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A ZOOMED-OUT VIEW
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A PERIODIC TABLE OF AI MODEL RISK
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IN HIGH 
DIMENSIONS, 
THERE ARE 
NO “NEAR 
NEIGHBORS”
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Image credit: https://en.wikipedia.org/wiki/File:Calabi-Yau.png



WITH MANY 
FEATURES, 
PROXIES FOR 
PROTECTED 
CLASSES MAY 
EXIST OR 
EMERGE

Fairness in
Decisions

Credit: Datta et al, arXiv:1707.08120
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DATA IN HIGH 
DIMENSIONS IS 
INHERENTLY 
HARDER TO 
“EXPLAIN”

Lack of
ExplainabilityXp

Credit: Slack et al., 2020, Fooling LIME and SHAP: Adversarial Attacks on Post hoc Explanation Methods



DISPARITIES IN 
DATA USED TO 
TRAIN MODELS 
CAN CREATE 
DIFFERENCES IN 
OUTCOMES

Bias in 
DatasetsBi

Credit: Joy Boulamwini, Gender Shades project, MIT Media Lab, https://www.media.mit.edu/projects/gender-shades/overview. Product names anonymized.
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MODELS CAN 
ENCODE AND 
REPLICATE 
SOCIETAL 
BIASES AND 
STEREOTYPES

Bias in 
DatasetsBi

Credit: Bolukbasi et al., 2016, arXiv:1607.06520 



WITH HIGHLY 
NON-CONVEX 
FUNCTIONS, IT’S 
HARD TO FIND 
THE GLOBAL 
MINIMUM

Non-convex
FunctionsNc

Credit: Li et al, 2018, NeurIPS, Visualizing the Loss Landscape of Neural Nets



BY EMBEDDING 
RANDOMNESS IN 
ALGORITHMS, 
ML RESULTS 
CAN BE HARD 
TO REPRODUCE

Randomness
in AlgorithmsRd

Credit: Rodriguez-Galiano, 2016, Modelling interannual variation in the spring and autumn land surface phenology of the European forest, Biogeosciences. Text slightly edited. 
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WHEN MODELS 
DEPEND ON 
EACH OTHER, 
THE RESULTING 
SYSTEM CAN BE 
BRITTLE

Entanglement
of ModelsEn

Credit: Sculley et al., 2015, Hidden Technical Debt in Machine Learning Systems, NeurIPS



FOR REFERENCE: A PERIODIC TABLE OF AI MODEL RISK
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