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Abstract

We model Moore�s law as the outcome of learning by doing in the sector
that makes computers. That is, the more computers we make, the better and
cheaper they get.
We Þt the model to data on three technologies: Electricity, internal com-

bustion, and computers. We project the future of the computer based on how
the other two technologies developed as they got older than the computer is to-
day. Because computers are enjoying much faster technological progress than
the other two technologies did, this exercise yields a rosy forecast for future
productivity growth, perhaps double that of the twentieth century.
What else is new in the new economy? It seems that organization capital

is becoming obsolete much faster today than it did eighty years ago, perhaps
because current pace of change imposes a higher tax on management and team-
speciÞc skills.

1 Introduction
In 1965, the co-founder of Intel, Gordon Moore, predicted that the number of tran-
sistors per integrated circuit would double every 18 months. This has come to be
known as Moore�s Law. The Pentium 4 processor was introduced in 2000 with 42
million transistors. The 2001 introduction of the Itanium processor, with 320 million
transistors, is ahead of Moore�s schedule. Recently, even Moore has wondered how
much longer this kind of growth can continue. But Meindl, Chen, and Davis (2001)
suggest that it can go on for at least another 20 years. By then, a chip will have more
than a trillion transistors and the computing power of the human brain.

The model we construct and calibrate predicts that in the long run the computer
and all that goes with it will raise consumption growth by more than two earlier great
technologies did � electricity and the internal combustion engine. We then check the
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reliability of the model by Þtting it to the U.S. experience for all three technologies.
To do this, we Þrst assume that productivity is related to cumulative output and
estimate the learning speed for each technology. Together with the observed income-
shares of these technologies, the learning speeds then tell us how the capital-labor
ratio should evolve. The transition to the steady-state capital-labor ratio turns out
to be slower than it would be in Solow (1956), but still not quite slow enough. The
greater are the learning prospects that a technology offers, the longer the economy
takes to respond fully to the arrival of the technology. Our long run forecasts for
consumption growth are not too accurate, but the version of the model that Þts the
aggregate data best � though somewhat loosely pinned down on the micro side �
forecasts growth of 7.6 percent per year.

2 Cumulative output and prices for three tech-
nologies

Why is the United States the world�s technological leader? Is it because American
Þrms do a lot of R&D? Vernon (1966) argues that the United States leads the world
because its Þrms sell to � and learn from and adapt to the wants of � the world�s
richest and most sophisticated customer. This customer�s wants and the high cost
of his labor dictate the kind of product that he will buy and the technology that his
employer will use. Research done by Þrms elsewhere produces few inventions that
the consumer wants, and so American Þrms remain at the top. Before computers,
the United States had also led the way with the development of electricity-related
capital and, after a certain point, the internal combustion engine. We shall follow
Arrow (1962) and Frankel (1962), and emphasize the role of experience in growth.

We still are not quite sure how much computers raise productivity, but we have
never before seen a productive input that has declined so much in price over such
a short time. The same thing happened 70-100 years ago, but not as dramatically,
to producer durables based upon the internal combustion engine and to electricity-
related capital.

Research and engineering led to major breakthroughs in all three technologies,
but the direction of the research effort may have been dictated by the market, and
we will see some feedback from market output to lower prices. Of the three tech-
nologies, computers have enjoyed by far the largest price decline, and also by far the
largest growth in output. Moreover, booms in output growth seem to have brought
on declines in the prices of electricity and automobiles, while with computers the
relationship is more simultaneous. The relation between the price of a good, p, and
the cumulative output of that good, Q, is usually taken to be

p = p0Q
−β. (1)
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or in growth-rates, gp = −βgQ. In this speciÞcation, only aggregate cumulative
output matters to every seller�s productivity and, hence, to price. In fact, a Þrm�s own
contribution to Q seems to matter more than that of other Þrms, especially at high
frequencies. Using quarterly data, Irwin and Klenow (1994) Þnd that semiconductor
Þrms learn only about a third as much from the experience of others as they do from
their own experience, and using monthly data on wartime shipbuilding, Thompson
and Thornton (2001) Þnd that the contribution of the experience of others is even
smaller. At lower frequencies, however, the distinction between own and outside
experience should fade. We adopt (1) to keep things simple.

Since cumulative output Q refers to collective experience and not experience per
producer, the learning mechanism in (1) has a scale effect. The efficiency of the
capital sector and the productivity of the sectors that it supplies are increasing in the
size of the �economy,� i.e., the market within which the learning effect is conÞned.
Kremer (1993) argues persuasively that we should think of learning as proceeding at
the world level but we do not have the world data to which we our model applies
and, out of necessity, use only U.S. data.

For the three �general purpose technologies� (GPTs), the computer, electricity,
and the internal combustion engine, we shall estimate the parameters p0 and β from
the equation

ln pt = a− β lnQt−1.
Given the social role that experience probably plays in enhancing the quality of pe-
ripherals, we expect a departure from this law in the beginning. This is because when
there are no peripherals, the basic technology is developed more through research and
engineering. But after a while the peripherals start to arrive, and the more experi-
ence we have, the better the peripherals get. Therefore we should perhaps see faster
productivity growth once things are �in full swing.�

Figure 1 presents pairwise combinations of log(p) and log(Q) on an annual basis
for each technology and plots a regression line through the points. Table 1 shows
our estimates of the learning parameter β and the average growth rates of price and
cumulative quantities. The computer, displayed in panel (a), shows by far the most

Table 1: Estimates of β

Technology �β gp gQ

Computer 0.62 -24.12 39.11
Electricity 0.35 -2.12 7.11
Automobile 0.13 -1.52 12.00
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dramatic technological change as measured by the fall in p.1 The 1960�s were the age
of the mainframe and minicomputer, and in spite of a fast-growing Q as indicated by
the horizontal spacing between the points, the decline in p was relatively slow. The
wider vertical spacing after 1990 suggests that the effects of learning by doing have
now become even stronger. Our estimate of β exceeds that which Gordon reports
partly because his data miss some of the late acceleration in price declines, and partly
because we use slightly different sources.2

The downside of (1) is that if the law applies to a narrowly deÞned product like
the automobile or the computer, once the market is saturated with the good, its
productivity growth stops. More generally, (1) says that p should decline faster in
booms when Q grows faster. Panels (b) and (c) of Figure 1 show this to be the case for
electricity usage and automobile sales, as both boomed in the late 1910�s and 1920�s,
slumped in the Great Depression, and showed very little subsequent price decline in
the early 1930�s.3 Both technologies also saw sharp price declines during the vigorous
output expansions of the 1910�s and 1920�s. We choose annual electricity output
rather than a cumulative measure here because the accumulation of electrically-

1To construct a quality-adjusted price index, we join the �Þnal� price index for computer systems
from Gordon (1990, table 6.10, col. 5, p. 226) for 1960-78 with the pooled index developed for
desktop and mobile personal computers by Berndt, Dulberger, and Rappaport (2000, table 2, col.
1, p. 22) for 1979-99. Since Gordon�s index includes mainframe computers, minicomputers, and PCs
while the Berndt et al. index includes only PCs, the two segments used to build our price measure
are themselves not directly comparable, but a joining of them should still reßect quality-adjusted
prices trends in the computer industry reasonably well. We set the index to 1000 in the Þrst year
of the sample (i.e., 1960).

We obtain a quality-adjusted measure of computer production by deßating the nominal dollar
value of Þnal computer sales from the National Income and Product Accounts (Bureau of Economic
Analysis, table 7.2, line 17) with our price measure, and then cumulating the result over time. We
then set the index to 1000 in the Þnal year of the sample (i.e., 1999).

2We also estimate the learning parameter with a time trend in the speciÞcation. The trend term
is negative and statistically signiÞcant for computers and positive and signiÞcant for electricity and
automobiles. The β coefficient for computers falls to -0.87 and is no longer statistically signiÞcant,
while the β�s for electricity and autos become -0.745 and -0.147 respectively and remain signiÞcant.
Since our learning model does not include a time trend in the pricing process, we use the β�s from
the trendless speciÞcation in our analysis.

3Electricity prices are averages of all electric energy services in cents per kilowatt hour from the
Historical Statistics of the United States (U.S. Bureau of the Census, 1975, series S119, p. 827)
for 1903, 1907, 1917, 1922, and 1926-70, and from the Statistical Abstract of the United States for
1971-89. We interpolate under a constant growth assumption between the missing years in the early
part of the sample. For 1990-2000, prices are U.S. city averages (June Þgures) from the Bureau of
Labor Statistics (http:www.bls.gov). We then set the index to equal 1000 in the Þrst year of the
sample (i.e., 1903).

We construct the quantity measure as the total use of electric energy (kilowatt-hours) for 1902,
1907, 1912, 1917, and 1920-70 from Historical Statistics (series S120, p. 827), again interpolating
between missing years assuming constant growth. For 1971-2000, we join the total electric energy
consumed by the commercial, residential and industrial sectors (in BTU�s) from the U.S. Federal
Power Commission. We then set the index to equal 1000 in the Þnal year of the sample (i.e., 2000).
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powered equipment is probably not proportional to cumulative electricity use. Rather,
current usage, assuming zero depreciation as our model will, reßects the power re-
quired to operate the stock of electrically-powered equipment. As such, it should
reßect the cumulative stock of this equipment more closely than cumulative kilowatt
hours. For motor vehicles, of course, we continue to use cumulative unit sales.4

In Figure 2, we use the three estimates of (1) reported in Figure 1 (i.e., ln �p0 −
�β lnQt) to generate a series of price predictions. In the left panels, we plot the
predictions against the actual prices, and in the right panels we plot these series
as deviations from their time trends. The actual prices are always positively and
signiÞcantly correlated with the predictions, which is consistent with the view that
learning by doing, as measured by cumulative production, is the driving force behind
price reductions in the goods that embody the three GPTs.

Figure 2 also shows that the post-1990 acceleration in the price decline for com-
puters is not due to a failure of (1) but, rather, mostly to a speed-up in the growth of
Q. If learning by doing does raise the efficiency of a GPT, its biggest impact is prob-
ably in the development of the GPT�s applications. For computers, the applications
are software and the internet; for electricity they were household appliances and the
capital goods used in production. Many of these applications connect the technology
to the ultimate wants of the consumer, and this is where experience really matters.
Since many applications become apparent only after the GPT has been around for a
while, we may therefore expect that the beneÞts of experience really kick in once the
GPT begins to see widespread adoption.

If a constant fraction of K is not measured, �β should be unaffected. On the other
hand, if our data onK include things that do not belong inK, then a standard errors-
in-variables argument would cause our �β�s to understate the true β�s in absolute value.
The initial ßatness in the top and bottom panels of Figure 1 may partly be caused
by poor measurement initially rather than a failure of the law in (1).

4Motor vehicle prices for 1913-40 are annual averages of monthly wholesale prices of passenger
vehicles from the National Bureau of Economic Research (Macrohistory Database, series m04180a for
1913-27, series m04180b for 1928-40, http://www.nber.org). From 1941-47, they are wholesale prices
of motor vehicles and equipment from Historical Statistics (series E38, p. 199), and from 1948-2000
they are producer prices of motor vehicles from the Bureau of Labor Statistics (http://www.bls.gov).
To approximate prices from 1901-1913, we extrapolate assuming constant growth and the average
annual growth rate observed from 1913-24. We then join the various components to form an overall
price index, and set it to equal 1000 in the Þrst year of the sample (i.e., 1901).

Quantities are the numbers of cars, trucks and buses sold for 1900-65 from Historical Statistics
(series Q148 and Q150, p. 716), ratio-spliced to the series assembled for 1966-2000 by the Board
of Governor�s of the Federal Reserve System (Historical Statistical Release G-17, table 3), and
cumulated over the sample period. We then set the index to equal 1000 in the Þnal year of the
sample (i.e., 2000).
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3 Model
Our model is much like that of Frankel (1962) and Romer (1986), but with elements
of Arrow (1962) thrown in that make a big difference in the patern of accumulation,
as we shall point out in note 6. To these models we have added the transitional
dynamics. A related partial equilibrium analysis is in Jovanovic and Lach (1989).

Preferences: The lifetime utility function is

Z ∞

0
e−ρt

c1−σt

1− σdt,

where c is per capita consumption, ρ is the discount factor and σ is the elasticity of
substitution. From this we have the relation between gc,t, the rate of growth of per
capita consumption at date t, and the rate of interest rt:

gc,t =
rt − ρ
σ

. (2)

Final good : The constant-returns-to-scale production function for Þnal goods is

Y = F (K,N) = Nf (k)

where K is capital, N is labor, k = k/N , and f (k) = F (k, 1). Assume that N grows
at the rate gN . Later, we shall add a second type of capital in which there is no
learning. This will be straightforward.

Capital : We set physical depreciation at zero. The resource constraint is:

Nc+
1

q

dK

dt
= Y, (3)

where c is consumption per worker and q is the number of new computers per unit
of output forgone.5

If we were to set q = 1, we would have a one-sector Solow (1956) type of model in
which there is, perhaps, growth in the labor force, but no technological progress and
hence a steady state level of capital per worker and income per head. We set δ = 0
because it implies that the current stock of capital is the same as the cumulative
output of that capital, and this simpliÞes matters a lot, especially the analysis of the
transition to the steady state.

5That is, the number of new machines is

dK

dt
= q (Y −Nc) .
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Learning by capital producers Assume that each producer learns as much from
the experience of other producers as he does from his own experience. That is, the
technology for making K improves as a function of aggregate investment in K. Each
new machine is a little better than its predecessor. We also assume that q is an
increasing function of K. Competitive supply of capital means that the price of K
always equals the cost of production: So, the cumulative output of machines, that is,
the machine�s serial number K, is a decreasing function of its price

p =
1

q
=
µ
K

B

¶−β
, (4)

where B is a constant.

Investment in machines and in computers Firms own their capital. The cost
of buying a machine equals the discounted sum of its marginal products:

pt =
Z ∞

t
e−
R s
t
rτdτf 0 (ks) ds, (5)

and this implies that

dp

dt
= −f 0 (kt) + rt

Z ∞

t
e−
R s
t
rτdτf 0 (ks) ds (6)

= −f 0 (kt) + rtpt.
The implied rental price, f 0 (k), equals the user cost of capital rp − dp

dt
, so that the

marginal product of a dollar of foregone consumption satisÞes the equation6

1

p
f 0 (k) = r − gp. (9)

6Investment differs from that in the following version of Frankel-Romer (FR) model where the
external effect appears directly in production so that

y = qf (k) , where, again,
1

q
=

µ
K

B

¶−β
.

We do not scale the external effect q by labor as FR do, in order to maximize the superÞcial
simnilarity between our setup and theirs. The FR price of capital is a constant and equals unity.
FR�s investment condition is not (9) butµ

K

B

¶β
f 0 (k) = r. (7)

Contrast Eq. (7) to (9) which, when combined with (4), readsµ
K

B

¶β
f 0 (k) = r − gp. (8)

Thus the FR Þrms will invest more, and the transitional dynamics in the FR model will be faster.
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3.1 Long-run growth

First we solve for the long run growth and then we do the transitional dynamics.
Assume that production is Cobb-Douglas:

y = Akα. (10)

We maintain (4) and assume that α+ β < 1.7 Now (6) reads

gp = r − αAk
α−1

p
. (11)

Since k = N−1Bp−1/β, (11) reads

gp = r − αA
µ
N

B

¶(1−α)
p−1+(1−α)/β

If r, gN and gk are constants, the second term on the RHS of the above equation
must also be constant, which means that

(1− α) gN +
"
(1− α)
β

− 1
#
gp = 0.

This in turn implies that

gp = − β (1− α)
1− α− β gN , (12)

which, in absolute value, is increasing in α and β, and goes to inÞnity as α+ β → 1.
Since gk + gN = −gp/β, we have

gk =
β

1− α− β gN . (13)

Since gy = αgk, this implies that the growth of output and consumption per head is

gc =
αβ

1− α− β gN . (14)

Finally,

gK = gk + gN =
1− α

1− α− β gN . (15)

Growth is proportional to the rate of population growth, gN , as in Arrow (1962) and
Jones (1995). The parameters of the utility function affect only the level of output
and the rate of interest.
When β = 0, per capita income is constant in the long run; gp = gk = gc = 0, and

gK = gN .
7If α + β were to exceed unity, the economy could attain inÞnite output in Þnite time and, as

Frankel (1962, p. 999) observed, if α+ β = 1 and labor is Þxed, we get an �Ak� model and do not
need population growth to have endogenous growth.
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3.2 The growth of K in the transition phase

How does K behave when the technology is new? We can expect to see some dis-
crepancy between fact and our theory simply because the Cobb-Douglas production
function implies that the share of each type of capital is constant whereas, in fact, the
share grows as the technology matures. Therefore, if we assume that all the invest-
ment in K is measured in our data, we can expect to overpredict this accumulation
in the early years of a technology when its share in output is small. To make sense of
the early years in a technology�s life, our model forces us to assume that a part of the
accumulation of K is not measured. As we noted in section 2, if what we measure
does not exactly correspond to what enters (1) or, rather, (4), the true β�s are larger
than what we estimate them to be.
We now solve for K, the cumulative output of computers, from any initial condi-

tions. We suppose that initially K = K0 and that Nt = N0egN t. Thereafter, we have
the production function for K implied by (3) and (10)

dK

dt
= q (Y −Nc) and q =

µ
K

B

¶β
,

where Y = AKαN1−α. Competition in the supply of K implies that

p =
1

q
=
µ
K

B

¶−β
and, as before

gp = r − αAk
α−1

p
= r − αA

µ
K

B

¶β µK
N

¶α−1
.

Assume that σ = 0, as Arrow did, or else assume that the economy is small and
open to capital inßows but closed to the inßow of technological information. Then
r = ρ for all t � a reasonable condition since real rates haven�t changed much over
the century. Then, since gp = −βgK , (6) implies the differential equation for K :

gK = −ρ
β
+
α

β
AB−βN1−αK−(1−α−β) → 1− α

1− α− β gN , (16)

using (15).
Now, (16) can be made simpler by a change of variables. Let

z =
K1−α−β

N1−α .

Then gK = − ρ
β
+ α

β
AB−βz−1, and

gz = (1− α− β) gK − (1− α) gN
= −a+ b

z
, (17)
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where

a = (1− α) gN + (1− α− β) ρ
β
, and b = (1− α− β) α

β
AB−β.

Multiplying both sides of (17) by z, we Þnd that (16) is equivalent to dz
dt
= b−az and

has the solution

zt = z0e
−at +

b

a

³
1− e−at

´
. (18)

The steady state value of z is b/a, or

z∗ =
(1− α− β) α

β
AB−β

(1− α) gN + (1− α− β) ρβ
=
αA

Bβ

Ã
ρ+

β (1− α)
1− α− β gN

!−1
.

As β → 0, z∗ → αA/ρ, and, in this case, since the rate of obsolescence of capital is
zero, the marginal product of capital, αA (K/N)−(1−α), equals the interest rate, ρ.
The rate at which zt converges from the initial condition z0 to the steady state is

(1− α) gN + (1− α− β) ρ
β
, (19)

which is increasing in α, β, ρ and gN . It is similar to the approximations that Barro
and Sala-i-Martin (1995, ch. 2) derive for Solow�s model. In particular, it is decreasing
in α and in ρ. On the other hand, it is increasing in gN which is opposite to the Solow
model convergence. Finally, the parameter β, absent from the Solow model, acts to
slow down convergence because it mitigates the decline in the marginal product of
capital as k rises.

A major difference, however, is that we have assumed that σ = 0, and for this case
convergence in Solow�s model is instantaneous, or at least the Solow economy invests
its entire output for as long as its capital-labor ratio is below its steady-state value.
The same extreme outcome occurs here, but only when σ and β are both zero. This
is as it should be, because the Solow model is a special case of ours. When β > 0, the
external effect � operating through a higher user cost of capital � causes investors to
delay and free ride on the spending of others. Therefore, for any positive β, diffusion
is slower than in Solow�s model. Since K = (zN1−α)1/(1−α−β) ,

kt = z
1/(1−α−β)Nβ/(1−α−β)

t .

3.3 Plotting the transitions

We now turn to plotting the path of kt. In the solution for zt in (18), the parameters
α, β, and gN are given to us from data other than kt. But α needs special treatment
because the value that is appropriate depends on the possible presence of other capital
that does not participate in the learning mechanism (1).
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The effect of a second capital, X The resource constraint becomes Y = Nc +
(1/q) dK/dt+ dX/dt, and the intensive production function is

�f (k, x) = A∗kα
∗
xγ.

Assuming that x depreciates at the rate δ, its rental, r + δ, would be equated to its
marginal product, γAkα

∗
xγ−1, so that the optimal stock of x would be

x =

Ã
γAkα

∗

r + δ

!1/(1−γ)
,

and output per worker would be

y =
·
A∗

µ
γ

r + δ

¶¸γ/(1−γ)
kα

∗/(1−γ)

= Akα,

where A =
h
A∗

³
γ
r+δ

´iγ/(1−γ)
, and

α =
α∗

1− γ (20)

and the analysis goes through as before.

3.3.1 The transitions

To pin down the parameter α, we use data on shares of the GPT-capital, α∗, and the
remaining capital, γ, and apply (20). For computers, we use information on the share
of IT in equipment investment over 1960-1999, which is about 30 percent. But if we
count software, that number is now more than Þfty percent. We therefore choose
an α∗ of 0.18 for the share of computers in output � we mean to include here all
the information-technology related investments. If capital�s share in output, after
allowing for structures, is about 30 percent, this implies a γ of 0.12 and an α of about
0.21 for computers.

Autos and electricity are concurrent and so we consider them both individually
and together. For 1900-1940, Devine (1983, pp. 349, 351) reports that electric motors
were the source of mechanical drive for about 87 percent of machinery by 1939, with
internal combustion being the source of another 2 percent. Since the latter must
have excluded cars and trucks, it is an underestimate, and we will assume a share
of 10 percent. We choose shares from 1939 because they are the closest available
observations to the mid-point of our sample. Assuming once again a 30 percent share
of capital in output gives us an α∗of 0.26 for electricity, 0.03 for autos, and 0.29 for the
two combined. These imply γ values of 0.04, 0.27, and 0.01 respectively, from which
we compute the estimates of α reported in Panel A of Table 2. The parameter β is
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pinned down from the elasticities reported in Table 1, and gN is the U.S. population
growth rate per year. Using U.S. population growth assumes that the U.S. economy
is the entire world, even though our measures include U.S. exports of computers and
motor vehicles.8

Panel A of Table 2 reports the steady state growth rates of prices, cumulative
output, and consumption implied by the model and the data for the three technolo-
gies.9 In all cases, the growth rates predicted by the model are much smaller than
those observed in the data. It is likely, however, that the values of α and β are both
actually higher than those used in this Þrst set of computations.

Table 2. Steady State Growth Rates Implied by the Model and the Data

Technology �α �β �gN gp = −β(1−α)
1−α−βgN gK =

1−α
1−α−βgN gc =

αβ
1−α−βgN

pred fact pred. fact pred. fact

Panel A: Data-based parameter values
Computers. 0.21 0.62 1.05 -3.0 -24.1 4.9 39.1 0.80 2.0
Electricity 0.27 0.35 1.27 -0.9 -2.1 2.4 10.1 0.32 1.4
Autos 0.04 0.13 1.28 -0.2 -1.5 1.5 12.0 0.01 1.4
Electricity+Autos 0.29 0.33 1.28 -0.8 -2.0 2.4 10.4 0.32 1.4

Panel B: β adjusted for probable measurement error and γ=0.67
Computers 0.35 0.62 1.05 -15.2 -24.1 22.8 39.1 7.60 2.0
Electricity 0.44 0.42 1.27 -2.1 -2.1 5.1 10.1 1.67 1.4
Autos 0.08 0.18 1.28 -0.3 -1.5 1.6 12.0 0.03 1.4
Electricity+Autos 0.47 0.40 1.28 -2.1 -2.0 5.2 10.4 1.85 1.4

First, α = α∗/ (1− γ) should probably be higher because γ should, perhaps, also
include human capital. Indeed, to get convergence speeds that are realistic, Barro
and Sala-i-Martin (1992, p. 227) use a �broad� capital share of 0.8. Moreover, most
production processes rely more and more on brain and less and less on brawn, so that
the share of human capital has probably been rising. Second, measurement error
in K would cause our procedure to underestimate the absolute value of β. So does
inadequate control for quality. The computer performs a lot of functions and it is
unlikely that we could measure them all. Nevertheless, we do attempt to adjust our

8We obtain population data from Bureau of the Census, �Historical National Population Esti-
mates� (Census Bureau web page), which includes July 1 estimates of the resident population for
1900-99. Members of the Armed Forces overseas are included in the totals for 1940-79 only. Data
for real personal consumption expenditures are from the Survey of Current Business (August 2000,
table 2A) for 1929-2000, and from Balke and Gordon (1986, pp. 787-8) for 1900-28.

9When combining electricity capital and autos, we build a composite series for cumulative output
by weighting each component by its α∗.
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computer series for quality. On the other hand, our auto price series is not quality
adjusted at all. Per quality unit, prices of cars fell faster than our Figure 1 reports,
and therefore the true beta should be much larger, at least before the Second World
War. Finally, as discussed in section 2, our use of electricity production as a stand-in
means that we probably do not measure electricity-capital well.

Panel B of Table 2 presents the steady state growth rates that we obtain after
setting α∗ + γ to 0.67. This represents a more conservative estimate of the share of
�broad� capital in output than Barro and Sala-i-Martin used. We also raise β by 20
percent for electricity-capital to account for measurement error, and by 40 percent for
autos to account for both measurement error and the lack of quality adjustment in the
data. The results are much better for our model after performing these adjustments,
though we overpredict consumption growth by a factor of nearly 4 in the case of
computers. Also, computers show an acceleration in gK that the model does not
predict. Since

gp = −βgK ,
as gk falls, so should |gp|. Therefore the recent acceleration in |gp| that Figures 1 and
2 showed also contradicts the model. It seems that in 1990 or so, computing got a
second wind.

Figure 3 presents the transitional dynamics for computers, and Figure 4 shows
them for the electricity-auto composite. With α and β pinned down by the data,
we are left with two free parameters: z0 and A/Bβ (or, simply, b). To facilitate
comparisons across the technologies, we choose values for these two parameters so
that the predicted time-path of kt passes through the Þrst and fortieth year of the
empirical time-path of kt. Panel (a) in each Þgure uses the baseline values of α and
β from the upper panel of Table 2, and reports the values of a, b, and z0 implied
by our Þtting of the time paths. Panel (b) in each Þgure shows that a dramatic
shift in the time path of kt is possible when we simultaneously raise α, β, and the
share of capital in output to the values reported in the lower panel of Table 2. These
adjustments generate diffusions with an S-shape. In other words, the transition path
for z must always be concave, as (18) makes clear, but because k is a transform of z
that essentially takes z to a power greater than unity, k can acquire a convex portion
early on when β is large enough.

4 Productivity growth in the two diffusion episodes
Figure 5 compares productivity growth for the two sets of technologies. We have forty
years or so of coverage for the computer and about a hundred years for electricity
and internal combustion. All three technologies were around for decades before they
appear on our diagrams, but one can make the case that at the point when they come
into our view, they were at roughly the same level of development. In any event, this
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is what we shall assume, and therefore we can extrapolate the future of the computer
from the experience of the other two technologies. The Þgure shows that the model
overpredicts the productivity growth of the economy between 1975 and the end of
the sample. This is the well known productivity slowdown paradox, and our model
does nothing to resolve it. The model also overpredicts productivity between 1910
and 1924. Then, in both cases, there is a period of underprediction, followed, in the
end, by a period of overprediction. We summarize all of this in Table 3.

Table 3. Implications of Model Extrapolations

Electricity and Autos Computers
underpredict 1903�1908 (5 years) 1960�1973 (13 years)
overpredict 1909�1940 (31 years) 1974�1999 (25 years)
underpredict 1941�1993 (52 years) 2000� ?

5 Obsolescence of Þrms and their capital
Suppose Þnal goods Þrms buy the capital that they use and hire labor on a spot
market. Date-t investment is

pt
dkt
dt
≡ Bt.

If all the capital were recognized as such, Bt would then be the �book value� of
generation t investment.

The market value of date-t capital at some later date s > t, would be

Ms = ps
dkt
dt
=

Ã
ps
pt

!
Bt.

Using (12) the market-to-book value of the capital would then be

Ms

Bt
=
ps
pt
= exp

(
− β (1− α)
1− α− β gN (s− t)

)
.

This is decreasing in s − t, which is the age of the capital, and is another way that
we see new capital making old capital obsolete.

Age of capital vs. age of Þrm: If new Þrms enter with new capital, then entry of
Þrms makes old Þrms obsolete, as in Jovanovic and Lach (1989) where the age of a
Þrm was the same as the age of its capital. In fact, the correlation will be far from
perfect, but if it is positive, market-to-book value should depend negatively on the
age of the Þrm. The coefficient of age should, however, be stronger for Þrms that buy
a lot of computers, or more generally for Þrms that invest in new GPTs.
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To test this implication, we use a set of regression models with the baseline spec-
iÞcation

M

B
= a0 + a1 log(1 + age), (21)

where we measure age as the number of years since incorporation or listing on a stock
exchange.10 We add one to the Þrm�s age to enable the log transformation. Our
strategy is to compare, at a given point in time, the coefficient on age (a1) for Þrms
that were active �GPT-users� with that obtained for all Þrms in our sample. We
display the results in Table 4 and in Figures 6 and 7.

Table 4-Regressions of Market-to-Book Ratios on Age
By incorporation date By date of exchange listing

constant log(1+age) r2 (obs.) constant log(1+age) r2 (obs.)
1998 Cross-section
IT Þrms 10.67 -1.77 .032 7.94 -0.84 .001

(5.07) (-2.72) (216) (6.28) (-1.86) (637)
All Þrms 4.42 -0.42 .003 4.12 -0.35 .001

(7.23) (-2.68) (3004) (15.8) (-3.88) (6730)
All Þrms (with 4.44 -0.39 .036 3.46 -0.21 .021
sector effects) (7.30) (-2.14) (3004) (9.35) (-2.34) (6730)
1920 Cross-section
Electricity- 1.307 -0.129 .052 1.271 -0.133 .057
intensive Þrms (5.28) (-1.57) (36) (7.23) (-1.94) (38)
Transportation 1.457 -0.188 .063 1.512 -0.245 .096
Þrms (3.80) (-1.32) (18) (5.81) (-2.14) (19)
Electricity excl. 1.408 -0.163 .108 1.089 -0.065 .027
transportation (5.49) (-2.06) (17) (4.98) (-0.80) (18)

All Þrms 0.801 0.020 .002 0.900 -0.028 .003
(10.03) (0.81) (239) (13.41) (-1.05) (233)

All Þrms (with 0.960 0.047 .151 1.010 0.013 .167
sector effects) (24.98) (1.69) (239) (33.97) (0.48) (233)
Note: T-statistics appear in parentheses beneath the coefficient estimates.

The upper panel of Table 4 considers the computer as GPT. The sample includes
those Þrms in the 1998 Compustat database for which market and book values are

10Listing years for 1925-98 are those in which Þrms enter the CRSP database. The CRSP Þles
include all NYSE-listed Þrms from 1925, with AMEX Þrms added in 1962 and Nasdaq Þrms added
in 1972. For 1885-1924, listing years are those in which prices Þrst appear in the NYSE listings of
The Annalist, Bradstreet�s, The Commercial and Financial Chronicle, or The New York Times. We
obtain years of incorporation from Moody�s Industrial Manual (1920, 1928, 1955, 1980), Standard
and Poor�s Stock Market Encyclopedia (1981, 1988, 2000), and various editions of Standard and
Poor�s Stock Reports. See Jovanovic and Rousseau (2001) for a detailed description of these data
and sources.
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available and for which we could determine the year of exchange listing from the CRSP
database or the year of incorporation from our other sources.11 The regressions focus
on two groups of Þrms: those that we call �information technology Þrms� and �all
Þrms,� where we identify IT Þrms by their Standard Industry ClassiÞcation (SIC)
codes.12 For �all Þrms,� we estimate speciÞcations of (12) with and without dummy
variables for SIC two-digit sectors.

With age deÞned as years since incorporation (left side of upper panel), the slope
coefficients on log(1+age) are always negative and statistically signiÞcant at the 5
percent level for the 1998 Compustat sample. The size of the coefficients also imply
relationships that are economically meaningful. For example, if we consider the mean
age in the IT sample of 13.7 years, the coefficient on age (-1.77) implies that an IT
Þrm that is one year younger would have a market-to-book ratio that is 2 percent
higher. And though the R2 from the regression indicates that much of the variance
in market-to-book ratios remains unexplained, the scatterplot from the regression,
displayed in Figure 6, shows a clear downward slope. The second line in Table 4
presents results obtained for all Þrms in the sample, and the third line augments
the speciÞcation with sectoral Þxed effects. In both cases, the coefficients on age
are smaller than those observed for IT Þrms, though in the larger sample they are
estimated more precisely. For example, evaluated at the sample mean age of 20 years,
the coefficients in the regression without sectoral Þxed effects relate one less year of
life, as measured by years since incorporation, with a market-to-book ratio that is
larger by only 0.9 percent. The results with sectoral effects indicate an even smaller
effect of log age on market-to-book ratios.

The right side of Table 4 uses the number of years since stock exchange listing
as the measure of age. This measure is less desirable than years from incorporation
on conceptual grounds since Þrms often live for many years prior to formal exchange
listing and Þnancial market innovations over the past three decades have probably
accelerated the pre-listing phase for reasons that are less applicable to the length of
the pre-incorporation phase (see Jovanovic and Rousseau, 2001). Using years from
exchange listing, however, does allow us to work with about three times as many
observations for IT Þrms as are available using years from incorporation, and about
twice as many observations for the sample as a whole. The slope coefficient on age
for the IT Þrms is not as steep using this deÞnition (compare Figures 6 and 7), but
the coefficient for the IT-based sample still exceeds those for the full sample with and
without sectoral Þxed effects. Note, too, that the inßation of the �70s and �80s eroded

11To compute market values, which comprise the numerator of our market-to-book ratios, we take
the value of common equity at current share prices, and add in the book value of preferred stock and
short- and long-term debt. Book values are computed similarly, but use the book value of common
shares rather than the market value. We omitted Þrms with negative values for net common equity
from the plot since they imply negative market to book ratios.
12We identify �IT� Þrms as those with SIC codes for office equipment and computers (3570-79),

and programming and data processing (7370-79).
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the book values of the older Þrms and acted to inßate their M/B ratios relative to
those of the younger Þrms. This would bias the results against our hypothesis that
a1 is higher today than it used to be.

The lower panel of Table 4 presents estimates of (21) for a sample of NYSE-
listed Þrms in 1920. We compute market-to-book ratios using prices and the number
of outstanding shares from our extended CRSP database, and using balance sheet
items from the 1921 Moody�s investor manuals.13 We group the sample into Þrms
that are �electricity-intensive,� producers of transportation equipment, and all Þrms.
The electricity-intensive Þrms are those identiÞed by David (1991, Table 5, p. 329)
as having more than 80 percent of their horsepower driven by electricity in 1919.
These include tobacco products (SIC 2100), electrical machinery (SIC 3600), fab-
ricated metals (SIC 3400), printing and publishing (SIC 2700), and transportation
equipment (SIC 3700). Since transportation equipment Þrms, including those manu-
facturing autos, trucks, buses, motorcycles, and railroad equipment, are a subset of
the electricity-intensive group, we also examine the electricity Þrms with the trans-
portation Þrms excluded.

In the lower panel, we report negative coefficients on both measures of age for the
electricity and transport Þrms. And though not all slope coefficients for these subsets
are statistically signiÞcant, at least one of the age measures comes in signiÞcantly at
the 5 percent level for every subset. The slope coefficients for the transportation Þrms
are more steeply negative than for the electricity-intensive Þrms in all cases, suggest-
ing that the internal combustion technology was evolving to render its immediate
predecessors obsolete even more rapidly than in the case of electricity. This Þnding is
consistent with the strikingly rapid declines in price and increases in quantities that
characterize the auto industry in the 1910�s (see Figure 1). Interestingly, it is only
in the technology-based sectors that a signiÞcant negative relationship is observed
between market-book ratios and age in 1920. This is evidenced by the insigniÞcant
coefficients on age for the regressions that include all Þrms. Further, the inclusion of
two-digit sectoral dummy variables even produces a positive coefficient on age!

The main point is that �a1 is a lot higher in the currently high-tech sector compared
to everything else and compared, in particular, to the high-tech sector 80 years ago,
and this in spite of the inßation bias that we just mentioned. We interpret all of this
as support for our model of the GPT-using sectors.

13To be precise, we draw balance sheet data fromMoody�s Industrial Manual, Moody�s Public Util-
ities Manual, and Moody�s Transportation Manual. Since balance sheet items are not as uniformly
deÞned across Þrms in these early Moody�s manuals as they are in today�s Compustat, we must
compute the market-to-book ratio for 1920 Þrms a bit differently. In this case, the numerator of the
ratio is the book value of common equity (including surplus and retained earnings) less the book
value of common shares, to which we add in the market value of common shares and the book value
of long-term debt. The denominator is the sum of the book values of common equity and long-term
debt. The difference between the measures for 1920 and 1998, then, is the inclusion of short-term
debt in both numerator and denominator of the ratio in 1998. The omission of short-term debt in
1920 imparts an upward bias to the market-book ratios computed in that year.
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6 Conclusion
We modelled Moore�s law as arising from learning by doing in the sector that makes
computers. The assumed learning process took the form of a relation between cu-
mulative output and productivity that is common in fact. We compared the model
to the data on the diffusion of each technology in its infancy, and then made some
long-run projections.

Our model adds Arrow-style learning to the Solow (1956) model. We found that
the effect on the speed of convergence of the potential to learn, β, is much the same as
the effect of capital�s share. The Solow (1956) model is used less now partly because
of the rapid convergence that it implies when realistic capital shares are used. But
we have found that combining this model with Arrow-style learning can slow down
the speed of convergence, perhaps even to realistic levels.

What is new in the new economy? Computers have a higher β than the earlier
technologies, and this means that IT will add more consumption-growth than the
other two technologies did. Mildly supportive is the evidence that organization capital
gets obsolete faster today than it did eighty years ago.
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