Data Classification, Controls & Encryption

Stephen R. Katz
Chief Information Security Officer
Citibank N.A.
Agenda

- Establishing a Common Vocabulary
- Citicorp’s Information Classification
- Control Requirements
- Cryptography
 - Symmetric Key Cryptography
 - Asymmetric Key Cryptography
Establishing a Common Vocabulary

- Do we know who is using the service?
- Can we control what they do?
- Can we ensure the privacy of information?
- Can we prevent unauthorized changes to information?
- Can we provide for non-repudiation of a transaction?
- Do we know
 - if there is a problem?
 - soon enough to take appropriate action?
 - how to minimize / contain the problem?
- Can we prevent denial of service?
Citicorp’s Information Classification
Control Requirements

- **Restricted**
 - Strategic planning information or information on mergers, acquisitions or financial forecasts/results or Passwords or PINs.

- **Confidential**
 - Information that can be shared on a need to know basis; e.g. product or system development information, marketing strategies, audit reports, information providing competitive advantage.
Citicorp’s Information Classification Control Requirements

- **Internal**
 - Information that can be freely shared among staff. A non-disclosure agreement is required for consultants, vendors, and temps; e.g. operating procedures, policies, interoffice memos, internal phone directories.

- **Public**
 - Information that is intended for public use by the information owner.
Citicorp’s Information Classification Control Requirements

<table>
<thead>
<tr>
<th></th>
<th>Restricted</th>
<th>Confidential</th>
<th>Internal</th>
<th>Public</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encryption</td>
<td>Transit & Storage</td>
<td>Transit</td>
<td>Optional</td>
<td>NA</td>
</tr>
<tr>
<td>Integrity</td>
<td>Transit</td>
<td>Transit</td>
<td>Optional</td>
<td>NA</td>
</tr>
<tr>
<td>Non-Repudiation</td>
<td>Transit for financial & changes to demographic transactions</td>
<td>Transit for financial & changes to demographic transactions</td>
<td>Optional</td>
<td>NA</td>
</tr>
<tr>
<td>Disposal</td>
<td>Permanent Destruction</td>
<td>Permanent Destruction</td>
<td>Permanent Destruction</td>
<td>NA</td>
</tr>
</tbody>
</table>
Cryptography - The Science of Translating Messages Into Codes

- Two basic approaches
 - Symmetric Key Algorithms (e.g., DES)
 - Asymmetric Key Algorithms (e.g., RSA)

- Both Types have strengths & weaknesses
Symmetric Key Cryptography

- Also known as Secret Key Cryptography
- Based on a “shared” secret, known as the “key”.
- Strengths: Symmetric Cryptography is Fast
- Weaknesses: Key delivery and scalability
Asymmetric Key Cryptography

- Also known as Public Key Cryptography
- Based on using two different keys, a “public” key and a “private” key
- Strengths: Key delivery and scalability
- Weaknesses: Asymmetric Cryptography is Slow
Common Applications

- Symmetric (Secret) Key Cryptography
 - Privacy
 - Integrity - limited

- Asymmetric (Public) Key Cryptography
 - Authentication
 - Non-Repudiation (Digital Signature)
 - Key Exchange