(!

0)) + Vt(!
0);

Yt+2(!)� Yt+2(!
0) = f(f(Yt�1(!)) + Vt(!)) + Vt+1(!))� f(f(Yt�1(!

0)) + Vt(!
0)) + Vt+1(!

0);

Since f(�) is non-a�ne the response depends on the value of Vt+1. This e�ect is present for

all n > 1 and implies that the response to the perturbation � depends on the future sequence of

shocks. One possible choice would be to look at all ! 2 
 such that the innovation sequence is

zero after time t (see Beaudry and Koop (1993) for an example). This would be equivalent to

analyzing the behavior of a nonlinear di�erence equation over a set of initial conditions de�ned

by the distribution of the time series at time t: This approach is not followed for two important

and related reasons.

a. The behavior of a nonlinear di�erence equation can be very sensitive on the exact value of

the parameters. For example, small changes in the parameters can alter the limiting dynamic

behavior of the di�erence equation from a unique value to chaos. This is a very undesirable

property when the models under investigation are subject to estimation error.

b. We will need a probability measure to discuss the general dynamic properties of nonlinear

stochastic models. The measure to associate with the behavior of the sample path operator

using the zero innovation sequence is not as obvious since a nonstationarity is introduced by

the special sample path restriction.

The natural thing to do to avoid these problems, is to average out the e�ect of future shocks,

thus reducing the sample path operator to the nonlinear impulse response function.

We continue by replacing the operator Ln in the other three categories of impulse response

functions with the conditional expectation at time t of Yt+n given the sigma �eld Ft generated by

fYt; Yt�1; : : :g evaluated at a particular point yt(!).
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1. A Nonlinear Impulse Response Function is de�ned by the di�erence between an expectation

conditioned on the sample path yt(!0) and an expectation conditioned on the sample path yt(!).

Where yt(!0) is equal to yt(!) except for the yt element which is perturbed by � :

nlirfn(�; y
t(!)) = E[Yt+njy

t(!0)]�E[Yt+njy
t(!)]:

This is the de�nition used by GRT.

2. The `derivative' of the nlirfn (conditional expectation) of Yt+n with respect to yt, assuming that

it is well-de�ned at the point (yt; yt�1; : : :):

dnlirfn(y
t(!)) = lim

�!0

nlirfn(�; y
t(!))

�
:

If the derivative is not well-de�ned at this point then the dnlirfn will be set to in�nity.

3. The Nonlinear Updating Function is de�ned as

nludfn(y
t(!)) = E[Yt+njy

t(!)]�E[Yt+njy
t�1(!)]:

4 Dynamics Hidden by the Wold Representation

4.1 A Canonical Nonlinear Time Series Model

Unlike the linear case there is no general causal representation of a nonlinear time series in terms

of functions of IID random variables. The closest one can get is a Volterra Series Expansion. A

special case of which is:

Yt =

1X
i=0

 iVt�i +

1X
i=0

1X
j=0

 ijVt�iVt�j +

1X
i=0

1X
j=0

1X
k=0

 ijkVt�iVt�jVt�k :

with Vt IID and symmetrically distributed.

Recall that nonlinear time series do have Wold Representations. I examine the information

lost by considering only dynamics present in the Wold Representation (i.e., assuming linearity)

when a time series has a cubic Volterra Series Expansion.5 In order to highlight the loss of

information I restrict the Cubic Volterra Series model so that up to scale the �rst term in the

expansion is the Wold Representation. Under conditions given in the appendix, one can de�ne a

5A cubic expansion is used because quadratic expansions are special in the sense that they share some of the properties of linear time
series.
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new stochastic process by:

Ut =
1X
i=1

1X
j=1

 ijVt�iVt�j +
1X
i=1

1X
j=1

1X
k=1

 ijkVt�iVt�jVt�k + Vt;

such that the Wold Representation of Yt de�ned by a cubic Volterra series model is given by:

1X
i=0

hiUt�i;

where hi =  i= 0; h0 = 1 and Ut is white noise.

4.2 Examples of Nonlinear Impulse Response Functions

In this section I give example of realizations of the impulse response functions produced by

the cubic Volterra model. The calculations for the Volterra series expansion are based on the

conditioning sequence vt; vt�1; : : :.6

1. The Nonlinear Impulse Response Function

nlirfn(�; v
t(!)) = � n

+�2 nn + �3 nnn + 2�

1X
j=n+1

 njvt�j+n

+3�2
1X

j=n+1

 nnjvt�j+n

+3�

1X
j=n+1

1X
k=n+1

 njkvt�j+nvt�k+n + 3��2
n�1X
j=1

 njj :

Remember that if linear methods were used on this time series the linear impulse response

function would just consist of a scaling of the f ng sequence under the restrictions stated above

on the cubic Volterra series expansion. The e�ect of the realized history of the process and

asymmetries produced by varying the size and sign of the postulated shock � would be hidden.

Also there is no sense in which the coe�cients in the Wold Representation determine the average

behavior of the time series to the shock. The nlirfn illustrates three possible asymmetries:

� The magnitude of the shock for the same history will produce asymmetries because of the

presence of �2; �3.

6It should be emphasized that in an actual forecasting exercise this sequence is unlikely to be recoverable from the observed realizations
of the process fYtg (see Granger and Newbold (1977)).
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� The response to � will not be the same as �� because of the �2 terms.

� The same shock will have di�ering e�ects depending on the sequence of

vt; vt�1; : : : :

2. The Derivative of the Nonlinear Impulse Response Function

dnlirfn(v
t(!)) =  n

+2vt nn + 3v2t nnn + 2

1X
j=n+1

 njvt�j+n

+6vt

1X
j=n+1

 nnjvt�j+n

+3

1X
j=n+1

1X
k=n+1

 njkvt�j+nvt�k+n + 3�2
n�1X
j=1

 njj :

Beaudry and Koop (1993) and Potter (1995) �nd evidence of asymmetric response to large

negative shocks in U.S. GNP in the post-war period. Some intuition for this type of behavior can

be gained from considering the dnlirfn. If vt << 0 it is possible for certain histories that the direct

negative e�ect is out-weighed by the squared term and the terms not involving vt.

One feature of the dnlirfn that is not clear from the Volterra series expansion, is that

ergodicity of the underlying stochastic process does not necessarily imply that the dnlirfn sequence

converges. Intuitively, both nlirfn and nludfn should be equal to zero with probability 1 as n!1

if the underlying process is ergodic. Since, the individual conditional expectations are converging

to the same unconditional expectation. However, for the dnlirfn measure, an interchange of limits

is required for the ergodicity of the underlying process to have an e�ect. Apart from the high

level assumption of uniform convergence of dnlirfn there does not seem to be a direct method of

guaranteeing that such an interchange of limits is valid and counter-examples to convergence can

be constructed.

3. The Nonlinear Updating Function

nludfn(v
t(!)) =

vt n + (v2t � �2) nn + v3t nnn + 2vt

1X
j=n+1

 njvt�j+n
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3(v2t � �2)

1X
j=n+1

 nnjvt�j+n + 3vt

1X
j=n+1

1X
k=n+1

 njkvt�j+nvt�k+n + 3vt�
2

n�1X
j=1

 njj

The main di�erence from nlirfn is that the terms involving v2t are now centered by the

variance of the error term (i.e. the unconditional expectation of nludfn must equal zero). If � is

small then nlirfn will be close to zero but nludfn will not necessarily be close to zero if jvtj is small.

In order to illustrate the possible economic importance of this observation consider the following

example.

Assume that the ex-dividend price of a stock depends on the expectation of present discount

value of future dividends and that the interest rate is constant. The unanticipated change in the

value of a stock is given by:

E[Qtjd
t(!)]�E[Qtjd

t�1(!)] =

1X
n=1

�n
�
E[Dt+njd

t(!)]�E[Dt+njd
t�1(!)]

	
;

where Qt is the ex-dividend price of the stock, Dt is the dividend and 0 < � < 1 is the discount

factor.

Suppose that dividends follow an integrated process and �Dt is given by the Volterra

model. Then, using the linear predictor:

L[Qtju
t(!)]� L[Qtju

t�1(!)] = Ut(!)

1X
n=1

�n
nX
i=0

hn:

Hence in the case that Ut(!) is small the linear prediction of change in stock price is small and

zero if Ut(!) is zero. Alternatively, using the conditional expectation and restricting vt; vt�s; s > 0

to be zero, implying that Ut(!) is zero, the unanticipated movement in the nonlinear prediction

of the stock price is given by:

E[Qtjv
t(!)]�E[Qtjv

t�1(!)] = �2
1X
n=1

�n
nX
i=1

 ii:

5 Generalized Impulse Response Functions

The expressions, nlirfn; dnlirfn; nludfn all represent individual realizations of sequences of random

variables produced by various operations de�ned on conditional expectations of a time series.

Realization di�er because of initial conditions and in the case of the nlirfn choice of perturbation.

Instead of analyzing individual realizations of the various impulse response functions, it is possible

to treat them directly as random variables de�ned on the probability space of the time series itself.
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nlirfn is the measure suggested by GRT but for our purposes it has the major problem of requiring

a distribution for the perturbation �.7 For example, suppose one chose the distribution of the

innovation sequence for the time series, E[YtjjFt] � E[YtjjFt�1]. This has the advantage of being

a random variable de�ned on the underlying probability space of the time series itself but the

disadvantage that the average of the nlirfn; n > 0 across the innovation sequence is not necessarily

zero.8 Two advantages of the nludfn are that by construction the `perturbation' is the innovation

to the time series and its average value over the innovation is zero.

The dnlirfn has the advantage of not requiring the choice of a perturbation but it has two

major disadvantages. As noted above it has limiting behavior that is hard to classify. In particular

ergodicity of the underlying time series does not necessarily imply that the dnlirfn converges to

zero as n increases. Also it measures the dynamic response to an in�nitesimal perturbation. In

discrete time such perturbations are atypical and we are often interested in the response to large

shocks.

Priestley (1988) develops a concept of `generalized transfer function' for nonlinear time

series and we follow his lead by calling the impulse response function obtained from the updating

operation a Generalized Impulse Response Function and denoting it by GI. We start by considering

sequences of pairs of conditional distributions generated by the �-�elds of the time series fYtg.

Proposition 1

If Yt is a random variable on (
;F ;P) and Ft is a sequence of ���elds in F . Then there exists a sequence

of functions �n(t;H; !) de�ned for H in B(R), and ! in 
 with these two properties:

1. For each ! in 
 �n(t;H; !) is, as a function of H, a probability measure on R.

2. For each H in B(R); �n(t;H; !) is, as a function of !, a version of P [Yt+n 2 H jjFt]!.

Using this result one can de�ne the GI as a sequence of random variables on the probability

space of the time series itself:

GIn(t; !) =

Z
y�n(t; dy; !)�

Z
y�n+1(t� 1; dy; !):

For example, in the case that Yt = �Yt�1 + Vt we would have:

GIn(t; !) = E[Yt+njj�(Vt)
[
�(Yt�1)]! �E[Yt+njj�(Yt�1)]! = �nVt(!):

7GRT mainly concentrate on the behavior of nlirfn for a �xed perturbation while varying the initial condition.
8Refer back to the distinctions between the nlirfn and nludfn for the cubic Volterra series expansion above.
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A time series fYtg will have a well-de�ned fGIng if Zt is in L1(
;F ;P); where

Zt = Yt �E[YtjjF�1]:

That is, the purely deterministic (in the nonlinear sense) component of Yt is removed.9 For

example, consider the case where Yt = a+ bt+ Vt; E[jVtj] <1, then E[YtjjF�1] = a+ bt and Zt = Vt:

6 Persistence

How can one extract information on dynamics from the GI? As in the case of all dynamic systems,

dynamics are extracted by evaluating the e�ect of di�erent combinations of initial conditions.

The di�erence here is that the e�ects will be random except in the deterministic case of perfectly

forecastable dynamics, that is GIn = 0; n = 1; 2; : : : for all initial conditions. Consider the canonical

examples of an IID sequence (no persistent dynamics) and partial sums of IID random variables

(persistent dynamics). If Yt = Vt is an IID sequence of mean zero random variables, GI0 = Vt and

the rest of the sequence would be zero. In this case there are clearly no interesting dynamics.

Now suppose that Yt was a time series of sequence of partial sums of Vt, Yt = Yt�1 + Vt. GIn would

be equal to Vt for all n. However, Vt is centered at zero so the average (across initial conditions)

dynamics from the random walk are not distinguishable from those of an IID sequence. In order

to avoid this conclusion we need to measure the size of the GIn more directly.

Recall a degenerate random variable at zero is second order stochastically dominated by

all random variables with mean zero. For the IID case the response at n = 0 second order stochas-

tically dominates the response at all other horizons and the reverse is not true. However, for the

random walk the response at any horizon second order stochastically dominates the response at

any other horizon and vice versa. That is, the shock at time t persists inde�nitely. Finally, the

response generated by the random walk second order stochastically dominates the response in the

IID case. That is, the response to the shock in the random walk case is much larger.10

De�ne the random variable:

PN =

NX
n=0

GIn:

9Rosenblatt (1971) discusses the notion of purely deterministic in the nonlinear sense. F�1 is the �-�eld produced by the intersection
of all the �-�elds from t > 0 backwards.

10An alternative approach to the one followed here is to calculate the largest Lyapunov exponent of the time series (see for example
Nychka et al., 1992). This can be used to categorize the time series as stable or unstable and give a measure of the speed of convergence
or divergence. However, in the case of linear time series the Lyapunov exponent does not produce the traditional measures of persistence
found in the time series literature, whereas persistence measures based on the GI will. Further, since the Lyapunov exponent is based on
an in�nitesmal perturbation it does not contain information on the reaction to large versus small shocks.
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and NL to be the space of time series satisfying

lim
N!1

E[

NX
n=0

jGInj] <1:

Unlike the linear impulse response function case, where there is a one to one mapping between

covariance stationarity and square summability of the impulse response function, there is no

obvious properties, other than integrability and ergodicity, that the non-deterministic components

of time series in NL must share. One general class of time series can be shown to be in NL.

Proposition 2 If the non-deterministic component of fYtg is a geometrically ergodic time series and in L1(
;F ;P)

then fYtg is in NL.

We need a de�nition of an integrated time series applicable to time series in NL. The

standard approach for linear time series is to check the behavior of the spectral density of the

level and �rst di�erence of time series at the zero frequency. For example, if the spectral density

at zero of the level of the time series is in�nite but it is bounded between zero and in�nity for

the �rst di�erence of the time series it is integrated of order 1 (I(1)). Here a similar approach is

used by considering the variability in the sum of the GI for the level and �rst di�erence of the

time series.

Under absolute summability of the GI de�ne: PX = limN!1 PN : for the time series fXtg.

De�nition: Integrated Time Series

Let fXtg 2 NL. If

1. PX �SSD 0 and 0 �SSD PX .

2. 0 �SSD P�X where �Xt = Xt �Xt�1.

Then Xt is integrated of order zero (I(0)).

Within the class of integrated time series it is interesting to measure the persistence of

shocks as the horizon goes to in�nity. This will done by using second order stochastic dominance

as a measure of the size of the response at the in�nite horizon. Hence, unlike the case of persistence

measures based on the Wold Representation only a partial ordering of the class of integrated time

series is possible using the GI.

De�nition: Persistence

If f�Xtg and f�Ytg 2 NL and fXt; Ytg are I(1). Xt is more persistent than Yt if P�X �SSD P�Y and

P�Y �SSD P�X .

12



It is possible to obtain complete orderings for certain linear time series.

Proposition 3

Let L be the set of all (purely non-deterministic) linear time series with representation �Xt =
P1

n=0 anWt�n

where
P

n�0 janj <1; E[jWtj] <1.

There is a complete ordering of persistence by �SSD

1. For all Gaussian time series in L.

2. For all linear time series generated by the equivalence class of martingale di�erence sequence fWtg in L withP
n�0 an � 0 or the equivalence class of a martingale di�erence sequence fWtg with symmetric distributions in

L

One can achieve some relative measurements of the dynamics in nonlinear time series to

linear models by comparing the `size' of the random variable P with the `size' the random variable

GI0. For example, one is often interested in comparing an integrated series with a martingale.

De�nition: Persistence Relative to a Martingale

For fYtg 2 NL, Xt = Xt�1+Yt is at least as persistent as a random walk/martingale if PY �SSD GI0 and

less or as persistent if GI0 �SSD PY .

It might not be possible to rank P and GI0 by the second order stochastic dominance

criterion. In such cases and also to acquire more precise information about the size of the `unit

root' the following scaling procedure can be used. De�ne:

�� = inff� > 0 : �GI0 �SSD PY g

� = supf� > 0 : PY �SSD �GI0g:

Then one would say that fXtg is less persistent than a martingale with innovation ��GI0

and more persistent than a martingale with innovation �GI0. Clearly, for linear models, �� = �:

Alternatively one can compare fXtg to a linear integrated processes:

�Zt =

1X
n=0

anWt�n;

with martingale di�erence innovation sequence fWtg distributed as GI0,
P

n�0 janj <1 and
P

n�0 an

> 0:

13



De�nition: Persistence relative to linear models

Xt is less persistent than an integrated linear process, Zt, with innovation Wt and
P

n�0 an = ���X . Xt is

more persistent than an integrated linear process, Z 0t, with innovation Wt if
P

n�0 a
0
n = ��X .

7 Conditional Versions of the Generalized Impulse Response Function

In this section a less abstract approach is taken in order to discern more information on conditional

aspects of the behavior of the GI. We restrict attention to time series where Ft = �(Vt)
S
Ft�1 and

Vt is an IID sequence. Allowing for a slight abuse of notation, de�ne:

E[Yt+njjVt;Ft�1] = E[Yt+njjFt];

and adopt the convention that Vt is the `shock' and Ft�1 is the `history'. We will also use the same

notation for the GI:

GIn(Vt;Ft�1) = E[Yt+njjVt;Ft�1]�E[Yt+njjFt�1]:

We signify a realization of the GI by:

GIn(vt; y
t�1(!)) = E[Yt+njvt; y

t�1(!)]�E[Yt+njy
t�1(!)];

and conditional random variables by:

GIn(vt;Ft�1); Conditional on the Shock

GIn(Vt; y
t�1(!)); Conditional on the History

GIn(A;B); Conditional on vt 2 A; yt�1(!) 2 B

In the recent nonlinear time series literature in economics there has been much attention placed

on the `lack of persistence of negative shocks compared to positive shocks' (for example, Beaudry

and Koop, 1993). The previous work has tended to concentrate on particular realizations of the

impulse response functions to show this asymmetry, presenting the problem of selective reporting

of results. Here a general method of avoiding this `moral hazard' issue is given.

Consider two conditioning events for the GI. De�ne:

GI+n = GIn(Vt > 0;Ft�1);

GI�n = GIn(Vt � 0;Ft�1):
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De�nition: Asymmetric Response to Shocks

A time series fYtg in NL has larger response to positive shocks relative to negative shocks at horizon n if:

1. GI+n �FSD GI+0 , GI
+
0 �FSD GI+n and GI�n �FSD GI�0 .

Or a larger response to negative shocks relative to positive shocks if:

2. GI+0 �FSD GI+n , GI
�
0 �FSD GI�n and GI�n �FSD GI�0 .

It is obvious how to extend the spirit of this method to other conditional dynamic features

of interest.

8 Empirical Examples of Nonlinear Measures of Persistence

Much of the recent emphasis on deriving measures of persistence from linear impulse response

functions has been on providing estimates with little sampling variability. Given the computa-

tional requirements of producing point estimates in the nonlinear case it is not currently feasible

to assess the sampling variability. Thus, I proceed as if the distribution function of the GI gener-

ated by the estimated model's is the distribution function of the GI generated by the true model.

Furthermore, I also ignore the simulation error and truncation error in constructing realizations

of the persistence random variable.11 The construction of the persistence random variable is

truncated at 8 quarters since the response of GNP growth is approximately zero at this horizon.

Despite these caveats the nonlinear measures are of independent interest as they lead one to be

very wary of conclusions drawn from linear models.

The in�mum and supremum above are not simple to calculate for second order stochastic

dominance but they are relatively easy to calculate for the cut criterion of Karlin (see Stoyan

(1983)): de�ne sign(f) to be the function returning the sign changes in the function f: if sign(F�G) =

(+;�) then F �SSD G.12

The two examples I consider are Hamilton's (1989) Markov Trend model of U.S. GNP and

the SETAR model for U.S. GNP of Potter (1995). Previous linear estimates of persistence have

ranged from a low of zero when a unit root is rejected to the high estimates of 1.6 (see Hamilton

(1989) for a representative listing). Hamilton calculated the standard deviation of the updating

function for his model using the Wold Representation and obtained an estimate of 1.62. Figures

11Koop, Pesaran and Potter (1996) give a detailed description of simulation methods to construct the GI.
12Unfortunately this is only a su�cient condition and its failure does not imply that F,G cannot be ranked by the second order

stochastic dominance criterion. At the failure of the cut criterion it is possible to integrate the empirical distribution functions to check
for second order stochastic dominance. Experiments indicated that this rarely a�ected the �rst decimal place. Hence given the degree of
approximation involved in the exercise I suggest using the cut criterion alone.
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1 and 2 contain the densities of the persistence measure for GNP derived from the SETAR model

and from the Markov Trend model respectively. Each �gure also contains a Gaussian density with

the same variance as the persistence random variable. The estimate of P�GNP from the SETAR

model has a density that appears to be almost Gaussian except for the hump around the value

of -2. The estimate of P�GNP from the Markov Trend model produces a highly non-Gaussian

distribution with the appearance of tri-modality in the density.

One interesting issue is whether the nonlinear models are more or less persistent than a

martingale. This issue is examined in Figures 3 and 4 which show the distribution function of

the persistence random variable. Clearly the SETAR model is more persistent than a martingale

but the distinction is less clear in the case of the Markov trend model.

More precise information on persistence can be found by using the scaling procedure. For

the SETAR model, this procedure produced an upper bound of �� = 2:0 and a lower bound of

� = 1:6 for persistence compared to a martingale with innovation GI0 from the SETAR. For the

Markov Trend model, the bands are much wider with upper bound of �� = 2:8 and lower bounds

of � = 1:1 compared to a martingale with innovation GI0 from the Markov Trend. Because of the

tri-modality produced by the Markov Trend model, it is not possible to order the two values of

P�GNP by second order stochastic dominance. That is, one cannot tell if the responses are more

persistent in one model rather than the other.

9 Conclusion

This paper has developed a number of tools to report the dynamics of nonlinear time series models

and compare these dynamics to linear time series models. An interesting issue for future research

is how to provide measures of sampling uncertainty for the GI as a random variable rather than

for particular realizations. In particular it would be useful to have measures of the size of the

nonlinearity that take into account parameter and modeling uncertainty.

Appendix

Restrictions on Cubic Volterra Series Model

The following conditions imply that the stochastic process Ut constructed from the Cubic Volterra Series

model is white noise.

 0i =  0ij = 0 8i; j;
1X
i=1

 ii = 0;
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1X
i=1

1X
j=1

 2ijE[V
2
t�iV

2
t�j ] +

1X
i=1

1X
j=1

1X
k=1

 2ijkE[V
2
t�iV

2
t�jV

2
t�k] =

�2
1X
i=1

 iii i�
4
v � 6

1X
i=1

1X
j=1

 ijj i�
4
v ;

1X
i=1

1X
j=1

 ij i+s;j+sE[V
2
t�iV

2
t�j ] +

1X
i=1

1X
j=1

1X
k=1

 ijk i+s;j+s;k+sE[V
2
t�iV

2
t�jV

2
t�k ]+

3
1X
i=1

1X
j=1

 i+s�1 ijj�
4
v + 3

1X
i=1

1X
j=1

 i�1 i+s;jj�
4
v = 0; 8s 6= 0;

Proof of Proposition 1. Billingsley (1986) Theorem 33.3 applies directly for each n.

Proof of Proposition 2

I adapt a de�nition of geometric ergodicity from Tong (1990 Appendix 1). Without loss of generality I

examine the case of a scalar �rst order Markov process.

De�nition

fYtg is geometrically ergodic if there exists a probability measure �, a positive constant r < 1 and a �-

integrable non-negative measurable function h such that

jjP (Yt+njx)� �(Yt+n)jj� < rnh(x); for an arbitrary x,

where jj � jj� is the total variation norm. By Tweedie (1983) this exponential convergence relative to a �-integrable

non-negative measurable function h also applies to conditional moments when the unconditional moments exist.

E[

NX
n=0

jGInj] � E[

NX
n=0

jE[Yt+njjYt]�E[Yt+njjYt]j]

� E[
NX
n=0

jE[Yt+njYt]�E[Yt+n]j+ jE[Yt+n]�E[Yt+njYt�1]j]

� E[

NX
n=0

rn2maxfh(Yt); h(Yt�1)g] �
2

1� r
E[maxfh(Yt); h(Yt�1)g]

Thus, by the � integrability of h and the dominated convergence theorem the generalized impulse response function

of a geometrically ergodic Markov process is absolutely summable.

Proof of Proposition 3. For the Gaussian case P =Wt

P
n�0 an which is a Gaussian random variable with mean

zero and variance �2w(
P

n�0 an)
2. For Gaussian random variables the ranking by second order stochastic dominance

is the same as by variance. Therefore, there is a complete ranking.

For the general linear model case P =Wt

P
n�0 an, which is a scaling of the random variable Wt by

P
n�0 an.

Consider the case where 0 < a =
P

n�0 an <
P

n�0 bn = b. Then, we have the desired result by the cut criterion
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since

sign[FW (w �
�

b
)� FW (w �

�

a
)] = (+;�):

Under the symmetry of Wt; the same argument applies to the absolute value of
P

n�0 an and �Wt.
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Figure 1: Probability Density Function of P�GNP For SETAR Model*

* The Persistence Random Variable (P�GNP ) for the SETAR is generated from 10,000 realizations of
P8

n=0GIn
using the SETAR model of Potter (1995). The density was estimated by a normal kernel. The Gaussian density
shown is for a normal random variable with the same standard deviation as the persistence random variable.
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Figure 2: Probability Density Function of P�GNP For Markov Trend Model*

* The Persistence Random Variable (P�GNP ) for the Markov Trend is generated from 10,000 realizations of
P8

n=0GIn
using the SETAR model of Hamilton (1989). The density was estimated by a normal kernel. The Gaussian density
shown is for a normal random variable with the same standard deviation as the persistence random variable.
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Figure 3: Distribution Function of P�GNP for SETAR model and Martingale*

* The Persistence Random Variable (P�GNP ) for the SETAR is generated from 10,000
P8

n=0GIn from the SETAR
model of Potter (1995). The martingale it is generated from 10,000 realizations of GI0 using the SETAR model. The
SETAR �SSD the martingale since its distribution function cuts from above.
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Figure 4: Distribution Function of P�GNP for Markov Trend model and Martingale*

* The Persistence Random Variable (P�GNP ) for the Markov Trend model is generated from 10,000 realizations ofP8

n=0GIn using the Markov Trend model of Hamilton (1989). The martingale is generated from 10,000 realizations
of GI0 for the Markov Trend model. The Markov Trend �SSD the martingale since its distribution function cuts
from above.
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