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Abstract

Recovery scenarios after flooding vary by locality, from permanent declines in eco-
nomic activity to capital gains. This paper shows that divergent post-flood trajectories at
the neighborhood level increased preexisting spatial polarization along property value,
racial, and income lines. Using evidence from property sales in four US states affected
by Superstorm Sandy in 2012, combined with buyers’ demographics, I find that flooded
properties in neighborhoods with high preexisting income had more high-income white
buyers and higher sale prices than comparable non-flooded coastal properties, seem-
ingly capitalizing on the flood and offsetting average drops. Using machine learning al-
gorithms, I conclude that of a rich set of preexisting place characteristics, neighborhood
income best discriminates between most positively and most negatively affected prop-
erties. This evidence is consistent with a model of neighborhood segregation in which
residential sorting—induced by credit-constrained households deriving higher disutil-
ity from flooding—rationally results in more high-income residents and higher property
prices in initially higher-income neighborhoods. As coastal flooding is forecasted to in-
crease, these results improve our understanding of the heterogenous impacts of floods,
and on the existence of adaptive behavior, or lack thereof, after flooding.
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1 Introduction

Floods are the most frequent and costliest natural disaster in the US.1 In this context, a large
literature has emerged that investigates how affected areas evolve post-flood. This liter-
ature yields mixed evidence (Beltran et al., 2018): from permanent declines in real estate
prices (Ortega and Taspinar, 2018) to prices that converge to pre-flood levels after an ini-
tial negative shock (Bin and Landry, 2013) to an increase in prices (Graff Zivin et al., 2020).
These divergent recovery paths are present even within small geographies, such as the un-
equal recovery by neighborhoods observed in New Orleans after Hurricane Katrina (Bolin,
2007), in Houston after Hurricane Harvey (Fernandez, 2018), and in New York City after Su-
perstorm Sandy (Bergren et al., 2013).2 The potential causes of these differential outcomes
remain underexplored in the economics literature. Gaps also remain in our understanding
of how differential recovery paths post-flood contribute or are countercyclical to preexisting
place dynamics, such as urban decay or gentrification.

This paper investigates the differential impacts of flooding on property price sales and
buyers’ demographics at the neighborhood scale. Specifically, I build on a model of seg-
regation to derive and test a hypothesis that preexisting neighborhood income mediates
responses to the flood , whereby places with high income levels could rationally experience
an increase in sale prices post-flood. Using evidence from Superstorm Sandy, which caused
extensive flooding across several US states in October 2012, I show that divergent post-flood
changes at the neighborhood level increased preexisting spatial polarization along property
value, racial, and income lines. Flooded properties in neighborhoods with high preexisting
income had higher sale prices and more high-income white buyers than comparable non-
flooded coastal properties, consistent with the model. To the best of my knowledge, this
study is the first to document differential post-flood responses at the neighborhood scale
that lead to increased spatial polarization using micro-level data on sale values and buyers’
demographics. By doing so, it sheds light on previous disparate results in the flood-impacts
literature.

Why would property prices go up in some places after a flood? To illustrate how resi-
dential sorting could lead to this result, I build on the model of segregation developed by
Becker and Murphy (2000), which hinges on the existence of positive externalities to live
among residents characterized by high income and other demographics related to income,

1It is estimated that 90% of all natural disasters involve some sort of flooding in the US (Insurance Informa-
tion Institute, 2018), and floods were the number one disaster in terms of lives lost and property damage during
the 20th century (Perry, 2000).

2Hurricane Sandy merged with a winter storm right before making landfall on the Atlantic coast of the US
(Sobel, 2014). The resulting hybrid storm, no longer technically a hurricane, was labeled a “superstorm” by the
media, a term that has since been used by the scientific community to describe this phenomenon (for instance,
Barnes et al. (2013).
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such as race.3 Intuitively, low-income, credit-constrained households are assumed to de-
rive a higher disutility from flooding, as they are less able to rebuild their homes, to retrofit
them in preparation for the next flood, or to pay higher insurance costs. For a given house-
hold, these costs would be higher for more expensive properties. The residential sorting in-
duced by this assumption—with low-income households retreating from places where the
value derived from coastal amenities post-flood is not enough to compensate high residen-
tial prices—could lead to more high-income residents in some flooded places and in turn, to
a residential price increase due to the positive externalities derived from living among them.
This model helps to motivate why it would be rational to expect more high-income white
residents and larger property prices post-flood in neighborhoods with higher preexisting
average incomes.

To find empirical evidence of these predictions, I construct a rich dataset that captures
the universe of property sales in the states most affected by Sandy’s flooding (Toro, 2013):
New Jersey, New York, Connecticut, and Rhode Island. Superstorm Sandy, which as of
early 2022 remains the fourth most costly natural disaster in the history of the US,4 is a
compelling setting to explore heterogeneous flood effects, given that Sandy’s flood affected
a vast geographical area along the Atlantic coast of the US with very different preexisting
place characteristics. I link a subset of the property sales observations with data on buyer’s
race, ethnicity, and income using publicly available data on anonymized individual mort-
gage lending transactions. I connect property sales with data on flooding extent, depth, and
property-level damage caused by Sandy. Finally, the dataset includes a comprehensive set
of 52 preexisting place variables compiled from diverse sources.5

I start the empirical analysis by exploring average flood impacts in a difference-in-differ-
ences setting, which serve as a benchmark for the heterogeneous effects evaluated later. The
treatment group is composed of properties on Sandy’s floodplain. Exploiting the richness of
the data, together with the vast geographical area affected by Sandy, I can define a control
group composed of non-flooded properties located no more than 500 meters (around 1,640
feet) from the coastline, which are credibly similar to properties in the floodplain in terms
of access to coastal amenities and other unobservables.6 Parallel trends in residential prices
pre-Sandy increase confidence that this is indeed the case. Results show that on average,
flooded properties are sold at lower prices, to buyers with less income and who are less

3Positive externalities could be related to job opportunities, networking, better schools, a prestige signal, etc.
4Sandy was estimated to cause 159 deaths and $80 billion USD in losses. These costs are only superseded

by those incurred by Hurricane Katrina (2005), Hurricane Harvey (2017), and Hurricane Maria (2017) (NOAA
National Centers for Environmental Information, 2022).

5These include the Opportunity Insights group at Harvard University, the US Census, the Stanford Education
Data Archive, Open Street Map, etc.

6This choice of a control group, which mimics a boundary discontinuity design, is of particular relevance
given that the literature has identified sorting along unobservable characteristics in coastal/non-coastal loca-
tions, e.g., Bakkensen and Barrage (2017).
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likely to be white.
I then proceed to explore whether there is heterogeneity in the results on property prices

according to preexisting neighborhood income in a triple-differences model. I find that the
negative effect of the flood on prices and high-income white buyers decreases as preexisting
place income increases; this result is robust to comparing properties with similar levels of
damage. In fact, flooded properties in neighborhoods in the top decile of preexisting income
increased property prices with respect to comparable non-flooded properties by 7.6%, and
saw an increase of high-income white buyers equal to 23% of a standard deviation. These
results are consistent with the predictions of the model: flooded properties in neighbor-
hoods with higher preexisting average incomes increased in value, and these price increases
coincided with changes in buyers’ demographics.

Finally, I use data-driven machine learning algorithms as described in Chernozhukov
et al. (2018) (henceforth, CDDF) to systematically evaluate heterogeneity in flood impacts
according to preexisting place characteristics. Implementing this procedure serves two main
goals. First, I am able to test and rule out that flood impacts were homogeneous, and hence
boost confidence that the above results are not just spuriously capturing heterogeneity. Sec-
ond, I corroborate that neighborhood income and secondary education, which are highly
correlated in the data, best discriminate between most positively and most negatively af-
fected properties among a rich set of preexisting place characteristics. Other variables that
have been highlighted as positively affecting recovery after flooding, such as different indi-
cators of social capital, do not vary as much between the most and least affected properties.
Thus, the CDDF procedure serves as a check on the predictions of the model: flood impacts
are not homogeneous, and preexisting place income is correlated with this heterogeneity.

The results have important policy implications. Coastal flooding is expected to increase
due to sea level rise, an effect that will be compounded in the Northeast US by changes in
hurricane activity induced by climate change (Hess et al., 2019).7 Hence, after-flood dynam-
ics such as those examined in this paper can lead to increased space polarization throughout
the coast along racial and income lines. These dynamics could lead to the entrenchment of
pockets of vulnerability with losses in the tax base that would make it harder to recover
after the inevitable next storm. On the other hand, other coastal areas would become rich
enclaves, which could regressively soak up public assistance for after-flood recovery. More-
over, other natural disasters that are also forecasted to worsen with climate change—such as
fires— could lead to similar dynamics further from the coast (Fuller et al., 2019). A growing
strand of the economics literature highlights the negative impacts of spatial segregation and

7In some areas in mid-Atlantic states in the US, flooding is 10 times more common now than in the 1950s
(EPA, 2016). Annual property losses caused by hurricanes and other coastal storms could increase two- to
fourfold by 2100 in the Northeast US compared to losses in 2014 (Gordon, 2014).
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inequality.8 Therefore, successful recovery policies and insurance schemes would need to
consider these heterogeneous effects of natural disasters across space.

Contribution to the literature. This paper builds on and contributes to several strands of
the literature. First, this paper relates to the literature on heterogeneous recovery after natu-
ral disasters. At the macro level, a large body of empirical work has documented diverging
recovery patterns in different countries after a natural disaster (Bakkensen and Barrage,
2018; Jina and Hsiang, 2014; Mutter, 2015), from large positive to negative economic shocks.
Some studies posit that a country high income per capita is correlated with fewer negative
impacts (Kahn, 2005; Kellenberg and Mobarak, 2008; Lackner, 2019). At the micro level, the
literature on the impacts of flooding events yields mixed evidence depending on the set-
ting (for instance, Bin and Landry (2013), Graff Zivin et al. (2020), and Ortega and Taspinar
(2018)). To the best of my knowledge, no paper in the economics literature has attempted to
explain why these differential outcomes at the micro level are observed.

This paper bridges these two strands of the literature. Using property-level data, I am
able to document that differential recovery paths at the micro, neighborhood level mimic
those present at the country scale, with some flooded neighborhoods suffering long-lasting
declines in real estate prices, while others seemingly capitalize on the flood. I focus on the
fact that flooding does not occur in a vacuum, and that any heterogeneous effects are likely
mediated by existing place characteristics and dynamics. Hence, this paper hypothesizes
and finds evidence that there is heterogeneity in responses at the neighborhood level by
preexisting income, as those present at the country level by income per capita. These re-
sults contribute by rationalizing previous disparate results found in the literature on flood
impacts.

Second, this paper speaks to the literature on residential segregation, and specifically,
how it is influenced by amenities and tastes for a particular type of neighbor (in line with
work by Tiebout (1956) and Schelling (1969).) Several recent papers have investigated de-
mographic shifts associated with changes in environmental amenities broadly (Andaloussi
and Isaksen, 2017; Gamper-Rabindran and Timmins, 2013; Greenstone and Gallagher, 2011),
and specifically to changes in flood risk and perception (Smith et al., 2006; Bakkensen and
Ma, 2019; Graff Zivin et al., 2020; Keenan et al., 2018; Siders, 2018; van Holm and Wycza-
lkowski, 2018).9 Part of this literature has focused on environmental justice concerns, and
investigated how positive changes in public goods and environmental amenities may lead to

8For instance, work by Alesina and La Ferrara (2000), Bergman et al. (2019), Chetty et al. (2014), Chetty and
Hendren (2017), Couture et al. (2021), Fogli and Guerrieri (2019), and Graham (2018).

9In the work most closely related to this study, Graff Zivin et al. (2020) focus on Florida and use a dataset
of similar characteristics as the one used in this paper to show that real estate prices went up after flooding on
average, and that buyers had higher incomes. They do not explore changes in the race or ethnicity of buyers, or
investigate differential responses to the flood within the context of Florida.
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sorting and displacement of low-income communities (Banzhaf and Walsh, 2013; Ma et al.,
2019; Bento, 2013; Depro et al., 2015).

This paper posits and documents a novel mechanism that exacerbates spatial polariza-
tion and environmental justice concerns through a negative change in environmental ameni-
ties. Building on the model of Becker and Murphy (2000),10 I show that an increase in a pub-
lic bad, such as flooding, can lead to residential sorting and an increased spatial polarization,
with low-income households retreating from places where the value derived from coastal
amenities post-flood is not enough to compensate high residential prices. This paper then
explores these predictions empirically and is the first to examine changes alongside buyers’
race and income after flooding using micro-level data.

Finally, this paper builds on the growing literature on floods and flooding-risk impacts
on real estate (Hallstrom and Smith, 2005; Bakkensen and Ma, 2019; Bin et al., 2008; Bern-
stein et al., 2019; Gallagher, 2014; Heal and Tedesco, 2018; Muller and Hopkins, 2019).11

Some recent papers focus specifically on flood risk capitalization of Superstorm Sandy in
New York City, using data on real estate transactions from the New York City Department
of Finance (Ortega and Taspinar, 2018; Gibson and Mullins, 2020; Barr et al., 2017).12 The fact
that desirable coastal amenities and higher flooding risk are highly correlated makes disen-
tangling flood risk capitalization a challenge that has been well documented (Beltran et al.,
2018; Smith and Whitmore, 2019; Smith et al., 2006). Moreover, it is challenging to evaluate
how much of the flood risk capitalization in flooded properties is mechanically driven by
structural damage (Smith et al., 2006; Ortega and Taspinar, 2018).

In this paper, due to the richness of my dataset and the vast geographical area affected
by Sandy, I am able to define a control group that mimics boundary discontinuity designs.13

Identification hence relies on comparisons with non-flooded properties that are credibly
similar in terms of access to coastal amenities and other unobservables.14 Second, I construct

10Becker and Murphy (2000) present a model of neighborhood segregation in which residents value both
endogenous and exogenous amenities, where the former are derived from neighbor types. When extended to
several neighborhoods, this model implies the existence of “tipping” points—i.e., a minority ratio above which
the neighborhood “tips” to become all-minority. Empirical work, notably by Card et al. (2008), has find evidence
of the existence of these tipping points in US cities.

11This literature is itself is a subset of the vast literature initiated by Rosen (1974) that uses hedonic models
to derive willingness to pay for goods for which there are not explicit markets (Davis, 2007; Greenstone and
Gallagher, 2011; Chay and Greenstone, 2005; Greenstone, 2017)

12Ortega and Taspinar (2018) find that properties in Sandy’s floodplain experienced an average price drop of
8%, using as controls other similar properties in the city. Two working papers explore different aspects of how
much information about flood risk Sandy revealed with respect to FEMA’s flood maps. Gibson and Mullins
(2020) find that property prices went down on average for properties not affected by Sandy, but which were
afterward included in updated flood risk maps. Barr et al. (2017) focus on the additional information shock
Sandy imposed on non-flooded properties, given the relative distance between Sandy’s flood surge and FEMA’s
flood risk area delimitation. Using locally weighted regressions, they conclude that non-flooded properties saw
no effects in large areas of the city, although they did in areas closer to the city center.

13As Black (1999) and Duranton et al. (2011), for instance, do.
14Bernstein et al. (2019) and Bakkensen and Ma (2019) also control for distance to the coast in narrow bands.
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a novel measure of vertical distance to the maximum flood surge for both flooded and non-
flooded properties. This metric, which is correlated with damage, allows me to investigate
flood impacts alongside the flood boundary in a flexible way.

Paper outline The remainder of the paper proceeds as follows. With the objective of mo-
tivating the empirical design, Section 2 lays out a model of segregation that rationalizes the
existence of higher prices post-flood in neighborhoods with higher preexisting average in-
comes. Section 3 describes the constructed dataset, detailing data sources and processing
steps, as well as presenting key summary statistics. Moving on to the empirical analysis,
Section 4 describes key models and methodologies used to derive the main results, which
are presented in Section 5. Section 6 summarizes further tests to fully contextualize the set-
ting and to illustrate of potential mechanisms behind the main results. Robustness checks
are presented in Section 7, and Section 8 concludes.

2 Conceptual model: flooding and neighborhood segregation

Why would residential prices go relatively up in some places after a flood? In this section, I
build upon the segregation model developed by Becker and Murphy (2000) to illustrate that
the premium to live in a particular place can go up after a disamenity shock, as long as the
impacts are heterogenous across residents, and there is a preference to live among a certain
type of resident. This section lays out the model’s intuition and main predictions. A detailed
description of the model is included in appendix C, and key mathematical derivations are
in appendix D.

The set up of the model as defined by Becker and Murphy (2000)15 considers that the
willingness to pay to live in a certain place depends only on two variables: its exogenous
amenities, and the type of neighbors. Specifically, it assumes that there are positive external-
ities to live among residents characterized by high-income and other demographics related
to income, such as race.16 17 Hence, in equilibrium, residential prices would be higher

None of these papers investigate the impacts of direct flooding, but rather flood-risk (specifically, the impacts of
sea level rise forecasts and presence on FEMA’s Special Flood Hazard Area, respectively.)

15The model by Becker and Murphy (2000) has been used as theoretical underpinning for several empirical
works, for instance, Card et al. (2008) and Banzhaf and Walsh (2013).

16Some work on the spatial segregation literature separate tastes for affluence and race of neighbors, for
instance Sethi and Somanathan (2004) and Banzhaf and Walsh (2013). In this setting, for the sake of simplicity, I
remain agnostic to the source of different tastes. Acknowledging that income and race are highly correlated in
the data, I assume positive externalities of having high-income white neighbors.

17Positive externalities could be related to job opportunities, networking, better schools, a prestige signal, etc.
This assumption is validated by recent empirical work. For instance, Bergman et al. (2019) use experimental
evidence from Seattle to conclude that low-income families who move to higher income places report higher
neighborhood satisfaction.
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in places with more valued amenities—such as some coastal locations—and/or with more
high-income residents.

From this set up defined by Becker and Murphy (2000), I focus on the model predic-
tions when the system in equilibrium is shocked by a flood under two assumptions. First,
I assume that flooding is a disamenity for all residents: everyone will be better off with-
out increased flood risk. As a result, the bundle of amenities in flooded neighborhoods is
less desirable than before for all residents. From this assumption alone, residential prices in
flooded neighborhoods should decrease. Second, I interpret the flood as an income shock,
and assume a decreasing marginal utility of income. This interpretation yields that (a) more
credit-constrained, low income residents derive a higher disutility from flooding,18 and (b)
that the disutility shock would be positively correlated with pre-flood residential prices for
a given type of resident. Intuitively, low-income residents would be less able to rebuild their
homes, to retrofit them in preparation for the next flood, or to meet higher insurance costs;
and, for a given type of resident, these costs would be higher for more expensive properties.

Conditional on these assumptions, the model yields two main predictions. First, low-
income households could retreat from flooded places, notably those with higher pre-flood
prices. The disutility derived from flooding makes the value derived from coastal amenities
post-flood not enough to compensate high residential prices for them. Even if they value
coastal amenities less too after the flood, high-income households are better able to cope
and remain, leading to a higher proportion of high-income residents overall. Second, and as
a consequence of this residential sorting, prices could increase for flooded properties. This
result is a priori non-intuitive: as all residents derive disutility from the flood, economic the-
ory would suggest a reduction in prices. But, intuitively, the increase in positive externalities
derived from a larger rate of high income residents could override the negative utility shock
from the flood.

Hence, this model provides key insights on adaptive behavior after a flood, or lack
thereof. A seemingly irrational behavior of larger property prices after a flood could happen
even if the flood disamenity is internalized, as long as flooding affects relatively more the
lesser valued type of resident.

3 Data: sources, processing, and key statistics

This section summarizes data sources, processing and descriptive statistics for the key out-
come variables (property sale prices and buyers’ demographics), treatment variables (flood

18del Valle et al. (2019) provide empirical evidence for this assumption. In their study of household financial
behavior after Hurricane Harvey, they find that there is a spike in new credit card originations after flooding,
with the effect concentrated on borrowers with higher incomes, credit limits, and credit scores.
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extent and depth), and place characteristics along which heterogenous impacts are evalu-
ated. Further details about sources and processing are in appendix E.

Property sales Residential property sale data comes from CoreLogic®, a private supplier
of US real estate data.19 The dataset contains records of every property transaction in the
states of New Jersey, New York, Connecticut, and Rhode Island from 2002 to 2016. It in-
cludes data on date of property sale transaction, sale amount, exact longitude and latitude
of property, property characteristics, mortgage amount, mortgage lending institution, and
name of buyer and seller. As described in section 4, my identification strategy relies on
comparing flooded to non-flooded properties located on the coast. Hence, the analysis
only considers properties which are located 500 meters (approximately 1640 feet) away from
the coastline as defined by the National Oceanic and Atmospheric Administration (NOAA,
2016). Finally, I also obtain ground elevation by spatially matching each property longitude
and latitude with Digital Elevation Models (DEMs) developed by the United States Geolog-
ical Survey (USGS, 2019).20

Race and income of buyers I combine data on property transactions with buyers’ demo-
graphics following the approach by Bayer et al. (2016), which is well used in the literature
(for instance, by Bakkensen and Ma (2019) and Graff Zivin et al. (2020)). Hence, I use pub-
licly available data on mortgage applications disclosed under the Home Mortgage Disclo-
sure Act, which contain anonymized individual mortgage lending transactions, including
self-reported race, ethnicity, and income of the borrower. I obtain buyers’ demographics for
32% of the property transactions in my dataset21 (which constitutes 57% of those properties
with mortgage information.) This rate is comparable to other examples in the literature,
which look at different time periods and locations.22 Table 1, with descriptive statistics of
the resulting dataset, shows that the subset of properties with socioeconomic demographics
and the main sample are similar across several dimensions. Finally, I construct a summary
variable of buyers’ race and income using principal component analysis, as described in

19Access to the data was granted by the Paul Milstein Center for Real Estate at Columbia Business School.
20These models provide elevation, in meters, at a resolution of one-third of an arc-second (approximately 10

meters, or 33 feet) with respect to the North American Vertical Datum of 1988.
21The merge process is imperfect, as not all transactions are associated with a mortgage loan, and not all insti-

tutions are required to report under the HMDA. Moreover, lending institutions names are recorded as strings,
and are subject to typographical errors or different abbreviations (e.g. ”Bank of America” or ”BK America”)
which complicate the merging process. Also, it is not possible to merge records which are not uniquely iden-
tified by the four merging variables (loan amount, name of lending institution, census tract, and transaction
year.)

22Bayer et al. (2016), which study the San Francisco Bay Area from 1994 to 2004, match 55% of properties with
mortgage information from Corelogic to mortgage applications; Liao and Panassie (2018), with a similar dataset
for the state of Florida during 2000-2016, match 26% of the whole sample, 47% of the records with mortgage
data.
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appendix F. Buyers who rank high on this composite variable have higher income and are
more likely to be white. This variable allows me to evaluate empirically predictions of the
model described on 2, which predicts joint sorting along these dimensions.

Sandy’s flooding To characterize Sandy’s flooding, I use publicly available storm surge
maps developed by the Federal Emergency Management Agency (FEMA) Modeling Task
Force (FEMA, 2014).23 I also obtain estimates of property-level damage developed by FEMA
using aerial imagery and inundation assessments (FEMA, 2014). This dataset classifies each
building damaged by Sandy into four damage levels (affected, minor, major, or destroyed)
following a set of objective criteria.24 25

Finally, I derive a metric of vertical distance to the maximum flood surge level for both
flooded and non-flooded properties. As sketched in figure 2, this metric measures the dif-
ference in elevation between the properties’ ground and the closest point in the flood extent
boundary. The top panel of figure 3 shows that the distance metric is negatively correlated
with damage, as expected. This metric allows me to advance the empirical analysis, as it
provides a measure of vertical distance to flood level for control properties outside of the
floodplain which allows me to investigate changes in outcomes alongside the flood bound-
ary in a flexible way.26

Table 1 summarizes descriptive statistics of the resulting dataset, and Figure 1 delineates
the area of study, and shows spatial extent of coastal property sales (top panel) and Sandy’s
flooding (bottom panel.)

[Figure 1 about here.]

[Table 1 about here.]

[Figure 2 about here.]

23These maps summarize flood depth at a 3 meter resolution using data from field-verified High Water Marks
and Storm Surge Sensors from the USGS, as well as Civil Air Patrol and NOAA imagery assessments.

24A property whose exterior walls have collapsed is declared destroyed; if some exterior walls have collapsed
or the flood depth is higher than 5 feet, the damage is major; if more than 20% of roof covering is missing or the
flood depth is between 2 to 5 feet, it is classified as minor; if less than 20% of roof has been damaged or the flood
depth is less than 2 feet, the property is affected.

25Properties in my transaction and damages datasets are both identified by points (that is, longitude and
latitude coordinates.) To combine both datasets, I assign to each property point the closest damage level point
up to 20 meters, beyond which I consider the property unaffected.

26Horizontal distances to the flood boundary on a plane would obviate changes in elevation which might be
relevant in terms of flood perception. Also, the maximum elevation level reached by the flood changes locally
due to complex ocean dynamics, wind patterns, soil geology, etc., which makes raw ground elevation a poor
proxy for vertical distance to flood level for non-flooded properties.
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[Figure 3 about here.]

Place characteristics With the objective of estimating heterogeneity with respect to preex-
isting place characteristics, I construct a comprehensive dataset to capture as many of the
observable characteristics that might influence residential location choice as possible. To es-
tablish which variables might be relevant for inclusion, I refer to recent studies in the urban
economics and public finance literatures which broadly consider the role of place charac-
teristics, amenities, or neighborhood quality on some economic outcome of interest.27 The
resulting dataset is composed of 52 variables, summarized in table B.18.

Following the approach in Diamond (2016), I classify these 52 variables into overarching
categories, and then summarize each of the categories using principal component analysis
(PCA) – as described in appendix F with results summarized in figure A.6. The main objec-
tive of using PCA is to avoid spuriously capturing heterogeneity alongside single place vari-
ables: the composite variable obtained through with PCA captures the data signal within
each of the overarching categories, and hence it is less noisy than a single indicator.

For instance, the place income category summarizes six different indicators indicative
of the income and income distribution of a place: income per capita, poverty rate, fraction
middle class, income share of the population with 1% highest income, Gini coefficient for
income, and Gini coefficient for income without considering population with 1% highest
income. The resulting place income variable, normalized to have a mean of zero and stan-
dard deviation equal to 1, is positively correlated to places with high income per capita and
income inequality, and low fraction middle class.

4 Empirical Strategy

This section describes the difference-in-differences (DD) and triple differences (DDD) mod-
els used to infer average and heterogeneous marginal impacts of flooding, respectively.
Then, it summarizes the approach followed to evaluate heterogeneity in flood impacts using
machine learning algorithms as described in Chernozhukov et al. (2018).

4.1 Impacts of flooding: DD and DDD models

I estimate the average impact of flooding on each outcome of interest – either property sale
value (in logs), a dummy variable indicating if the buyer identifies as a non-hispanic white,
the buyer’s income (in logs), or a composite variable indicating whether the buyer both has
high income and is white – according to the following specification:

27Notably: Diamond (2016), Christensen and Timmins (2018), Chetty et al. (2018) , Chetty et al. (2014) , Chetty
and Hendren (2017) , Collinson and Ganong (2018).
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ypt = βFp · At + θ1Fp + θ2At + Xpγ + λp + λt + εpt (1)

ypt is an outcome associated with property p sold on date t. At is a time indicator for
sales recorded on or after November 1, 2012 (Sandy made landfall in the region between
October 29 and November 1). Fp is a variable indicative of Sandy’s flooding, either presence
on the floodplain or vertical distance to flood level. Treatment status is then defined by the
interaction term Fp · At. The coefficient of interest, β, is the average effect of Sandy flooding
on the outcome of interest.

The control group is composed of properties outside of Sandy’s floodplain less than
500m away from the shoreline. This strategy ensures that properties on the control group
are similar to those on the treatment group: among properties so close to the shoreline,
Sandy flooding is more plausibly uncorrelated to unobservable characteristics that if the
control group was further inland. This is of particular importance given that the literature
has identified sorting along unobservable characteristics in coastal/non-coastal locations,
e.g. Bakkensen and Barrage (2017) show that property owners closer to the coast tend to be
less pessimist about the potential effects of climate change. Figure 4 zooms in the area of
study to illustrate the identification strategy.

[Figure 4 about here.]

Time fixed effects λt control for any time shocks common to all properties,28 and place
fixed effects, λp, control for any time invariant unobserved place characteristics. My pre-
ferred specification controls for census block fixed effects.29 This model is preferred to a
repeat sales panel with property-level fixed effects as there might be concerns of any un-
observables affecting properties that have been sold twice or more in the 15 year period.30

To alleviate concerns that results might be driven for properties of different characteristics
within blocks, I also include a set of property level characteristics Xp (year built, and square
footage) on some models. For robustness, I also show that results are consistent to the in-
clusion of property-level fixed effects in a repeated sales panel.31 Finally, robust standard
errors, εpt, are two-way clustered, to allow errors to be correlated across census tracts within
years, and across years within census tracts.

Identification of causal effects of flooding in equation 1 requires that non-flooded prop-
erties would have followed parallel trends to flooded properties in the absence of the flood.

28In the preferred specification, I control for month-of-year, although I show in section 7 that the results are
robust to other time controls.

29Census blocks are the smallest geography level defined by the U.S. Census Bureau. In an urban setting,
census blocks usually correspond to city blocks, surrounded on all sides by streets (Bureau, 2011)

3082% of properties in the main sample had only been sold once in the period; 90% among those which have
data on the race and income of the buyer

31In this case, property characteristics Xp will be embedded in the fixed effects.
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Although this condition is not directly testable, I gain confidence that this would have been
the case if the trends were parallel prior to the flood. Figure 5 confirms that prices for both
flooded and non-flooded properties evolved concurrently prior to Sandy, diverging right
after.

Finally, to estimate how flood impacts are marginally affected by different place charac-
teristics, I use a triple differences (DDD) specification resulting from interacting the model
in 1 with a variable Zp summarizing a characteristic of the place property p is located in:

ypt = βFp · At · Zp+

θ1Fp + θ2At + θ3Zp + θ4Fp At + θ5FpZp + θ6AtZp+

Xpγ + λp + λy + εpt

(2)

The coefficient of interest is β, which represents the marginal impact of the flood associ-
ated with one more unit of Zp. For instance, when Zp represents place income with a mean
of 0 and a standard deviation of 1, β summarizes how much higher the flood impacts have
been in places with 1 standard deviation above mean place income.

4.2 Estimating heterogeneous effects: machine learning procedure

I evaluate heterogeneity of flood impacts according to preexisting place characteristics us-
ing the machine learning procedures described in Chernozhukov et al. (2018) (henceforth,
CDDF.) Machine learning methods such as those in CDDF provide a disciplined way to
measure heterogeneity in the treatment ex-post, and and are becoming more common in the
economics literature (Wager and Athey, 2018; Athey and Imbens, 2019; Rigol et al., 2017;
Davis and Heller, 2017; Deryugina et al., 2019).32

Implementing the CDDF procedure in this context serves two main goals. First, I can use
it to test and rule out that flood impacts were homogenous, and hence increase confidence
that any potential heterogeneity captured on the DDD analysis is not spurious. Second, it
yields the preexisting place characteristics that best discriminates between most positively
and most negatively affected properties. Hence, I can use this procedure to derive a data-
driven check for the predictions of the model in section 2, which concludes that places with
higher preexisting place income should be those least affected by the flood.

Chernozhukov et al. (2018) provide a generic method to make inference on key features
of the conditional average treatment effects.33 Succinctly, CDDF relies on repeated data
partitioning to estimate robust estimates of key features of the treatment effects. Then, con-

32They can be understood as an alternative to pre-registration of studies, while still guaranteeing that the
selection of variables to measure heterogeneous effects has not been biased towards finding significant results.

33That is, the difference in expected outcomes between treatment and control groups, conditional on controls
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fidence intervals and p-values are generated to consider uncertainty coming from both esti-
mation and data splitting uncertainty.34

CDDF yields robust estimates for:

1. Best linear predictor for the average treatment effect (which can be compared with the
DD estimate computed following equation 1 to check the fitness of the procedure.)

2. Average treatment effects for properties on the top and bottom quintiles, according to
their estimated treatment effect.

3. Average characteristics of the properties on the top and bottom quintiles, according to
their estimated treatment effect, as well as differences in these characteristics between
the two quintiles.

Even if the methods in Chernozhukov et al. (2018) are defined for randomized control
trials, they are generalizable to other non-experimental settings as long as it is possible to
construct an unbiased signal of the treatment effect conditional on controls. Hence, the
required assumption for inference is the same as for the DD model described above: after
controlling for place and time fixed effects, the difference in expected potential outcomes
between properties inside and outside the floodplain yields the unbiased effect of the flood.

5 Main Results

This section describes the main flood impacts estimated following the empirical models
described above in section 4. It starts by documenting average effects of the flood on prop-
erty values and buyers’ demographics measured with the DD model. Then, results from
DDD reveal that these impacts were heterogeneous according to preexisting place income,
as the model in section 2 would predict. Finally, it presents results from a machine learning
procedure which confirm that preexisting place income best discriminates between most
positively and most negatively affected properties.

5.1 Average impacts: lower prices, fewer white and high-income buyers

I find that, on average, flooded properties were sold for lower values to poorer buyers who
were less likely to be white. These drops were larger for properties which experienced a
higher flood depth. However, I rule out that structural damage is solely driving the results,
as properties which were just affected by the flood or with low flood depths saw significant
decreases in prices.

34For completeness, I describe in the Appendix G the steps followed to implement the CDDF procedure. The
original code from Chernozhukov et al. (2018) is available for downloading here
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Binary treatment: presence in the floodplain Table 2 reports results on the average im-
pacts of flooding. In the top panel, the treatment variable is a binary variable equal to 1
for properties in Sandy’s floodplain, interacted with an indicator of sales post-Sandy. All
models include census blocks and month fixed effects. Results from this panel show that
property prices of flooded properties have decreased almost 9% on average after Sandy.
Homebuyers were 5 percentage points less likely be white, and their income was 2.6% lower.
They were also less likely to be both white and high-income (drop equal to 10% of a standard
deviation).

The relative average drop in prices after Sandy for flooded properties is also evident in
the top panel of figure 5. This figure also shows that prices before Sandy followed parallel
trends for properties in the treatment and the control groups. This pattern increases con-
fidence that trends would have continued to evolve in parallel in the absence of the flood,
and make the results above causally interpretable.

[Table 2 about here.]

[Figure 5 about here.]

Continuous treatment: vertical distance to flood level The bottom panel of table 2 presents
results using a flood treatment variable equal to the absolute value of vertical distance to
flood level for flooded properties.35 These results show that the average drops in prices re-
ported in the top panel were concentrated in properties with higher flood depths. Hence,
one more meter of distance to the maximum flood level decreased prices by 5.4% on av-
erage. Similarly, one more meter of flood depth decreased the likelihood of a buyer being
white by 2.8 percentage points, and to be both white and high-income by 5% of a standard
deviation. Buyer’s income does not change significantly (at least at the 10% confidence level)
with respect to vertical distance to flood.

The bottom panel of figure 5 provides graphical intuition for the changes in prices for
properties inside and outside the floodplain with respect to vertical distance to flood level,
before and after Sandy. There is no apparent discontinuity around the flood boundary prior
to Sandy, which is consistent with a lack of prior sorting along both sides of the floodplain.
Prices for properties on the floodplain change with respect to flood depth remarkably differ-
ently after Sandy. The figure shows that property prices post-Sandy are below those prior
to the flood even for properties at lower distances to the flood (e.g. 0.5 meters or lower.)
The drop in prices decreases with vertical distance to flood level, consistently with the re-
sults in table 2 above. The figure also suggests an inflection point in the relation between

35The steps taken to compute the metric of the vertical distance to flood level are described in section 3.
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flood depth and price changes, with properties with flood depths around 1 meter experienc-
ing the largest drops, although the results for higher flood depths are noisier. Non-flooded
properties’ prices remain unchanged before and after the flood.

Property damage The evidence above seems to suggest that negative shocks to prices are
not just driven mechanically by structural damage, given that price drops do not increase
monotonically with flood depth, and that properties at low flood depths experience price
drops. To gain further confidence, table 3 interacts the treatment variable (a dummy indi-
cating if a property is in the floodplain and the sale was after the flood) with a set of dummy
variables indicating the level of damage according to FEMA’s evaluation (as described in
section 3.) The omitted category includes properties that were deemed not damaged by
FEMA. Besides regression results, the table also presents p-values of pairwise testing the
equality of the dummies coefficients. These results show that the point estimate of flood im-
pacts increases with the category of damage. However, the drop in prices for merely affected
properties is significant at the 99% and of large magnitude, equal to 8.2%. I also fail to reject
that the coefficient for properties with minor and major damage are equal (p-value equal to
0.428.)

[Table 3 about here.]

5.2 Heterogeneous impacts according to place income

In this section, I show that the negative impact of the flood on prices and high-income white
buyers decreases as preexisting place income36 increases. This result is robust to comparing
properties with similar levels of damage. The elasticity of property prices with respect to
flood depth also decreases with preexisting place income.

Binary treatment: presence in the floodplain The top panel of table 4 shows that the mag-
nitude of flood impacts changes according to preexisting place income. Properties located
on places with a mean value of place income (equal to 0, by construction) experience a de-
crease in property prices equal to 4.5%. With respect to these, flooded properties in places
one standard deviation above mean income see an increase in prices of 7.3%. This coefficient
is significantly different both from zero and from the coefficient for properties at the mean
place income (p-value of both differences is smaller than 1%.)

36As described in section 3, place income is a composite variable that describes six different indicators indica-
tive of the income and income distribution of a place. It is normalized to have a mean of zero and standard
deviation equal to 1, and it is positively correlated to places with high income per capita and income inequality,
and low fraction middle class.
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Regarding buyers’ demographics, table 4 reports that one standard deviation of place
income increases flood impacts on the likelihood of a white buyer by 4.1 percentage points,
and on the composite variable of white high-income buyers by 5.8% of a standard deviation,
effectively offsetting average drops. As with the case of property prices, these coefficients
are significantly different from zero (95% confidence level), as well as different from those
for properties at the mean place income (p-value of the differences equal to 0.023 and 0.015,
respectively.) Flood impacts on buyers’ income does not change significantly with respect
to preexisting place income.37

Figure 6 provides visual confirmation of the divergent evolution in prices for properties
with different values of preexisting place income. This figure plots the evolution of property
price log residuals, net of block fixed effects, separately for flooded and non-flooded prop-
erties located in the bottom decile of preexisting place income (bottom panel) and in the
top decile (top panel.) It shows that flooded and control properties followed parallel trends
prior to Sandy in both low and high income places (more clearly so after the housing boom
ended in 2008.) In the bottom decile, there is a stark drop in prices after Sandy, which per-
sists after five years. On the other hand, there is no evidence of a negative shock for flooded
properties in the top decile after Sandy. Not only that, but prices for flooded properties are
consistently above those in the control group after Sandy.

[Table 4 about here.]

[Figure 6 about here.]

Continuous treatment: vertical distance to flood level The bottom panel of table 4 re-
ports results of using the absolute value of vertical distance to flood level38 as flood treat-
ment. These results show that one standard deviation of place income positively affects the
impacts of one more meter of flood depth on property prices (by 4.8%), the likelihood of
having a white buyer (by 2.3 percentage points), and on buyers being high-income white
(by 7.7% of a standard deviation.) Significance tests of the sum of the DD and DDD coef-
ficients39 yield that, in places one standard deviation above mean preexisting income, one

37An increase in property prices with respect to income, as experienced on average by properties on high
income places, has been related in recent literature in urban economics with gentrification processes (Bunten,
2018; Dragan et al., 2019). It should be noted that most authors, e.g. (Bunten, 2018), label a process as gentrifica-
tion if the property price increases happen in originally low-income areas. According to this definition, the effect
observed in this case could not be categorized as gentrification per se, as the increase in property prices takes
place in high-income places. Some other definitions of gentrification focus on the displacement of minorities
by high-income, usually white, population (Brooks et al., 2012; Reeves et al., 2019). The higher probability of a
white buyer in high income places will be consistent with these definitions of gentrification as well.

38The steps taken to compute the metric of the distance to the flood are described in section 3
39Specifically, I test whether the linear combination of Aftert x Floodedp + Aftert x Floodedp x Place Incomep is

equal to zero.
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more meter of flood depth does not significantly change prices, the likelihood of having a
white buyer, or the buyers’ income. Hence, the sensitivity of these outcomes to flood depth,
present on average and in low income places, is not replicated in high-income places.

Figure 7 provides further confirmation of the divergent evolution of prices in low and
high income places. It plots how prices change with respect to vertical distance to flood level
before and after Sandy for properties located in the bottom decile of place income (bottom
panel) and in the top decile (top panel.) In low income places, property prices post-Sandy
decrease for all flood depth bins. Property prices are negatively correlated with flood depth.
On the other hand, flooded property prices in high income places are higher than those on
the control group for flood depths below 1 meter. There is no evidence of changes in prices
before and after the flood for properties which experienced flood depths higher than 1.5
meters.

[Figure 7 about here.]

Differential property damage Differential responses by preexisting neighborhood income
could be in part mechanically driven by differential damage. To explore this, figure 3 plots
how the likelihood of a property being damaged (with a category of damage equal to affected
or above) changes with respect to vertical distance to flood level for different quantiles of
the place income variable. This figure shows that the likelihood of being damaged by the
flood does not increase monotonically with place income. However, properties in the top
quintile of place income do experience a smaller likelihood of being affected than those on
the lower quintiles. To rule out that this difference is solely driving heterogeneity, I replicate
the results on the first column of table 4 restricting the sample to those properties with the
same category of damage. Results are summarized in table 5, and show that the effect of
place income on flood impacts remains positive. For instance, affected properties in places
with mean preexisting income experienced a decrease in prices equal to 3.1% post-flood on
average. This negative impact is offset by 7.3% on average in equally affected properties
located in places one standard deviation above mean preexisting place income.40 Finally,
differential damage according to place income could explain why some properties experi-
ence different levels of negative shocks due to the flood. However, it will not on its own
explain why some flooded properties actually increased their value with respect to those on
the control.

[Table 5 about here.]

40Moreover, table B.15 shows that results for property prices and white buyers in table 4 are robust to dropping
from the sample properties in the top quintile of place income (although the DDD coefficient for buyers’ income
becomes negative.)
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5.3 Estimating heterogeneity with machine learning algorithms

This section summarizes the results of applying the procedure in Chernozhukov et al. (2018)
(CDDF) with a random forest algorithm to systematically evaluate heterogeneity of flood
impacts in property prices according to preexisting place characteristics. Specifically, I test
and rule out that flood impacts on property prices were homogeneous. Second, I corroborate
that neighborhood income and secondary education, which are highly correlated in the data,
best discriminate between most positively and most negatively affected properties among a
rich set of preexisting place characteristics.

[Figure 8 about here.]

Is there heterogeneity in the results? The top panel of figure 8 summarizes the results of
estimating heterogeneous effects of flood impacts using the CDDF procedure.41 The model
implemented uses property prices (in logs) as an outcome variable, a binary variable indi-
cating presence in the floodplain as the treatment variable, and the preexisting place char-
acteristics described in section 3 as covariates.

First, the figure shows that the estimated best linear predictor of average treatment effect
is equal to -0.084. This value is very similar to the DD estimate presented in table2, which is
equal to -0.089. This similarity serves as a check of the fitness of the procedure.

Then, the figure plots the estimated average effects for groups of properties with differ-
ent levels of predicted average treatment effects.42 Hence, group 1 is composed of 20% of the
properties with the lowest values of predicted treatment effect, while group 5 is composed
of 20% of the properties with the highest values of predicted treatment effect. If the results
were homogeneous, there should be no significant differences in the average treatment ef-
fects between the groups.

However, in this setting, the group averages are remarkably different. The average flood
impacts for group 1 were -31.2 log points, significantly below average. By design, the av-
erage treatment effect increases with group. Flood impacts in group 2 were equal to -20
log points. The average treatment effect for group 3 is not statistically different from the
treatment effect for the whole sample, while the average treatment effect for group 4 is not
statistically different from zero. Finally, group 5 experiences an average treatment effect
equal to +17.8 log points. The difference between the point estimates for groups 1 and 5 is
equal to 49 log points, and it is significant at the 1% level. Hence, these results show that the
average flood effect of a 8.4% drop in prices is masking significant heterogeneities, where

41The procedure in Chernozhukov et al. (2018) is described in section 4.2 and appendix G
42In brief, the CDDF procedure predicts a treatment effect per unit of observation in the main sample, which

enables the grouping of observations by their predicted treatment effect.

18



some properties have lost in value significantly more than this, and others have instead
increased their sale prices. The hypothesis that results were homogeneous can be rejected.

It should be noted that this procedure it is agnostic regarding the source of heterogeneity:
it only reveals that impacts were hot homogeneous across properties, but it does not impose
heterogeneity along any variable on any functional form.

What are the characteristics of the most positively and most negatively affected proper-
ties? The bottom panel of figure 8 summarizes the average place characteristics for those
properties in group 1 (the most negatively affected properties, in blue), and for those in
group 5 (the most positively affected, in orange.) This figure shows the five preexisting place
characteristics, of the 12 considered, that yield the highest differences between groups.43 All
preexisting place characteristics have been normalized to have a mean of zero and a stan-
dard deviation of one, so the coefficients are comparable to each other.

This figure shows that the variable along which both groups differ the most is secondary
education, followed by place income. The difference between the two groups averages along
these variables is around one standard deviation. Secondary education and place income
are very highly correlated in the data: the bottom panel of figure A.1 shows that secondary
education and income have the highest correlation among all possible pairs of variables.
Other place characteristics in which the most and least affected places differ more are retail,
migration, and segregation.44

Some of the place characteristics that the literature highlights might positively affect
recovery after a flood, such as social capital (Aldrich, 2012), do not seem to be as relevant as
income to distinguish between the most positively and most negatively affected properties.
Hence, one of the composite variables that summarizes social capital – which according to
figure A.6 represents places with low crime, high social capital index, high fraction religious,
low fraction of children with single mothers, and high number of overall occupied housing
– has the second smallest difference in average between the two groups, as noted in B.19.

Overall, these results show that flood impacts were not homogeneous in the sample, and
that place income, together with a variable highly correlated with it – secondary education,
is correlated with differences in treatment effects. This latter result then corroborates predic-
tions from the model in section 2, which concluded that flooded properties in places with
high preexisting income could increase in value post-flood.

43Results for the 12 preexisting characteristics are shown in table B.19. Table B.17 in turn reports the original
place variables, not PCA composites, that yield the largest differences.

44As described in figure A.6, the secondary education variable describes places with large numbers of college
graduates and colleges per capita; the income variable, places with high income and high income inequality,
and low levels of middle class; the retail variable, places with large number of retail opportunities; the migration
variable, places with high levels of in and out migration and foreign born residents; and the segregation variable,
high racial and income segregation, and large population density.
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6 Further results

This section summarizes further results to comprehensively contextualize the setting in
which the results presented in the previous section take place, and to illustrate potential
mechanisms. I find evidence consistent with properties in low preexisting income places re-
lying less on flood insurance post-flood, even if flood insurance premiums have decreased.
I rule out that places with high preexisting income obtain larger public assistance for recon-
struction, experience changes of magnitude in the type of houses being sold after the flood,
or see a change in the proportion of renters or in the likelihood of a property being a pri-
mary residence. Finally, I also present evidence against post-flood impacts being driven by
properties that had not been recently flooded.

6.1 Flood insurance

A higher reliance in flood insurance, for those who could afford it, might incentivize living
in risky areas (Silvis, 2017). To evaluate changes in flood insurance composition before and
after Sandy, I use two datasets on the universe of anonymized individual flood insurance
policies and claims underwritten by FEMA between 2010 and 2018.45 46

Figure 9 and table B.4 describe the evolution of the number of flood insurance policies
(in logs) for places in the bottom and top deciles of preexisting place income before and after
Sandy. In both types of places, the number of policies increases after Sandy (although not
significantly in the top decile), decreasing one year post-Sandy. The decline is sharper in
low income places. As a result, 3 years after Sandy places in the bottom decile have fewer
insurance policies than prior to Sandy. There are not significant changes (at least at the 90%
confidence level) for the number of policies on the top decile.

[Figure 9 about here.]

Table B.5 explores the characteristics of the flood insurance policies.47 Column (1) shows
that insurance premiums have decreased after Sandy in census tracts with a mean level of
income (-5.7%), and more so if they were flooded (further drop of -7.6%.) However, premi-
ums have increased in relative terms for high income census tracts. One standard deviation
above mean place income is correlated with 13.9% increase in premiums. There are not
significant changes by preexisting place income regarding building and content insurance

45FEMA’s National Flood Insurance Program (NFIP) is the largest provider of residential flood insurance in
the United States. In 2016, 90% of all flood insurance premiums were written for the NFIP, while only 10% were
for private flood insurance (Insurance Information Institute, 2018).

46These datasets are described in further detail in appendix E
47The anonymized individual policies are only identified anonymized by tract, so I construct a treatment

variable equal to the percent of area covered by the floodplain by tract.

20



coverage of the policies. Fewer policies report elevated buildings48 in high income places
after the flood, which could partly explain the relatively higher premiums.

Finally, table B.6 reports that there have been no differential changes in terms of insur-
ance claims related to Sandy for building and content damage with respect to preexisting
place income, or that places with higher income received more claims per capita.

Hence, these results show that residents of places with high preexisting income maintain
similar levels of flood insurance take-up post-flood despite increasing premiums. However,
drops in property prices in low income places reported in the previous sections are happen-
ing against a backdrop in which fewer properties are insured against the flood, even with
lower average premiums. This evidence is consistent with residents in low-income places
opting out of the most expensive policies.

6.2 Housing stock

Property price increases and residential sorting post-flood could also be brought about by
changes in the housing stock, along the lines of the “housing stock age” hypothesis as de-
veloped by Brueckner and Rosenthal (2009). They suggest that high-income households
have a preference for newer housing stock, and that this determines patterns of segregation
between low- and high-income households within cities. According to this hypothesis, a
natural disaster such a flood could sweep outdated housing, and make room for more de-
sirable, newer housing.49 Under this hypothesis, observed changes in neighborhoods with
higher of preexisting place income would be mostly driven by an upgrade of housing stock
characteristics, rather than neighbor type, as in the model in section 2.

I do not find evidence supporting the housing renewal hypothesis in this setting. Fist,
table B.1 shows that one standard deviation higher preexisting place income is not correlated
with a higher likelihood of new construction among flooded properties either pre- or post-
Sandy. Second, figure A.3 plots the fraction of properties in the sample that are sold in a
given month50 51 for the whole sample, as well as separately for properties in the low and
top quintiles of preexisting place income. On average, properties are not more likely to be
sold post-Sandy, and this result does not change significantly with preexisting place income.
The likelihood of sale for flooded properties is on a slight upward trend (every month after
Sandy, the probability of a flooded property being sold increases by 0.002 percentage points

48A building is identified as elevated if it has no-basement, and was constructed so as to meet certain flood
prevention criteria (e.g. lowest flood is above ground level, building is elevated by columns, etc.)

49Hornbeck and Keniston (2017), for instance, provide evidence that the Boston Fire of 1812 generated an
opportunity for widespread building upgrades in burned plots. This reconstruction generated positive exter-
nalities which contributed to increased land and building prices.

50After removing month fixed effects, to control for seasonal variation common across years.
51To generate this figure, I construct a balanced panel of properties, in which the unit of observation is

property-month. A dummy sale variable indicates whether a particular property was sold in a given month.
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with respect to those on the control, result significant at the 90% level), but this trend does
not change significantly with place income either.52 Finally, table B.3 shows that there are
statistically significant changes in the characteristics of properties being sold post-flood in
high income places, but these changes are of small magnitude (flooded properties in places
one standard deviation above mean place income post-Sandy have 43 more square feet and
are 1 year newer on average than those on places with mean preexisting income.)

6.3 Neighborhood composition

Table B.10 shows that the likelihood of a property being occupied by its owner does not
change significantly post-flood on average, nor does it change significantly with respect to
place income.53 Using data from anonymized individual insurance policies54, I find that
overall there are fewer properties that are used as primary residence in the sample, and this
drop does not change significantly for properties in more extensively flooded census tracts
or in places with different preexisting income (results summarized in column (5) of table
B.5.) However, the proportion of primary residences prior to Sandy was higher for high
income places. Hence, figure A.2 shows that properties in the top decile of place income
have the largest proportion of properties used as a primary residence in the sample (point
estimate is close to 80%.) These results constitute evidence against property price increases
in high income places being driven by absentee landlords.

6.4 Expectations about flood risk

Different prior expectations about the likelihood of flooding could also affect the magni-
tude of responses to the flood. For instance, properties that are regularly flooded could be
hypothesized to experience smaller price shocks as the new flood does not add much new
information on the likelihood of future flooding. This could in turn yield heterogeneity in
results, if places with low- and high- preexisting income have a different flood history. To
gain clarity on this channel, I use data on the flood extent caused by Hurricane Irene, which
made landfall in the Northeast US in August 2011. Table B.8 show that average drops in
property prices, buyers’ likelihood of being white or have a high income are not statistically
significantly different between properties that were flooded both by Sandy and Irene, or just
by Sandy.

I also investigate whether properties that are in FEMA’s Special Flood Hazard Area see
differential flood impacts in table B.9. It could be that the priors about future flood risk

52Statistical significance of these results is reported in table B.2.
53Data on owner-occupied status of properties comes from mortgage applications, and hence it is only avail-

able for those properties that were successfully matched with buyers’ demographics
54As described in section 6.1.
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for owners of properties in the SFHA were less affected by Sandy’s flood than for those
outside.55 Table B.9 shows that in fact that drops in property prices are significantly higher
for properties both in Sandy’s floodplain and on the SFHA, and that properties in the SFHA
post-Sandy had lower prices even if outside Sandy’s floodplain. Hence, in this setting, the
price effect of being in the SFHA and on Sandy’s floodplain are compounded. These results
need to be interpreted with caution, however. As described in more detail in appendix E,
the available SFHA maps do not cover the whole area of study, and are current as of October
2018. SFHA designation could have endogenously changed after Sandy. This endogeneity
on the treatment variable could bias these results.

6.5 Public Assistance

In order to evaluate whether high-income places are receiving relatively larger funds for re-
covery, I use data from FEMA’s Public Assistance program, “FEMA’s largest grant program
providing funds to assist communities responding to and recovering from major declared
disasters or emergencies” FEMA (2019a). Table B.7 shows that higher preexisting income
is not correlated with larger quantities of recovery funds at the county level, after control-
ling for population and extent of area flooded in a county. However, these results should
be interpreted with caution: public assistance funds are aggregated at the county level (the
smallest geographical unit at which projects are identified), so inference in table B.7 is based
in only 33 observations.

7 Robustness checks

This section summarizes further tests to check robustness of the results to alternative speci-
fications, choice of control group, sample restrictions, and use of raw preexisting place char-
acteristics rather than PCA composites.

Are results robust to the specification of fixed effects and clustering of standard errors?
The preferred DDD model presented in table 4 includes census block and month-year fixed
effects, and two-way clusters standard errors along census tracts and years. The impact of
place income on flooded property prices is robust to using different location fixed effects
(notably, to adding property controls or parcel fixed effects) as shown in table B.11; to using
alternative time fixed effects (county-month, quarter, and week) as shown in table B.12; and
to using different clusters of standard errors (tract month-year, tract, block month-year, zip
code year, zip code month-year, and zip code) as shown in table B.13.

55along the lines of the mechanism proposed by Gibson and Mullins (2020).
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Is there evidence of spillovers on the control group? Table B.14 runs an event study using
only on properties on the control group to evaluate whether there have been any changes
post-flood that could be signalling spillovers. This table shows that properties in the con-
trol group have not seen any significant changes before and after the flood with respect to
property prices, buyers’ likelihood of being white, their income, or their propensity to be
high-income white. To gain further evidence against spillovers, figure A.4 shows that the
chosen control group of properties located no more than 500 meters from the coastline does
not evolve differently with respect to other properties located further inland (either between
1.5 and 2km, or between 4km or 5km.) For reference, it should be noted that no point in the
island of Manhattan is located more than 4km away from the coastline.

Are results robust to the choice of sample? Results from the DD and DDD models pre-
sented in tables 2 and 4 are robust to using only observations that have been identified as
single homes by CoreLogic®, the provider of property sales data. Results are summarized
in table B.16. The point estimate of the effect of preexisting place income on flood impacts
is larger than when using the whole sample. Results on the propensity of buyers being
high-income white are noisier than with the whole sample. It should be highlighted that
this single homes indicator is predicted by CoreLogic, and does not come directly from the
property sales as recorded by county clerks.

Table B.15 shows that DDD results for property prices and white buyers in table 4 are
robust to dropping from the sample properties in the top quintile of place income. However,
the DDD coefficient for buyers’ income changes sign.

Results using original place variables I replicate results of key models in the paper using
raw original variables, rather than PCA composites. Hence, figure A.5 summarizes the re-
sults of including the variables in the place income composite in the DDD model described
in equation 2. Table B.17 summarizes the average difference in raw place characteristics
of most negatively and most positively affected properties as computed by the machine
learning procedure described in section 5.3. Half of the 12 variables that yield the largest
differences between the most negatively and most positively affected properties are related
to preexisting income or secondary education levels of a place (e.g. Gini coefficients for
income, income per capita, college graduation rate, etc.)

8 Conclusions

This paper shows that divergent post-flood changes at the neighborhood level increased
preexisting spatial polarization along property value, racial, and income lines. Building

24



on the model of segregation by Becker and Murphy (2000), I derive and test a hypothesis
that preexisting income at the neighborhood scale mediates responses to the flood, whereby
places with high income levels could rationally experience an increase in sale prices post-
flood. To find empirical evidence of this prediction, I combine data from residential property
sales, buyers’ demographics, a rich set of neighborhood characteristics, and data on Super-
storm Sandy’s flooding extent and damage across the coastlines of the states of New Jersey,
New York, Connecticut, and Rhode Island in 2012. Consistent with the model, the paper’s
main empirical result shows that flooded properties in neighborhoods with high preexisting
income had higher sale prices and more high-income white buyers than comparable non-
flooded coastal properties, offsetting average drops. Using machine learning algorithms, I
corroborate that neighborhood income, of a rich set of preexisting place characteristics, best
discriminates between most positively and most negatively affected properties. To the best
of my knowledge, this study is the first to document differential responses after flooding at
the neighborhood scale that lead to increased polarization in space using micro-level data
on sale values and buyers’ race and income. This paper sheds light on and helps rationalize
disparate results previously found in the literature.

This paper contributes to our understanding of heterogeneous impacts of flooding across
space, which is key to inform successful flood insurance schemes, and after-flooding policies
more broadly. As of 2022, the National Flood Insurance Policy is undergoing reforms with
the objective of determining insurance rates that are “equitable” (Service, 2022). With this
equity objective in mind, it is imperative that we take into account how different commu-
nities react post-flood. In some places, lower property prices and changes in neighborhood
demographics after flooding can speed the process of urban decay. The resulting commu-
nity post-flood may have less capacity to economically respond or bounce back after the
inevitable next storm, or even to evacuate in case of immediate danger. This dynamic could
lead to the entrenchment of pockets of social vulnerability along an increasingly risky shore-
line. In other places, flooded properties increase in value post-flood. For these, insurance
rate discounts based on property construction year and location56 could actually serve as
regressive subsidies for high-income households.

This paper opens up several avenues for future research. The paper focuses exclusively
on flood impacts on owned property. However, homeowners and renters differ along many
dimensions; they have different incentives and discount rates and are characterized by dif-
ferent demographics (Goodman and Mayer, 2018) and social capital levels (Glaeser et al.,
2002). Renters can play an important role in neighborhood change (fostering gentrification
or decay.) Hence, future research could use micro-level data to explore the post-flood be-
havior of renters and to what extent it mimics, or fails to, that of homeowners. Also, future

56For instance, discounts that FEMA currently implements for properties built before flood risk maps were
developed in their respective communities and for properties included in a flood risk area after a map update.
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research could use micro-level data to track residents that move in and out of the floodplain
to fully characterize neighborhood dynamics and provide further evidence of an increased
flood risk. Who gets displaced after the flood, and where do they move? What is the original
residence of those who come to live in the floodplain?
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Figure 1: Study area: spatial extent

(a) Property sales location

(b) Sandy’s flooding

Notes: Figure delineates the area of study covering the states of New Jersey, New York, Connecticut, and Rhode
Island. The top panel shows the location of the sample of property sales data, fully covering the coastline in
the area of study. Each orange dot represents a property sale record in the data. The bottom panel delineates
Sandy’s flood extent.
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Figure 2: Measuring vertical distance to flood level

(a) Flood extent boundary: layout

(b) Distance to the flood: metric

Notes: The top panel shows the position of the maximum flood extent boundary (blue line) with respect to prop-
erty sale records (orange dots.) The bottom panel illustrates how the metric that measures vertical distance to
flood level is computed. Specifically, for each property (1) I determine which point in the flood extent boundary
is the closest, and (2) I compute the vertical distance to flood level metric as the difference in elevation between
the properties’ ground and the closest point in the flood extent boundary. It will be positive for properties whose
ground stood above the flood maximum water elevation, and negative for those below.
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Figure 3: Damage and vertical distance to flood level

(a) Likelihood of damage with respect to vertical distance to flood level

(b) Likelihood of being affected with respect to vertical distance to flood level

Notes: The top panel shows that the vertical distance to flood level, as measured by the metric described in
section 3, is negatively correlated with damage. The probability of a property suffering damage of category
affected or above changes discretely at the flood boundary. The bottom panel shows the likelihood of a property
having a category of damage equal to affected or higher by quantiles of the place income variable. All lines
represent smooth values from a kernel-weighted local polynomial regression, and shaded areas indicate 95%
confidence intervals.
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Figure 4: Illustration of identification strategy

Notes: This figure zooms in the area of study to illustrate the identification strategy. Property sale records are
marked in orange. The treatment group is composed of property sales which are on Sandy’s floodplain (marked
in yellow to blue hues, depending on the maximum depth the flood reached.) The control group is formed by
property sales outside the floodplain, but within 500 meters from the coastline (500m buffer marked with a red
dashed line.)
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Figure 5: Average impacts of flooding on property prices

(a) Property prices over time

(b) Property prices over vertical distance to flood level

Notes: Figure summarizes the average impacts of flooding on property prices. Top panel plots the evolution
of property sale prices – in logs, net of block fixed effects – over time. The dotted line at the end of October
2012 indicates the time of Sandy’s landfall. The blue line represents properties in the Sandy floodplain (the
treatment group), while the dashed orange line is for properties located within 500m of the shoreline, but not
on the floodplain (the control group.) The bottom panel shows how prices evolve with vertical distance to flood
level. The dashed orange line plots data before the flood, and the blue line shows data post-flood. The y-axis
represents property price sale residuals – in logs, net of block and month fixed effects. The x-axis shows the
difference between a property’s ground level and the maximum level the flood reached closest to the property,
which is negative for flooded properties, and positive for non-flooded properties. The dotted line at zero marks
the maximum flood surge level. In both panels, lines represent smooth values from a kernel-weighted local
polynomial regression, and shaded areas indicate 95% confidence intervals. In the bottom panel, dots represent
price averages at 0.25m-wide distance bins.
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Figure 6: Property prices over time, by place income

(a) Highest-income places (top 10%)

(b) Lowest-income places (bottom 10%)

Notes: Figure plots the evolution of property sale prices – in logs, after removing block fixed effects – for prop-
erties on places in the bottom decile of preexisting place income (bottom panel), and for properties on the top
decile of preexisting place income (top panel). The dotted line at the end of October 2012 in both panels indi-
cates the time of Sandy’s landfall. The blue line represents properties in the Sandy floodplain (the treatment
group), while the orange line is for properties located within 500m of the shoreline, but not on the floodplain
(the control group.) Lines represent smooth values from a kernel-weighted local polynomial regression, shaded
areas indicate 95% confidence intervals.
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Figure 7: Property prices over vertical distance to flood level, by place income

(a) Top quintile of variable INC

(b) Bottom quintile of variable INC

Notes: Figure shows how prices evolve with vertical distance to flood level for properties on places in the bottom
decile of preexisting place income (bottom panel), and for properties on the top decile of preexisting place
income (top panel). The dashed orange line plots data pre-flood, and the blue line shows data post-flood for
properties on places in the bottom decile of place income (bottom panel), and for properties on the top decile of
place income (top panel). Specifically, the y-axis represents property price sale residuals, net of census block and
month fixed effects. The x-axis shows the difference between a property’s ground level and the maximum level
the flood reached closest to the property, which is negative for flooded properties, and positive for non-flooded
properties. The dotted line at zero marks the maximum flood surge elevation. Lines represent smooth values
from a kernel-weighted local polynomial regression, shaded areas indicate 95% confidence intervals, and dots
plot price averages at 0.25m-wide elevation bins.
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Figure 8: Evaluating heterogeneity using machine learning
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Notes: Top panel summarizes results from estimating heterogeneity of flood impacts according to preexisting
place characteristics using the machine learning procedures described in Chernozhukov et al. (2018). Bottom
panel summarizes the average difference in place characteristics for the most positively and most negatively
affected properties.
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Figure 9: Evolution of number of NFIP insurance policies over time

Notes: Count of flood insurance policies under the National Flood Insurance Program over time, for census
tracts with a value of preexisting place income in the bottom decile (dashed, orange) and in the top decile
(blue.) The vertical dotted line at the end of October 2012 represents the date Sandy made landfall. The other
two lines mark the first and third anniversary of Sandy, respectively. Lines represent smooth values from a
kernel-weighted local polynomial regression, shaded areas indicate 95% confidence intervals.
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Table 2: Difference in Difference: Main results

(1) (2) (3) (4)
Price White Income White-Income
(log) (log)

Panel A: Binary Treatment

Floodedp x Aftert -0.089∗∗∗ -0.050∗ -0.026∗∗ -0.101∗∗

(0.018) (0.026) (0.010) (0.040)

Mean 548,319 0.68 193,613 0
Observations 505,113 122,547 153,043 118,979

Panel B: Continuous Treatment

Vertical distance to floodp x Aftert -0.054∗∗∗ -0.028∗ -0.002 -0.046∗∗

(0.015) (0.015) (0.009) (0.021)

Mean 548,319 0.68 193,613 0
Observations 501,973 115,313 146,600 111,677

Notes: Difference in Difference model results. Dependent variable is the log of property price sale in column
(1), a dummy variable equal to 1 if the buyer is non-Hispanic white in column (2), log income of the buyer in
column (3), and a composite variable indicating whether the buyer both has high income and is white (with
mean 0 and standard deviation of 1) in column (4). After is a dummy equal to 1 for sales at time t after Sandy. In
the top panel, Flooded is a dummy equal to 1 for a property p in Sandy’s floodplain, 0 otherwise. In the bottom
panel, Vertical distance to flood measures the absolute value of the difference between a a property’s ground
level and the geographically closest maximum level the flood reached for flooded properties p, and is equal
to 0 for non-flooded properties. All models include census block and month-year fixed effects, as well as the
non-interacted variables Flooded or Distance to flood and After (coefficients not shown for clarity.) Standard errors
two-way clustered at the census tract and year level. ∗ p< 0.1, ∗∗ p< 0.05, ∗∗∗ p< 0.01.
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Table 3: Difference in Difference: flood impacts according to damage levels

(1) p-value = p-value = p-value =
Price (log) Affectedp Minorp Majorp

Floodedp x Aftert x Affectedp -0.082∗∗∗ - - -
(0.018)

Floodedp x Aftert x Minorp -0.138∗∗∗ [0.025] - -
(0.023)

Floodedp x Aftert x Majorp -0.171∗∗∗ [0.083] [0.428] -
(0.047)

Floodedp x Aftert x Destroyedp -0.409∗∗∗ [0.005] [0.019] [0.054]
(0.098)

Mean 548,314
Observations 501,973

Notes: Difference in Difference model results, according to damage level. Column (1) regresses the log of prop-
erty sale prices on a treatment variable (Flooded a dummy equal to 1 for properties p in the floodplain, and After
is a dummy equal to 1 for sales at time t after Sandy) interacted with a set of dummy variables denoting the
level of damage according to FEMA’s evaluation, as follows: Affected if less than 20% of roof has been damaged
or the flood depth is less than 2 feet; Minor if more than 20% of roof covering is missing or the flood depth is be-
tween 2 to 5 feet; Major if some exterior walls have collapsed or the flood depth is higher than 5 feet; Destroyed if
exterior walls have collapsed. The model in column (1) also includes census block and month-year fixed effects,
as well as variables Flooded and After and their interactions with the damage dummies (coefficients not shown
for clarity.) Standard errors two-way clustered at the census tract and year level. The second column shows the
p-value of the difference between the coefficient in each row with that of the interaction between the treatment
variable and the Affected category; the third column, with that of the Minor category; and the fourth column,
with that of Major category. ∗ p< 0.1, ∗∗ p< 0.05, ∗∗∗ p< 0.01.
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Table 4: Difference in Difference in Differences by place income: Main results

(1) (2) (3) (4)
Price White Income White-
(log) (log) Income

Panel A: Binary Treatment

Aftert x Floodedp -0.045∗∗∗ -0.043∗ -0.021∗ -0.083∗∗

(0.015) (0.024) (0.010) (0.036)
Aftert x Place Incomep 0.102∗∗∗ 0.000 0.061∗∗∗ 0.056∗∗

(0.016) (0.012) (0.009) (0.022)
Aftert x Floodedp x Place Incomep 0.073∗∗∗ 0.041∗∗ -0.010 0.058∗∗

(0.014) (0.016) (0.016) (0.026)

Mean 548,306 0.68 193,626 0
Observations 504,971 122,533 153,022 118,965

Panel B: Continuous Treatment

Aftert x V. distance to floodp -0.037∗∗ -0.025 0.004 -0.035∗

(0.013) (0.014) (0.010) (0.019)
Aftert x Place Incomep 0.108∗∗∗ 0.005 0.056∗∗∗ 0.058∗∗

(0.016) (0.013) (0.008) (0.023)
Aftert x V. distance to floodp x Place Incomep 0.048∗∗∗ 0.023∗ 0.033 0.077∗∗

(0.014) (0.011) (0.021) (0.027)

Mean 548,306 0.68 193,626 0
Observations 504,971 122,533 153,022 118,965

Notes: Difference in Difference in Difference model results, according to preexisting place income. Dependent
variable is the log of property price sale in column (1), a dummy variable equal to 1 if the buyer is non-Hispanic
white in column (2), log income of the buyer in column (3), and a composite variable indicating whether the
buyer both has high income and is white (with mean 0 and standard deviation of 1) in column (4). After is a
dummy equal to 1 for sales at time t after Sandy. Place income is a composite variable that describes preexisting
income of the place property p is located. It is normalized to have a mean of zero and standard deviation equal
to 1, and it is positively correlated to places with high income per capita and income inequality, and low fraction
middle class. In the top panel, Flooded is a dummy equal to 1 for a property p in Sandy’s floodplain, 0 otherwise.
In the bottom panel, V. distance to flood measures the absolute value of the difference between a a property’s
ground level and the geographically closest maximum level the flood reached for flooded properties p, and is
equal to 0 for non-flooded properties. All models include census block and month-year fixed effects, as well as
the non-interacted variables Flooded or V. distance to flood, After, Place Income, and all of their interactions (some
coefficients not shown for clarity.) Standard errors two-way clustered at the census tract and year level. ∗ p< 0.1,
∗∗ p< 0.05, ∗∗∗ p< 0.01.

41



Table 5: Difference in Difference in Differences by place income and damage category

(1) (2) (3) (4)
Affected Minor Major Destroyed

Aftert x Damage Levelp -0.031∗ -0.082∗∗∗ -0.074 -0.578
(0.016) (0.018) (0.053) (0.347)

Aftert x Place Incomep 0.098∗∗∗ 0.099∗∗∗ 0.098∗∗∗ 0.098∗∗∗

(0.016) (0.016) (0.016) (0.016)
Aftert x Damage Levelp x Place Incomep 0.073∗∗∗ 0.104∗∗∗ 0.182∗ -0.186

(0.020) (0.015) (0.086) (0.603)

Observations in treatment 77,625 66,532 9,532 237
Observations 425,075 413,901 356,975 347,860

Notes: Difference in Difference in Difference model results, by preexisting place income and damage level. The
dependent variable in all models is the the log of property sale prices. Each column restricts the sample of treated
units to those with the same level of damage according to FEMA’s evaluation: affected in column (1), minor in
column (2), major in column (3), and destroyed in column (4). The control group in all models is composed
by properties declared unaffected by FEMA’s evaluation. Damage level is a dummy equal to 1 for properties p
assigned the level of damage on the column title. After is a dummy equal to 1 for sales at time t after Sandy.
Place income is a composite variable that describes preexisting income of the place property p is located. It is
normalized to have a mean of zero and standard deviation equal to 1, and it is positively correlated to places
with high income per capita and income inequality, and low fraction middle class. All the models include census
block and month-year fixed effects, as well as the non-interacted variables Damage Level, After, Place Income, and
all of their interactions (some coefficients not shown for clarity.) Standard errors two-way clustered at the census
tract and year level. ∗ p< 0.1, ∗∗ p< 0.05, ∗∗∗ p< 0.01.
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Figure A.1: Preexisting place characteristics

(a) Spatial variation of preexisting place income

(b) Correlation among preexisting place characteristics

Notes: The top panel shows spatial variation of preexisting place income, from high values (in blue, green hues)
to low (in red, orange hues.) Places which rank high in this variable have high income per capita and high
income inequality, and a low fraction of middle class households. The bottom panel summarizes correlation
among preexisting place characteristics. Positive correlation is plotted in orange hues, and negative in blue
hues. The area of each circle is proportional to the Pearson correlation coefficient between the relevant row and
column variables.
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Figure A.2: Primary residencies by decile of place income

Notes: Figure shows average and standard deviation of residences that are primary residences by decile of
preexisting place income. Data source are flood insurance policies underwritten by FEMA between 2010 and
2012 (prior to Sandy.)
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Figure A.3: Evolution over time of fraction of properties sold

(a) Whole sample

(b) Bottom quintile of place income (c) Top quintile of place income

Notes: Figure shows the fraction of properties in the sample sold in a given month, net of month fixed effects to
remove seasonal variation common across years. Lines show smooth values from a kernel-weighted local poly-
nomial regression for properties in the floodplain (in blue) and those outside (in orange.) The top panel plots
the whole sample, the bottom left panel uses data from properties on places in the bottom quintile of preexisting
place income, and the bottom right panel uses data from for properties on the top quintile of preexisting place
income. The dotted line at the end of October 2012 indicates the time of Sandy’s landfall.
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Figure A.4: Inland control group

(a) Inland control: between 1.5 and 2 km from coast

(b) Inland control: between 4 and 5 km from coast

Notes: Figure plots the evolution of property sale prices (logs, net of block fixed effects) for properties in Sandy’s
floodplain (in blue), properties outside the floodplain located no more than 500m from the coast (in orange),
and a further inland control (in green.) Lines represent smooth values from a kernel-weighted local polynomial
regression, shaded areas indicate 95% confidence intervals.
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Figure A.5: Original single indicators in preexisting place income

(a) Property price sale (log)

(b) Non-Hispanic White

(c) Income (log)

Notes: Figure plots the point estimate and 95% confidence intervals of the coefficients on the triple interaction in
the DDD model (equation 2), among (1) Flooded, a dummy equal to 1 for properties p inside Sandy floodplain;
(2) After, a dummy equal to 1 for sales at time t after Sandy; and (3) each place characteristic on the y-axis. Each
line on the y-axis represents a different model. Dependent variable is the log of property price sale in the top
panel, a dummy variable equal to 1 if the buyer is non-Hispanic white in the middle panel, and the log income
of the buyer in the bottom panel.
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Figure A.6: Principal Component Analysis - Summary

Social Capital (pc1): (Total variance explained: 32%): High number of owner-occupied housing, low
number of overall occupied or seasonal use housing units, high fraction religious, low census mail
return rate.
Social Capital (pc2): (Total variance explained: 28%): Low crime, high social capital index, high frac-
tion religious, low fraction of children with single mothers, high number of overall occupied housing.

1st 2nd

Owner-occupied housing units 0.49 0.20
Housing units for occasional use -0.52 -0.14
Occupied housing units -0.35 0.36
Fraction of children with single mothers 0.07 -0.34
Social capital index 0.17 0.32
Fraction religious 0.35 0.34
Violent crime 0.27 -0.41
Total crime 0.03 -0.52
2010 Census mail return rate -0.38 0.20

Income (pc1) (Total variance explained: 63%): High income per capita and income inequality, low
fraction middle class.

1st

Income per capita 0.35
Poverty rate -0.07
Gini coefficient for income 0.49
Top 1% income share 0.49
Gini Bottom 99% 0.49
Fraction Middle Class -0.37

Migration (pc1): (Total variance explained: 66%): Large migrants inflow and outflow, and share of
foreign born residents

1st

Migration inflow rate 0.58
Migration outflow rate 0.68
Fraction of foreign born residents 0.45

Notes: Principal Component Analysis - Summary. This figure shows the following elements for each of the
twelve overarching place categories: (1) narrative description of the resulting principal components (PC) vari-
able(s) and the percentage of variance explained by each PC; (2) scree plot, which plots the eigenvalue associated
with each of the PCs, and hence, provides a metric of the proportion of variance explained by each; and (3) the
loadings with which each single indicator enters into the 1st PC (and also 2nd, when applicable.)
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Segregation (pc1): (Total variance explained: 41%): High racial and income segregation, large popula-
tion density, low share of white population, long commutes
Segregation (pc2): (Total variance explained: 22%): Large share of white population, large income
segregation

1st 2nd

Share with commute less than 15 min -0.27 0.16
Racial shares (white) -0.29 0.49
Population density 0.39 -0.10
Racial segregation 0.37 -0.02
Income segregation 0.39 0.38
Segregation of poverty 0.36 0.38
Segregation of affluence 0.39 0.35
Racial shares (black) 0.19 -0.41
Racial shares (hispanic) 0.22 -0.35
Racial shares (asian) 0.19 -0.18

Education (pc1) (Total variance explained: 68%): High language and math grades, low expenditure per
student.

1st

School expenditure per student -0.31
Average language score 3-8 grade 0.67
Average math score 3-8 grade 0.67

Secondary Education (pc1) (Total variance explained: 74%): High fraction of college graduates, and
high number of colleges per capita.

1st

Number of colleges per capita 0.71
College graduation rate 0.71

Notes: Principal Component Analysis - Summary. This figure shows the following elements for each of the
twelve overarching place categories: (1) narrative description of the resulting principal components (PC) vari-
able(s) and the percentage of variance explained by each PC; (2) scree plot, which plots the eigenvalue associated
with each of the PCs, and hence, provides a metric of the proportion of variance explained by each; and (3) the
loadings with which each single indicator enters into the 1st PC (and also 2nd, when applicable.)
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Tax rates (pc1) (Total variance explained: 56%): High local tax rate, and high local government expen-
ditures per capita.

1st

Local tax rate 0.57
Local tax rate per capita 0.58
Local government expenditures per capita 0.56
State EITC exposure -0.12
State income tax progressively 0.10

Employment (pc1) (Total variance explained: 27%): High labor force participation, high fraction of
manufacturing workers, and high teenage labor force participation rate.

1st

Unemployment 0.25
Fraction working in manufacturing 0.52
Labor force participation rate 0.55
Teenage (14-16) labor force participation rate 0.51
Job growth rate (2004-2013) -0.32

Retail (pc1) (Total variance explained: 85%): high number of retail, movie theaters, and restaurants and
bars.

1st

Number of movie theaters 0.55
Number of restaurants and bars 0.60
Number of retail trade 0.58

Notes: Principal Component Analysis - Summary. This figure shows the following elements for each of the
twelve overarching place categories: (1) narrative description of the resulting principal components (PC) vari-
able(s) and the percentage of variance explained by each PC; (2) scree plot, which plots the eigenvalue associated
with each of the PCs, and hence, provides a metric of the proportion of variance explained by each; and (3) the
loadings with which each single indicator enters into the 1st PC (and also 2nd, when applicable.)
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Transport connectivity (pc1) (Total variance explained: 51%): Large distances to bus and train stations,
and motorway crossings.

1st

Average commuting time -0.25
Distance to bus station 0.59
Distance to motorway crossing 0.49
Distance to train station 0.59

Environment - Pollution (pc1) (Total variance explained: 80%): Highly polluted

1st

Pollution - PM2.5 0.71
Pollution - NO2 0.71

Weather (pc1) (Total variance explained: 68%): High January and July temperatures, and low precipi-
tation

1st

Average daily precipitation -0.52
January average temp 0.68
July average temp 0.51

Notes: Principal Component Analysis - Summary. This figure shows the following elements for each of the
twelve composite variables describing preexisting place characteristics: (1) narrative description of the resulting
principal components (PC) variable(s) and the percentage of variance explained by each PC; (2) scree plot, which
plots the eigenvalue associated with each of the PCs, and hence, provides a metric of the proportion of variance
explained by each; and (3) the loadings with which each single indicator enters into the 1st PC (and also 2nd,
when applicable.)
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Table B.1: New construction

(1) (2)
2013-2016 2009-2012

Floodedp 0.013 0.011
(0.006) (0.011)

Place incomep -0.001 -0.011∗∗

(0.004) (0.003)
Floodedp x Place Incomep 0.002 0.003

(0.005) (0.005)

Sample 13-16 09-12
Observations 150,469 98,279

Notes: Table shows how the probability that the sale of property p corresponds to a newly constructed prop-
erty changes with respect to being in Sandy’s floodplain (Flooded) and Place income, a composite variable that
describes preexisting income of the place property p is located. It is normalized to have a mean of zero and
standard deviation equal to 1, and it is positively correlated to places with high income per capita and income
inequality, and low fraction middle class. Column (1) shows results for the post-Sandy (2013-2016) period, and
column (2) for the period immediately pre-Sandy (2009-2012). Dependent variable is a dummy equal to one
if the property sold was built within the 4-year period considered. Standard errors two-way clustered at the
census tract and year level. ∗ p< 0.1, ∗∗ p< 0.05, ∗∗∗ p< 0.01.

Table B.2: Fraction of properties in sample sold by period

(1) (2) (3) (4)

Floodedp x Aftert 0.00039 0.00039
(0.00027) (0.00025)

Floodedp x Aftert x Place incomep 0.00017
(0.00021)

Trend aftert x Place incomep -0.00001∗∗

(0.00001)
Floodedp x Trend aftert 0.00002∗ 0.00002

(0.00001) (0.00001)
Floodedp x Trend aftert x Place incomep 0.00001

(0.00001)

Location fixed effects property property property property
Observations 43,491,525 43,478,085 43,491,525 43,478,085

Notes: Table shows results for changes in the probability of being sold of a property. Dataset is a balanced
panel for properties, in which the unit of observation is at the property-month level. Dependent variable is a
dummy showing whether property p was sold in a given month. Flooded is a dummy equal to 1 for properties
p in Sandy’s floodplain. After is a dummy equal to 1 for sales at time t after Sandy. Trend after is a continuous
time variable which increases one unit every month after Sandy. INCpc1 is the first principal component for the
Income category for the place property p is located in. Places which rank high in this variable have high income
per capita and high income inequality, and a low fraction of middle class households. Standard errors two-way
clustered at the census tract and year level. ∗ p< 0.1, ∗∗ p< 0.05, ∗∗∗ p< 0.01.
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Table B.3: Flood impacts on property characteristics

(1) (2)
Square Feet Year Built

Panel A: DD model

Floodedp x Aftert -22.550 -1.051∗∗

(19.479) (0.453)

Mean 1750 1964
Observations 396,340 351,578

Panel B: DDD model

Floodedp x Aftert -22.153 -0.874∗

(19.969) (0.439)
Aftert x Place Incomep -41.302∗∗∗ -0.223

(10.647) (0.153)
Floodedp x Aftert x Place Incomep 42.942∗∗ 1.087∗∗∗

(16.750) (0.354)

Mean 1750 1964
Observations 396,330 351,570

Notes: Table reports changes in house characteristics on average (top panel), and by place income (bottom panel.)
Flooded is a dummy equal to 1 for properties p in Sandy’s floodplain. After is a dummy equal to 1 for sales at
time t after Sandy. Place income is a composite variable that describes prexisting income of the place property p is
located. It is normalized to have a mean of zero and standard deviation equal to 1, and it is positively correlated
to places with high income per capita and income inequality, and low fraction middle class. Standard errors
two-way clustered at the census tract and year level. ∗ p< 0.1, ∗∗ p< 0.05, ∗∗∗ p< 0.01.
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Table B.4: Count of FEMA insurance policies, changes after Sandy

(1) (2) (3)
All 1st decile 10th decile

1 year afterm 0.126∗∗∗ 0.047∗∗∗ -0.010
(0.037) (0.012) (0.049)

Between 2 and 3 years afterm 0.156∗∗ 0.007 0.040
(0.062) (0.019) (0.082)

Beyond 3 years afterm 0.026 -0.154∗∗∗ -0.047
(0.063) (0.028) (0.099)

Observations 145,908 15,444 5,724

Notes: Dependent variable is the average number of active flood insurance policies underwritten by FEMA
by month in the census tracts included in the study between 2010 and 2018. Column (1) includes the whole
sample, column (2) restricts the sample to properties located in places in the bottom decile of place income, and
column (3) restricts the sample to properties located in places in the top decile of place income. 1 year after is a
dummy equal to one for months m 1 year after Sandy. Between 2 and 3 years after is a dummy equal to one for
months m 2 and 3 years after Sandy. Beyond 3 years after is a dummy equal to one for months m more than 3
years after Sandy. Standard errors clustered at the county level. ∗ p< 0.1, ∗∗ p< 0.05, ∗∗∗ p< 0.01.

Table B.5: FEMA insurance policies characteristics, changes by place income

(1) (2) (3) (4) (5)
Policy Building Contents Building Primary

Premium Coverage Coverage Elevation Residence
(log) (log) (log)

Afterm -0.057∗∗∗ -0.048∗∗∗ 0.038∗∗∗ 0.044∗∗∗ -0.074∗∗∗

(0.007) (0.009) (0.014) (0.005) (0.006)
Afterm x Extentt -0.076∗ 0.030 0.084∗∗∗ 0.056∗∗∗ -0.014

(0.043) (0.019) (0.025) (0.016) (0.019)
Aftert x Place incomet -0.031∗ -0.009 -0.026 0.005 0.017∗

(0.017) (0.013) (0.023) (0.011) (0.008)
AftermxExtenttxPlace incomet 0.139∗∗ 0.035 0.003 -0.074∗∗ -0.025

(0.068) (0.025) (0.039) (0.033) (0.024)

Mean 991 205,217 62,553 0.29 0.67
Observations 2,107,935 2,079,552 1,488,291 2,107,940 2,107,944

Notes: The dependent variable is the log of insurance premiums in column (1), the log of coverage for building
in column (2), the log of coverage for contents in column (3), a dummy variable whether the property is elevated
in column (4), and whether the property is the primary residence of the policyholder in columns (5). After is
a dummy equal to 1 for month m after Sandy. Extent is tract t area covered by the flood, in percentage terms.
Place income is a composite variable that describes average preexisting income at the tract t level. It is positively
correlated to places with high income per capita and income inequality, and low fraction middle class. Standard
errors clustered at the county level. ∗ p< 0.1, ∗∗ p< 0.05, ∗∗∗ p< 0.01.
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Table B.6: Flood insurance claims related to Sandy, by place income

(1) (2) (3) (4)
Building Content Cost Compliance Claims per capita

(log) (log) (log)

Place incometract -0.050 -0.099 0.030∗∗∗ -0.030
(0.143) (0.117) (0.008) (0.018)

Depthtract 0.067 0.044 -0.010 0.031
(0.048) (0.036) (0.011) (0.020)

Extenttract (%) -1.888∗∗∗ -1.240∗∗ -0.009 0.296∗∗∗

(0.474) (0.533) (0.038) (0.089)
Depthtract x Extenttract (%) 0.587∗∗∗ 0.434∗∗∗ 0.005 -0.070

(0.113) (0.140) (0.020) (0.042)

Mean 36,731 11,702 27,763 0.062
Observations 109,161 69,186 102,700 665

Notes: Table shows how flood insurance claims with a reported flooding date between October 26th and Novem-
ber 2nd 2012, from census tracts with at least one property sale record in main dataset, change with respect to
place income. Place income is a composite variable that describes average preexisting income at the county level.
It is positively correlated to places with high income per capita and income inequality, and low fraction middle
class. The dependent variable is the log of the amount claimed for building damage in column (1), the log of the
amount claimed for content damages in column (2), the log of the claim made for an increased cost of compli-
ance in column (3), and the number of claims made by census tract divided by the total number of population on
the tract, according to 2010 census, in column (4). Then, the unit of observation in columns (1)-(3) is individual
policy, and in column (4) is census tract. All models control for the average flood depth (Depth), the tract area
covered by the flood (Extent), and an interaction of both. Standard errors clustered at the county level. ∗ p< 0.1,
∗∗ p< 0.05, ∗∗∗ p< 0.01.
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Table B.7: Public Assistance by average place income at county level

(1)
Public Assistance

(log)

Place Incomecounty 0.553
(0.524)

Population (million)county 11.025∗∗∗

(2.070)
Area flooded (%)county 5.242∗∗∗

(1.562)

Mean 1,733,123
Median 29,980
Observations 7,932

Notes: Public assistance funds by average place income. Dependent variable is the federal share obligated
for disaster assistance projects after Sandy. The unit of observation is the county. Place income is a composite
variable that describes average preexisting income at the county level. It is positively correlated to places with
high income per capita and income inequality, and low fraction middle class. ∗ p< 0.1, ∗∗ p< 0.05, ∗∗∗ p< 0.01.

Table B.8: Flood impacts, by prior flood experience

(1) (2) (3) (4)
Price White Income White-Income
(log) (log)

Aftert x Sandyp -0.070∗∗∗ -0.055∗ -0.020∗ -0.102∗∗

(0.018) (0.028) (0.010) (0.042)
Aftert x Irenep -0.043 -0.050 -0.039∗ -0.099

(0.051) (0.031) (0.022) (0.058)
Aftert x Sandyp x Irenep -0.025 0.056 0.012 0.087

(0.049) (0.034) (0.030) (0.063)

Observations 501,973 115,313 146,600 111,677

Notes: Irene is a dummy equal to 1 for properties p in Hurricane Irene’s floodplain. Hurricane Irene made
landfall in the Northeast US in August 2011, fourteen months before Sandy. Sandy is a dummy equal to 1 for
properties p in Sandy’s floodplain. After is a dummy equal to 1 for sales at time t after Sandy. Standard errors
two-way clustered at the census tract and year level. ∗ p< 0.1, ∗∗ p< 0.05, ∗∗∗ p< 0.01.
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Table B.9: Flood impacts, by presence in a flood risk area

(1) (2) (3) (4)
Price White Income White-Income
(log) (log)

Aftert x Sandyp 0.021 0.023 -0.038∗∗ -0.000
(0.025) (0.021) (0.017) (0.033)

Aftert x Flood risk areap -0.080∗∗∗ -0.081∗∗ -0.002 -0.129∗

(0.019) (0.038) (0.018) (0.063)
Aftert x Sandyp x Flood risk areap -0.067∗∗ -0.032 0.020 -0.027

(0.030) (0.030) (0.027) (0.042)

Observations 475,949 110,178 140,343 106,729

Notes: Flood risk area is a dummy equal to 1 for properties p located in FEMA’s Special Flood Hazard Area. Sandy
is a dummy equal to 1 for properties p in Sandy’s floodplain. After is a dummy equal to 1 for sales at time t after
Sandy. Standard errors two-way clustered at the census tract and year level. ∗ p< 0.1, ∗∗ p< 0.05, ∗∗∗ p< 0.01.

Table B.10: Flood impacts on likelihood of owner occupying property

(1)
Owner - occupied

Floodedp x Aftert 0.003
(0.008)

Aftert x Place Incomep -0.008
(0.005)

Floodedp x Aftert x Place Incomep -0.013
(0.011)

Observations 152,344

Notes: Dependent variable is a dummy equal to one if a property is occupied by its owner. Flooded is a dummy
equal to 1 for properties p in Sandy’s floodplain. After is a dummy equal to 1 for sales at time t after Sandy.
Place income is a composite variable that describes prexisting income of the place property p is located. It is
normalized to have a mean of zero and standard deviation equal to 1, and it is positively correlated to places
with high income per capita and income inequality, and low fraction middle class. Standard errors two-way
clustered at the census tract and year level. ∗ p< 0.1, ∗∗ p< 0.05, ∗∗∗ p< 0.01.
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Table B.11: Robustness to different location fixed effects

(1) (2) (3) (4)

Floodedp x Aftert -0.045∗∗∗ -0.050∗∗∗ -0.048∗∗∗ -0.043∗∗

(0.015) (0.016) (0.015) (0.017)
Aftert x Place Incomep 0.102∗∗∗ 0.108∗∗∗ 0.109∗∗∗ 0.131∗∗∗

(0.016) (0.013) (0.013) (0.011)
Floodedp x Aftert x Place Incomep 0.073∗∗∗ 0.048∗∗∗ 0.045∗∗∗ 0.047∗∗∗

(0.014) (0.012) (0.012) (0.013)

Location FE block block block parcel
Property controls no no yes –
Observations 501,845 324,486 324,486 166,882

Notes: Robustness to different location fixed effects of results in table 4, panel (A), column (1). Column (1)
replicates preferred model with block fixed effects and no property controls. Column (3) also includes some
property characteristics as controls (square footage and year built.) Column (2) does not include controls, but
is run on the same data that model (3), that is, on properties that do have data on property controls (around
35% of the observations in the main sample are missing data on one or more of property controls.) Finally, the
model in column (4) includes parcel level fixed effects. All models include month-year fixed effects, and cluster
standard errors at the tract and year levels. ∗ p< 0.1, ∗∗ p< 0.05, ∗∗∗ p< 0.01.

Table B.12: Robustness to different time fixed effects

(1) (2) (3) (4)

Floodedp x Aftert -0.045∗∗∗ -0.042∗∗∗ -0.044∗∗∗ -0.045∗∗∗

(0.015) (0.012) (0.015) (0.015)
Aftert x Place Incomep 0.102∗∗∗ 0.289∗∗∗ 0.102∗∗∗ 0.102∗∗∗

(0.016) (0.051) (0.016) (0.016)
Floodedp x Aftert x Place Incomep 0.073∗∗∗ 0.049∗∗∗ 0.073∗∗∗ 0.074∗∗∗

(0.014) (0.011) (0.014) (0.014)

Time FE month county x month quarter week
Observations 501,845 501,796 501,845 501,845

Notes: Robustness to different time fixed effects of results in table 4, panel (A), column (1). All models include
census block fixed effects, and cluster standard errors at the tract and year levels. ∗ p< 0.1, ∗∗ p< 0.05, ∗∗∗

p< 0.01.

67



Table B.13: Difference in Difference: robustness to different clustering of standard errors

(1) (2) (3) (4)

Floodedp x Aftert -0.045∗∗∗ -0.045∗∗∗ -0.045∗∗∗ -0.045∗∗∗

(0.015) (0.013) (0.013) (0.009)
Aftert x Place Incomep 0.102∗∗∗ 0.102∗∗∗ 0.102∗∗∗ 0.102∗∗∗

(0.016) (0.007) (0.006) (0.006)
Floodedp x Aftert x Place Incomep 0.073∗∗∗ 0.073∗∗∗ 0.073∗∗∗ 0.073∗∗∗

(0.014) (0.014) (0.014) (0.010)

Cluster SE tract year tract month-year tract block month-year
Observations 501,845 501,845 501,845 501,845

(5) (6) (7)

Floodedp x Aftert -0.044∗∗ -0.044∗∗∗ -0.044∗∗∗

(0.018) (0.017) (0.017)
Aftert x Place Incomep 0.102∗∗∗ 0.102∗∗∗ 0.102∗∗∗

(0.017) (0.009) (0.008)
Floodedp x Aftert x Place Incomep 0.074∗∗∗ 0.074∗∗∗ 0.074∗∗∗

(0.016) (0.017) (0.017)

Cluster SE zip year zip month-year zip
Observations 501,507 501,507 501,507

Notes: Robustness to different clusters of standard errors of results in table 4, panel (A), column (1). All models
include census block and month-year fixed effects. ∗ p< 0.1, ∗∗ p< 0.05, ∗∗∗ p< 0.01.

Table B.14: Event study with properties in the control group

(1) (2) (3) (4)
Price White Income White-Income
(log) (log)

Aftert -0.003 -0.025 0.031 -0.003
(0.008) (0.016) (0.019) (0.042)

Observations 154161 44078 48290 43168

Notes: Sample in all models include only properties in the control group, that is, those not on the floodplain, but
located less than 500m from the shoreline. After is a dummy equal to 1 for sales at time t after Sandy. Standard
errors two-way clustered at the census tract and year level. ∗ p< 0.1, ∗∗ p< 0.05, ∗∗∗ p< 0.01. ∗ p< 0.1, ∗∗

p< 0.05, ∗∗∗ p< 0.01.
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Table B.15: Flood impacts by place income, removing higher income places

(1) (2) (3) (4)
Price White Income White-Income
(log) (log)

Floodedp x Aftert -0.037 -0.016 -0.048∗∗∗ -0.066
(0.022) (0.028) (0.013) (0.043)

Aftert x INCp 0.178∗∗∗ -0.057∗∗ 0.074∗∗∗ -0.024
(0.031) (0.026) (0.019) (0.046)

Floodedp x Aftert x INCp 0.099∗∗ 0.091∗∗ -0.083∗∗ 0.068
(0.040) (0.037) (0.029) (0.060)

Mean 459,154 0.69 171,780 -0.05
Observations 405,801 103,705 128,728 100,811

Notes: Sample includes only observations from properties with place income below the 80th percentile. ∗ p< 0.1,
∗∗ p< 0.05, ∗∗∗ p< 0.01.

Table B.16: Flood impacts, for properties identified as single homes

(1) (2) (3) (4)
Price White Income White-Income
(log) (log)

Panel A: DD model

Floodedp x Aftert -0.099∗∗∗ -0.039∗∗ -0.025∗∗ -0.084∗∗∗

(0.018) (0.017) (0.010) (0.025)

Mean 418,646 0.62 140,516 0.02
Observations 268,417 68,666 88,503 66,473

Panel B: DDD model

Floodedp x Aftert -0.061∗∗∗ -0.014 -0.042∗∗ -0.058∗∗∗

(0.017) (0.012) (0.016) (0.018)
Aftert x Place Incomep 0.076∗∗∗ -0.056∗∗ 0.044∗∗ -0.049

(0.014) (0.021) (0.015) (0.028)
Floodedp x Aftert x Place Incomep 0.106∗∗∗ 0.065∗∗ -0.044 0.067

(0.027) (0.030) (0.033) (0.058)

Mean 418,646 0.62 140,516 0.02
Observations 268,410 68,666 88,503 66,473

Notes: Sample includes only observations from properties identified as single homes by Corelogic®. Results of
the DD model are in the top panel, and DDD model are in the bottom panel. ∗ p< 0.1, ∗∗ p< 0.05, ∗∗∗ p< 0.01.
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Table B.17: Difference between average place characteristics of most positively and nega-
tively affected properties

Indicators Category Difference

Gini for income (Bottom 99%) INC 0.927
Gini for income INC 0.926
Colleges per capita SECEDU 0.899
College graduation rate SECEDU 0.839
Migration outflow rate MIG 0.814
Daily precipitation WEA 0.805
Violent crime SOCK 0.779
Food and drink business RET 0.759
Population density SEG 0.751
Top 1% income share INC 0.775
Income per capita INC 0.742
Retail business RET 0.682

Notes: Difference between average place characteristics of the 20% most positively affected and the 20% most
negatively affected properties. Table shows the 12 variables (out of 52) that yield the largest differences. All
variables have been normalized to have a mean equal to 0 and a standard deviation equal to 1. All differences
have a p-value smaller than 0.001.
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Table B.18: Place characteristics: data sources, geography, and year

Group & Indicators Geography Year Source

SEG: Segregation

Racial shares Tract 2010 Opp Lab
Share with commute less than 15 min Tract 2010 ACS
Racial segregation County 2000 Opp Lab
Income segregation County 2000 Opp Lab
Segregation of poverty County 2000 Opp Lab
Segregation of affluence County 2000 Opp Lab
Population density Tract 2010 Census SF1

INC: Income

Income per capita Tract 2010 ACS
Gini coefficient for income County 2000 Opp Lab
Top 1% income share County 2000 Opp Lab
Gini Bottom 99% County 2000 Opp Lab
Fraction Middle Class County 2000 Opp Lab
Poverty rate Tract 2010 ACS

EDU: Education

School expenditure per student ScDistrict 2010 NCES
Average math score 3-8 grade ScDistrict 2009-2011 SEDA
Average language score 3-8 grade ScDistrict 2009-2011 SEDA

SOCK: Social Capital

Social capital index County 2000 Opp Lab
Fraction religious County 2000 Opp Lab
Violent crime County 2000 Opp Lab
Total crime County 2000 Opp Lab
Occupied housing units Tract 2010 Census SF1
Housing units for occasional use Tract 2010 Census SF1
Owner-occupied housing units Tract 2010 Census SF1
Fraction of children with single mothers Tract 2010 Census SF1
2010 Census mail return rate Tract 2010 Opp Lab

TAX: Tax rates

Local tax rate County 2000 Opp Lab
Local tax rate per capita County 2000 Opp Lab
Local government exp pc County 2000 Opp Lab
State EITC exposure County 2000 Opp Lab
State inc tax progress County 2000 Opp Lab
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Group & Indicators Geography Year Source

EMP: Employment

Labor force particip rate Tract 2010 Opp Lab
Fraction manufactur work Tract 2010 ACS
14 16yo in labor force County 2000 Opp Lab
Unemployment Tract 2010 ACS
Job growth rate Tract 04 - 13 Opp Lab

SECEDU: Secondary Education

Colleges per capita County 2000 Opp Lab
College graduation rate Tract 2010 Opp Lab

MIG: Migration

Migration inflow rate County 2000 Opp Lab
Migration outflow rate County 2000 Opp Lab
Fraction foreign born residents Tract 2010 Opp Lab

RET: Retail

Number of retail trade Zip code 2010 NAICS
Number of restaurants and bars Zip code 2010 NAICS
Number of movie theaters Zip code 2010 NAICS

TRA: Transport connectivity

Distance to bus station Point 2018 OpenMap
Distance to motorway crossing Point 2018 OpenMap
Distance to train station Point 2018 OpenMap
Average commuting time Tract 2010 ACS

ENV: Environment - Pollution

Pollution - PM2.5 Grid 2008-2010 NASA
Pollution - NO2 Grid 2008-2010 NASA

WEA: Weather

January average temperature Grid 2000-2010 Prism
July average temperature Grid 2000-2010 Prism
Average daily precipitation Grid 2000-2010 Prism

Notes: This table classifies the original place descriptive variables into twelve overarching categories.
For the original variables, it lists the the geography the variables were measured in, the time in which
they were measured, and the data sources.
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Table B.19: Random Forest - Heterogeneity - Characteristics

(1) (2) (3)
20% Least Affected 20% Most Affected Difference (1) - (2)

Secondary Education (pc1)

Estimate 0.684 -0.337 1.023
90% CI (0.676,0.691) (-0.344,-0.330) (1.012,1.034)
p-value - - [0.000]

Income (pc1)

Estimate 0.634 -0.241 0.907
90% CI (0.627,0.642) (-0.249,-0.233) (0.897,0.918)
p-value - - [0.000]

Retail (pc1)

Estimate 0.506 -0.207 0.721
90% CI (0.499,0.514) (-0.215,-0.199) (0.711,0.731)
p-value - - [0.000]

Segregation (pc1)

Estimate 0.602 -0.088 0.678
90% CI (0.595,0.609) (-0.095,-0.081) (0.669,0.688)
p-value - - [0.000]

Migration (pc1)

Estimate 0.506 -0.111 0.629
90% CI (0.499,0.514) (-0.119,-0.104) (0.619,0.639)
p-value - - [0.000]

Social Capital (pc1)

Estimate 0.463 -0.040 0.508
90% CI (0.457,0.469) (-0.046,-0.035) (0.500,0.516)
p-value - - [0.000]
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(1) (2) (3)
20% Least Affected 20% Most Affected Difference (1) - (2)

Environment (pc1)

Estimate 0.289 -0.071 0.382
90% CI (0.282,0.296) (-0.078,-0.064) (0.372,0.393)
p-value - - [0.000]

Segregation (pc2)

Estimate 0.203 -0.159 0.364
90% CI (0.196,0.210) (-0.167,-0.152) (0.354,0.375)
p-value - - [0.000]

Transport (pc1)

Estimate -0.378 -0.017 -0.352
90% CI (-0.384,-0.372) (-0.023,-0.011) (-0.360,-0.344)
p-value - - [0.000]

Education (pc1)

Estimate -0.270 0.051 -0.326
90% CI (-0.277,-0.263) (0.045,0.058) (-0.336,-0.316)
p-value - - [0.000]

Employment (pc1)

Estimate -0.181 0.105 -0.282
90% CI (-0.189,-0.174) (0.098,0.113) (-0.293,-0.272)
p-value - - [0.000]

Weather (pc1)

Estimate -0.156 0.135 -0.281
90% CI (-0.163,-0.149) (0.129,0.142) (-0.290,-0.271)
p-value - - [0.000]
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(1) (2) (3)
20% Least Affected 20% Most Affected Difference (1) - (2)

Social Capital (pc2)

Estimate -0.057 0.068 -0.122
90% CI (-0.063,-0.050) (0.061,0.075) (-0.132,-0.112)
p-value - - [0.000]

Taxes (pc1)

Estimate 0.041 0.018 0.035
90% CI (0.034,0.048) (0.010,0.025) (0.025,0.045)
p-value - - [0.000]

Notes: Table presents the place characteristics along which the places in which most and least affected
properties are located differ the most, according to the analysis following the procedure in
Chernozhukov et al. (2018) with a random forest method. The place characteristics (in rows) have been
normalized to have a mean of 0 and a standard deviation of 1, so their coefficients are comparable.
Column (1) shows the average value and 90% confidence interval for each place variable for properties in
the least affected quintile. Column (2) shows those values for properties in the most affected quintile.
Column (3) shows the difference between the coefficients in (2) and (3), as well as a 90% confidence interval
and the p-value of the difference.
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Appendix C Conceptual model: detailed description

This appendix describes the full set up of the conceptual model outlined in section 2.

Set up The basic model set up considers two neighborhoods, A and B, and two types of
households, H and L. Half of the households are of type H, and the other half are type L. si
summarizes the proportion of residents who are of type H in each neighborhood i:

si =
Hi

Li + Hi
i = A, B

H-type households can be characterized as having high-income, and/or other kind of so-
cioeconomic traits – e.g. race, ethnicity – as long as those are correlated with a higher in-
come. The externalities derived from having H types as neighbors are higher than L types
for all households,57 which make H types the preferred neighbors of all residents.

Both neighborhoods A and B have the same number of houses, and each household lives
in one house. Each neighborhood i is endowed with a bundle of exogenous amenities Zi. I
assume that one of the amenities in the bundle is the absence of flood risk, −Fi:

−Fi ∈ Zi i = A, B

In this setting, I assume neighborhood A represents a coastal location, whose amenity
bundle overall is more valued by residents of both types with respect to those in B. B could
be inland, or also a coastal location with fewer amenities.58

Willingness to pay to live in neighborhood i A household prefers to live in a neighbor-
hood that has more residents of the preferred type, more valued amenities, or both. How
these preferences change is allowed to vary by household type. Following Becker and Mur-
phy (2000), I assume that the willingness to pay for amenities is separable from the will-
ingness to pay for neighborhood type. Then, the overall willingness to pay for living in
neighborhood i for a resident of type j is defined by:

V j = uj(Zi) + f j(si) with u′, f ′ > 0; u′′ = f ′′ = 0 59

Equilibrium There is a competitive market for housing in both neighborhoods, so each
house is sold to the highest bidder, regardless of her type. Hence, neighbors cannot choose
which type moves into their neighborhood (in other words, the model as formulated does
not allow active discrimination.)

House prices in equilibrium in neighborhoods A and B, Pa and Pb respectively, are pinned
down by the different resident types’ willingness to pay functions. In particular, an equi-

57Positive externalities from neighbors could be related to job opportunities, networking, increased school
achievement, a prestige signal, etc.

58A could have higher amenities than B for historical reasons and path dependency, e.g. B could be on a
coastal site where there were historical marshes (Villarreal, 2015)

59Becker and Murphy (2000) allow u to be concave or linear, while they do not impose any constraints on the
curvature of f . For simplicity, I assume a linear willingness to pay for amenities and preferred neighbors.

76



Figure C.1: Conceptual model set up: premium for living in A in equilibrium

Pa − Pb

sas 1

H

L

P∗a − P∗b

s∗a

Notes: Figure graphically depicts the set up for the segregation model described in section 2. Its plots the
willingness to pay for living in neighborhood A with respect to B (y-axis) versus the ratio of H types living
in neighborhood A (sa, in the x-axis.) for both types of residents (L and H curves.) It shows that, if a partial
segregation equilibrium exists, that equilibrium is stable.

librium yields sufficiently higher prices in neighborhoods with larger shares of H and more
valued amenities (in this case, neighborhood A), so no one would be better off by moving.

If both types H and L are indifferent between neighborhoods in equilibrium, it must be
that:

P∗a − P∗b = fh(s∗a) + uh(Za)− fh(s∗b)− uh(Zb)

= fl(s∗a) + ul(Za)− fl(s∗b)− ul(Zb)
(3)

where s∗a and s∗b are the equilibrium ratios of H types in both neighborhoods; P∗a > P∗b ,
and s∗a > s∗b .

Figure C.1 graphically shows the premium for living in A with respect to B is an stable
equilibrium with partial segregation.60 61 62

In this figure, I assume that H-types put a higher relative value on the coastal amenities
of A than L-types. This assumption would be consistent with H and L valuing these ameni-

60Note that for the existence of an interior partial segregation solution, a required condition is that the slope
of the willingness to pay for the preferred neighbor is higher for L-types than for H-types.

61This equilibrium is stable: To the left of s∗a , the willingness to pay of H-types is above that of L-types. Hence,
if an L type were to move from A to B, moving s to the left of equilibrium, a type H – with a higher willingness to
pay at this point – would outbid a type L for the empty house, raising s back to s∗a . The opposite would happen
to the right of s∗a : the higher willingness to pay of type L at this point would bring s down.

62Note there are two other possible equilibria besides the one drawn in figure C.1. One fully integrated (with
s∗a = 0.5) if L’s WTP for living in A is always above H’s; and another one fully segregated (with s∗a = 1) if H’s
WTP is always above L’s.
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ties differently because of their intrinsic characteristics (e.g. wealth, education levels, etc),
but implications from the model below would hold regardless of this assumption.63

Flooding shock as a disamenity in coastal location: assumptions Starting from an equi-
librium scenario, I assume that neighborhood A is hit by a flood. All of the residents dislike
flooding, as a result, the bundle of amenities in A is less desirable than before for all resi-
dents. I further make the following assumption:

Assumption 1: Utility loss after the flood is larger for L types than H types, that is:

uh(Zi,1)− uh(Zi,2) < ul(Zi,1)− ul(Zi,2) with i = A, B

where 1 represents the pre-flood period, and 2 is the post-flood period.
A change in the risk of flooding can be understood as an income shock (e.g. as in Smith

and Whitmore (2019).) Responding to a flood could mean structure reconstruction, raised
flood insurance premiums, expenses incurred in preparation for the next flood, etc. Under
the assumptions of diminishing returns to income and that L-types are more credit con-
strained, the disutility from the flood would be higher for low-income L-types than for H-
types.

Further, if B is also a coastal location impacted by a flood, I also assume that the loss of
utility within each resident type would be lower in B than in A. Specifically, I carry on the in-
terpretation of the flood as an income shock, and assume that the utility loss is proportional
to pre-flood residential prices.64

Assumption 2: Utility loss after the flood for a given resident type is proportional to the pre-
flood residential prices, and hence, higher in neighborhood A than in B in this setting.

uj(Za,1)− uj(Za,2) = α ·
[
uj(Zb,1)− uj(Zb,2)

]
with α ∝

Pa

Pb
> 0 and j = H, L

where 1 represents the pre-flood period, and 2 is the post-flood period.

Comparative statics Given the assumptions above, the model yields two main implica-
tions on the ratio of the preferred type of resident in A, and the evolution of premiums to
live in A with respect to B after a flood:

Prediction 1: In the new equilibrium after flooding, neighborhoods are more segregated, i.e.
s∗a,2 > s∗a,1, were s∗a,2 is the equilibrium ratio of H types in neighborhood A after flooding in period 2,
and s∗a,1 is the pre-flood s in equilibrium.

Appendix D shows that a negative shock to amenities would yield the same level of
segregation, sa, as long as the drop in utility derived from this negative shock is equal for

63If H- and L- types valued amenities in A equally, I would need to assume some concavity on the willingness
to pay for preferred neighbors for the partial segregation equilibrium to exist

64e.g. taxes could be levied to protect properties in anticipation of future storms (Shafroth, 2017), flood insur-
ance premiums could be more expensive for more expensive properties, etc.
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both H and L types. If, as it assumed in this context, the drop in utility is rather relatively
higher for L-types than H-types, the outcome is necessarily an increase in s∗a to reach a new
equilibrium.

Intuition from this result follows up directly from Becker and Murphy (2000), who argue
that differences in the evaluation of amenities should contribute to segregation. After the
flood, amenities in A with respect to B are relatively more valuable for H than L. This leads
to an influx of H-types to A, in detriment of L type residents.

Prediction 2: In the new equilibrium after flooding, the premium for living in A with respect to
B could increase, stay constant, or decrease with respect to pre-flood levels, depending on the relative
drops in utility derived from the flood and the slopes of f j(·) for both types of residents.

Appendix D shows that, mathematically, the premium for living in A with respect to B
would stay constant after a flood as long as:

f ′h(s)
f ′l (s)

=
δh

δl
(4)

Where f ′j (sa) is the slope of the willingness to pay for preferred neighbors and δj is de-
fined as the difference in utility derived from amenities in A and B before and after the flood
for resident type j = H, L, that is:

δj = uj(Za,1)− uj(Zb,1)−
[
uj(Za,2)− uj(Zb,2)

]
Then, the premium for living in A will increase if f ′h(sa)

f ′l (sa)
> δh

δl
, and will decrease if the

opposite is true. The more H values to be around other H-types than L does (i.e. the larger
the ratio f ′h(sa)

f ′l (sa)
), and the larger the drop in utility after the flood for L-types with respect o

H-types (i.e. the smaller the ratio δh
δl

), the more likely it is that the premium to live in A
increases after a flood.

Intuitively, the new equilibrium after a flood would necessarily have a higher level of
s∗a given the model assumptions, as the model prediction 1 notes. Both L- and H-types
derive a higher utility from having more H-type neighbors, even if they find the flood a
disamenity. For the premium for living in A to stay constant after a flood (i.e. for condition
4 to be satisfied), it would be necessary that the relative increase in the willingness to pay
for higher H is enough to compensate for the flood disamenity.

Graphically, figure C.2 plots two potential scenarios on the change of the premium for
living in neighborhood A after a flood. In the top panel, P∗a − P∗b increases after the flood,
while in the bottom panel decreases.

In the bottom panel of figure C.2, and even if s∗a is higher at time 2, premium to live in A
decreases as the disamenity from the flood for both types is large enough given the slopes
of the willingness to pay for a higher s∗a . In the top panel however, the utility loss derived
from the flood is not large enough in relative terms to overcome the utility gain of having
more H-type neighbors. The premium to live in A with respect to B increases.

The second result is a priori less intuitive. All of the residents derived disutility from
the flood, and still, prices in A relatively increase after the flood. This result holds if only A
is hit by a flood and not B, or if A is more severely hit than B. In fact, the result holds even
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Figure C.2: Conceptual model - Premium changes after flood

Pa − Pb

sas 1

H1

L1

H2

L2

(P∗a,1 − P∗b,1)

s∗a,1

(P∗a,2 − P∗b,2)

s∗a,2

(a) Premium for neighborhood A increases

Pa − Pb

sas 1

H1

L1

H2

L2

(P∗a,1 − P∗b,1)

s∗a,1

(P∗a,2 − P∗b,2)

s∗a,2

(b) Premium for neighborhood A decreases

Notes: These figures show two potential after-flood scenarios for the segregation model described in section 2.
In both panels, the ratio of H-types living in A (sa) increases after the flood. In the top panel, the premium to live
in A with respect to B also increases, as the utility derived from more H-type neighbors more than compensates
the flood disamenity. In the bottom panel, which only differs from the top panel in that the disamenity drop for
H-types is larger than in the top panel, the premium to live in A decreases after the flood.
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if the disutility from the flood was so large as to make the bundle of amenities in A less
desirable than B.65 In this case, B would have more valued amenities and cheaper houses
than A. However, without the ability to form coalitions to coordinate a move to B en-masse,
H-types will stay in A where s∗ is higher.

Results from this model provide key insights on adaptive behavior after a flood, or lack
thereof. A seemingly irrational behavior of relatively increased property prices after a flood
could happen even if the flood disamenity is internalized, as long as flooding affects rela-
tively more the lesser valued type of resident.

65Graphically, it would mean that the premium to live in A, P∗a − P∗b , evaluated at s = 0.5, fully integrated
equilibrium, is negative.
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Appendix D Conceptual model: key mathematical derivations

Model prediction 1: In the new equilibrium after flooding, neighborhoods are more segregated,
i.e. s∗a,2 > s∗a,1, were s∗a,2 is the equilibrium ratio of H types in neighborhood A after flooding in period
2, and s∗a,1 is the pre-flood s in equilibrium.

Derivation: Let t = 1 be the pre-flood period, and t = 2 the post-flood period. The
equilibrium condition 5 must hold in equilibrium in both periods, given the values of s∗a
and Za at t = 1, 2.

P∗a,t − P∗b,t = fh(s∗a,t) + uh(Za,t)− fh(s∗b,t)− uh(Zb,t)

= fl(s∗a,t) + ul(Za,t)− fl(s∗b,t)− ul(Zb,t)
(5)

Rearranging terms, and using the fact that sb = 1− sa:

fh(s∗a,t)− fh(1− s∗a,t)−
[

fl(s∗a,t)− fl(1− s∗a,t)
]
= ul(Za,t)− ul(Zb,t)− [uh(Za,t)− uh(Zb,t)]

(6)
The left hand side in 6 is strictly decreasing in sa, as its derivative with respect to sa is

equal to:

∂ fh(sa,t)

∂sa,t
− ∂ fh(1− sa,t)

∂sa,t
− [

∂ fl(sa,t)

∂sa,t
− ∂ fl(1− sa,t)

∂sa,t
] = 2 · f ′h(sa,t)− 2 · f ′l (sa,t)

and f ′l (·) > f ′h(·).66

The change in the right hand side in 6 in the post-flood period with respect to pre-flood
is equal to:

ul(Za,2)− ul(Zb,2)− [uh(Za,2)− uh(Zb,2)]− [ul(Za,1)− ul(Zb,1)] + [uh(Za,1)− uh(Zb,1)]

Rearranging terms:

ul(Za,2)− ul(Za,1)− [ul(Zb,2)− ul(Zb,1)]− [uh(Za,2)− uh(Za,1)] + [uh(Zb,2)− uh(Zb,1)]

Because of the model assumption (2), that is, that utility loss after the flood for a given
resident type is proportional to pre-flood residential prices, this is equivalent to:[

1− 1
α

]
︸ ︷︷ ︸

>0

· [ul(Za,2)− ul(Za,1)]︸ ︷︷ ︸
À

−
[

1− 1
α

]
︸ ︷︷ ︸

>0

· [uh(Za,2)− uh(Za,1)]︸ ︷︷ ︸
Á

Flooding is a disamenity for both types, so both À and Á are negative in the equation
above. Because of the model assumption (1), that is, that the utility loss after the flood is
larger for L types than H types, it must be that the absolute value of À is larger than Á.

66As noted on section ??, a required condition for the existence of an interior partial segregation solution is
that the slope of the willingness to pay for the preferred neighbor is higher for L-types than for H-types.
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Then, we conclude that the change in the right hand side in 6 in the post-flood period with
respect to pre-flood is negative. That is, the right hand side in 6 is smaller after the flood

As the right hand side of condition 6 decreases after the flood, and the right hand side is
strictly decreasing in sa, it must be that the equilibrium level of s∗a which satisfies condition
5 in t = 2 is larger than before the flood.

Model prediction 2: In the new equilibrium after flooding, the premium for living in A with
respect to B could increase, stay constant, or decrease with respect to pre-flood levels, depending on
the relative drops in utility derived from the flood and the slopes of f j(·) for both types of residents.

Derivation: The steps below show the derivation of condition 4 in the main text, which
guarantees that the premium for living in A with respect to B stays constant after a flood.
As above, let t = 1 be the pre-flood period, and t = 2 the post-flood period. The equilibrium
condition 7 must hold in equilibrium in both periods, given the values of s∗a and Za at t =
1, 2.

P∗a,t − P∗b,t = fh(s∗a,t) + uh(Za,t)− fh(s∗b,t)− uh(Zb,t)

= fl(s∗a,t) + ul(Za,t)− fl(s∗b,t)− ul(Zb,t)
(7)

For the premium for living in A to remain constant, it must be that P∗a,1− P∗b,1 = P∗a,2− P∗b,2.
Then, the following must hold for H-types in particular:

fh(s∗a,1) + uh(Za,1)− fh(s∗b,1)− uh(Zb,1) = fh(s∗a,2) + uh(Za,2)− fh(s∗b,2)− uh(Zb,2) (8)

For notation simplicity, let δj be the difference between utility derived from amenities in
A and B before and after the flood for resident type j = H, L:

δj = uj(Za,1)− uj(Zb,1)−
[
uj(Za,2)− uj(Zb,2)

]
and ∆sa the absolute value change in the equilibrium values of s∗a between the two peri-

ods:

∆sa = s∗a,2 − s∗a,1

Reorganizing terms in 8, making use of the fact that sb = 1− sa, and the notation defini-
tions above yields:

[ fh(s∗a + ∆sa)− fh(1− s∗a − ∆sa)]− [ fh(s∗a)− fh(1− s∗a)] = δh (9)

Diving both sides in 9 by ∆s∗a yields:

[ fh(s∗a + ∆sa)− fh(1− s∗a − ∆sa)]− [ fh(s∗a)− fh(1− s∗a)]
∆sa

=
δh

∆sa
(10)

The left hand side in 10 is by definition of the derivative function equal to:

∂ [ fh(s)− fh(1− s)]
∂s

(11)
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which is arithmetically equal to 2 · f ′h(s).
Then, 10 could be rewritten as:

2 · f ′h(s) =
δh

∆sa
(12)

Repeating the same steps for the L-types would yield an equivalent condition:

2 · f ′l (s) =
δl

∆sa
(13)

Considering 12, 13, and the fact that both H- and L-types experience the same ∆sa yields
the required condition for the premium to live in A with respect to B constant after the flood
(as in equation 4 in the main text):

f ′h(s)
f ′l (s)

=
δh

δl
(14)

84



Appendix E Data: further details on sources, processing, and key
statistics

Property sales and buyers’ demographics

Sample I only use property sales records with complete data on property location, sale
amount and date. Consistently with the literature, I drop records with sale amounts larger
than the 99th percentile, and smaller the 5th percentile. Dropping observations with lower
sale values also ensures I only consider arm’s length transactions, as transactions among
kins are usually recorded with symbolic low values, e.g. $1, $100. I also exclude properties
that have been sold 3 times or more in one calendar year.

Matching process with mortgage lending transactions Mortgage lending transactions in-
clude data on loan amount, code of lending institution, census tract, and transaction year. I
linked the code of each lending institution with its name scraping the Federal Financial In-
stitutions Examination Council webpage. These four variables, present also in the property
sale records, are used for matching a property transaction record with race, ethnicity and
income of the buyer.

Consumer price index I deflate property values to $2010 using the CPI-Housing index
from the Federal Reserve Bank of Saint Louis (FRED St Louis, 2019). Buyer’s incomes have
been deflated to $2010 current values using the CPI - Northeast urban from the Bureau of
Labor Statistics (BLS, 2019).

Place characteristics

Data sources As table B.18 shows, data come from several publicly available sources.
Many of the variables come from Chetty et al. (2014) and Chetty et al. (2018) 67. The benefit of
using these datasets is that they contain not only harmonized data from publicly available
sources such as the US Census, the FBI Uniform Crime Reporting Program; but also ag-
gregate summary variables derived from non-publicly available federal income tax records
(such as fraction middle class, and top 1% income share.) In order to gain more spatial
granularity, I get directly from the US Census68 data that it is publicly available (e.g. racial
shares, income per capita, share of occupied housing units at the census tract level.) Other
data come from the National Center for Education Statistics (NCES, 2019), the Stanford Ed-
ucation Data Archive (Stanford CEPA, 2019), the County Business Patterns at the US Census
(US Census, 2019), NASA’s Socioeconomic Data and Applications Center at Columbia Uni-
versity (Van Donkelaar et al., 2018; Geddes et al., 2017), PRISM Climate Group at Oregon
State University (PRISM, 2019), , and Open Street Map (Open Street Map, 2019).

Time of measurement: transport All data have been measured prior to 2011, so their lev-
els are not possibly affected by the 2012 flooding. The only exception is for data on transport

67Data available at the website of the Opportunity Insights group at Harvard University
68Specifically, from the 5-year 2010 American Community Survey and the 2010 Census.
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infrastructure location (motorway crossings and subway, train, and bus stations), that has
been downloaded from the Open Street Map website as of May 2018. It should also be noted
that the transport accessibility variables do not take into account temporary closures for re-
pairs after Sandy.69 Even if there is no evidence that most of transport infrastructure has
changed significantly70 and property sales decisions might not be overly influenced by tem-
poral transit disruptions, the coefficients on the transport variables should be interpreted
with caution.

Matching process I assign each property sale record to the relevant place variables us-
ing different techniques according to how these variables were spatially defined. Many of
the variables are defined within administrative boundaries (county or census tract.) I use
the properties’ longitude and latitude coordinates to determine which 2010 census bound-
aries they correspond to, which it is then used to merge to these variables. For variables
measured in a grid, i.e. those on the Environment and Weather categories in table B.18,
properties were assigned the value of the cell their longitude and latitude coordinates fell
into. Distance to transport infrastructure was measured as the linear distance between the
property’s longitude and latitude coordinates and those of the closest infrastructure.

Flood risk maps

I obtain data on flood hazard designation from Flood Insurance Rate Map (FIRM) digitized
maps from FEMA Flood Map Service (FEMA, 2019b). In particular, I obtain spatial de-
limitation of the Special Flood Hazard Area (SFHA.) The SFHA marks areas with an annual
probability of flood equal to 1% or higher. Owners of properties in the SFHA are required by
law to purchase flood insurance if receiving a federally backed mortgage (Horn and Webel,
2019).

These data come with two caveats. First, digitized maps are not available throughout
the area of study. Notably, Atlantic county in New Jersey is missing a map. Records in
these areas are hence not included in models which control for being in the SFHA. Second,
the maps available are current as of October 2018. Some communities have seen their flood
maps updated since Sandy’s flooding in October 2012. This will introduce some error in my
SFHA classification, as some properties that I assign as inside the SFHA were actually not in
the flood hazard area in 2012 (with false positive type of errors, i.e. properties not classified
as SFHA that were actually in the flood hazard area in 2012, also possible but less likely.)71

69For instance, nine New York City subway tunnels were affected by Sandy flooding, whose repairs are still
ongoing on 2019 (MTA, 2016). .

70A major exception to this would be the planned 15-month closure of the L subway line in NYC, connecting
Brooklyn and Manhattan (MTA, 2019). Even if it was not finally carried, the expectation of a complete shutdown
of the line might have had an impact on property prices locally. Further, four subway stations opened in NYC
since Sandy. As these changes are affecting NYC, with an already existing dense transport network, I don’t
expect the coefficients on variables measuring distance to transport infrastructure to be overly affected

71Note that the decision to update flood hazard maps is endogenous to the community, and oftentimes in-
volves a legal contentious process (Ramey, 2015). Preliminary flood maps are made available to the general
public during the updating process, so community residents could be taking them into account in decision
making before they are legally made effective.
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Flood insurance claims and policies

Finally, I use two datasets from FEMA’s National Flood Insurance Program (NFIP) to eval-
uate changes in flood insurance before and after Sandy (FEMA, 2019d,c). The NFIP is the
largest provider of residential flood insurance in the United States. In 2016, 90% of all flood
insurance premiums were written for the NFIP, while only 10% were for private flood in-
surance (Insurance Information Institute, 2018). Data from the NFIP would then draw an
informative picture on how residents affected by Sandy engaged with flood insurance.

One of the datasets contains data on NFIP claims, including insurance payment amounts
and the date the water entered the building. The second dataset lists NFIP policies in force,
including beginning and termination date, premiums, coverage amounts, and census tract
of the property. Both datasets contain data since January 1st, 2009.

The unit of observation in both datasets is the individual claim or policy, respectively.
Data have been redacted to ensure anonymity, so the smallest geography indicator is the
census tract. Hence, the analysis of flood insurance claims and policies will be done at the
census tract level, as it is not possible to assign a claim or policy to a particular property
sale. In order to create a sample of census tracts that is plausibly comparable to the set of
properties located less than 500m from the shoreline, I select census tracts that have at least
one property sale record on the 500m buffer from the shoreline.
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Appendix F Principal Component Analysis

I summarize data on place variables and buyers’ demographics using Principal Component
Analysis (PCA). PCA is a suitable technique to obtain a low-dimensional representation of
the data that explains as much as possible of the original variation.72 Formally, PCA finds
the linear projection of the data that minimizes the distance to the original data points.73

PCA yields a series of unit vectors – eigenvectors, or principal components (PCs) – which
are linear combinations of the original variables, and their associated eigenvalues, which
determine the proportion of variance explained by each PC. Hence, the eigenvectors with
the largest associated eigenvalues identify the directions in which the original data exhibits
the largest variation (Woods and Edwards, 2011; James et al., 2015).

With respect to buyers’ demographics, I construct a summary variable of buyers’ race
and income, whereby buyers who rank high on this composite variable have higher income
and are more likely to be white. This variable allows me to evaluate empirically predictions
of the model described on 2, which predicts join sorting along these dimensions.

With respect to place characteristics, the main benefit of combining indicators into prin-
cipal components in this setting is to avoid spuriously capturing heterogeneity alongside
single place variables. Out of random chance alone, 1 out 20 of the place variables identified
would yield results with a p-value smaller than 0.05. Single indicators within each of the
categories are multicollinear. The first principal component captures the data signal within
each of the overarching place categories, and hence it is less noisy than a single indicator.
Hence, PCA increases confidence on not measuring overfitted models compared with the
use of a single indicator to represent an overarching category, while it does not sacrifice the
original goal of describing as many observable place characteristics as possible. One draw-
back of PC variables, as linear combinations of variables, is the loss of tractability. As a
robustness check, I replicate main results using single variables instead of a PC combination
for key variables in section 7.

Figure A.6 summarizes the results of the principal component analysis for the place vari-
ables. Specifically, it shows the scree plots for each of the twelve categories, that is, the
eigenvalue or proportion of variance explained by each of the PCs. I determine how many
PCs to include in the analysis for each category by visually inspecting where the proportion
of variance explained significantly drops.74 This results in picking only the first PC in most
of the categories, and the second one as well in the segregation and social capital categories.

Figure A.6 also shows the loadings of each PC variable, that is, the coefficients assigned
to each of the original variables in the linear combinations that yield the PCs. The original
variables were normalized to have mean zero and standard deviation equal to one before
performing PCA, to avoid the analysis being affected by variable scaling. Considering these
loadings, I also narratively describe each of the PCs in figure A.6.

72Some examples in the economics literature which use a low-dimension representation of urban amenities
are Collinson and Ganong (2018) and Diamond (2016). In particular, Diamond (2016) also uses PCA in her
approach.

73This is equivalent to finding which linear combination of the original variables maximizes variance.
74This visual test is known as the “scree” test (James et al., 2015)
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Appendix G Machine learning procedure for estimating heteroge-
neous effects

G.1 Sketch of procedure in Chernozhukov et al. (2018)

For completeness, I sketch below the steps taken to measure heterogeneity following Cher-
nozhukov et al. (2018). For formal proofs, I refer to the original paper:

1. The data is randomly split into two samples, main and auxiliary, 100 times.
2. For each of the 100 iterations, the auxiliary sample is used to train two models to esti-

mate proxies for the baseline and treatment effects using a machine learning method,
i.e. the model which optimally estimates the outcomes based on covariates is chosen
separately for flooded and non-flooded properties. The baseline and treatment prox-
ies are then obtained by applying the chosen models to the main sample.75 Following
Chernozhukov et al. (2018) , I compute results with four different ML methods: ran-
dom forests, elastic net, boosted tree, and neural networks.76

3. With the baseline treatment proxies in hand, consistent key features of the treatment
effects are estimated using the main sample data as follows:

(a) The best linear predictor of the treatment effect is obtained by running the fol-
lowing weighted linear regression:

Y = α0 + α1B(Z) + α2S(Z) + β1[D− p(Z)] + β2[(D− p(Z)][S(Z)−E(S(Z))] + ε
(15)

with

E[ω(Z)εX] = 0

and where Y is the outcome variable, i.e. the log of the property sale price; D is
a variable indicating treatment status, i.e. equal to one for properties on Sandy’s
floodplain, and to zero for those outside; Z is a vector of place covariates, as
described in section 3; B(Z) and S(Z) are, respectively, the proxy baseline and
treatment effects obtained on the previous step; p(Z) is the probability of as-
signment; ω(Z) is equal to {p(Z)(1 − p(Z))}−1 ; and X is [1, B(Z), S(Z), D −
p(Z), (D− p(Z))(S(Z)−E(S(Z))]. Standard errors are two-way clustered at the
census tract and quarter of year levels, to maintain equivalency with the main
specification of the paper.
Chernozhukov et al. (2018) prove that the coefficients β1 and β2 estimated in 16,
pin down the best linear predictor of the true treatment effect given the proxy
treatment effect, i.e. solve the following maximization problem:

75These proxies for treatment effects might be noisy and biased predictors. Hence, they need to be further
post-processed to generate consistent estimates.

76Main results presented are derived from the preferred random forest method, which performs better ac-
cording to criteria on Chernozhukov et al. (2018). Results from other methods available from the author upon
request.
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(β1, β2)
′ = argmin

b1,b2

E[s0(Z)− b1 − b2S(Z)]2 (16)

where s0(Z) is the true treatment effect given covariates.
In particular: β1 = E[s0(Z)] and β2 = Cov[s0(Z), S(Z)]/Var[S(Z)]. Rejecting
the hypothesis that β2 – which Chernozhukov et al. (2018) refer to as the “het-
erogeneity loading” – is equal to zero means that (1) there is heterogeneity in
the treatment effect according to covariates, and (2) the proxy S(Z) is a relevant
predictor.

(b) Average effect by groups, defining groups as the quintiles according to the pre-
dicted treatment effect, are obtained by running the following weighted linear
regression:

Y = α0 + α1B(Z) + α2S(Z) + ∑
k=1

Kγk · [D− p(Z)] · 1(Gk) + ν (17)

with

E[ω(Z)νW] = 0

and where Gk, with k = 1, ..., 5, representing one of the quintiles which divide the
support of S(Z) into five non-overlapping regions; and W is equal to [1, B(Z), S(Z), D−
p(Z), ∑K

k=1 1(Gk)]
′. As above, standard errors are two-way clustered at the census

tract and quarter of year levels.
Chernozhukov et al. (2018) prove that the coefficients γk estimated in equation 17
are the group average treatment effects, i.e.:

γk = E[s0(Z)|Gk] with k = 1, ..., 5

(c) Average characteristics of the properties on the top and bottom quintiles are ob-
tained by averaging the place characteristics, g(Y, Z) of the properties in each
of the quintiles:

δi = E[g(Y, Z)|Gi] with i = 1, 5

4. Point estimates of key features are computed as the median of the estimates obtained
in the 100 splits.

5. The final step is to compute confidence intervals and p-values that take into account
uncertainty coming both from the estimation as well as on the data splitting. Cher-
nozhukov et al. (2018) prove that this could be achieved by taking the medians of
confidence interval bounds and p-values obtained in the 100 steps and adjusting its
nominal level (from a 1− α confidence level to a 1− 2α level) to allow for splitting
uncertainty.

6. Additionally, Chernozhukov et al. (2018) compute metrics which allow comparing the
performance of the different ML methods. In particular, the paper suggests that the
best ML method could be chosen as the one that maximizes the following metric:

Λ := |β2|2Var(S(Z))
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which is equivalent to maximizing the correlation between the true treatment value
s0(Z) and the computed proxy predictor S(Z).

G.2 Machine learning methods: sample and tuning parameters

I complete the CDDF procedure with four different ML methods: random forests, elastic net,
boosted tree, and neural networks using the caret package in R. Following Chernozhukov
et al. (2018), I chose model tuning parameters by repeated 2-fold cross-validation77 in the
elastic net, boosted tree, and neural networks methods; and use the default tuning parame-
ters in the random forest method.

Given the large number of observations in my dataset, allocating half of the observations
to the auxiliary sample as in CDDF is too taxing computationally for some of the methods.
Hence, I maximize which percentage to allocate to the auxiliary sample while maintain-
ing computational times within reasonable limits,78 and check that the main results are not
sensitive to the specific percentage chosen.79

77In 2-fold cross-validation, the auxiliary sample is divided into two sets, or folds. The model is fit in one of
the folds, and the mean squared error given by the model is computed in the other fold. The process is repeated
twice, each time fitting the model in one of the folds. The chosen tuning parameters are the averages of both
folds. The process is repeated two times.

78Specifically, the following percentage of observations are allocated into the auxiliary sample in each of the
methods: 12.5% in random forests; 10% in elastic net and boosted trees; and 5% in neural networks.

79Further robustness checks in which different percentages of the data are allocated to the auxiliary samples
are available from the author upon request.
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Appendix H Discrete change at the flood boundary: regression dis-
continuity

H.1 Regression discontinuity: model

I evaluate whether there is a discrete jump in outcomes above and below the flood extent
boundary using a regression discontinuity design, that is, I evaluate differential changes
in outcomes for properties that were barely flooded with respect to those that were nearly
missed by the flood. This approach follows the spatial boundary discontinuity design, fre-
quently applied in the literature (e.g. Black (1999); Bayer et al. (2007). However, unlike these
cases, the running variable will not be the layout distance to a boundary, but rather, the
vertical distance to the maximum level reached by the flood surge nearby each property.

This analysis complements the DD model described in 4.1 by analyzing whether changes
between flooded and non-flooded properties are driven partly by discrete changes alongside
the flood boundary extent. The exact flood extent depends on highly localized atmospheric
and physical phenomena, and hence, it would not have been possible for individuals to sort
on both sides of the threshold in foresight of the flood. I would expect a discontinuity in the
outcomes at the flood extent boundary if Sandy flooding sent a strong signal about the risk of
flooding. On the other hand, if the risk of flooding was updated similarly for barely flooded
and nearly missed properties, I would expect outcomes to change more continuously across
the threshold determined by the flood extent boundary.

Besides complementing it, a regression discontinuity design allows a more relaxed iden-
tification assumption than the DD model. In the DD model, I assume that any unobservable
factors affecting the outcomes change synchronously in the treatment and the control groups
(i.e. flooded and non-flooded properties.) The RD model, on the other hand, can be under-
stood as a “local randomized experiment” around the threshold (Lee and Lemieux, 2010).
In particular, the RD model allows unobservable variables to have a nonlinear effect, as long
as they do not change discontinuously at the flood boundary extent. The penalty for a more
relaxed identification assumption is that the effect is only locally identified around the flood
boundary extent.80

As described in section 3, I construct a metric to measure vertical distance to flood level.
This metric is positive for properties whose ground stood above the flood maximum water
elevation, and negative for those below. With this running variable in hand, I run the fol-
lowing specification to estimate whether there is a discrete jump in outcomes around the
flood extent boundary using only post-Sandy data:

yp = β1{cp ≤ 0}+ f (cp
+) + 1{cp ≤ 0} f (cp

−) + εp (18)

where yp is the residualized log sale price of property p, net of census block and month
fixed effects; c is the running variable, i.e. the difference in elevation between the property
ground and the flood water elevation at the closest point; and f (·) represents a function of

80Lee and Lemieux (2010) suggest a broader interpretation of RD coefficients, as the weighted average treat-
ment effect, with weights proportional to the ex ante likelihood of being close to the threshold. The more similar
the weights are among observations, the closer the RD estimator would be to the average treatment effect. Given
the documented sorting between coastal and non-coastal regions (Bakkensen and Barrage, 2017), I abstract from
assuming similarity of weights for observations further away from the flood extent boundary, and hence prefer
the localized interpretation of the RD estimator
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the running variable, whose parameters are allowed to be different above and below the
threshold determined by c = 0 (cp

+ and cp
−, respectively). I present results for seven dif-

ferent functional forms of f (·): globally linear, quadratic, third order and four order poly-
nomial fits; as well as local non-parametric, linear, and quadratic regressions.81 Standard
errors εp are clustered at the census tract level.

The parameter of interest is β. It estimates the change in the outcome of interest at the
flood extent boundary.

As noted above, identification relies on all observable and unobservable variables affect-
ing the outcome of interest changing smoothly at the threshold defined by the flood bound-
ary extent. Exploiting the fact that I have data pre-Sandy, I can convincingly test this is not
the case by checking whether there was a discontinuity in the outcomes of interest along the
flood extent boundary using data prior to Sandy. Following the analogy of the RD model
as a “local randomized experiment”, this test would be equivalent to check whether ran-
domization has been achieved by comparing outcome values on both sides of the threshold
pre-treatment (Lee and Lemieux, 2010).

H.2 Regression discontinuity: results

I present suggestive evidence against a discrete jump in property prices above and below
the flood maximum water elevation on average.

Table H.1 shows results from regression discontinuity models with a running variable
measuring elevation with respect to the flood maximum water level. Models in the top
panel use all the data, where models in the bottom panel are local regressions using only
data around the threshold. Further, the models differ in the functional form assumed for
the polynomial controlling for elevation with respect to the flood. Figure H.1 plots each of
the polynomial approximations in panel (a) against the data, and hence provide a visual
confirmation of fit.

A global linear polynomial in elevation (column (1) in the top panel) yields a significant
negative effect of the flood. Properties barely flooded sold an average of 3.7 pp below nearly
missed non-flooded properties. This discrete jump is also evident on the top-left panel in
figure H.1. However, this result is not robust to the change in the order of the polynomial.
The result is not significant for polynomials of order 2 and 4, and it even changes sign for
the third order polynomial.

Following Lee and Lemieux (2010) I present two metrics to guide the selection of the
optimal model, the Akaike information criterion (AIC)82 and the p-value of the hypothesis
which test the joint significance of a set of elevation bin dummies,83 noted in the “goodness
of fit” row in table H.1.

Results from these tests are inconclusive. According to the goodness-of-fit test, the linear
approximation would be preferred, as it yields the higher p-value. However, with the p-

81To run the RD models with local regressions I use the rdrobust package in Stata, developed by Calonico
et al. (2014). I use the package defaults to select optimal bandwidths and kernel functions to construct the esti-
mators (the one common mean square error-optimal bandwidth selector procedure, and the triangular function,
respectively.)

82As AIC penalizes complexity, the model with the lowest value of AIC would be the most parsimonious.
83The logic of this test is that, if the polynomial were a good fit, these bin dummies should all be jointly equal

to zero

93



Table H.1: Regression Discontinuity: results

(1) (2) (3) (4)

Floodedp -0.037∗∗ 0.006 0.016∗∗ 0.006
(0.015) (0.006) (0.008) (0.010)

Order of Polynomial linear quadratic 3rd 4th

AIC 135534 135428 135427 135419
Goodness of fit 0.0376 0.0000 0.0000 0.0000
Observations 102571 102571 102571 102571

(a) Global polynomials

(1) (2) (3)

Floodedp 0.002 -0.009 -0.007
(0.019) (0.023) (0.026)

Order of Polynomial zero linear quadratic
Bandwidth 0.283 0.488 0.744
Observations - below cutoff 10956 17609 25485
Observations - above cutoff 9622 15131 20702

(b) Local polynomials

Notes: Regression discontinuity results. Dependent variable in all models is residuals of property price sale
after Sandy, net of block and month level fixed effects, approximating all data with a global polynomial – top
panel, linear polynomial in column (1), quadratic in (2), third order in (3) and fourth order in (4) – and using
only data around the threshold in a local regression (bottom panel, non-parametric comparison of averages in
column (1), linear polynomial in (2), and quadratic in (3)) The running variable measures elevation with respect
to flood water level, positive for properties p above the flood, and negative for properties p below. The regression
discontinuity estimate then measures whether there was a discrete jump in property prices above and below the
flood maximum water elevation. Results in the bottom panel were computed using the rdrobust package in
Stata, developed by Calonico et al. (2014). Optimal bandwidths are obtained by the one common mean square
error-optimal bandwidth selector procedure. A kernel triangular function is used to construct the estimators.
Standard errors clustered at the census tract level. ∗ p< 0.1, ∗∗ p< 0.05, ∗∗∗ p< 0.01.
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Figure H.1: Property price sale with respect to vertical distance to flood level, polynomial fit

(a) Linear (b) Quadratic

(c) Third order (d) Fourth order

Notes: Figure shows fit of different order polynomial approximations to the raw data, from top-left figure, clock-
wise: linear polynomial, 2nd, 4th and 3rd order polynomial approximations. Specifically, the y-axis represents
property price sale residuals post-Sandy, net of census block and month fixed effects. The x-axis shows the
difference between a property’s ground level and the maximum level the flood reached closest to the property,
which is negative for flooded properties, and positive for non-flooded properties. The dotted line at zero marks
the maximum flood surge level. Figure shows polynomial fit, and price averages at 0.25m-wide elevation bins
of the raw data.
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value of 0.038, I can still rule out the hypothesis that the elevation bins are all jointly equal
to zero at 95% significance level. According to AIC values, the 4th polynomial in column (4)
would be optimal as it yields the lowest value.84

Results using local polynomial approximations (bottom panel (b) in table H.1) show non-
significant coefficients in the non-parametric model (column (1)), and linear and quadratic
models (columns (2) and (3), respectively.)

Overall, these results provide evidence against a discrete jump in prices around the max-
imum flood water level, and are suggestive of prices changing smoothly around the flood
boundary. Barely flooded and nearly missed properties did not see a differential change in
prices.

84In fact, the AIC including even higher order polynomials keeps decreasing (the lowest value is achieved
with a 6th order polynomial, after which it starts increasing again – results not shown.) However, following
Gelman and Imbens (2017), which argue against the approximation of high order polynomials in empirical
settings, I do not consider that approximations using higher order polynomials are warranted in this case.)
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