CITICORP INFORMATION SECURITY OFFICE

Data Classification, Controls & Encryption

Stephen R. Katz Chief Information Security Officer Citibank N.A.

Agenda

Establishing a Common Vocabulary Citicorp's Information Classification Control Requirements Cryptography • Symmetric Key Cryptography • Asymmetric Key Cryptography Establishing a Common Vocabulary

- Do we know who is using the service?
 - Can we control what they do?
- Can we ensure the privacy of information?
- Can we prevent unauthorized changes to information?
- Can we provide for non-repudiation of a transaction?
- Do we know
 - if there is a problem?
 - soon enough to take appropriate action?
 - how to minimize / contain the problem?
- Can we prevent denial of service?

Citicorp's Information Classification Control Requirements

Restricted

 Strategic planning information or information on mergers, acquisitions or financial forecasts/results or Passwords or PINs.

Confidential

Information that can be shared on a need to know basis; e.g. product or system development information, marketing strategies, audit reports, information providing competitive advantage.

Citicorp's Information Classification Control Requriements

Internal

 Information that can be freely shared among staff. A non-disclosure agreement is required for consultants, vendors, and temps; e.g. operating procedures, policies, interoffice memos, internal phone directories.

Public

Information that is intended for public use by the information owner.

Citicorp's Information Classification Control Requirements

	Restricted	Confidential	Internal	Public
Encryption	Transit & Storage	Transit	Optional	NA
Integrity	Transit	Transit	Optional	NA
Non- Repudiation	Transit for financial & changes to demographic transactions	Transit for financial & changes to demographic transactions	Optional	NA
Disposal	Permanent Destruction	Permanent Destruction	Permanent Destruction	NA

Cryptography - The Science of Translating Messages Into Codes

Two basic approaches
 Symmetric Key Algorithms (e.g., DES)
 Asymmetric Key Algorithms (e.g., RSA)

Both Types have strengthens & weaknesses

Symmetric Key Cryptography

- Also known as Secret Key Cryptography
 Based on a "shared" secret, known as the "key".
 - Strengths: Symmetric Cryptography is FastWeaknesses: Key delivery and scalability

Asymmetric Key Cryptography

Also known as Public Key Cryptography Based on using two different keys, a "public" key and a "private" key

Strengths: Key delivery and scalability

Weaknesses: Asymmetric Cryptography is Slow

