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Abstract

This paper explores the ability of theoretically-based asset pricing models such as the CAPM

and the consumption CAPM�referred to jointly as the (C)CAPM�to explain the cross-section

of average stock returns. Unlike many previous empirical tests of the (C)CAPM, we specify the

pricing kernel as a conditional linear factor model, as would be expected if risk premia vary over

time. Central to our approach is the use of a conditioning variable which proxies for fluctuations

in the log consumption-aggregate wealth ratio and is likely to be important for summarizing

conditional expectations of excess returns. We demonstrate that such conditional factor models

are able to explain a substantial fraction of the cross-sectional variation in portfolio returns.

These models perform much better than unconditional (C)CAPM specifications, and about as

well as the three-factor Fama-French model on portfolios sorted by size and book-to-market

ratios. This specification of the linear conditional consumption CAPM, using aggregate con-

sumption data, is able to account for the difference in returns between low book-to-market and

high book-to-market firms and exhibits little evidence of residual size or book-to-market effects.

(JEL G10, E21)



1 Introduction

Asset pricing theory has fallen on hard times. The capital asset pricing model (CAPM) of Sharpe

(1964) and Lintner (1965) has long been a pillar of academic finance and early evidence seemed

to reflect favorably on the theory’s central tenet that the market portfolio should be mean-

variance efficient.1 But recent evidence has mounted that the CAPM is simply inconsistent with

numerous empirical regularities of cross-sectional asset pricing data.2 Perhaps most damning,

the CAPM has displayed virtually no power to explain the cross-section of average returns on

assets that vary according book-to-market equity ratios (Fama and French 1992, 1993).

One critique of the CAPM is that its static specification fails to take into account the effects

of time-varying investment opportunities in the calculation of an asset’s risk. Intertemporal asset

pricing models, the most prominent of which is the consumption CAPM (CCAPM), initially held

out hope of remedying this defect. Unfortunately, these models have also proven disappointing

empirically. The consumption-based model has been rejected on U.S. data in its representative

agent formulation with time-separable power utility (Hansen and Singleton 1982, 1983); it has

performed no better and often worse than the simple static-CAPM in explaining the cross-

section of average asset returns (Mankiw and Shapiro 1986; Breeden, Gibbons, and Litzenberger

1989; Campbell 1996; Cochrane 1996; Hodrick, Ng and Sengmueller 1998); and it has been

generally replaced as an explanation for systematic risk by a variety of portfolio-based models

(for example, Fama and French 1993, Elton, Gruber and Blake 1995).

Despite the empirical shortcomings of the consumption-based model, the reputation of the

theoretical paradigm itself remains well preserved.3 And for good reason. As a measure of

systematic risk, an asset’s covariance with the marginal utility of consumption achieves a degree

of theoretical purity that is unmatched by other asset pricing models. These other models,

including the static-CAPM, can almost always be expressed as either special cases of, or proxies

for, the consumption-based model.4 Moreover, the consumption-based framework is a simple

but powerful tool for addressing the criticisms of Merton (1973), that the static-CAPM fails to

account for the intertemporal hedging component of asset demand, and Roll (1977), that the

market return cannot be adequately proxied by an index of common stocks. According to these

rationales, the puzzle is not which model should replace the consumption-based paradigm, but

1See Black, Jensen, and Scholes (1972), Fama and MacBeth (1973), Blume and Friend (1973).
2For example, see Banz (1981), Basu (1977), Shanken (1985), Fama and French (1992, 1993).
3This theory was developed by Rubinstein (1976), Breeden and Litzenberger (1978), and Breeden (1979).
4Cochrane (1999), chapter 8, emphasizes this point.
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rather why there has been no confirmation of it empirically.

One possible reason for the poor empirical performance of both the CAPM and the CCAPM�

referred to jointly as the (C)CAPM�is that previous tests may have made inadequate allowances

for time-variation in the conditional moments of returns. For example, time-variation in ex-

pected excess returns has been documented in a large and growing body of empirical work.5 If

risk premia are time-varying, parameters in the stochastic discount factor will, in general, vary

according to changing investor expectations of future excess returns. In this case, the CAPM

will be a linear function of the market return with time-varying weights. Similarly, the con-

sumption CAPM states that the stochastic discount factor for expected future returns should

be a function of consumption growth. However, this does not in general preclude the possibility

that the discount factor is a state-dependent function of consumption growth, as it would be

in models with habit-formation where risk-aversion is not constant over time (e.g., Sundaresan

1989; Constantinides 1990; Campbell and Cochrane 1999a.)

In this paper, we assume that the true unobservable stochastic discount factor in the CAPM

or consumption CAPM may be expressed as a linear function of the appropriate fundamental

factors, but we allow the parameters of this function to be state dependent.6 Note that precisely

the same fundamental factors that price assets in traditional derivations of the static-CAPM

and the unconditional consumption-CAPM are assumed to price assets in this approach. The

difference is that factors in the stochastic discount factor are expected only to conditionally price

assets, leading to conditional rather than fixed linear factor models. As we discuss further below,

habit-formation models provide a particularly good motivation for the form of conditional linear

factor model we investigate. Conditional linear factor models in turn imply conditional �beta�

models, where the expected return on an asset is a function of its conditional covariance with

the factor, normalized by the conditional variance of the factor.

5See for example, Shiller (1984), Campbell and Shiller (1988), Campbell (1991), Fama and French (1988),

Hodrick (1992), Lamont (1998) and Lettau and Ludvigson (1999).
6In tests of the CCAPM, empirical studies carried out to date have concentrated on investigating the model’s

unconditional implications using specific functional forms for the investor’s utility function. Consequently, there

are at least two possible reasons why these tests have failed to find support for the consumption-based model.

First, an approximate linear factor model may hold conditionally even if it does not hold unconditionally; second,

specification of either the functional form of the investor’s utility function or its temporal separabilities may have

been wrong. As we discuss below, we address these difficulties in a less structured way, by assuming that the

true unobservable discount factor may be approximated as a linear, state-dependent function of consumption

growth rather than specifying and testing an explicit model of consumer behavior.
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Before such a conditional asset pricing framework can be tested, an important question must

be answered. How should these conditional moments be modeled? One approach would be to

estimate an explicit model of the joint conditional distribution of asset returns and the discount

factor. The drawback of this approach is that it assumes knowledge of the true conditional

model, and the number of parameters in the conditional distribution that must be estimated

in any reasonably flexible specification is typically infeasible given the samples sizes commonly

encountered.

As an alternative approach, one could explicitly model the dependence of parameters in the

discount factor on current period information. This dependence can be specified by simply in-

teracting, or �scaling,� factors with instruments that are likely to be important for summarizing

variation in conditional moments. We adopt this approach here. In doing so, we may express a

conditional linear factor model as an unconditional, multifactor asset pricing model where the

additional factors are simply scaled versions of the original factors. We refer to this version of

the (C)CAPM as the scaled multifactor model.

The methodology of scaling factors by instruments that are likely to capture variation in

conditional moments was first advocated by Cochrane (1996) and later employed by Ferson

and Harvey (1999).7 These authors use lagged economy-wide indicators as scaling variables in

cross-sectional asset pricing tests. The methodology is also closely related to the approach of

Jagannathan and Wang (1996) who show that the performance of the CAPM is dramatically

improved by conditioning the market factor on financial indicators such as the default premium.

This literature has demonstrated the usefulness of conditioning variables in a variety of asset

pricing applications. Scaling factors is one way to incorporate conditioning information; here

we use the terms scaling and conditioning interchangeably.

The choice of conditioning variable in this study is central to our approach. The linear factor

model we consider is a function of investors’ conditioning information which is unobservable.

This unobservability constitutes the most important practical obstacle to testing conditional

factor models: the econometrician’s information set is, at best, a subset of the investors’ in-

formation set. We argue here that we may circumvent this difficulty by using a conditioning

variable which summarizes investor expectations of excess returns.

To find such a summary measure of investor expectations, we appeal to a defining feature of

7This methodology builds off of the work of Ferson, Kandel, and Stambaugh (1987); Harvey (1989); and

Shanken (1990) who suggest scaling the conditional betas themselves (rather than the factors directly) in a cross

sectional linear regression model where market betas are expected to vary over time.
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any forward looking model: agents’ own behavior reveals much of their expectations about the

future. Theories of consumption behavior provide an excellent example of this. In a wide class

of dynamic, optimizing models, log consumption and log aggregate (human and nonhuman)

wealth share a common stochastic trend (they are cointegrated), but they may deviate from one

another in the short term based on changing expectations of future returns. Accordingly, the

log consumption-aggregate wealth ratio summarizes investor expectations of discounted future

returns to the market portfolio.

The difficulty with this observation is that the consumption-aggregate wealth ratio, specifi-

cally the human capital component of it, is not observable. In a recent paper, Lettau and Lud-

vigson (1999) demonstrate, however, that movements in the log consumption-aggregate wealth

ratio may be well captured by movements in three observable variables, namely consumption,

nonhuman wealth and labor income. This observable quantity is the difference between log con-

sumption (c) and the appropriate weighted average of log asset (nonhuman) wealth (a) and log

labor income (y), referred to subsequently as cay for short. Lettau and Ludvigson (1999) argue

that movements in cay are better characterized as transitory movements in wealth, rather than

as transitory movements in consumption or labor income, because fluctuations in cay forecast

asset growth, while consumption and labor income follow relatively persistent processes. For

this reason, we will refer to cay interchangeably as the trend deviation in wealth. Lettau and

Ludvigson (1999) provide a more detailed explanation of this characterization.

If the trend deviation in wealth is a good proxy for movements in the consumption-aggregate

wealth ratio (and therefore a good summary of investor expectations), it should forecast future

movements in the return to aggregate wealth. Consistent with this proposition, Lettau and Lud-

vigson find that cay has striking forecasting power for excess returns on common stock market

indexes. As a consequence, we argue that movements in cay are a good proxy for movements in

the consumption-aggregate wealth ratio. This methodology of measuring investor expectations

is founded on the recognition that investors’ own behavior�as captured by movements in cay�

reveals to us what we need to know to control for the fact that investors know more than we

do.

According to the theoretical framework sketched above, the consumption-aggregate wealth

ratio provides a uniquely comprehensive summary of conditional expectations. Other variables,

such as an aggregate dividend-price ratio, may also summarize investor expectations about

future returns (Campbell and Shiller 1988). Unlike the consumption-aggregate wealth ratio,

however, the dividend-price ratio only summarizes expectations about those assets that pay
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dividends (i.e., stocks). By contrast, consumption can be thought of as the dividend paid

from aggregate wealth, or the market portfolio, implying that movements in the consumption-

aggregate wealth ratio summarize expectations about the entire market portfolio, not just the

stock market component of it. Since Campbell (1996), Jagannathan and Wang (1996) and

others have emphasized that stocks are a relatively small part of aggregate wealth, the scaling

variable cay is likely to have an important advantage over more traditional forecasting variables

in condensing information.

To investigate the empirical performance of the scaled multifactor version of the (C)CAPM,

we must also choose a set of portfolios upon which to carry out the cross-sectional tests. This

choice is likely to be an important one. The small firm effect of Banz (1981) notwithstanding,

it is well known that the static-CAPM is relatively better at explaining the average returns on

stock portfolios formed according to size (market value) or industry. In addition, Jagannathan

and Wang (1996) show that a conditional CAPM model does a good job of explaining the

cross-section of returns on portfolios sorted according to size and market betas (covariance with

the CRSP value-weighted index). By contrast, on portfolios sorted according to size and book-

to-market equity ratios, the CAPM performs very poorly (Fama and French 1992). Instead,

Fama and French (1993) show that a three-factor model with factors related to firm size and

book-to-market equity, along with an overall stock market factor, do a good job of explaining

the cross-section of returns on these portfolios. Fama and French (1993, 1995) argue that these

related factors proxy for unobserved common risk in portfolio returns, but this interpretation

is somewhat controversial since it is not yet entirely clear how they relate to the underlying

macroeconomic, nondiversifiable risk so proxied.8

Nevertheless, it is clear that explaining the cross-section of returns on portfolios sorted

according to both size and book-to-market equity has presented the greatest challenge so far for

theoretically-based asset pricing models such as the CAPM and the consumption CAPM. At

issue is whether the strong variation in returns across portfolios that differ according to book-

to-market equity ratios can be attributed to variation in the riskiness of those portfolios. If the

Fama�French factors truly are mimicking portfolios for underlying sources of macroeconomic

risk, there should be some set of macroeconomic factors that performs well in explaining the

cross-section of average returns on those portfolios. As yet, however, there is little empirical

8Liew and Vassalou (forthcoming) provide a first step in establishing an empirical link between the size and

book-to-market factors and future macroeconomic variables: they find that for some countries, these variables

have forecasting power for GDP growth.
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evidence that macroeconomic variables can explain even a small fraction of the variation in these

returns.

We take on this challenge by investigating the performance of the scaled multifactor (C)CAPM

using the size/book-to-market sorted portfolios as constructed in Fama and French (1992, 1993).

To the best of our knowledge, this paper is the first to study the performance of conditional

linear factor models of the (C)CAPM using portfolios formed according to the criteria in Fama

and French (1992).

Our main findings can be summarized as follows. We find that the scaled multifactor version

of the (C)CAPM performs very well in explaining the cross section of average returns. Per-

haps most strikingly, the scaled consumption CAPM, using aggregate consumption data, can

explain nearly 70 percent of the cross-sectional variation in average returns on the 25 Fama�

French portfolios described above, about as well as the Fama-French three-factor model. This

result contrasts sharply with the 1 percent explained by the unconditional static-CAPM. The

unconditional consumption CAPM performs a bit better than this, explaining about 16% of the

cross-sectional variation, but still falls far short of the scaled multifactor consumption CAPM.

These results, in particular, seem to support a habit-formation version of the consumption

CAPM, where the multiplicative, or scaled, consumption factors are important. The scaled

multifactor CAPM performs quite well once we include the proxy for the return to human cap-

ital advocated by Jagannathan and Wang (1996), in addition to a broad stock market factor.

This model explains about 75 percent of the cross-sectional variation in average returns. But

the consumption-based model performs better than even this version of the scaled multifac-

tor CAPM along other dimensions. In particular, firm specific characteristics such as size and

book-to-market equity are no longer significant explanatory variables for the cross-section of

average returns once the scaled consumption factors are included. These findings suggest that

an asset’s risk is determined not by its unconditional correlation with the model’s underlying

factor, but rather by its correlation conditional on the state of the economy. (We discuss this

further below.) Finally, we find that the choice of conditioning variable is important: in general,

when factors are scaled with variables such as the dividend-price ratio or the default spread, the

conditional factor models we investigate can explain only a small fraction of the cross-sectional

variation in average returns that they can when they are scaled by cay.

An important aspect of our results is that the conditional consumption model, scaled by cay,

goes a long way toward explaining the celebrated �value premium,� that is the well documented

pattern found in average returns that firms with high book-to-market equity ratios have higher
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average returns than do firms with low book-to-market ratios. This finding is important because

there exists considerable controversy over whether the observed value premium is due to phe-

nomena captured by firm characteristics (implying a mispricing of value stocks) or to genuine

covariance with common risk factors (implying that value stocks are rationally priced).9 The

results presented here demonstrate that an asset’s covariance with scaled consumption growth

can go a long way toward accounting for the value premium, thereby lending support to the view

that the reward for holding high book-to-market stocks arises, at least in part, as a consequence

of true nondiversifiable risk rather than as a simple reflection of the mispricing of value stocks.

The rest of this paper is organized as follows. In section 2 we present the general conditional

factor model that forms the basis of our empirical work and show how it can be specialized

to accommodate particular asset pricing theories. Next we review the theory in Lettau and

Ludvigson (1999) motivating the use of cay as a scaling variable. Section 3 describes the data

and our empirical procedure for testing the (C)CAPM, and presents empirical results on the

cross-section of average returns on the Fama-French portfolios. We compare the performance

of conditional factor models in which the return on a broad stock market index or consumption

growth are the fundamental factors, with the performance of the simple static-CAPM, a con-

ditional scaled multifactor CAPM that includes both a value-weighted stock market index and

the labor income growth measure advocated by Jagannathan and Wang (1996) as factors, and

with the three factor model advocated by Fama and French (1993, 1995). Finally, we present

tests of the conditional factor models using forecasting variables other than cay to scale factors.

Section 4 concludes.

2 Linear Factor Models with Time-Varying Coefficients

We begin by imposing virtually no theoretical structure, appealing instead to a well known

existence theorem to motivate our empirical approach.10 This theorem states that, in the absence

arbitrage, there exists a stochastic discount factor (SDF), or pricing kernel, Mt+1, such that for

any traded asset with a net return at time t of Ri,t+1, the following equation holds

1 = Et[Mt+1(1 +Ri,t+1)], (1)

9This debate is borne out in several recent papers; for example, see Daniel and Titman (1997, 1998) and

Davis, Fama and French (forthcoming).
10See Harrison and Kreps (1979).
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where Et denotes the mathematical expectation operator conditional on information available at

time t, Mt+1 = at + btRe,t+1, and Re,t+1 is a return on the unobservable mean-variance efficient

frontier. We refer to models of the formMt+1 = at+ btRe,t+1 as conditional linear factor models.

Models with constant coefficients, e.g. Mt+1 = a + bRe,t+1, will be referred to hereafter as

unconditional linear factor models.

It is straightforward to show that the conditional linear factor model given above implies

a conditional beta representation given by EtRi,t+1 = R0,t − btR0,tVart[Re,t+1]βit, where R0,t

is the return on a �zero-beta� portfolio correlated with Mt+1, bt = − EtRe,t+1−R0,t

R0,tVart[Re,t+1]
and βit =

Covt[Re,t+1,Ri,t+1]
Vart[Re,t+1]

. If conditional moments are varying over time, the parameter bt in the stochastic

discount factor will in general not be constant. Although predictable movements in volatility

may be source of variation in bt, they appear to be more concentrated in high frequency data

(e.g., Christoffersen and Diebold, 1998). Since risk-free interest rates are also not very variable,

the denominator of bt is not likely to vary much in monthly or quarterly data. On the other

hand, a large empirical literature (cited in the introduction) documents that excess returns are

forecastable. Therefore, asset pricing tests that are implemented using monthly or, as in this

paper, quarterly data should allow for the possibility of time-variation in bt. In this paper we

focus on time-variation in equity premia as a source of variation in bt.

By plugging Mt+1 into (1) and taking unconditional expectations, it is also straightforward

to demonstrate that the conditional model in (1) does not necessarily imply an unconditional

version where at and bt are constants. It follows that the model specified above does not

necessarily imply a beta representation with constant unconditional betas. The difficulty of

course is that the parameters of the stochastic discount factor may co-vary with both Re,t+1, as

well as with the product Re,t+1Ri,t+1. One approach to addressing this difficulty would be to

specify a flexible model for changes in conditional moments. As we argue above, however, this

approach has important disadvantages because the true conditional distribution is unobservable

and any reasonable specification would likely depend on a large number of parameters that

would have to be estimated.

Instead, we adopt an approach advocated in Cochrane (1996). We test conditional factor

pricing models of the form given above by explicitly modeling the dependence of the parameters

at and bt on a time t information variable, zt, where zt is a forecasting variable for excess

returns.11 (We discuss our choice of conditioning variable further in the next section.) In

particular, we may scale the factors with instruments containing time t information by modeling

11The specification can be easily extended to allow for multiple conditioning variables.
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the parameters as linear functions of zt, at = a0 + a1zt, bt = b0 + b1zt. Plugging these equations

into Mt+1 above allows us to rewrite a conditional linear factor model as a scaled multifactor

model with constant coefficients taking the form

Mt+1 = (a0 + a1zt) + (b0 + b1zt)Re,t+1

= a0 + a1zt + b0Re,t+1 + b1(ztRe,t+1). (2)

It follows that the scaled multifactor model can be tested using unconditional moments by

rewriting (1) as an unconditional three factor model with constant coefficients a0, a1, b0, and b1

in the form

1 = E[(a0 + a1zt + b0Re,t+1 + b1(ztRe,t+1))(1 +Ri,t+1)]. (3)

2.1 Application of Conditional Factor Pricing to the (C)CAPM

The derivation above shows how a scaled multifactor model can be obtained from a linear

factor model where a return on the true mean-variance efficient portfolio serves as the reference

return. This derivation is useful for demonstrating how one can test models in which factors

price assets conditionally, but the framework itself contains little theoretical content. In order

to test particular theories, we need to place more structure on the discount factor Mt+1, and

in particular on the choice of reference return, Re,t. In the (C)CAPM theories, the true mean-

variance efficient reference return may be written as a conditional linear combination of various

fundamental factors, where the jth factor is denoted fjt. In the CAPM the single factor is the

return on all invested wealth, including both human and nonhuman wealth, and the pricing

kernel is a conditional linear function of this return. In the CCAPM a single factor, ft, is

proportional to consumption growth and the pricing kernel may be expressed as a conditional

linear function of consumption growth. In the Fama and French (1993) specification, a vector

of factors, ft, is comprised of three portfolio returns. We discuss these models, each a special

case of the broader class of scaled multifactor models, in more detail below.

To describe the class of scaled multifactor models more comprehensively, we use vector

notation.12 Denote the vector Ft+1 = (1, zt, ft+1, ft+1zt)
′, or separating out the variable factors

zt, ft+1 and ft+1zt and denoting these together as ft+1, write Ft+1 = (1, ft+1)
′. We will refer

to ft+1 as fundamental factors (e.g., the market return, consumption growth). The SDF of the

scaled multifactor representation for each model can be expressed as Mt+1 = c′Ft+1 where the

12This discussion follows the derivation in Cochrane (1996).
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constant vector c′ = (a, b), a is a scaler, and b is the vector of constant coefficients on the

variable factors, ft+1. This representation for Mt+1 implies an unconditional multifactor beta

representation for asset i with constant betas given by

E[Ri,t+1] = E[R0,t] + β
′λ, (4)

where E[R0,t] is the average return on a �zero-beta� portfolio which is uncorrelated with the

stochastic discount factor (Black 1972) and β ≡Cov(f, f′)−1Cov(f, Ri,t+1) is a vector of regression

coefficients from a multiple regression of returns on the variable factors. In the empirical analysis

that follows, we focus on this Black version of the (C)CAPM (which assumes that borrowing

and lending rates differ) and freely estimate the constant E[R0,t] as part of the cross-sectional

model.

Given (4), it is straightforward to show that

λ = −E[R0,t]Cov(f, f
′
)b. (5)

It is important to note that the individual λj coefficients in (5) from the scaled multifactor

versions of the (C)CAPM do not have the straightforward interpretation that the risk price does

in a conditional linear factor model. To see this, notice that for each scaled multifactor model,

there is an associated conditional factor model from which the scaled multifactor model is de-

rived. For example, the conditional CAPM factor model would be specifiedMt+1 = at+btRvw,t+1

(where Rvw,t+1 is a proxy for the market return) from which we derive the scaled multifactor

model Mt+1 = a0+a1zt+b0Rvw,t+1+b1(ztRvw,t+1), using the conditioning information, zt. More

generally, given a conditional linear factor model of the form Mt+1 = c′tft+1, the conditional

beta representation for this model is given by analogy to (4) as Et[Ri,t+1] = R0,t + ˜β
′
t
˜λt, where

˜λt is the vector of period-t risk prices of the fundamental factors, R0,t is again the return on a

�zero-beta� portfolio, ˜βt+1 ≡Covt(ft+1, f′t+1)
−1Covt(ft+1, Ri,t+1) and

˜λt = −R0,tCovt(ft+1, f
′
t+1)bt. (6)

The methodology employed here (and discussed in more detail later) does not produce direct

estimates of ˜λt. Instead, we estimate cross-sectional regressions of the form (4), which delivers

estimates of λ. But note that (5) and (6) are related by b. Estimates of λ can be used to uncover

b′ = −λ′[E[R0,t]Cov(f, f
′
)]−1 which we may combine with the definition of bt = b′zt to obtain

an estimate of bt. Without additional assumptions, we cannot compute the risk prices for the
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fundamental factors, ˜λt, because we do not estimate the conditional covariance, Covt(ft+1, f′t+1),

in (6).

Equation (6) shows that the value of ˜λt, the vector of risk prices for each fundamental factor

in ft, depends on bt. Our linear specification bt = b′zt presumes that fluctuations in bt are

primarily driven by fluctuations in risk premia, and implies a linear forecasting equation for

excess returns. While these forecasting equations do a good job of picking up fluctuations in

future excess returns, as with any linear forecasting model, there are periods in which the model

predicts a negative excess return. Since bt inherits the properties of these linear forecasting

models, the value of bt may change sign from time to time. This aspect of the prediction

equation is purely a result of the linear regression specification and is not unique to the use of

any particular forecasting variable, zt. The linear forecasting equations we use below do predict

a positive risk premium on average, however, so that it is reasonable to expect the average risk

price on each fundamental factor in the conditional model to be nonnegative, i.e., E[˜λt] ≥ 0.

Note that this condition does not imply that the individual λj coefficients from the scaled

multifactor representation in (5) should be nonnegative. In the case of a single factor model

such as the static-CAPM, the average risk price for the market beta will have the opposite sign

(see [6]) as the average value of bt, and will be positive as long as the average risk premium

is positive. This follows from the fact that the conditional covariance term in (6) will simply

be a conditional variance for the value-weighted return. For models with multiple factors, the

conditional covariance is not simply a conditional variance, and the average price of risk need not

have the opposite sign as the average value of bt if the factors are not orthogonal. If we assume

that the conditional covariances and the average zero-beta rate are approximately constant,13

however, and using the specification bt = b′zt, we may compute a value for the average risk

price, E[˜λt], of each fundamental factor in the associated conditional factor model using (6).

We now move on to discuss the special cases of (4) that correspond to the particular scaled

multifactor asset pricing models of the CAPM and the CCAPM.

2.1.1 The Consumption CAPM

Consider a representative agent economy in which all wealth, including human wealth, is trad-

able. Let Wt be aggregate wealth (human and nonhuman) in period t. Ct is consumption and

Rm,t+1 is the net return on aggregate wealth, or the market portfolio. Subject to an accumulation

13For the factors we use in our empirical investigation, a value-weighted return, labor income growth, and

consumption growth, this is probably not a bad approximation in quarterly data.
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equation for aggregate wealth, investors maximize the present discounted value of instantaneous

utility functions, u(Ct, Xt) where Ct is consumption and Xt captures other factors (for example,

a habit level) that may influence an investor’s utility. The first order conditions for optimal

consumption choice are simply special cases of (1) where the equation holds for every asset in the

market portfolio and the discount factor, Mt+1 ≡ δ uc(Ct+1,Xt+1)
uc(Ct,Xt)

, is the intertemporal marginal

rate of substitution, with δ the subjective rate of time preference.

Instead of specifying a particular functional form for marginal utility, we assume that M

may be approximated as a linear function of consumption growth, but, as discussed above, we

allow the parameters of this function to depend on the current period state:

Mt+1 ≈ at + bt∆ct+1, (7)

where at and bt are (potentially time-varying) parameters and ∆ct+1 is consumption growth, the

single fundamental factor in the asset pricing model. Throughout this paper, we use lowercase

letters denote logarithms of variables written in uppercase, e.g., ct = lnCt. In the notation

above, this specification of the CCAPM has a single factor, ft = ∆ct and a scaled multifactor

model is obtained by interacting consumption growth with an instrument zt so that Ft+1 = (1,

zt, ∆ct+1, ∆ct+1zt)
′.

Regardless of the particular functional form of the investor’s utility function, the discount

factor can always be expressed as an approximate linear function of consumption growth by

taking a first-order Taylor expansion ofM . Examples include time-separable power utility with

constant relative risk aversion, u(Ct) =
C1−γ
t

1−γ , in which case Mt+1 ≈ δ(1− γ∆ct+1); or the habit-

persistence framework of Campbell and Cochrane (1999a), u(Ct, Xt) =
(Ct−Xt)1−γ

1−γ , in which case

Mt+1 takes the form

Mt+1 ≈ δ
(

1− γgλ(st)− γ(φ− 1)(st − s)− γ(1 + λ(st))∆ct+1

)

, (8)

where Xt is the external consumption habit, st is the log of the surplus consumption ratio,

defined as St ≡ Ct−Xt
Ct

, γ is a parameter of utility curvature, g is the mean rate of consumption

growth, φ is the persistence of the habit stock, and λ(st) is the sensitivity function specified in

Campbell and Cochrane. Similar, but more complicated, expressions can be derived for internal

habit-formation models (e.g., Constantinides 1990, Sundaresan 1989) by taking a local linear

approximation of the respective stochastic discount factors.

Note that (8) provides a particularly good motivation for the scaled multifactor model in (3)

which contains three factors, zt, ∆ct+1, and .zt∆ct+1. The coefficient that multiplies consumption

12



growth in the stochastic discount factor of habit models such as (8) varies over time. Although

this coefficient may be a function of unobservable variables, such as λ(st) in (8), its fluctuations

should be well captured by suitable proxies for time-varying risk premia. We argue below

that the lagged value of cay is such a proxy and we assume the coefficients in the stochastic

discount factor may be well approximated as linear functions of cay. Thus, whereas traditional,

discrete time derivations of the conditional CAPM (e.g., Jagannathan and Wang 1996) produce

unconditional beta representations with just two betas (one for the fundamental factor and

one for the risk premium) habit models may imply the existence of at least one beta for the

multiplicative �cross-term� of the factor (consumption growth) and the risk premium. We

discuss this further below.

2.1.2 The CAPM

A standard derivation of the static-CAPM would require simply replacing ∆ct+1 in (7) with

the return to the market portfolio as the relevant factor, ft+1 = Rm,t+1. The market portfolio

is typically proxied by the return on an index of common stocks, but this practice has been

challenged by Roll (1977) who argues that such proxies ignore the human capital component

of aggregate wealth. Following Mayers (1972) and Fama and Schwert (1977), Jagannathan and

Wang (1996) and Campbell (1996) argue that labor income growth may proxy for the return to

human capital, and find that it has a statistically significant risk price in cross-sectional tests of

the CAPM. This specification of the CAPM, explicitly accommodating human capital, would

have two factors, for example the return on a value-weighted stock index, Rvw,t and labor income

growth, ∆yt, implying that Mt+1 = at + bvwtRvw,t+1 + b∆yt∆yt+1. To model the time-variation

of the parameters in Mt+1, a scaled multifactor model given by Ft+1 = (1, zt, Rvw,t+1, ∆yt+1,

Rvw,t+1zt, ∆yt+1zt)
′ can be specified in analogy to the consumption model outlined above.

A critical consideration in using the scaled multifactor approach to test the (C)CAPM, or

any conditional asset pricing model, is the choice of conditioning variable, zt. Because the

investor’s information set is not observable, it is crucial that the conditioning variable be an

indicator that summarizes the relevant information in investor information sets. But what are

investors forming conditional expectations over? The answer to this question is revealed by

referring back to (1). This equation shows that the conditional expectation is formed about

the discounted return on each asset held. This can be expressed more succinctly noting that

(1) must also hold for the market portfolio and replacing Ri,t+1 with Rm,t+1 in (1). Moreover,

by the law of iterated expectations, the expectation conditional on time t information in (1)
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must hold for discounted returns in all future time periods, t + 1, t + 2, t + 3, ... etc. Thus, in

an infinite-horizon specification, investors form expectations of the sum of future returns to the

market portfolio, discounted by a function of consumption growth, from now until an arbitrarily

large future time period T , i.e., as T →∞.

The information set upon which these expectations are based is large and unobservable. We

argue here that it is not necessary to observe these information sets directly because investors’

own behavior is likely to reveal to us much of what we need to know to control for the fact

that investors know more than we do. To exploit the implication of this assertion, however,

we require an observable variable that summarizes investor expectations about all discounted

future returns to the market portfolio. We now describe our choice of conditioning variable and

discuss how it furnishes such a summary by providing a brief overview of the results in Lettau

and Ludvigson (1999).

2.2 The Conditioning Variable

In a recent paper, Lettau and Ludvigson (1999) argue that the difference between consumption

and the appropriate weighted average of log asset wealth and log labor income (cay for short)

does a good job of picking up fluctuations in the consumption-aggregate wealth ratio. This is

important because, in a wide class of forwarding looking consumption models, the consumption-

aggregate wealth ratio summarizes agents’ expectations of future returns to the market portfolio.

Furthermore, as Cochrane (1999) emphasizes, the CAPM can be derived from several special

cases of the CCAPM.14 These special cases also often imply that the parameters in the stochastic

discount factor of the CAPM (i.e., at and bt in Mt+1 = at + btRvw,t+1) will be a function of

the consumption-aggregate wealth ratio. For these reasons, fluctuations in the consumption-

aggregate wealth ratio may play a special role in both the CAPM and the CCAPM when they

are specified as linear factor models with time-varying coefficients. We now summarize the

framework which is explained in more detail in Lettau and Ludvigson (1999).

By making a loglinear approximation to the investor’s intertemporal budget constraint,

Wt+1 = (1 + Rm,t+1)(Wt − Ct), the log consumption-wealth ratio may be expressed in terms of

future returns to the market portfolio and future consumption growth. A full derivation is of

this approximation is given in Appendix A. Because this approximate equation holds simply

as a consequence of the agent’s intertemporal budget constraint, it holds ex-post, but it also

14See Cochrane (1999), chapter 8.
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holds ex-ante. Accordingly, we may express the log consumption-wealth ratio as a function of

expected future returns and expected consumption growth:15

ct − wt ≈ Et

∞
∑

i=1

ρiw(rm,t+i −∆ct+i). (9)

The important implication of (9) is that the log consumption-wealth ratio summarizes, to a

first approximation, the same investor expectations that are formed in (1). This can be verified

by noting that (9) is a function of the conditional expectation of consumption growth through

the last term on the right-hand-side. The appropriate value for expected consumption growth

must be obtained from the stochastic discount factor, 1 = Et[(1+Rm,t+1)Mt+1] since this is just

the first order condition for optimal consumption choice.

Note that the specification in (9) is directly analogous to the linearized formula for the log

dividend-price ratio. If the consumption-wealth ratio is high, then the agent must be expecting

either high returns on wealth in the future or low consumption growth rates. The key difference

between the consumption-wealth ratio and the dividend price ratio is that what’s on the right-

hand-side is the return to the entire market portfolio, not just the stock market component of

it. Thus the consumption-wealth ratio is a superior summary measure of investor expectations.

Equation (9) also implies that it is not necessary to observe the nature of investor preferences, the

sources of aggregate risk, or the particular information set upon which investors base conditional

expectations: agents’ own behavior, as revealed by movements in ct−wt, summarizes conditional

expectations of future returns to the market portfolio.

Of course, the log consumption-aggregate wealth ratio is not observable. The primary dif-

ficulty is that human capital is not observable. Rather than proposing an explicit proxy for

human capital, Lettau and Ludvigson (1999) pursue a strategy which allows us to express

the important predictive components of ct − wt for future market returns in terms of observ-

able variables. This approach begins with the assumption that aggregate labor income, Yt,

may be well described by the product of a stationary simple net return to human capital,

Rh,t+1, times the stock of human wealth, Ht: Yt = Rh,t+1Ht. Ignoring a linearization constant,

rh,t+1 ≡ log(1 +Rh,t+1) ≈ 1/ρy(yt − ht), where ρy ≡
1+Y/H
Y/H

.16

With these assumptions, we are now in a position to express the log consumption-aggregate

15We omit unimportant linearization constants in linearized equations.
16This definition uses the timing convention that the stock of human capital, Ht, is measured beginning-of-

period, dividends and labor earnings are paid at the end of the period, and the return, Rh,t+1, denotes the return

on the stock of human capital held from (the beginning of) time t to time t+ 1.
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wealth ratio in terms of observable variables. Let At be nonhuman, or asset, wealth, and let

1 + Ra,t+1 be its gross return. Aggregate wealth is therefore Wt = At + Ht and log aggregate

wealth may be approximated as wt ≈ ωat + (1 − ω)ht, where ω equals the average share of

nonhuman wealth in total wealth, A/W . Using this approximation allows us to express the

left-hand-side of (9) as the difference in log consumption and a weighted average of log asset

wealth and log labor income, plus an approximation term. This equation takes the form

cayt ≡ ct − ωat − (1− ω)yt ≈ Et

∞
∑

i=1

ρiw(rm,t+i −∆ct+i)− (1− ω)ρyrh,t+1. (10)

Because all the variables on the right-hand-side of (10) are stationary, the model implies that

consumption, asset wealth and labor income share a common stochastic trend, where ω and

(1− ω) are parameters of this shared trend. As long as the last term on the right-hand-side is

not too variable, this equation implies that the observable quantity on the left-hand-side should

be a good proxy for the log consumption-aggregate wealth ratio.

This implication can be tested directly assuming that expected returns to human capital

and expected consumption growth are not too volatile relative to asset wealth, by assessing the

forecasting power of cayt for returns to nonhuman wealth. Lettau and Ludvigson (1999) present

evidence that cayt is a strong univariate predictor of both raw stock returns and excess stock

returns over a Treasury bill rate, and can account for a substantial fraction of the variation in

future returns. Moreover, this variable provides information about future stock returns that is

not captured by lagged values of other popular forecasting variables. This evidence suggests

that cayt is likely to summarize a large amount of information about investor expectations and,

as a consequence, is an excellent candidate conditioning variable.

The consumption CAPM (7) allows the discount factor to depend flexibly on consumption

growth, conditional on information available at time t. Although we do not specify and test

an explicit functional form for the intertemporal marginal rate of substitution, Mt+1, it should

be noted that this scaled multifactor specification can be well motivated by the framework

in Campbell and Cochrane (1999a) discussed above. Because their model has time-varying

risk aversion, the parameters in a linearized specification for Mt+1 are not constant. As (8)

shows, consumption growth should be scaled by a function of the surplus consumption ratio.

Because the surplus consumption ratio is not observable, however, the appropriate conditioning

variable in their model must be an observable indicator that captures movements in time-varying

expected excess returns. Lettau and Ludvigson (1999) show that the estimated value of cayt,

denoted ĉayt, is such a variable because it has strong forecasting power for aggregate stock
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returns: when ĉayt is low, excess returns are forecast to fall; when ĉayt is high, excess returns are

forecast to rise.17 Campbell and Cochrane (1999b) argue similarly that a scaled consumption

CAPM specification for Mt+1with the dividend-price ratio as the conditioning variable can also

be motivated by the habit persistence framework in Campbell and Cochrane (1999a).

An important task in using the left-hand-side of (10) as a scaling variable is the estimation

of the parameters in cayt. Lettau and Ludvigson (1999) show how these parameters can be

estimated consistently and why measurement considerations suggest that the coefficients on

asset wealth and labor income may sum to less than one. The reader is referred to Appendix B

for details on data construction and data definition, and for a description of the procedure used

to estimate ω and (1−ω). We simply note here that we obtain an estimated value for cayt equal

to ĉayt = c∗t −0.31a∗t −0.59y∗t −0.60, where starred variables indicate measured quantities.18 We

use this estimated value, plotted in Figure 1, as a scaling variable in our empirical investigation.

3 Econometric Specification and Tests

3.1 Empirical Models

We use the beta representation (4) as the basis of our empirical work, specialized to the particular

asset pricing model under consideration. In this section, we examine whether these specifications

can explain the cross-section of expected returns given that the conditioning variable, zt, is set

equal to ĉayt. We test the usefulness of ĉayt as a scaling variable for beta representations of

the CAPM and CCAPM. In each case, the scaled multifactor beta representation (4) nests an

associated unconditional model where the β′s on the scaling variable and on the scaled factors

are zero. We compare the ability of all these models to explain the cross-section of average

returns with that of the three factor model in Fama and French (1993). In addition, we follow

the suggestion in Jagannathan and Wang (1998) to include firm size (market equity) and book-

17This pattern in the data may also be plausibly interpreted using the time-varying risk aversion framework

of Campbell and Cochrane (1999a). In that model, consumption booms are periods during which consumption

increases above habit, leading to a decline in risk aversion. The decline in risk aversion leads, in turn, to a

greater demand for risky assets and a decrease in expected excess returns, or risk premia. Thus booms are times

of rising consumption but declining ratios of consumption to aggregate wealth, consistent with what is found in

Lettau and Ludvigson (1999).
18The estimation of the parameters in ĉayt is done in a first-stage time-series analysis using only consumption,

asset wealth and labor income and is completely unrelated to the cross-sectional data on portfolio returns.
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to-market characteristics as additional explanatory variables as a test for model misspecification.

Finally, we test the (C)CAPM using two alternative scaling factors: the log dividend-price ratio

on the CRSP value-weighted (CRSP-VW) Index and the default yield spread between BAA and

AAA bonds.

3.2 Econometric Tests and Portfolio Data

The unconditional model in (4) can be consistently estimated by the cross-sectional regression

methodology proposed in Fama and MacBeth (1973), an approach we use here. In principle,

there are other empirical procedures for testing the model in (4). In practice, the size of our

sample limits our choices. Because our conditioning variable, ĉayt, is available only on a quarterly

basis, we have fewer than 150 time series observations for each portfolio, considerably less than

most asset pricing studies which use monthly data. As one example, researchers have used

Generalized Method of Moments (GMM) to test asset pricing models such as (4), a technique

we also experimented with. However, we found that this technique did not deliver stable results.

We have reason to believe that this is a result of the small size of our time series.19 It is well

known that GMM estimation can be especially problematic in studies that have a small time-

series for a fixed cross-section sample size (for example, Ferson and Foerster 1994; Altonji and

Segal 1996). In addition, the need to estimate the covariances among many asset returns makes

it unsuitable for studying a reasonably large cross-section of returns using quarterly time series.

Thus, the Fama-MacBeth procedure has important advantages for our application, in which we

have only a moderate number of time series observations but in which we require a reasonably

large number of asset returns to test the model’s cross-sectional implications.20

19For example, we replicated the GMM results in Jagannathan and Wang (1996) using their monthly data.

When the data were converted to a quarterly frequency, however, the models considered by Jagannathan and

Wang were consistently rejected and the standard errors on the model’s coefficients, as well as the estimates

of the Hansen-Jagannathan distance, displayed considerable instability. These differences between the monthly

and quarterly models did not appear to be a feature of the time-aggregation needed to convert from monthly to

quarterly data: the difficulties with the results using quarterly data lessened when we used a small number of

portfolios relative to the time-series sample size.
20Other researchers have recommended the use of Generalized Least Squares (GLS) on the grounds that asset

returns may display conditional heteroskedasticity. When conditional heteroskedasticity is present, the GLS

approach should improve efficiency. However, there are several reasons we believe that the potential advantages

of GLS for our application are highly uncertain. First, as in any application of GLS, the improvement in

efficiency depends on knowing the true covariance matrix of returns. Since this knowledge is rare, GLS is often
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For comparing the relative performance of the different empirical specifications we consider,

we use theR2 of the cross-sectional regression showing the fraction of the cross-sectional variation

in average returns that is explained by each model.21 In addition, we test whether the coefficients

λ in (4) are statistically different from zero. Following Shanken (1992), we report the standard

errors of these coefficients corrected for sampling error that arises because the regressors β are

estimated in a first stage time-series regression for each Ri,t+1.
22 Jagannathan and Wang (1998)

show, however, that the Fama-MacBeth procedure does not necessarily overstate the precision of

the standard errors if conditional heteroskedasticity is present, so we also report the conventional

t-statistics. Since the Shanken correction assumes that returns are homoskedastic, if there were

any heteroskedasticity in our data, the corrected standard errors would be overcorrected, in the

sense that they could understate�but would never overstate�the true degree of precision of our

estimates.

It is important to note that standard errors do not need to be adjusted to account for the

use of the generated regressor ĉayt. This follows from the fact that estimates of the parameters

in ĉayt are �superconsistent,� converging to the true parameter values a rate proportional to

the sample size T rather than proportional to
√
T as in ordinary applications (Stock 1987).

Appendix B provides details.

Our data on returns consists of 25 portfolios formed according to the same criteria as those

used in Fama and French (1992, 1993). These data are value-weighted returns for the inter-

sections of five size portfolios and five book-to-market equity (BE/ME) portfolios on NYSE,

AMEX, and NASDAQ stocks in COMPUSTAT. The portfolios are constructed at the end of

June and market equity is market capitalization at the end of June. BE/ME is book equity at

less robust than the Fama-MacBeth procedure based on Ordinary Least Squares (OLS). Second, conditional

heteroskedasticity in quarterly data is less evident than in the monthly data commonly used, so the improvement

in efficiency from GLS is likely to be marginal, at best. Third, in small samples, the relative advantages of GLS

over OLS are even more uncertain than they are in large samples, especially when the form of heteroskedasticity

involves unknown parameters. In particular, the GLS transformation can place too much weight on what appear

to be nearly riskless portfolios so measured due to luck in a short sample. Cochrane (1999) emphasizes that this

is especially true in samples where the cross section is more than one tenth of the time series.
21This goodness of fit measure follows Jagannathan and Wang (1996) and is given by (Varc(Ri) −

Varc(εi))/Varc(Ri), where εi is the average residual for portfolio i, Varc denotes a cross sectional variance, and

variables with bars over them denote time series averages.
22The beta coefficients are estimated from a multiple time-series regression for each asset. We use the entire

sample to estimate the β′s; a rolling regression approach is not applicable in quarterly data which limits us to

less than 150 time series observations.
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the last fiscal year end of the prior calendar year divided by ME at the end of December of the

prior year. This procedure is repeated for every calendar year starting in July 1963 to June 1998.

We refer the reader to the Fama-French articles cited above for details and data characteristics.

We convert the returns to quarterly data producing a time series spanning the third quarter of

1963 to the third quarter of 1998, i.e., 141 observations for each of the 25 portfolios.

3.3 Empirical Results

3.3.1 Forecasting Pre-test

This section assesses the power of various scaled multifactor models given in (4) for explaining

the cross-section of average returns. In advance of presenting these findings, we briefly display

some evidence on the power of ĉay and other variables for forecasting asset returns and key

macroeconomic variables. This serves as a pre-test for our scaling variables, since�in principle�

these indicators should reveal investor expectations about future returns to either financial

wealth or future labor earnings or both.23 In short, they should forecast some indicator that is

plausibly correlated with future returns to human and nonhuman wealth.

Table 1 shows a typical set of results using the lagged value of ĉayt, the lagged log dividend-

price ratio on the CRSP-VW Index (d−p), the lagged spread between BAA and AAA bond yields

(SPR), and the �small-minus-big� (SMB) and �high-minus-low� (HML) portfolios constructed

in Fama and French (1993)24 as a predictive variables for the excess return on the CRSP value-

weighted stock index, for growth in real Gross Domestic Product (GDP), and real consumption

growth using the consumption measure discussed in Appendix B. We include the two Fama-

French mimicking portfolio variables in this assessment on the grounds that these variables may

forecast some indicator that is plausibly related to future returns on the market portfolio if

they proxy for rationally priced risk. In each case, we ask whether the explanatory variable

�Granger causes� the future values of the predicted variables and we report the adjusted R2

as a measure of overall forecasting power. Lettau and Ludvigson (1999) present a much more

extensive analysis of the forecasting power of ĉay for excess stock returns, including both in-

sample and out-of-sample tests.

23We demean the scaling variables in all of the empirical investigations of this paper.
24The definitions of these variables are by now well known and can be found in Fama and French (1993).

In essence, SMB is the difference between the returns on small and big stock portfolios with about the same

weight-average book-to-market equity. HML is the difference between returns on high and low BE/ME portfolios

with about the same weighted-average size.
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The first row of Table 1 shows that the estimated trend deviation in wealth, ĉay, explains

a substantial fraction of the variation in future CRSP-VW excess returns. The table reports

that, at a horizon of four quarters, this variable alone explains about 18% of the variation in

excess returns; results not reported in the table show that this forecasting power peaks at a

horizon of about 5 quarters, explaining about 21% of the variation in excess returns. Lettau and

Ludvigson (1999) consider a number of popular forecasting variables and show that ĉay is the

best univariate predictor of excess returns one to five quarters ahead; other forecasting variables

display, at best, only weak forecasting power at quarterly horizons. As one example, Table 1

shows that the dividend-price ratio is a comparatively poor forecaster of future returns one to

eight quarters ahead. Thus a forecasting equation using ĉay as a predictive variable is likely to

do a good job of picking up fluctuations in equity premia at a quarterly horizons.

The other variables, SPR, SMB, and HML have only weak forecasting power for excess

stock returns. Nevertheless, Table 1 demonstrates that HML has some forecasting power for

GDP growth at a one-quarter horizon, while SPR is valuable for predicting GDP growth from

one to four quarters out. The final row of Table 1 shows that, although SMB has only weak

univariate predictive power for any of the three variables forecast, in a bivariate regression which

includes ĉay as a predictive variable for the return on the CRSP-VW index, SMB is individually

significant, and the forecasting equation predicts a larger fraction of the variation in future

returns using both variables than it does using either variable in isolation. None of the predictive

variables have forecasting power for consumption growth, however.

3.3.2 Cross-Sectional Results

The CAPM

Unconditional Models

Using returns on the 25 Fama-French portfolios described earlier, we now examine the power

of various beta-representations to explain the cross-section of average returns. To form a familiar

a basis for comparison, we begin by presenting results from a series of unconditional models,

that is for models where the factors in (4) are not scaled by a conditioning variable. Of these,

the most familiar is the static CAPM, with the CRSP-VW return, Rvw, used as a proxy for the

unobservable market return. This implies a cross-sectional specification taking the form

E[Ri,t+1] = E[R0,t] + βvwiλvw. (11)
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The results are presented in the first row of Table 2. The t−statistic for λvw shows that

the beta on the value-weighted return is not a statistically significant determinant of the cross-

section of average returns. Both the corrected and uncorrected standard errors signal that the

beta on the value-weighted index is not statistically different from zero. Moreover, it has the

wrong sign. The R2 of the regression is only 0.01; in other words, only 1 percent of the cross-

sectional variation in average returns can be explained by the static CAPM. Note that the R2

adjusted for degrees of freedom, denoted R̄2, is negative. These results are now familiar (see

Fama and French 1992). By contrast, a specification which includes�in addition to the value-

weighted return beta�the beta for labor income growth, ∆y,25 advocated by Jagannathan and

Wang (1996) performs much better, explaining about 58 percent of the cross sectional variation

in returns (row 2). These results are consistent with those of Campbell (1996) and Jagannathan

and Wang (1996) which find that including the return to human capital is important for assessing

the performance of the (C)CAPM.26

Noting the failures of the static CAPM using the return on a value-weighted index as the

single factor, Fama and French (1993) propose a three-factor model as an alternative, where

the factors are the return to a value-weighted common stock index along with the return to the

HML and SMB portfolios described above. We confirm that these variables do indeed explain

a large fraction of the variation in average returns in our quarterly data set. These results are

presented in row 3 of Table 2 from an estimation of the three-factor cross-sectional model

E[Ri,t+1] = E[R0,t] + βvwiλvw + βSMBiλSMB + βHMLiλHML. (12)

This model explains about 80 percent of the cross-sectional variation in these returns, and the

25Here we use the measure of labor income growth advocated by Jagannathan and Wang (1996): the growth

in total personal, per capita income less dividend payments from the National Income and Product Accounts

published by the Bureau of Economic Analysis. In addition, we followed the timing convention of Jagannathan

and Wang (1996), in which labor income is lagged one month to capture lags in the official reports of aggregate

income.
26Following Heaton and Lucas (forthcoming), we also split the Jagannathan and Wang (1996) measure of

labor income into wages and salaries, and proprietor’s income. Consistent with the results of Heaton and Lucas,

we find that most of the explanatory power of the CAPM specification including human capital income growth

derives from the proprietor’s income component of Jagannathan and Wang’s measure of labor income. If labor

income is split into proprietor’s income and wage and salary income, the beta for proprietor’s income is highly

significant, while the beta for wage and salary income is not. A full investigation of why the proprietor’s income

component is relatively more important is beyond the scope of this paper, and the interested reader is referred

to Heaton and Lucas for more in-depth discussion.
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t−statistic on the HML factor is highly statistically significant even after correcting for sampling

error in the β′s. These results are consistent with what has been reported in the literature using

monthly data.

Scaled Factor Models

We now present the results from estimating scaled multifactor versions of the CAPM models.

For comparison with the static CAPM, Table 2 shows results for the scaled, conditional CAPM

with one factor, ft+1 = Rvw,t+1, and a single scaling variable zt = ĉayt. This cross-sectional

regression takes the form

E[Ri,t+1] = E[R0,t] + βziλz + βvwiλvw + βvwziλvwz. (13)

The results are reported in row 4 of Table 2. The estimated value of λz is not statistically different

from zero, implying that the time-varying component of the intercept is not an important

determinant of average returns. Moreover, the fifth row of Table 2 shows that eliminating βzi

as an explanatory variable does not have an important effect on the marginal predictive power

of the remaining betas, or on the overall fit of the regression. We found this to be generally true

in a variety of cross-sectional regressions we report in Tables 2 and 3.

By contrast, the coefficient on βvwi is strongly significant. Nevertheless, we think that,

throughout these tests, it makes more sense to ask whether the betas of the fundamental factor

and its scaled counterpart (e.g., Rvw,t and Rvw,tzt−1), are jointly significant. Recall that the

conditional factor model underlying a scaled multifactor representation such as (13) has a single

fundamental factor, and the additional scaled factor simply follows from our specification of

the time-varying coefficient on that factor. Thus, there is no implication following from the

conditional model that the betas for the scaled and unscaled fundamental factor be individually

significant. Moreover, results (not reported) indicated that if the unscaled market beta, βvwi, is

eliminated from (13), the R2 falls considerably, reflecting the fact that, even though λvw is not by

itself marginally significant, λvw and λvwz are jointly significant. This can be verified by a Wald

test for joint significance of λvw and λvwz, the results of which are displayed in panel B of Table

2.27 Note also that the R2 in row 4 for the scaled, conditional CAPM is considerably higher

than for the simple static CAPM; it jumps to 31 percent from 1 percent by simply including

βvwz as an additional regressor.
27These tests are carried out by forming a Wald statistic using the either the uncorrected or the Shanken-

corrected coefficient covariance matrix provided by the Fama-MacBeth procedure. Results for both covariances

matrices are presented in Panel B of Table 2.
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The scaled CAPM specification including human capital takes the form

E[Ri,t+1] = E[R0,t] + βziλz + βvwiλvw + βvwziλvwzβ∆yiλ∆y + β∆yziλ∆yz. (14)

The estimation results are presented in rows 6 and 7 (with and without βzi) of Table 2. This

model performs much better than the unscaled version, explaining about 75 percent of the cross-

sectional variation in average returns, about as well as the Fama-French three factor model

in row 3. In particular, the coefficients on the scaled factors, λvwz and λ∆yz are statistically

different from zero according to the uncorrected t−statistics. Note that the Shanken correction

to the t−statistics for models that include macroeconomic factors, and particularly for models

that include scaled macroeconomic variables, is substantially larger than for models that include

only returns as factors. For example, in the static-CAPM where the single factor is Rvw,t, the

Shanken correction (which in this case is just one plus the square of the Sharp ratio) is negligible,

as exhibited in row 1 of Table 1. The reason for this difference in the magnitude of the correction

is that the sampling error that arises from replacing the true betas by their first stage estimates

(and therefore the Shanken correction itself) is directly related to residual variance in the second

stage estimation, but is inversely related to factor variability. The macroeconomic variables are

far less variable than stock returns, so there is a much larger correction for sampling error in the

estimated betas of macro factors in the (C)CAPM than in the betas of portfolio return data,

such as the static, unconditional CAPM or the Fama-French three factor model.28 We find that

these differences in the magnitude of the Shanken correction across models with and without

macro variables arises in all of our tests, consistent with what has been found in other studies

that include macroeconomic variables as factors (for example, see Shanken’s [1992] example

using macro data and Jagannathan and Wang 1996).

Several other features of the cross-sectional results bear noting. First, in the case of the

CAPM (13), the average risk price for the value-weighted return from the associated conditional

linear factor model will be a weighted average of λvw and λvwz, the latter multiplied by zt see (6).

Given these estimates, and under the assumption that Vart(Rvw,t+1) is approximately constant,

the average risk price for the value-weighted return is found to be positive (recall the discussion

in section 2.1). For the CAPM model which includes labor income growth, (14), this same

28More precisely, the Shanken correction is directly related to the magnitude of each λ coefficient estimate and

inversely related to factor variability. Thus, although the models with macro factors have smaller λ estimates

than models with financial indicators as factors, the estimates of λ are not proportionally smaller relative to

their smaller factor variance.
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calculation yields a positive average risk price on the human capital beta but a negative average

risk price on the value-weighted beta.29

A second notable feature of the scaled multifactor CAPM (with or without labor income)

estimated above that is also shared by the scaled multifactor consumption CAPM (results pre-

sented in the next section) is that the estimated value of the average zero-beta rate is large. The

average zero-beta rate should be between the average �riskless� borrowing and lending rates.

While it is not entirely inconceivable that this spread could be 16 percent at an annual rate for

some borrowers, this value is implausibly high for the average investor. Although the (C)CAPM

can explain a substantial fraction of the cross-sectional variation in these 25 portfolio returns,

this aspect of the model appears inconsistent with the data. Still, this finding is not uncommon

in the literature (the estimated values for the zero-beta rate we find here are of the same order of

magnitude found in other studies, e.g., Jagannathan and Wang 1996) and is plausibly explained

by the large amount of sampling error in the estimated betas of the (C)CAPM models. The

early literature on cross-sectional asset pricing tests recognized that this sampling error will

bias up the constant in cross-sectional regressions (e.g., Black, Jensen, and Scholes 1972; Miller

and Scholes 1972), and it is not surprising that this error is greater for betas of macroeconomic

variables estimated from quarterly data than that for betas estimated for mimicking portfolios

using financial return data. The latter is of higher quality and is typically available at a higher

frequency. But, more importantly as discussed above, the data itself indicate that the sampling

error is in fact much larger for the scaled (C)CAPM models using macroeconomic data than it

is for the Fama-French three factor model: because the sampling error from replacing the true

betas by their first stage estimates is inversely related to the variance of the factors, this error

is much greater for models that include the less variable macro factors than it is for the Fama-

French three factor model which uses the more variable portfolio return data. This explains why

the Shanken correction reduces the t-statistics for the coefficients on betas of macroeconomic

factors in the scaled CAPM and also, as shown in the next section, in the scaled consumption

CAPM by a far greater degree than it reduces those for the betas of factor mimicking portfolios

in the Fama-French model.

The Consumption CAPM

Next we present the results of estimating specifications of the consumption CAPM, using

29Jagannathan and Wang (1996) report a similar finding for the signs of the risk prices on the market and

human capital betas.
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consumption growth as the fundamental factor. We write the scaled multifactor consumption

CAPM using zt = ĉayt as the single conditioning variable, a special case of (4), in the form

E[Ri,t+1] = E[R0,t] + βziλz + β∆ciλ∆c + β∆cziλ∆cz. (15)

∆c denotes the log difference is consumption, where the data sources for both this variable and

for ĉay are documented in Appendix B.30 The factors in this model are ĉay, current period

consumption growth, and consumption growth scaled by ĉay. Row 1 of Table 3 shows that the

unconditional consumption CAPM (with consumption growth the single factor) performs only

slightly better than the unscaled CAPM without labor income (11), explaining just 16 percent

of the variation in average returns. The results of estimating the scaled specification (15) are

presented in row 2.

Like the case for the scaled CAPM, the time-varying component of the intercept term in

(15) does not appear to be important: λz is not statistically significantly different from zero

and eliminating βzi from the cross-sectional regression does not have an important effect on

either the other coefficients in the regression, or on the overall fit of the regression. This is

revealed in row 3 which eliminates βzi as a regressor in (15). In the interest of maintaining

more parsimonious specifications, from here on we present the results from estimating the beta

specification under consideration omitting the time-varying component of the constant from the

regressions (i.e., λz is restricted to be zero). The β for the scaling variable itself may capture the

effects of time-variation in the risk-free rate, but do not capture the effects of time-varying risk

premia. None of the results presented in Table 2 or 3 are qualitatively influenced by imposing

this restriction.31

Row 2 shows that the estimated values of λ∆c and λ∆cz are strongly jointly significant (panel

B) and the estimated value of λ∆cz is individually statistically different from zero; the t−statistic
30Breeden, Gibbons and Litzenberger (1989) investigate the effects of several data issues that arise when testing

the consumption CAPM with measured consumption. They emphasize, in particular, that measured quarterly

consumption is the time-average of instantaneous consumption rates during the quarter. They show that one

can compensate for this bias by multiplying quarterly consumption growth rates by 3/4. Such an adjustment

would scale the point estimates of the risk prices by 3/4, but would obviously not effect the t−statistics or the
R2 statistics we report.

31Note that the parameter bj for a factor j may be nonzero in the pricing kernel even if the its beta is not

priced (λj = 0) in the cross-sectional regression (bs and βs are not the same). We found that including the

scaling variable ĉay as a factor in the pricing kernel was important despite the fact that the β for this factor

was not typically priced. Thus we always include the scaling variable as a factor in our specification of Mt+1

regardless of whether we include its β in the cross-sectional regression.
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equals 3.2 in the regression reported in row 4; the corrected t−statistic is 2.41. More strikingly,

the R2 statistic indicates that the specification in (15) explains 70 percent of the cross-sectional

variation in average returns on the 25 Fama-French portfolios. This stands in sharp contrast to

the 1 percent explained by the static CAPM (row 1, Table 2) or the 16 percent explained by

the unconditional consumption CAPM (row 1, Table 3). Furthermore, it is quite close to the 80

percent R2 produced from the Fama-French three factor model (row 3, Table 2).32

The fact that the beta for the cross-term factor zt∆ct+1 is important suggests that the data

are better modeled by the habit models discussed above than they are by a traditional conditional

consumption CAPM where no cross-term beta would arise. Note also that the improvement in

R2 derived from scaling the unconditional CCAPM is quite dramatic and is larger than that

derived from scaling the version of the CAPM which includes labor income growth. This feature

of the data provides some support for the argument presented in Campbell and Cochrane (1999b)

that, when excess returns are time-varying, the unconditional CAPM is likely to perform better

in pricing assets than an unconditional CCAPM even if the consumption-based model is true

by construction. Campbell and Cochrane show, by contrast, that the conditional versions of

these two models should perform equally well, consistent with what we find.33 Finally, we also

note that, even though the coefficient λ∆c in (15) is negative, the implied average risk price for

the consumption beta in the conditional consumption CAPM, E[˜λ∆c,t], computed as described

above, is positive, consistent with the theory.

Average Pricing Errors

Although the R2 statistics give a summary measure of the overall fit of each cross-section

32Note that it is not surprising that the Fama-French three-factor model explains a slightly larger fraction of the

variation in average returns on these portfolios. If there is any measurement error in a set of theoretically-derived

aggregate indicators determining the discount factor, M , the factor-mimicking portfolios for those variables

will always price assets better than the underlying economic indicators. This phenomenon is likely to occur

because the mimicking portfolios are typically better measured and often available on a more timely basis

than are macroeconomic data. On the other hand, if the Fama-French factors are not mimicking portfolios

for consumption risk but are simply ex-post mean-variance efficient portfolios, they will again always beat the

theoretically-derived factors in-sample.
33Campbell and Cochrane (1999b) show this by constructing artificial data from the habit-persistence frame-

work in Campbell and Cochrane (1999a). Because the CAPM is better able to capture some of the time-variation

in expected returns than is the unconditional consumption-factor model, the CAPM is a better approximate

unconditional model even though it has no advantage over the CCAPM when both models are specified as

conditional factor models.
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regression, it is also helpful to have a visual impression of the relative empirical performance of

each specification we investigate. This is furnished in Figure 2, panels A through F. For a given

empirical specification, each figure plots the fitted expected return for each portfolio, using the

coefficient estimates for that specification, against the realized average return. If the model fit

perfectly, all the fitted returns would lie along the 45 degree line also plotted. For reference, the

data for these plots (the pricing errors for each portfolio for the various empirical specifications

we consider) are given in Table 4.

Figure 2 shows the pricing errors for each of the 25 Fama-French portfolios in six different

models. Each two-digit number represents one portfolio. The first digit refers to the size quintiles

(1 indicating the smallest firms, 5 the largest), the second digit refers to book-to-market quintiles

(1 indicating the portfolio with the lowest book-to-market ratio, 5 with the highest). Figure 2A

confirms that the simple, static-CAPM explains virtually none of the variation in average returns

on these portfolios. We can spot the main source of difficulty immediately: the mispricing of

portfolios that have different book-to-market equity ratios for a given size value. For example,

portfolios 11 and 15�those that are in the smallest size category but in the lowest and highest

book-to-market categories�lie farthest from the 45 degree line. This illustrates a familiar result:

the value effect destroys the static CAPM when confronted with these portfolios. Figure 2B

shows that scaling the CAPM with ĉay improves the fit substantially. Figure 2C illustrates

that the unscaled consumption CAPM also has difficulty explaining the difference in return

between high and low book-to-market portfolios. Again we see that the return on portfolio

15 is substantially higher than that of portfolio 11, yet the fitted expected returns from the

unconditional consumption CAPM for these two portfolios are roughly the same. By contrast,

Figure 2D shows that the scaled multifactor consumption CAPM does a much better job of

explaining the value effect: the fitted expected returns on value portfolios are high while the

fitted expected returns on growth portfolios are low, consistent with the data. A similar result

holds for the scaled CAPM with labor income in Figure 2E. Comparing these results to Figure

2F, which plots the fitted values from the Fama-French three-factor model, it is evident that the

scaled consumption CAPM and the scaled CAPM with labor income do about as well as the

Fama-French model in explaining this value effect, and the portfolios that are most mispriced

in the scaled (C)CAPM models 2D and 2E are the same portfolios that are most mispriced in

the Fama-French three factor model 2F.

How do the pricing errors vary across more aggregated portfolios? Table 4, panel B reports

the square root of the average squared pricing errors across ten aggregated portfolios formed on
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the basis of the size and book-to-market quintiles. It is clear that the pricing errors for the scaled

consumption CAPM are lower for large size portfolios and high book-to-market portfolios, and

vice versa. A similar pattern can be found for the Fama-French model. The last row of Table

4 gives the average pricing errors across all portfolios. The conditional consumption-CAPM we

consider has average errors a little more than one-half the size of those for the simple static-

CAPM, whereas the Fama-French three-factor model has average errors about 42 percent as

large as the static-CAPM.34

The last row in Table 4 reports the results of an asymptotic χ2 test of the null hypothesis

that the pricing errors are zero.35 The table shows that the only models for which the null of zero

pricing errors may not be rejected are the scaled multifactor models. We are reluctant to place

emphasis on this result. The test, at least on these data, does not appear to have much power

to distinguish among various models. It is clear that the Fama-French three factor model, the

scaled CAPM with labor income growth, and the scaled consumption CAPM all have average

pricing errors of roughly the same magnitude, and the economic size of these errors is not large.

The difference in statistical significance again appears to be due to the fact that the there is

more sampling error in the first-stage estimates of the betas in the scaled multifactor (C)CAPM

models than there is in any of the unscaled models, translating into a larger upward correction to

the asymptotic variance-covariance matrix of the pricing errors in the scaled multifactor models.

This finding is consistent with the results reported above. Just as the greater sampling error in

34These results are consistent with Avramov (1999) who finds that cay has important predictive power for

returns on large and medium size, as well as on high book-to-market portfolios in a Bayesian study of return

forecasting models.
35The test statistic requires the assumption that the errors in the Fama-MacBeth regressions are i.i.d. over

time, and is given by

(1 + λ′Σ−1f λ)
−1
α̂′FMCov(α̂FM )−1α̂FM ∼ χ2N−K ,

where Σ.f is the variance-covariance matrix of the factors, α̂FM is the estimated vector of pricing errors given

by the Fama-MacBeth estimates, N is the number of portfolios, and K is the number of factors. The first

multiplicative term in parentheses is a correction for sampling error in β, and is due to Shanken (1992). Note

that this formula is numerically equivalent to the analogous test statistic for OLS estimates from cross-sectional

regressions, where the OLS standard errors are corrected for cross-sectional correlation:

T (1 + λ′Σ−1f λ)
−1
α̂′OLS [(IN − β(β

′
β)−1β′)Σ(IN − β(β′β)−1β′)]−1α̂OLS ∼ χ2N−K ,

where Σ is the N ×N covariance matrix of pricing errors from the OLS cross-sectional regression. See Cochrane

(1999), chapter 12.
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the betas of the scaled (C)CAPM models reduces the precision of the Fama-MacBeth estimates

of λ by much more than it does in the unscaled models using portfolio return data, it also

reduces the precision of the estimated pricing errors in the scaled multifactor models by more

than in the unscaled models.

Intuition

The results in Tables 2 and 3 and in Figure 2 demonstrate that the scaled (C)CAPM goes

a long way toward explaining why value stocks earn higher returns than growth stocks. What

is the intuition for this finding? Recall that the scaled (C)CAPM, unlike its unconditional

counterpart, allows for time-variation in risk premia, the source of which may be time-variation

in risk aversion (as in models with habit persistence, e.g., Campbell and Cochrane 1999a), or

time-variation in risk itself (as in models with time-varying labor earnings or default risk, e.g.,

Constantinides and Duffie 1996; and Sundaresan 1999). Accordingly, bad times are periods

of relatively high risk aversion or high earnings/default risk, and the rise in this risk or risk

aversion upon entering a recession reduces the demand for risky assets driving down their price

and with it the value of wealth. In these models, recessions are therefore times of falling

consumption but increasing ratios of consumption to aggregate wealth, while the opposite holds

true for booms. Figure 1, reproduced from Lettau and Ludvigson (1999), shows that these

implications are consistent with the data: ĉayt tends to decline during expansions (forecasting

a decline in future excess returns) and rise in recessions (forecasting an increase in future excess

returns). Thus, value portfolios are not riskier than growth stocks because their returns are more

highly unconditionally correlated with consumption growth, as, for example, the unconditional

CCAPM would predict. Rather, value portfolios are riskier because their returns are more highly

correlated with consumption growth in recessions, when ĉayt is high, than they are in booms,

when ĉayt is low. Put another way, value portfolios are riskier because their returns are more

highly correlated with consumption growth in recessions, when risk/risk-aversion is high, than

they are in booms, when risk/risk-aversion is low. The empirical results presented above suggest

that it is this conditional correlation of factors with returns, far more than the unconditional

correlation frequently tested, that is important for pricing assets.

Scaling the Fama-French Model

Table 5 considers a scaled version of the Fama-French three factor model in (12), now a six

factor specification which includes loadings for the scaled Fama-French factors as well as for the
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original factors as explanatory variables. For comparison, the results for the standard, unscaled

Fama-French three-factor model are reproduced in row 1.

The scaled, Fama-French model, like its unscaled three-factor counterpart (12), explains

a substantial fraction of the cross-sectional variation in average returns: the R2 of the cross

sectional regression is 83 percent. But, more significantly, the explanatory power of the scaled

Fama-French specification is no greater than the unscaled specification: the adjusted R2 is

precisely the same in scaled version reported in Table 5 as it is in the unscaled version reported in

Table 2. This finding is in sharp contrast to that for the CAPM and even more in contrast to the

CCAPM where, in each case, the scaled factor models do substantially better than their unscaled

counterparts. The result suggests that the success of the Fama-French three factor model in

explaining the variation in average returns on these portfolios may be, in large part, a function

of its ability to proxy for the role of conditioning information in the (C)CAPM. Moreover, given

that the conditioning information is important because it captures time-varying risk premia,

the finding implies that the Fama-French model performs better than the unconditional factor

models because it picks up this time-variation. This explains why the Fama-French model out-

performs the unconditional versions of the (C)CAPM which ignore time-variation in expected

returns, but conveys a far lesser advantage over these models when they are scaled to account

for time-varying risk premia.

Including Characteristics

We now investigate whether there are any residual effects of firm characteristics in the scaled

(C)CAPM models investigated above. This examination is done by first including firm size�

the time-series average of the log of market equity for each firm�as an additional explanatory

variable in the cross-sectional regressions. Berk (1995) and Jagannathan and Wang (1998) argue

that including this firm-specific characteristic provides a natural specification test for any cross-

sectional asset pricing model. These results are presented in Table 6. For reference, the table

presents results for models which include various factors; we summarize only the main findings

from a few specifications here.

Again, to form a basis of comparison, we begin by presenting the results of including firm

size in the static CAPM model (11). The results of this estimation are shown in row 1 of

Table 6. These results confirm the well-documented difficulty posed by the inclusion of firm-

specific characteristics for the static-CAPM: the coefficient on the size variable is statistically

significant, the R2 statistic jumps from 1 to 70 percent from including firm size, and the risk
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price for the value-weighted return is now negative and statistically significant. A similar result

is obtained by including size in the scaled CAPM (13) as demonstrated in row 2. By including

labor income growth in the scaled CAPM (row 4) these size effects are attenuated, but not

completely eliminated; the coefficient on size is not statistically different from zero according

to the corrected t−statistic, but remains statistically significant according to the uncorrected

t−statistic.
By contrast, the effects of size are completely eliminated in the CCAPM and are much

weaker than in even the scaled CAPM specification with labor income growth. Size is not a

significant determinant of the cross-section of average returns in either the consumption CAPM

(equation (15) with β∆cz = βz = 0) or in the scaled consumption CAPM (15); the coefficient

on this variable is not statistically significant and the overall fit of the regression is roughly the

same regardless of whether size is included in the regression.

In the bottom panel, we include the log of the book-to-market (BM) equity ratio for each

firm as an additional explanatory variable in the cross-sectional regressions. As with firm size,

the BM variable is significant for both the unscaled and scaled version of the CAPM. Moreover,

the R2 increases substantially once BM is included. Both the scaled and unscaled versions of the

CAPM which include labor income growth also have difficulty eliminating residual BM effects

(rows 3 and 4). For these models, BM remains statistically significant even according to the

corrected standard errors. A similar result holds for the unscaled consumption CAPM

In the scaled consumption CAPM specification, residual book-to-market effects are, on the

contrary, eliminated. The coefficient on BM is not statistically different from zero at conventional

levels using either the uncorrected or Shanken-corrected standard errors. More importantly, a

comparison with the results in Table 3 shows that, compared to that for the CAPM, their is

no substantial increase in adjusted R2 from including BM in the scaled consumption CAPM

specifications. These results provide further support for the earlier finding that the consumption

CAPM goes a long way toward explaining the size and value anomalies documented in this set

of portfolio returns.

Alternative Scaling Variables

So far we have considered scaled multifactor models using ĉay as a conditioning variable. We

argued above that ĉay is an excellent candidate for a scaling variable because both theory and

empirical evidence suggest that it should do a good job of summarizing investor expectations

about future returns on the market portfolio. Nevertheless, others have suggested that the
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dividend-price ratio (Campbell and Shiller 1988) or the spread between yields on a BAA rated

bond and a AAA rated bond (Jagannathan and Wang 1996) may do a good job of summarizing

investor expectations. Table 7 presents results for scaled multifactor versions of the (C)CAPM

using either the log dividend-price ratio on the CRSP-VW Index (zt = dt − pt) or the yield

spread between the BAA and AAA rated bonds (zt = SPRt) as conditioning variables, in place

of ĉayt.

The performance of the conditional consumption CAPM (15) is quite sensitive to the choice

of scaling variable. In contrast to the results presented in Table 2, the results in Table 7 shows

that the scaled consumption CAPM performs poorly in explaining the cross-section of average

returns when the scaling variable zt is either the dividend-price ratio or, to a lesser extent, the

default spread. Neither λ∆c or λ∆cz are statistically significant when either of these measures

are employed as scaling variables. Furthermore, the R2 of the cross-sectional regression is

considerably lower than the 70 percent reported in Table 3 obtained using ĉay. For the model

with zt = dt − pt, the R2 statistic for the scaled consumption-CAPM is just 14 percent; for the

model with zt = SPRt it is 37 percent. This finding supports the hypothesis that ĉay has an

important advantage over other conditioning information in summarizing expectations. It also

suggests that the log consumption-aggregate wealth ratio, as proxied by ĉay, plays a meaningful

role in explaining the cross-section of average asset returns. These results are similar for the

scaled CAPM. An exception is the scaled CAPM with labor income growth, which does almost

as well using the dividend-price ratio as a scaling variable as it does using ĉay.

In summary, the results presented above show that a conditional (C)CAPM, using ĉay as

conditioning information, does the best job of explaining the cross-section of average returns.

We also investigated the empirical performance of this consumption-based model using the 27

portfolios employed by Davis, Fama and French (forthcoming), formed by triple sorting stocks

on size, book-to-market equity ratios and risk loadings on a the HML mimicking portfolio. We

repeated the tests presented in Table 2 for these 27 portfolios. The results (not reported) are

qualitatively very similar to those presented using the size/book-to-market sorted portfolios

presented here.

4 Conclusion

Empirical asset pricing has presented an abundance of formidable challenges for both the CAPM

and the consumption-based CAPM in recent years. One of the most compelling of these was
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presented by Fama and French (1992, 1993) who showed that a broad stock-market beta could

not explain the difference in return between portfolios with high and low book-to-market equity

ratios. Consumption-based asset pricing models fared little better in this regard.

The failures of the CAPM and the consumption CAPM documented over the last 15 years

have prompted researchers to seek alternative empirical models for explaining the pattern of

returns on portfolios formed according to size and book-to-market equity ratios. Fama and

French (1993) demonstrate that a three factor model consisting of a broad stock market beta

and betas on two mimicking portfolios formed to proxy for risk related to size and book-to-

market equity ratios can capture strong common variation in returns. Yet these results have

been a source of controversy as some researchers question whether the two mimicking portfolios

capture true nondiversifiable, and therefore macroeconomic, risk. Since models that specify

actual macroeconomic variables as risk factors have, as yet, failed to explain a significant fraction

of the variation in these returns, this contention persists.

We argue that the results presented in this paper go a long way toward resolving this con-

troversy. We provide an empirical test of the (C)CAPM by positing that the true unobservable

discount factor may be approximated as a linear function of the model’s fundamental factors.

Instead of assuming that the parameters of this function are fixed over time, as in many previous

studies, we model the parameters as time-varying by scaling them with conditioning information.

Unlike the simple static CAPM or unconditional consumption CAPM, we find that these scaled

multifactor versions of the (C)CAPM can explain a substantial fraction of the cross-sectional

variation in average returns on stock portfolios sorted according to size and book-to-market

equity ratios. These results seem to be especially supportive of a habit-formation version of

the consumption CAPM, where the multiplicative, or scaled, consumption factor is important.

This scaled consumption CAPM does a good job of explaining the celebrated value-premium:

portfolios with high book-to-market equity ratios also tend to have returns that are more highly

correlated with the scaled consumption factors we consider, and vice versa. Furthermore, the

scaled consumption model eliminates residual size and book-to-market effects that remain in

the CAPM. Thus, these findings lend support to the view that the value-premium can, at least

in part, be attributed to the greater nondiversifiable risk of high book-to-market portfolios, and

not simply to elements bearing no relation to risk such as firm characteristics or sample selection

biases.

Our results also help to shed light on why the Fama-French three factor model performs

so well relative to the unscaled (C)CAPM: the data suggest that the Fama-French factors are
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mimicking portfolios for risk factors associated with time-variation in risk premia. Once the

(C)CAPM is modified to account for such time-variation, it performs about as well as the Fama-

French model in explaining the cross-sectional variation in average returns. Of course, as with

any model, the one investigated here is only an approximation of reality; as such, some features

of the cross-sectional variation in returns remain unexplained even after accounting for these

consumption covariances. The success of the (C)CAPM model tested here rests with its relative

accuracy, rather than with its ability to furnish a flawless description of reality.

A key component of this success is our choice of conditioning information. We argue here

that the difference between log consumption and a weighted average of log asset wealth and

log labor income is likely to provide a superior summary measure of conditional expectations.

The use of such a variable as conditioning information allows us to deliver a powerful test of

the (C)CAPM because it circumvents the need to observe information sets directly. Consistent

with this proposition, we find that the scaled consumption CAPM using ĉay as an instrument

performs far better than it does using other possible instruments, such as the dividend-price

ratio or the default spread.

The conditional linear factor models we explore here are quite different from unconditional

models. If conditional expected returns to the market portfolio are time-varying, the investor’s

discount factor will not simply depend unconditionally on consumption growth or the market

return, but instead will be a function of these factors conditional on information about future

returns. Assets are riskier if their returns are more highly conditionally correlated with factors,

rather than unconditionally correlated as in unconditional versions of the (C)CAPM. The ap-

proach taken here, of scaling factors with information available in the current period, leads to a

multifactor, unconditional model in place of a single-factor, conditional model. This approach

therefore provides a justification for requiring more than one factor to explain the behavior of

expected returns, even if one believes that the true model is, for example, a consumption-based

intertemporal asset pricing model with a single fundamental factor. By deriving this multifactor

structure from an equilibrium framework, we can mitigate a common criticism of multifactor

models, namely that multiple factors are chosen without regard to economic theory.36 The em-

pirical results we obtain from doing so suggest that a multifactor version of the (C)CAPM can

explain a meaningful portion of the cross-section of expected asset returns.

36For example, these criticisms can be found in Lo and MacKinlay (1990); Breen and Korajczyk (1993) and

Kothari, Shanken, and Sloan (1995).
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Appendix A: Derivation of Approximate Log Consumption-Wealth
Ratio

The approximation of the log consumption-aggregate wealth ratio presented here was first

derived in Campbell and Mankiw (1989).They show that the investor’s intertemporal budget

constraint, Wt+1 = (1 +Rm,t+1)(Wt − Ct), may be expressed

∆wt+1 ≈ k + rm,t+1 + (1− 1/ρw)(ct − wt) (16)

where Wt+1 is aggregate (human plus nonhuman) wealth in period t+ 1, ρw is the steady-state

ratio of invested to total wealth, (W −C)/W , and k is a linearization constant that plays no role

in our analysis. Solving this difference equation forward and imposing that limi→∞ ρ
i
w(ct+i −

wt+i) = 0, the log consumption-wealth ratio may be written

ct − wt =
∞
∑

i=1

ρiw(rm,t+i −∆ct+i). (17)

After taking expectations of (17) we obtain the equation given in (9).

Appendix B: Empirical procedure for estimating parameters in cay
This appendix provides a brief summary of the empirical procedure used in Lettau and

Ludvigson (1999) to estimate the parameters of the expression on the right-hand-side of (17).

We begin by noting that these coefficients are simply parameters in a cointegrating rela-

tionship among consumption, labor income and asset wealth. Lettau and Ludvigson present

evidence that these three variables share a single, common stochastic trend; the reader is re-

ferred to the article for details. Before estimating the parameters of the shared trend, we deal

with a measurement issue that arises from the nature of the data on consumption.

Parameter estimation requires first deciding on the data and previous empirical work which

has investigated consumption-based models like that which we explore has used expenditures on

nondurables and services as a measure of consumption. The use of these expenditure categories

is justified on the grounds that the theory applies to the flow of consumption; expenditures

on durable goods are not part of this flow since they represent replacements and additions to

a stock, rather than a service flow from the existing stock. Accordingly, we use expenditures

on nondurables and services (less shoes and clothing) as our measure of consumption, denoted

c∗. But since nondurables and services expenditure is only a component of consumption, the

standard solution to this problem requires the researcher to assume that total consumption is



unobservable and a constant multiple of nondurable and services consumption (Campbell 1987;

Blinder and Deaton 1985; Gaĺi 1990).

We follow in this tradition and use nondurables and services as our consumption measure, and

assume a constant scale factor governing the relationship between the log of total consumption

and the log of nondurables consumption, denoted c∗t . Thus we write log total consumption,

ct = λc∗t , where λ > 1, implying that the estimated cointegrating vector for c∗t , a
∗
t , and y

∗
t will

be given by [1,− 1
λ
ω,− 1

λ
(1− ω)].37 We define βa =

1
λ
ω, and βy =

1
λ
(1− ω), the parameters of

the cointegrating relation to be estimated. Note that βa + βy identifies 1/λ.

The data used for this estimation are quarterly, seasonally adjusted, per capita variables,

measured in 1992 dollars.38 To estimate βa and βy, we employ a method that generates optimal

estimates of the cointegrating parameters in a multivariate setting by following the dynamic

least squares (DLS ) technique of Stock and Watson (1993). This technique specifies an equation

taking the form

c∗t = α+ βaa
∗
t + βyy

∗
t +

k
∑

i=−k

ba,i∆a
∗
t−i +

k
∑

i=−k

by,i∆y
∗
t−i + εt, (18)

where the symbol ∆ is the first difference operator.

Equation (18) is estimated by OLS using data from the fourth quarter of 1952 to the third

quarter of 1998. This methodology provides a consistent estimate of the cointegrating parame-

ters through its estimates of βa and βy. We also make a Newey-West correction to the t-statistics

for generalized serial correlation of the residuals. It is important to recognize that estimates

of βa and βy will be consistent despite the fact that εt will typically be correlated with the

37Previous research has worked with formulations in levels, rather than in logs as we do here. Because Blinder

and Deaton (1985) report that the share of nondurables and services in measured expenditures has displayed

a secular decline over the sample period, the assumption that total consumption is a constant multiple of

nondurable consumption may be questionable. By contrast, we postulate that the log of total consumption is a

constant multiple of the log of nondurable and services consumption. Unlike the ratio of levels, the ratio of logs

appears to have exhibited little secular movement during our sample period.
38The consumption data are for nondurables and services excluding shoes and clothing in 1992 chain weighted

dollars. The nonhuman wealth data is the household net worth series provided by the Board of Governors of the

Federal Reserve. Labor income is defined as wages and salaries plus transfer payments plus other labor income

minus personal contributions for social insurance minus taxes. Taxes is defined as (wages and salaries/ (wages

and salaries + proprietors income with IVA and Ccadj + rental income + personal dividends + personal interest

income))*(personal tax and non tax payments). Both the net worth variable and the labor income variable are

deflated by the PCE chain-type price deflator.



regressors at and yt. Moreover, standard errors do not need to be adjusted to account for the use

of the generated regressor in our subsequent empirical tests. Both of these follow from the fact

that OLS estimates of cointegrating parameters are �superconsistent�, converging to the true

parameter values a rate proportional to the sample size T rather than proportional to
√
T as

in ordinary applications (Stock 1987). Implementing the regression in (18) using data from the

fourth quarter of 1952 to the third quarter of 1998 generates the point estimates given in the

text. The results are not sensitive to our choice of lead/lag lengths in the DLS specification.
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Table 1: Long-Horizon Forecasting Regressions

Revw GDP ∆c

H 1 4 8 20 1 4 8 20 1 4 8 20

ĉay 0.09† 0.18† 0.16† 0.13† 0.15† 0.13† 0.09† 0.01 0.01 0.03 0.01 −0.00
d− p 0.01 0.04 0.06 0.16† 0.14 0.03 0.00 0.03 0.01 0.00 0.00 0.00

SPR 0.01 0.00 0.01 −0.01 0.20† 0.14† 0.03 0.02 0.11 0.09 0.01 0.00

SMB 0.01† 0.01 0.01 −0.00 0.14 0.04† 0.00 0.00 0.00 0.01 0.00 −0.01
HML 0.01† 0.01 0.00 −0.01 0.15† 0.04 0.00 0.00 0.00 0.00 0.00 0.00

ĉay & SMB 0.13†‡ 0.22†‡ 0.20†‡ 0.14† 0.15† 0.13† 0.08† 0.00 0.00 0.03 0.01 −0.02

Notes for Table 1: This table reports adjusted R2’s from long-horizon regressions. The regressions

of the form xt+1 + ... + xt+H = γ1yt + γ2xt + εt are estimated using OLS. Three different horizons

H are considered: one, four and eight quarters. The dependent variables x are the value-weighted

CRSP excess return (Revw), per-capita GDP growth (GDP) and per-capita consumption growth (∆c),

respectively. The explanatory variable y is one of the following variables: the deviations from trend ĉay,

the log dividend-price ratio of the CRSP value-weighted index, the yield spread SPR of BAA and AAA

bonds, and the Fama-French factors SMB and HML. A ‘†’ indicates that the estimated coefficient 
γ1 is

significant at the 5% level (where the t-statistics are computed using Newey-West corrected standard

errors). The last row reports a regression including ĉay and SMB. In this case a ‘†’ indicates that ĉay
is significant at the 5% level while a ‘‡’ indicates that SMB is significant. Data from 1952Q4-1998Q3

is used to estimate the model.



Table 2: CAPM Fama-MacBeth Regressions using 25 FF Portfolios

Panel A: Coefficient Estimates

factorst+1 ĉayt · factorst+1 R2

# CONST ĉayt Rvw ∆y SMB HML Rvw ∆y SMB HML R̄2

1 4.18 -0.32 0.01
(4.47) (-0.27) -0.03
(4.45) (-0.27)

2 3.21 -1.41 1.26 0.58
(3.37) (-1.20) (3.42) 0.54
(1.87) (-0.67) (1.90)

3 1.87 1.33 0.47 1.46 0.80
(1.31) (0.83) (0.94) (3.24) 0.77
(1.21) (0.76) (0.86) (2.98)

4 3.70 -0.52 -0.06 1.14 0.31
(3.88) (-0.22) (-0.05) (3.59) 0.21
(2.61) (-0.15) (-0.03) (2.41)

5 3.70 -0.08 1.16 0.31
(3.86) (-0.07) (3.58) 0.25
(2.60) (-0.44) (2.41)

6 5.18 -0.44 -1.99 0.56 0.34 -0.17 0.77
(5.59) (-1.60) (-1.73) (2.12) (1.67) (-2.40) 0.71
(3.32) (-0.95) (-1.02) (1.26) (0.99) (-1.42)

7 3.81 -2.22 0.59 0.63 -0.08 0.75
(4.02) (-1.88) (2.20) (2.79) (-2.52) 0.70
(2.80) (-1.31) (1.53) (1.94) (-1.75)

Panel B: Tests for Joint Significance

# all factorst+1 ĉayt · factorst+1 ft+1 and ĉayt · ft+1 for each factor f

Rvw ∆y SMB HML

1 0.798
0.798

2 0.000
0.022

3 0.000
0.002

4 0.000 0.963 0.000
0.000 0.975 0.016

5 0.000 0.948 0.000
0.003 0.965 0.016

6 0.000 0.001 0.000 0.008 0.000
0.000 0.092 0.021 0.079 0.040

7 0.000 0.001 0.000 0.001 0.000
0.001 0.032 0.002 0.012 0.004



Notes for Table 2: This table presents estimates of cross-sectional Fama-MacBeth regressions using

returns of 25 Fama-French portfolios:

E[Ri,t+1] = E[R0,t] + β
′λ.

The time-series betas β are computed in one multiple regression. The factors for each model are

indicated in the figure heading. The set of factors include the return of the value-weighted CRSP index

(Rvw), labor income growth (∆yt+1) and the Fama-French factors SMB and HML. The scaling variable

is ĉay. Panel A of the table reports the Fama-MacBeth cross sectional regression coefficient and two t-

statistics in brackets for a variety of factors. The top statistic uses uncorrected Fama-MacBeth standard

errors while to bottom statistic uses the Shanken (1992) correction. R2 denotes the unadjusted cross-

sectional R-square while R̄2 adjusts for the degrees of freedom. Panel B reports p-values of χ2-tests

of joint significance of all right-hand-side variables, the factors themselves, the scaled factors, and the

factor joint with the scaled factor of each individual factor. The top number is computed using the

uncorrected variance-covariance matrix while the bottom number uses the Shanken (1992) correction.

The model is estimated using data from 1963Q3 to 1998Q3. The coefficient estimates of the factors

are multiplied by 100 while the estimates of the scaled terms are multiplied by 1000.



Table 3: Consumption CAPM Fama-MacBeth Regressions using 25 FF Portfolios

Panel A: Coefficient Estimates

# CONST ĉayt ∆ct+1 ĉayt ·∆ct+1 R2(R̄2)

1 3.24 0.22 0.16
(4.93) (1.27) 0.13
(4.46) (1.15)

2 4.28 -0.13 0.02 0.06 0.70
(6.10) (-0.43) (0.20) (3.12) 0.66
(4.24) (-0.30) (0.14) (2.17)

3 4.10 -0.02 0.07 0.69
(6.82) (-0.14) (3.20) 0.66
(5.14) (-0.10) (2.41)

Panel B: Tests for Joint Significance

# all factorst+1 ĉayt · factorst+1 ∆ct+1 and ĉayt ·∆ct+1

1 0.205
0.249

2 0.000 0.840 0.002 0.000
0.001 0.888 0.030 0.009

3 0.000 0.893 0.001 0.000
0.001 0.919 0.016 0.001

Notes for Table 3: This table presents estimates of cross-sectional Fama-MacBeth regressions using

returns of 25 Fama-French portfolios:

E[Ri,t+1] = E[R0,t] + β
′λ.

The time-series betas β are computed in one multiple regression. The factors is per capita consumption

growth (∆c). The scaling variable is ĉay. Panel A of the table reports the Fama-MacBeth cross

sectional regression coefficient and two t-statistics in brackets for a variety of factors. The top statistic

uses uncorrected Fama-MacBeth standard errors while to bottom statistic uses the Shanken (1992)

correction. R2 denotes the unadjusted cross-sectional R-square while R̄2 adjusts for the degrees of

freedom. Panel B reports p-values of χ2-tests of joint significance of all right-hand-side variables, the

factors themselves, the scaled factors, and the factor joint with the scaled factor of each individual

factor. The top number is computed using the uncorrected variance-covariance matrix while the bottom

number uses the Shanken (1992) correction. The model is estimated using data from 1963Q3 to 1998Q3.

The coefficient estimates of the factors are multiplied by 100 while the estimates of the scaled terms

are multiplied by 1000.



Table 4: Pricing Errors

Panel A: Individual Portfolios

Portfolio Rvw Rvw scaled ∆c ∆c scaled Rvw, ∆y Rvw, SMB,
scaled HML

S1B1 -1.0378 -1.1857 -1.7303 -1.0083 -0.6451 -0.8611

S1B2 0.2601 0.0859 -0.3686 -0.1109 -0.0435 0.0055

S1B3 0.3494 0.1532 -0.0105 -0.0809 -0.1852 -0.0276

S1B4 0.9048 1.0021 0.4774 0.3803 0.5386 0.3722

S1B5 1.3108 0.7976 0.8278 0.3704 0.3504 0.1555

S2B1 -0.7860 -0.7558 -1.0749 -0.0362 -0.1149 -0.1416

S2B2 -0.0189 0.3796 -0.0847 -0.2823 -0.2661 0.0478

S2B3 0.6786 0.8639 0.5696 0.5310 0.7516 0.5134

S2B4 0.7561 0.6316 0.7800 0.0964 0.0753 0.3244

S2B5 1.0436 0.4944 0.7576 0.3070 -0.0309 0.0757

S3B1 -0.8062 -0.2985 -0.7324 0.3645 -0.0300 -0.0310

S3B2 -0.0659 0.1049 0.1019 -0.0868 0.1712 0.2053

S3B3 0.0486 0.2463 0.1996 -0.4457 -0.0357 -0.0291

S3B4 0.4098 0.0956 0.6398 0.2218 -0.1837 0.1066

S3B5 0.9036 1.1403 0.8631 0.4109 0.7183 0.0225

S4B1 -0.6513 -0.1532 -0.3754 0.4252 0.1218 0.4184

S4B2 -0.8487 -0.2545 -0.6870 -0.3924 -0.4210 -0.5041

S4B3 -0.1903 -0.2714 0.1383 -0.0626 -0.2180 -0.1749

S4B4 0.2339 -0.3943 0.4651 0.0130 -0.3444 -0.0347

S4B5 0.7553 -0.2413 0.6952 0.3610 0.0678 -0.0073

S5B1 -0.7959 -0.9014 -0.4572 0.4159 0.6455 0.5342

S5B2 -0.8186 -0.7850 -0.2918 -0.7343 -0.2759 0.0035

S5B3 -0.9287 -0.3369 -0.6240 -0.4895 -0.1888 -0.1980

S5B4 -0.4252 -0.2523 0.0760 0.1226 -0.2116 -0.2715

S5B5 -0.2811 -0.1650 -0.1547 -0.2901 -0.2457 -0.5043



Table 4, Panel B: Pricing Errors of Aggregated Portfolios

Portfolio Rvw Rvw scaled ∆c ∆c scaled Rvw, ∆y Rvw, SMB,
scaled HML

S1 0.872 0.784 0.899 0.513 0.416 0.421

S2 0.740 0.649 0.731 0.305 0.362 0.257

S3 0.573 0.542 0.590 0.334 0.341 0.094

S4 0.601 0.274 0.516 0.306 0.269 0.333

S5 0.697 0.572 0.378 0.458 0.356 0.336

B1 0.825 0.762 1.004 0.549 0.415 0.484

B2 0.541 0.411 0.377 0.398 0.267 0.253

B3 0.545 0.451 0.393 0.382 0.370 0.239

B4 0.599 0.571 0.542 0.209 0.314 0.276

B5 0.924 0.673 0.709 0.351 0.375 0.211

Avg. 0.705 0.589 0.648 0.393 0.352 0.308

χ2 63.67∗ 27.24 53.03∗ 33.88 27.54 45.33∗

Notes for Table 4: This tables reports the pricing errors (in %) from the Fama-MacBeth regression

presented in Tables 2-3. The top panel lists the average errors for each Fama-French portfolio for a

variety of factors. S1 refers to the portfolios with the smallest firms, while S5 includes the largest firms.

Similarly, B1 includes firms with the lowest book-to-market-ratio and B5 the highest. Panel A reports

pricing errors for the 25 size and book-to-market sorted portfolios, panel B computes the square root

of the average squared pricing errors for aggregated portfolios. The last two rows report the square

root of the average squared pricing errors across all portfolios a well as the χ2 statistic for a test that

the pricing error is zero. A ‘∗’ indicates that the average pricing error is statistically different from

zero at the 5% level. The model is estimated using data from 1963:Q3 to 1998:Q3.



Table 5: Fama-French Model: Unscaled and Scaled

Coefficient Estimates

factorst+1 ĉayt · factorst+1 R2

# CONST Rvw SMB HML Rvw SMB HML R̄2

1 1.87 1.33 0.47 1.46 0.80
(1.31) (0.83) (0.94) (3.24) 0.77
(1.21) (0.76) (0.86) (2.98)

2 5.75 -2.60 0.54 1.52 0.31 -0.05 0.11 0.83
(4.03) (-1.70) (1.08) (3.40) (1.56 (-0.26) (0.78) 0.77
(3.28) (-1.38) (0.88) (2.77) (1.27 (-0.22) (0.63)

Notes for Table 5: This table presents estimates of cross-sectional Fama-MacBeth regressions using

returns of 25 Fama-French portfolios:

E[Ri,t+1] = E[R0,t] + β
′λ.

The time-series betas β are computed in one multiple regression. The factors for each model are

indicated in the figure heading. The set of factors include the return of the value-weighted CRSP index

and returns on the HML and SMB portfolios as constructed in Fama and French (1993). The scaling

variable is ĉay. The table reports the Fama-MacBeth cross sectional regression coefficient and two

t-statistics in parentheses. The top statistic uses uncorrected Fama-MacBeth standard errors while

to bottom statistic uses the Shanken (1992) correction. R2 denotes the unadjusted cross-sectional R-

square while R̄2 adjusts for the degrees of freedom. The model is estimated using data from 1963:Q3

to 1998:Q3. The coefficient estimates of the factors are multiplied by 100 while the estimates of the

scaled terms are multiplied by 1000.



Table 6: Fama-MacBeth Regressions including Characteristics

Panel A: Size

factorst+1 ĉayt · factorst+1 R2

# CONST Rvw ∆y ∆c Rvw ∆y ∆c SIZE R̄2

1 14.18 -3.60 -0.57 0.70
(4.77) (-2.78) (-3.46) 0.67
(4.35) (-2.54) (-3.15)

2 13.10 -3.05 0.82 -0.49 0.75
(4.71) (-2.49) (3.14) (-3.24) 0.73
(3.79) (-2.01) (2.52) (-2.61)

3 12.03 -3.00 0.51 -0.41 0.74
(4.56) (-2.52) (2.00) (-2.81) 0.70
(3.73) (-2.06) (1.63) (-2.30)

4 10.33 -2.68 0.33 0.59 -0.02 -0.33 0.80
(3.78) (-2.33) (1.36) (2.63) (-0.59) (-1.93) 0.76
(2.97) (-1.84) (1.07) (2.07) (-0.46) (-1.52)

5 5.59 0.04 -0.18 0.22
(2.04) (0.35) (-1.11) 0.15
(2.03) (0.35) (-1.10)

6 6.09 -0.16 0.08 -0.15 0.72
(2.21) (-1.45) (3.23) (-0.87) 0.68
(1.66) (-1.09) (2.42) (-0.65)

Panel B: Book-to-Market Ratio

factorst+1 ĉayt · factorst+1 R2

# CONST Rvw ∆y ∆c Rvw ∆y ∆c BM R̄2

1 2.25 1.47 1.17 0.82
(2.06) (1.08) (3.62) 0.81
(2.01) (1.06) (3.57)

2 2.22 1.45 0.15 1.12 0.83
(2.01) (1.05) (0.77) (3.51) 0.81
(1.95) (1.02) (0.75) (3.41)

3 1.91 2.00 0.41 1.38 0.83
(1.68) (1.41) (1.61) (3.89) 0.80
(1.52) (1.29) (1.44) (3.53)

4 2.81 0.97 -0.23 0.14 -0.05 1.09 0.85
(2.56) (0.71) (-0.94) (0.70) (-1.56) (3.13) 0.81
(2.36) (0.66) (-0.86) (0.64) (-1.44) (2.88)

5 3.69 0.14 0.83 0.75
(5.98) (0.81) (2.81) 0.73
(5.70) (0.77) (2.67)

6 3.90 0.08 0.02 0.61 0.78
(6.29) (0.55) (1.40) (1.86) 0.75
(5.95) (0.52) (1.32) (1.75)



Notes for Table 6: This table presents estimates of cross-sectional Fama-MacBeth regressions using

returns of 25 Fama-French portfolios:

E[Ri,t+1] = E[R0,t] + β
′λ+ dCi,

where Ci denotes a characteristic variable. The time-series betas β are computed in one multiple

regression. The factors are the return of the value-weighted CRSP index (Rvw) in the top panel and

per capita consumption growth (∆c) in the bottom panel. The scaling variable is ĉay. The cross-

sectional regressions also include the log of the portfolio size SIZE (in the top panel) and the log of the

book-to-market ratio BM (in the bottom panel). The table reports the Fama-MacBeth cross sectional

regression coefficient and two t-statistics in brackets. The top statistic uses uncorrected Fama-MacBeth

standard errors while to bottom statistic uses the Shanken (1992) correction. The model is estimated

using data from 1963Q3 to 1998Q3. The coefficient estimates of the factors are multiplied by 100 while

the estimates of the scaled terms are multiplied by 1000.



Table 7: Alternative Scaling Variables

Panel A: Dividend-Price Ratio

factorst+1 (dt − pt) · factorst+1 R2

# CONST Rvw ∆y ∆c Rvw ∆y ∆c R̄2

1 2.64 -0.37 -7.32 0.02
(2.70) (-0.31) (-1.20) -0.07
(2.59) (-0.29) (-1.15)

2 2.97 -1.21 0.90 -4.39 -2.89 0.73
(3.26) (-1.05) (2.90) (-0.75) (-2.91) 0.67
(1.76) (-0.56) (1.56) (-0.41) (-1.57)

3 6.09 0.17 -0.34 0.14
(2.21) (1.14) (-0.78) 0.07
(1.66) (1.06) (-0.73)

Panel A: Default Spread

factorst+1 SPRt · factorst+1 R2

# CONST Rvw ∆y ∆c Rvw ∆y ∆c R̄2

1 2.21 0.29 -0.22 0.05
(2.35) (0.24) (-2.31) 0.00
(2.09) (0.22) (-2.05)

2 2.31 -0.55 1.24 -0.09 0.02 0.59
(2.50) (-0.47) (3.27) (-1.07) (2.22) 0.50
(1.40) (-0.27) (1.83) (-0.60) (1.25)

3 2.69 -0.00 -0.03 0.37
(3.92) (-0.03) (-3.84) 0.31
(3.08) (-0.02) (-3.02)

Notes for Table 6: This table presents estimates of cross-sectional Fama-MacBeth regressions using

returns of 25 Fama-French portfolios:

E[Ri,t+1] = E[R0,t] + β
′λ.

The time-series betas β are computed in one multiple regressions. The factors are the return of the

value-weighted CRSP index (Rvw), labor income growth (∆yt+1) and per capita consumption growth

(∆c). In the top panel the log dividend-price ratio of the CRSP value-weighted index is used as

scaling variable z, in the bottom panel we use the yield spread SPR of BAA and AAA bonds. The

table reports the Fama-MacBeth cross sectional regression coefficient and two t-statistics in brackets.

The top statistic uses uncorrected Fama-MacBeth standard errors while to bottom statistic uses the

Shanken (1992) correction. The model is estimated using data from 1963Q3 to 1998Q3. The coefficient

estimates of the factors are multiplied by 100 while the estimates of the scaled terms are multiplied by

1000.



Figure 1: Trend Deviation in Wealth
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Figure 2: Realized versus Fitted Returns: 25 FF Portfolios
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Notes for Figure 2: The figure shows the pricing errors for each of the 25 Fama-French portfolios

in six different models. Each two-digit number represents one portfolio. The first digit refers to the

size quintiles (1 indicating the smallest firms, 5 the largest), the second digit refers to book-to-market

quintiles (1 indicating the portfolio with the lowest book-to-market ratio, 5 with the highest). The

pricing errors are generated using the Fama-MacBeth regressions in Table 2. The factors for each

model are indicated in the figure heading. The set of factors include the return of the value-weighted

CRSP index (RVW), per capita consumption growth (CGR), labor income growth (LBR) and the

Fama-French factors SMB and HML. The scaling variable is ĉay.


