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Abstract

The rapid increase in economic growth observed the late 1990s has inspired speculation about a

change in the underlying trend rate of growth, attributable to an acceleration in the rate of

technological progress.  This paper considers the transition dynamics that are associated with

such a change in the framework of a general equilibrium model that incorporates stochastic

growth trends.  The model suggests that endogenous transition dynamics associated with a shift

in the technological growth trend can have important implications for macroeconomic growth

patterns, particularly when technological change is investment-specific.   Simulations of the

post-WWII U.S. economy show that the model’s internal propagation mechanism is capable of

explaining a significant portion of the variation in growth rates over the sample period,

particularly for investment, capital accumulation, and employment.

*This paper has been prepared for the Federal Reserve Bank of New York conference “Productivity Growth: A
New Era?” November 2, 2001.  Rachel Mandel provided invaluable research assistance.  The views
expressed in this paper are those of the author and do not necessarily reflect official positions of the Federal
Reserve Bank of St. Louis, the Federal Reserve System or the Board of Governors.  
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What Happens When the Technology Growth Trend Changes?:

Transition Dynamics, Capital Deepening and the “New Economy”

Introduction

The increase in productivity growth during the late 1990s has raised the issue of

whether a fundamental change has taken place in the U.S. economy.  Although many

economists remain skeptical about “new economy” or “new paradigm” theories that have

emerged in this context, the conjecture that there has been a shift in the potential growth

trend has been seriously entertained.  Indeed, the issue is often cast in terms of whether

recent trends suggest a return to growth conditions prior to the productivity growth

slowdown that apparently began in the early 1970s.  

In this paper, I examine the implications a change in the trend rate of

technological progress in the context of a simple general equilibrium model that

incorporates stochastic growth trends.  The model illustrates a potentially important but

often overlooked source of dynamics associated with such a change:  the transition

dynamics due to a change in the optimal capital/labor ratio.  

Simulations of the model’s responses to growth shocks suggest that long-run

adjustment of the capital stock to changes in underlying growth trends gives rise to

persistence in the model’s dynamics, so that changes in  the growth rate of technological

progress may not be clearly manifested in measured productivity data for several years after

the event.  Moreover, the inverse relationship between the capital/labor ratio and the

underlying growth trend implicit in the model’s dynamics implies non-monotonic

convergence paths for the growth rates of key macroeconomic variables. 
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Another element of many “new economy” stories that has been the subject of

serious macroeconomic investigation is the notion that the productivity gains associated

with recent technological advances are embedded in new forms of capital.   In the spirit of

this hypothesis, the model in this paper incorporates a role for capital-embodied, or

investment-specific technological progress.

Simulation experiments show that the transition dynamics associated with a shift in

this type of technology growth can have more dramatic implications for macroeconomic

growth patterns.  For a given change in productivity growth, a change in the underlying

trend rate of technology growth displays both slower convergence of productivity and more

variable adjustment dynamics in the growth rates of macroeconomic variables.

 To examine the importance of these effect in explaining recent growth U.S. growth

patterns, I take the model to the data by constructing empirical proxies for underlying

technology growth trends and conducting model simulations of the post-WWII U.S.

economy.  The results show that the model’s dynamics can explain an important share of

growth fluctuations over the sample period, particularly for investment, capital

accumulation, and employment.   The contribution of dynamics associated with

investment-specific technology growth trends is relatively modest, but has important

implications for the outlook for future trends in productivity growth.

Issues and Questions

Figure 1, showing the growth of output per hour in the private business sector, is

typical of the evidence used to illustrate changes in long-run growth trends.  For the entire
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postwar sample period,  the growth rate of this  productivity measure averaged about 2.5%. 

However, the average growth rate from 1947 to 1973 was 3.3%, falling to 1.5% for the

period 1973-1995.  Recent data (1996-2000) suggest a growth trend has risen to 2.6%.  Of

course, such comparisons are quite sensitive to the sample periods selected.  Nevertheless,

they illustrate how the data are often parsed to demonstrate the widespread conception that

there is a variable component of the underlying trend rate of productivity growth. 

Focusing on the role of new information technologies in the emergence of the “new

economy,” recent growth accounting analyses investigating the notion of a changing

growth trend have been particularly concerned with finding a role for computer-related

productivity gains.  For example,  Gordon (1999) examines a sectoral decomposition,

finding that most productivity gains in total-factor productivity are in the computer

producing sector.   Oliner and Sichel (1994, 2000) consider the importance of computers in

the capital component of their growth accounts, finding an important role for the use of

computers embedded in the growth of capital services.  Jorgenson and Stiroh (1999)

explicitly incorporate computer related growth in demand for investment and consumer

durables.   Whelan (1999b) adjusts the growth contribution of capital deepening by

modeling the rapid obsolescence of computer hardware, and Kiley (1999) incorporates

investment adjustment costs associated with new technologies into a growth accounting

framework.

In these studies, the nature of the issue being investigated—an apparent

acceleration of productivity growth in the latter half of the 1990s—necessitates analysis

with limited data.  As Figure 1 illustrates, however, there is a considerable amount of



1See, for example, the popular macroeconomics textbook by Mankiw (1992).
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variation in 5-year average rates of productivity growth.  Uncovering emerging trend

changes is an inherently difficult endeavor.  

To the extent that changes in underlying technology growth trends have

predictable implications for emerging patterns of productivity growth, understanding

these dynamics can be important for interpreting observed changes in growth.  The model

examined in this paper suggests one possible source of such patterns, which can be

demonstrated using the comparative statics of a standard Solow growth model.1 

         

An Illustration Using the Solow Growth Model 

In the Solow growth model, output is produced using capital and labor with a

constant-returns-to-scale production technology, savings is a constant fraction, s, of

output, and capital depreciates at rate δ.  In the presence of population growth, n and

labor-augmenting technical change, g, the standard capital accumulation equation implies

that capital evolves according to:

where k and i represent per-capita magnitudes of capital and investment (in labor

efficiency units).   Setting ∆k=0 in equation (1) defines a locus of feasible steady-state

values for the capital/labor ratio.  The savings function, s�f(k) and the equilibrium

condition that savings equals investment then defines a unique steady state.

Figure 2 illustrates this relationship using a familiar textbook diagram, and

demonstrates the effect of an increase in the technological growth rate, from g to g�.  In
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the initial steady state, the capital/labor ratio is k* .  At the higher growth rate, the

equilibrium real rate of return in the economy is higher, so that the optimal marginal

product of capital increases.   In the Figure 2, the increase in g is represented as an

increase in the slope of the locus of steady states, resulting in a new long-run equilibrium

that is associated with a higher marginal product of capital and hence a lower

capital/labor ratio, k*�.     

The implication of this comparative-statics result for dynamics is that while the

underlying technology growth rate – and hence the long-run growth rate of the economy –

has increased, there will be a transition period in which the declining capital/labor ratio

tends to suppress growth.  In this simple model it is unclear how these two opposing

forces might interact during the period of transition, but its basic mechanism provides the

intuition for interpreting the analyses of growth shocks presented in subsequent sections

of this paper. 

The basic Solow growth model abstracts from household optimization over

consumption-saving and labor-leisure choices, and its comparative statics fall short of

providing a fully articulated description of dynamics.  The model developed in the next

section incorporates intertemporal optimization, endogenous labor/leisure choice, and a

role for investment embodied technological progress, yet it retains much of the

fundamental simplicity of the Solow growth model so as to focus on the dynamics of

capital-transition paths.  The first issue to be addressed is how the offsetting forces – long-

run growth and capital accumulation – interact in the dynamics of a plausibly calibrated



2These basic dynamics are also presented in a previous paper, Pakko (2000), where the focus is
on the role of transition dynamics for conventional growth accounting exercises.
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model, both for conventional neutral technological growth shocks and for investment-

specific growth shocks.2  

With these insights in hand, I take the model to the data by incorporating a limited-

information setting in which agents infer the underlying growth trend by solving a signal-

extraction problem.  This allows for a model-consistent approach to empirically estimating

the perceived trend components of data series for technology growth.  Simulating the

model for the post-WWII U.S. economy, I find an important role for capital transition

dynamics in explaining fluctuations in the growth rates of key macroeconomic variables.

A Neoclassical Stochastic-Growth Model

Model Structure

The underlying structure of the model that I examine is quite basic:  Consumers

(represented by a social planner) maximize logarithmic utility over consumption and leisure,

subject to an overall resource constraint with Cobb-Douglas production:

In equation 2, Ct , Kt , Nt,  and It represent consumption, capital, labor, and gross

investment, respectively.  Zt is an index of total-factor, or neutral, productivity.  Income is



3Taxes are included in order to incorporate their importance for marginal decision-making
(particularly their effects on the after-tax marginal product of capital and investment), and rebated lump-
sum to abstract from wealth affects associated with taxation.

4Hercowitz (1998) relates this type of  model of investment-specific technological change with
the “embodiment” controversy of Solow (1960) and Jorgenson (1966) .
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subject to a tax rate, τ, with government revenues rebated lump sum via T=τY (taken as

given in the optimization problem).3 

In order to incorporate the notion that the productivity-enhancing potential of

recent technological progress is embodied in new capital equipment itself (particularly in

for new information-processing and communications technologies), the model

incorporates a role for investment-specific technological change, as modeled by

Greenwood, Hercowitz and Krusell (1997,2000).  Specifically, the capital accumulation

equation is assumed to be:

where Q represents an index of the quality of new capital goods.  When Q is fixed (and

normalized to one), the model is a standard balanced growth model. Growth in Q  is

associated with technological progress that becomes embodied in the quality of the stock

of capital equipment.4  

The pair of papers by Greenwood, Hercowitz and Krusell (1997,2000), both of

which focus on this type of investment-embodied technological progress, provide a

convenient context for describing the distinguishing feature of the present analysis.  In the

first paper, Greenwood et al investigate the contribution of investment-embodied growth

to overall economic growth in the long run.  Following in the tradition of growth-

accounting literature, they consider steady-state implications in terms of averages for the



5Examples of similar approaches to modeling stochastic growth in a computable general
equilibrium framework include King, Plosser and Rebelo (1988b); and King and Rebelo (1993).
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entire sample period covered by their data.  In the second paper, which follows in the

spirit of real-business-cycle analyses pioneered by Kydland and Prescott (1982), Hansen

(1985) and King, Plosser and Rebelo (1988a), they examine the cyclical implications of

Q-shocks in terms of deviations of model variables from a long run trend, where the trend

is identified and removed by the application of a Hodrick-Prescott filter.  The H-P filter

removes slow-moving, low-frequency components of the data, implicitly allowing for a

trend that is variable over time.  In this paper, my focus is on that variation in longer-run

underlying growth rates.  That is, the model incorporates a role for stochastic growth

trends.5

The stochastic growth aspect is modeled by assuming that each of the technology

variables, Z and Q, can be decomposed into trend and cyclical components as 

The γi represent growth rates of the underlying trends, while νzt and νqt are stationary

cyclical components that reflect transitory shocks to technology.   The latter pair of

technology variables are associated with the stationary shocks commonly assumed in the

real business cycle literature.  The focus here is on the idea that the trend variables are

also subject to stochastic variation.
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Methodology

In this model, growth trends depend on both embodied and neutral technological

change.  With a stationary supply of labor (because the representative-agent aspect of the

model represents per-capita quantities), standard steady-state restrictions require that

output, consumption and investment will grow at a common rate γy.  The accumulation

equation (3) implies that capital will grow at a higher rate than output, as determined by

the growth rate of investment specific technological progress:

γk = γyγq .                                                             (5) 

The production technology determines the relationship between output growth and the

underlying technological growth rates as:

A stationary representation of the model can be derived by dividing each of the

time-t variables by growth factors, Git, where Git+1 = γx Git. [each of the γx are related to

underlying growth trends from (5) and (6)].  As a result of this transformation, long-run

growth rates emerge as parameters of the stationary transformation of the problem. For

example, using lower case variables to represent transformed variables  [e.g. kt = Kt/Gkt],

the capital accumulation (3) becomes: 

By treating the underlying growth rates, γq and γz, and hence γk, as being subject to

exogenous shocks, it is possible to simulate approximate dynamics of a model in which the

growth trend is stochastic.  



6King and Rebelo (1993) examine a similar approach.  Rather than considering the growth rates
as stochastic directly, however, they evaluate perturbations of the capital stock from its desired long-run
value, and consider the transition dynamics back to the steady state.  
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The fundamental effect of stochastic growth trends on capital accumulation is

represented in the model’s Euler equation.   The intertemporal efficiency condition

equating the marginal product of capital to expected economic returns has a stationary

representation that can be written as :

where λ is the shadow value of utility (in consumption units).   The first bracketed term

represents the inverse of expected returns, which depends on the expected potential growth

trend γk, and deviations in the growth rates of consumption and investment-specific

technological change.  The second bracketed term is the net marginal product of capital

In its steady-state form, equation (7) determines the optimal capital-labor ratio as a

function of the trend growth rate of capital, γk .  As in the Solow growth model, all else

equal, a higher growth rate raises the optimal marginal product of capital — which is

associated with a lower capital/labor ratio.

When the growth trend variable γk  is subject to exogenous change, the optimal

capital stock becomes variable, depending at any given time on the expected growth

trend.  It is the transition dynamics from one optimal capital-labor ratio to another that

gives the model in this paper its unique dynamic implications.6  



7Specifically, I use the approximation and solution techniques described by King, Plosser and
Rebelo (1988a).
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In the simulation experiments presented below, the model’s dynamics are presented

in terms of growth rates, which are constructed as follows:  A log linear approximation of

the model is solved and simulated using standard algorithms, producing simulated paths for

model variables in terms of deviations from a baseline, constant steady-state.7   Growth

rates of key model variables are recovered from these simulations as the sum of the

baseline growth trend, deviations implied by changes in the growth trends themselves, and

first-differences of the model’s simulated dynamics in response to the growth-trend shocks. 

That is, for any variable x, the growth rate from t-1 to t is:

where gxt = ln(γxt) represents the deviation of the current growth trend  from the  baseline,

ḡ x = ln( γ̄x ), and r̂xt is the proportionate deviation of the variable from trend, as implied by

the model’s impulse-response functions.

Calibration

The model is calibrated at an annual frequency, with many of the parameter values 

chosen from previous literature to be consistent both with typical RBC analyses and

growth accounting exercises. Capital’s share of output, α, is set to 0.30, the preference

parameter v is selected so that the fraction of time spent working of 0.24, and the discount

factor, β, is approximately 0.95, based on a real return to capital of 7%.   The capital

depreciation rate, δ, is set to 7.5% (the average value of depreciation relative to the net

stock of nonresidential fixed private capital– from the BEA’s Fixed Reproducible



8Greenwood, et al (1997,2000) include labor and capital income tax rates separately, calibrating
their values at 0.40 and 0.42, respectively.

9For the purpose of the stylized simulations presented in this section, the baseline growth rate of
investment-embodied technology growth, γq is set to 0.8%, so that the baseline growth rate of the capital
stock is 2.4% (roughly corresponding to the growth rate of the real net stock of private nonresidential
fixed assets over the period 1973 to 1995).  A more detailed calibration of the model is conducted in the
following section.
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Tangible Wealth estimates for 1950-1999).   The marginal tax rate, τ, is assumed to be

0.40.8  Parameters describing the time series properties of the technology shocks will be

defined and refined as the analysis unfolds. 

Responses to Permanent Changes in Technology Growth Trends

To demonstrate the dynamic adjustment path of the model following a change in

the trend rate of technological progress, a pair of stylized simulations in which the growth

trend changes permanently in a once-and-for all fashion.

Specifically, I consider shifts in the underlying technology growth trends that raise

the long-run rate of output and labor-productivity growth from 1.6% to 2.1%.  These

shifts in the underlying growth trends occur as unexpected events to agents, but are

perceived to be permanent.  The effects of the neutral and investment-specific shocks are

normalized by using the relationships in equations (4) and (5) to back out the appropriate

magnitudes for generating an increase of 0.5% in γy.9

Figure 3 shows the paths of capital and consumption (in log-levels) as they

respond to a 0.5% increase in the growth rate of neutral technological change,

highlighting the key features of the model’s implied responses to growth shocks.  The

upper panel of figure 3 traces out the path of the capital stock.  The higher productivity-
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growth profile calls for a lower capital/labor ratio in the long run, providing a depressing

effect on investment and capital accumulation immediately following the change in the

growth trend.  

Because this change represents a permanent level-effect, the capital stock path

remains below it’s original growth path for several years, and remains below the

hypothetical new trend line indefinitely.   On the other hand, the higher technology

growth trend itself requires a higher growth rate for capital and investment in the long-

run, so that over time, capital growth is in line with the new trend–simply shifted down

due to the level-effect.  Growth rates during the transition depend largely on which of

these two effects dominate.

The lower panel of Figure 3 illustrates how consumption is affected.  A wealth

effect raises consumption above trend in the short run, while the downward level-shift in

the capital stock is reflected gradually over time as the consumption path falls below the

new hypothetical trend that would prevail in the absence of capital-stock adjustment.

In order to illustrate the growth dynamics of this exercise more clearly, Figure 4

shows the growth rates of model variables in response to positives technology-growth

shifts.  The solid lines show the responses to a neutral technological growth shock, while

the dashed lines show the responses to an investment-embodied growth shock.  

Qualitatively, the patterns of responses to the two type of technology growth

shocks are similar.  The wealth effect on consumption growth is apparent, and the same

wealth effect is responsible for a decline in labor supply.  Investment demand initially

drops sharply in order to move the capital/labor ratio toward its new optimal value, then

rises and converges to the new growth rate from above as capital-growth accelerates to
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the new higher rate implied by the shock.  The initial slowdowns in employment and

investment imply that output growth also slows for a time, and the gradual adjustment of

the capital stock is reflected in slow convergence paths for all of the model variables.  

The growth rate of labor productivity initially rises as the decline in output

exceeds the decline in employment (reflecting the wealth effect on labor supply and the

short-run fixity of capital).  Thereafter, it drops sharply, and rises only slowly to its new

long run rate as the capital accumulation process proceeds.

In the case of an investment-embodied growth shock, capital stock adjustment

plays an even more pivotal role.  In order for a change in the growth rate of embodied

technology to generate the same acceleration in productivity growth as a neutral

technological growth shift, the growth rate of the capital stock must accelerate to a higher

rate in the long run (equation 6).  Moreover, because the decline of the capital/labor ratio

depends on the change in the growth rate of capital, the requisite level-shift of the capital

stock is larger as well.  

The magnified effects of an embodied technology growth shock on capital growth

dynamics carry over to the behavior of other macroeconomic variables.  Relative to the

case of a neutral technological growth shift, the initial decline in investment demand is

sharper.  This puts downward pressure on the real interest rate, resulting in intertemporal

substitution effects for consumption and the labor/leisure choice that reinforce the wealth

effects.  Because the initial negative effect on capital accumulation is larger than for the

case of a neutral technology growth shock, consumption and output growth also slow

sharply, then follow very protracted adjustment paths toward their new long-run trend

rates of growth.  The large initial decline in capital growth and investment lowers output



10The rate of convergence from the low point of productivity growth toward the new trend (for
both types of technology growth shocks) is associated with a half-life of about 3.7 years.  The slower
convergence rate in response to investment-embodied growth shocks is entirely associated with the
relatively larger decline in capital stock growth.

11For an illustration of these characterizations, see also Pakko (2000).
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sharply, resulting in a decline in productivity growth after the shift, followed by very slow

adjustment to the new long-run trend.  In fact, it over takes 6 years for productivity to

recover to its original growth rate, and 10 years to rise half-way toward its new long run

rate.10 

Of course, some of the starkness of the dynamics that these stylized simulations

deliver is attributable to the abrupt nature of the assumed shocks.  When changes in the

underlying trend occur more gradually, or are recognized only incrementally by the agents

in the model the responses are smoother, the adjustments more moderate.11  But the basic

patterns of the responses as illustrated in Figure 4 remain.

These basic patterns predicted by the model suggest that changes in technological

growth trends, by giving rise to persistent capital stock transition dynamics, can provide

for a propagation mechanism that is relevant for interpreting productivity growth trends. 

Most relevant for the issue of assessing claims about the emergence of a  “new economy”

is the observation that an increase in the trend rate of technological progress, particularly

one of the capital-embodied type, gives rise to a very gradual acceleration in measured

labor productivity as capital accumulation slowly adjusts to its higher rate of growth. 

Therefore, we might expect that recent gains in productivity growth represent lagged

responses to shifts in underlying technological trends.



12The capital stock measure shown in Figure 5 is the growth rate of net stocks of private
nonresidential fixed capital, as reported by the Bureau of Economic Analysis, divided by the total
residential population of the U.S., as reported by the Bureau of the Census.  The capital stock figures are
dated to correspond to the model’s timing convention: The BEA reports the capital stock as end-of-year
figures which corresponds to kt+1, the capital available for use in production at the beginning of the
following year.

13The slowdown and subsequent increase in capital growth are the subject of recent analyses by
Ho, Jorgenson and Stiroh (1999) [the slowdown] and Tevlin and Whelan (1999) [the increase].
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The simulations also suggest a pattern to look for in the data as evidence of the

relevance of this effect: changes in productivity growth are predicted to be preceded by a

sharp change in the growth rate of the capital stock, in the opposite direction.  

Figure 5 shows the growth patterns of one conventional measure of capital stock

expressed in per capita terms12.  The growth rate of this measure of capital exhibits a

number of ups and downs over the post-WWII period.  Note that the largest surge in

growth occurs in the late 1960s, just prior to the time often associated with a persistent

productivity slowdown.  Over the next 20 years, capital growth follows a downward trend

as productivity growth languished.  There are a number of swings in the growth rate over

this period, which are conceivably associated with revised expectations of underlying

technology growth.  For example, there is a second surge in capital growth that peaks in

1974, corresponding to the point at which – at least in hindsight – the productivity

slowdown was clearly underway.  There is a sharp decline in capital growth during 1983

and 1984, as the economy emerged from it’s worst postwar recession, and another sharp

decline in capital growth in the early 1990s, preceding the productivity acceleration later in

the decade.13  

Of course, such casual empiricism is far from convincing, but it at least provides

primae facie evidence that a more rigorous investigation is warranted.   The following



14A similar information structure was assumed in Kydland and Prescott (1982).
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section describes a more carefully calibrated and fitted set of simulation experiments

designed to evaluate the importance of the model’s dynamics for explaining growth

patterns in the post WWII U.S. economy. 

Simulated Dynamics for the U.S. Economy

Taking the model’s implications more directly to the data, in this section I

describe and report the results of a procedure for simulating the responses of a fully

calibrated version of the model to data-based proxies of the model’s growth shocks.  The

procedure requires first that a model-consistent set of data be compiled.  From this data,

empirical counterparts for the model’s key variables are constructed, and time series for

neutral and investment embodied technology growth are derived.  

In order to identify the stochastic-trend components of these series, I append to the

model a limited-information structure in which agents must solve a signal-extraction

problem to distinguish trend shifts from transitory components.  This structure naturally

lends itself to the application of a Kalman filter for identifying trend components and

describing their time series properties.14  

Using these measures of growth shocks, I carry out simulations of the model, and

evaluate its ability to match the data.



15A more detailed description of the data is included in an Appendix and in Pakko (2001).

16The consumption measure includes only nondurables and services in order to abstract from
issues of quality improvement in consumer durables.  
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Measuring Investment-specific Technological Change

In order to identify growth-trend shocks and to simulate their effects on growth

patterns in the U.S. economy, careful data measurement and model calibration are

necessary.  In particular, the presence of  investment-specific technology growth in the

model requires special attention to relative prices and, of course,  to the measurement of

quality-improvement in capital goods.15

As Greenwood, Hercowitz and Krusell (1997) demonstrated, it is important to

account for the role of Q in the model as a relative price.  The model represents output,

consumption and investment as sharing a common price, with Q representing the price of

new, higher-quality capital goods relative to this numeraire.  Hence, it is appropriate to

construct empirical measures of output and investment by deflating their nominal values

by a consumption price index.

The relevant measure of consumption is taken to be the total of nondurable goods

and services, obtained by chain-weighting these two components of personal

consumption expenditures from the National Income and Product Accounts.  The chain

weighted price measure corresponding to this series is used to deflate nominal variables

for output and investment.16  Consequently, real output is constructed as the ratio of

nominal private business sector output to this consumption price index.  This particular

definition of output is selected because it corresponds to that used for a broad measure of



17For example, Greenwood, Hercowitz and Krusell extend the Gordon data through 1990 by
subtracting 1.5% from the growth rates of price indices for all categories of investment spending except
computers.

18Unmeasured quality change is extrapolated using only the latter part of Gordon’s sample
period, rather than using full-sample averages, because he found that unmeasured quality improvement
was far more prevalent in the earlier part of the post-WWII era, 
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labor productivity.  The model counterpart to investment is taken to be total private

nonresidential fixed investment (nominal divided by the consumption price index).

Another important consideration in constructing empirical proxies for the model’s

variables is the appropriate measurement of quality-improvement in new capital goods.  

Previous analyses have based estimates of quality change on data from the detailed

analysis of Gordon (1990).  Unfortunately, Gordon’s data set extends only through 1983. 

More recent papers on investment-embodied technology have extended the data

somewhat by adding an estimate of the trend in unmeasured quality growth to the official

investment data, making adjustments  for improvements in the BEA’s measurement of

computer prices.17  As time passes, however, changes in the composition of investment

and changes in the BEA’s methodologies for measuring quality change have made such a

simple extrapolation more tenuous.

To update Gordon’s data set for use in this paper, I took a disaggregated approach,

extrapolating trend rates of unmeasured quality-change sector-by-sector.  The general

methodology involved extrapolating each of Gordon’s 22 main investment categories

forward through the year 2000 using trend estimates of the average growth rate of

unmeasured quality change based on the last 10 years of his sample period.18   For several

of the categories, changes in the BEA’s definitions and methodologies for measuring

quality improvement required special attention and adjustment (see the Data Appendix



-20-

for more details).  For example, the category of  “office, computing and accounting

machinery” was divided into separate categories for computers and other office

equipment, computer software was included as an investment expenditure in 1999, and

hedonic price indices have been introduced to directly estimate quality improvement in

several components of the investment data.    

Moreover, in 1996 the BEA adopted a chain-weighting methodology for

aggregation, an approach similar to the Törnqvist-index that Gordon applied and

recommended as an appropriate way to aggregate components that experience large

changes in relative price and quality.  To be consistent with the current BEA  methodology,

I apply Gordon’s ratios of adjusted to official data (extrapolated through 2000) to

contemporary data and construct a chain-weighted aggregate of the resulting series.  With

the inclusion of software, this aggregate represents a fully quality-adjusted version of the

BEA’s contemporary definition of private investment in equipment and software.

To extend the definition of investment and capital to include nonresidential

structures, I use the long-run estimate of Gort, Greenwood and Rupert (1999) that

unmeasured quality change in structures averages an annual rate of 1 percent.  After

applying this adjustment to produce a quality-adjusted real-price decomposition, the

nonresidential structures component is aggregated with the Gordon-adjusted data on

equipment and software by chain-weighting. 

The end result of this procedure is a decomposition of nominal private

nonresidential fixed investment into quality-adjusted price and quantity components.  The



19One further adjustment was made to the Q series: The measure directly derived from Gordon’s
data shows a sharp upward then downward movement in 1974-75.  As Gordon points out, this pattern is
largely attributable to the fact that one of Gordon’s main data sources was the Sears catalog, and that he
used an issue published in April 1974, two months before the lifting of wage and price controls.  Because
this fluctuation in the data appears unlikely to truly reflect a technological development, I smoothed this
hump in the data by interpolation.

20Because the capital stock data are aggregated using chain-weighting, this depreciation factor for
the total capital stock includes the effects of price and compositional changes (see Whelan 2000a).  I use
these factors, rather than a fixed depreciation rate, to approximate the chain-weighting scheme.

21The level-adjustment used to initialize the series, described in more detail in the data appendix,
is based on the relative magnitudes of the official and quality-adjusted investment series at the beginning
of the sample period and an assumption that investment/capital ratios were near their steady state values. 
It suggests that the appropriate initial value for the capital stock is approximately one-third of the official
level (in chain-weighted 1996 dollars).
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price component is used to construct Q as the ratio of the consumption price index to the

quality-adjusted price index for investment.19

The real component corresponds to Q×I, the relevant measure of quality-adjusted

gross investment in the capital accumulation equation (3).  Hence, this measure is used to

construct a measure of the capital stock that reflects investment embodied technological

progress.  Using data from the BEA’s Fixed Reproducible Wealth accounts I calculated a

series of depreciation factors, backing out δ using the official data on real stocks and

investment flows.20  After adjusting for the level of the series in 1948, I used these

discount factors, together with the quality-adjusted data representing Q×I, to construct an

adjusted measure capital stock.21

Finally, a measure of neutral technological progress can be calculated as a Solow

residual, using calibrated values for labor and capital shares and data series for output,

quality-adjusted capital, and employment.  For a measure of employment, I use the index

of Total Hours for Private Business Sector employees as used by the BLS for constructing

labor productivity statistics. 



22Given the calibration of factor share parameters, equation (6) and the data on Q and Z imply
that the average the average rate of investment-specific growth accounts for about 52% of output and
productivity growth over the entire sample period.  From 1984 through 2000 the contribution is much
larger, accounting for over 80% of potential trend growth.  
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All real values (except the technology indices Z and Q) are converted to per capita

magnitudes using Total Resident Population of the U.S., as reported by the Census

bureau.  The full data set covers the period 1948 through 2000. 

Figure 6 shows the growth rate of the adjusted capital stock measure.  Comparison

with Figure 5 reveals that the adjusted growth rate follows the same general pattern as the

conventional measure, but at a higher rate – about 2.2 percent, on average.

Figure 7 illustrates the behavior of the measures of neutral and investment-

embodied technological progress, Z and Q.   In terms of indexed levels, as shown in the

upper panel of Figure 7, significant changes in trend growth of these variables are apparent.

From at least 1950 through the 1960s, neutral technology growth averaged about 1.6

percent, but the series has been basically flat ever since.  Investment specific technology

growth averaged about 2.7 percent over the entire sample.  From the 1950s through 1973,

Q grew at a rate of about 2.2 percent.  From 1974 through 2000 Q-growth averaged 3.2

percent.  More recently, in the period from 1983 through 2000, the average growth rate has

been 4.0 percent.22  

The actual year-to-year growth rates shown in the lower panel of Figure 7 reveal

that there is quite a bit of variation in these series beyond that which could be reasonably

attributed to changes in growth trends, however.  In order to extract a trend component

from these data series, I turn to a limited-information extension of the model.



23For more formal descriptions of the Kalman filter and its application to this type of problem,
see Watson (1989) and Hamilton (1994), Chapter 13.  The particular details of its application to this
problem are described in Appendix B. 
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A Limited-Information Setting

As described in equation (4) above, each of the technology variables is assumed to

include stochastic growth trends, G, and cyclical components, v:  Suppose now that each of

the vi and γi, in turn, is assumed to follow an independent AR(1) process:

Together with equation (4), this structure implies that the growth rate of each technology

variable follows an ARMA(1,1) process.   The growth-rate shocks comprise the AR

component, while the first-differences of the vi contribute moving average components of

the model’s growth rates.  

Now suppose that individuals can observe the variables Q and Z but cannot

precisely distinguish growth shocks from level shocks.  Instead, they must solve a signal

extraction problem given some knowledge (or assumptions) about the underlying

distributions and time series properties of the underlying growth-shock and level-shock

processes.

Such a structure readily lends itself to analysis using a Kalman filter.23  The Kalman

filter is essentially an algorithm for sequentially updating linear least-squares forecasts of

the state vector of a model, which in this case comprises a growth component and a

stationary, transitory component, each of which follows an AR(1) process.  Given an

observed growth rate, previously estimated values for the state variables, and an estimate of

the relative contributions of growth shocks and level shocks to the overall variance of



24As described in Appendix B, the state vector includes vt and vt-1 yielding direct measures that
can be used to construct the level-shocks.
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technology growth, the Kalman filter provides a procedure for constructing rational

inferences about the relative magnitudes of decomposition of current shocks.    

Rather than calibrating the values of the autoregressive parameters and

autocovariance matrices of the shock processes, I use the Kalman updating equations to

construct a sample log-likelihood function.  Iterating on the Kalman filter procedure,

standard numerical methods are used to maximize the log-likelihood function, yielding

estimates for parameter values and growth-rate decompositions that best fit the data.  

The procedure produces the following estimates for the autoregressive parameters:

ργz = .925,  ρvz = .738

ργq = .873,  ρvq = .950 .

The estimated variance-covariance matrices for the two technology variables

imply that changes in growth trends account for about 27.5% of the variance of Zt, and

about 13.7% of the variance of Qt.

The Kalman filter algorithm produces estimates of the state variables (γi and vi)

using information from period t and earlier.  These estimates are used for the current

growth trends – the γit in equation (8).   The remaining portion of the technology growth

rates are attributed to the first-differences of the level-shocks.24 

The growth-trends relevant for capital accumulation decisions are expected future

rates.  However, the time-t estimates of the trend – based only on current and past



25Moreover, the use of annual data and the model’s convention of a one-period lag between
investment decisions and the availability of productive capital raise time-aggregation issues that are
relevant.  
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information – amount to something of a backward-looking, adaptive algorithm.25  In order

to incorporate the forward-looking expcted growth trend estimates, the growth shocks are

constructed from the  trend estimates the use information though t+1; that is, in assessing

future growth trends, agents are assumed to have perfect foresight one period into the

future. 

Figure 9 shows the estimates of trend-components in that this procedure produces 

from the Q and Z growth series.   These growth trends each contain several notable

fluctuations over the period, but at lower frequency and with lower variance than the

underlying growth rate series.

Estimates of the growth shocks are backed out from these series using equations

(9) and the autoregressive parameter estimates found by the maximum likelihood

procedure.  Innovations corresponding to the trend-stationary level-shocks are similarly

constructed from the state variables, νit, which track the fluctuations in growth rates that

are not accounted for by the trend estimates.

With a complete set of estimated shocks available, the model can be simulated to

construct paths for the model’s variables, and then to compare their behavior to

counterparts in the data.  

Simulation Results 

In order to delineate the roles of growth shocks and level shocks, and of neutral

and investment-specific technology trends, I conduct a series of simulations that builds in
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complexity.   In each of the simulations, the starting-period is 1948, the first shocks occur

in 1949, and the model’s results are reported for the period 1950-2000.   

Neutral Technology Growth-Trend Effects 

The first simulation is one in which only neutral technology growth is subject to a

variable growth-trend–corresponding most closely to the example of the Solow growth

model.  The contribution of investment-specific growth to the simulation is solely in its

long-run average growth rate (and its effect on the average growth rate of capital). 

Dynamics are driven entirely by the stochastic growth-trend component of  Zt and the

model’s endogenous responses to the growth shocks implicit in that trend.  Figure 9

shows the growth paths of the model’s variables in this case.

For several of the model variables, Figure 9 suggests that this simulation

experiment generates trends that fit the data reasonably, but accounts for little of the year-

to-year variation in growth rates.  For the growth rates of capital and investment,

however, the model generates simulated growth paths that fit some of the prominent

fluctuations in the data rather well.  The variance of the simulated series for investment

growth is also notably more consistent with the data.    The model generally matches

peaks in investment and capital growth that occurred around the time of the productivity

slowdown in the late 1960s and early 1970s.  The simulated growth paths also show

downturns in investment and capital growth in the early 1980s and early 1990s,

corresponding to noticeable increases in γzt,.

Over the period of the past 10 to 15 years, however, the simulated capital growth

rate fails to match either the depth of the downturn in the early 1990s or the rapid increase
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in growth over the remainder of the decade.  The model also under-predicts investment

growth during the 1990s.  

 Table 1 presents some quantitative measure of the fit for this simulation

experiment.  The first column shows the correlation between actual and simulated values,

and the next two columns show the standard deviations of actual and simulated growth

rates over the sample period.  The correlations between actual and simulated series are all

positive, and in most cases, significantly so.  The standard deviations of actual and

simulated data are generally of the same order of magnitude, but the model tends to

under-predict the variability of output, productivity, work-effort and investment.

The remaining columns of Table 1 decompose the correlations between actual and

simulated data into components reflecting the role of the exogenous growth trends and

the model’s endogenous dynamics.  This serves to reveal the importance of the model’s

internal propagation mechanism in generating the correlations in the first column. 

The additive construction of the simulated growth paths in equation (8) implies

that the correlations between actual and simulated data series can be represented as a

weighted average of the correlation between the data with the growth trend, and the data

with the model’s impulse-responses.  In particular,

The decompositions suggest that for consumption, output, and productivity, the

positive relationship between actual and simulated growth rates is solely attributable to

the growth trends themselves.  On the other hand, the model’s internal propagation

mechanism explains almost all  the correlations for investment, capital, and labor.  For
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labor, which has no trend growth, the model’s endogenous dynamics explain all of the

relationship between the simulated and actual series.  For investment and capital growth,

the endogenous components account for over 80% of the full correlations.  These results

tend to support a role for adjustment of the capital/labor ratio to changes in the trend

growth rate of technology, as represented here in the Solow residual series.

Investment-Specific Technology Growth-Trends

To assess the role of technology growth that is capital-embodied, the second

simulation adds a stochastic growth trend for investment-specific technology growth. 

The underlying trend is modeled to incorporate changes in both neutral and embodied

growth, and the model’s endogenous dynamics reflect responses to both types of growth-

trend shocks.

Figure 10 shows the growth paths generated by this simulation.  The patterns are

quite similar to those of the simulation including only neutral technology growth-shocks.  

As discussed earlier, the growth relationships in equations (5) and (6) imply that a given

proportionate change in investment-specific technology growth has a smaller effect on

output and productivity growth, so it is not surprising that there is little apparent effect of

incorporating investment-specific growth-trend shocks for many of the model’s variables. 

There are some clear differences between the simulations illustrated in Figures 9

and  10, however.  The increase in investment-specific technology growth in the mid-

1950s gives rise sharpens the a decline in capital growth early in the sample period,

improving the correspondence between the simulation and the data.  The subsequent

slowdown reinforces the peak in investment and capital accumulation growth around



26Some implications of rapid depreciation and obsolescence of computing technology are
explored by Whelan (2000b). 

27This observation suggests the efficacy of including variable capital-utilization and depreciation,
as in the model of Greenwood, Hercowitz and Huffman (1988).
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1970, and also exaggerates the decline in the early 1980s as both types of technology

growth showed signs of increasing. 

While the capital-stock growth rate shows acceleration in the late1990s, it still

fails to capture the sharp decline earlier in the decade.  Investment growth does show a

sharper decline in 1991, and in 1995, however.  At least in part, there is an obvious

explanation for this apparent anomaly: the rapid pace of technological change during the

1990s was associated with higher average rates of depreciation–particularly so for

computers.26   In the model, however, depreciation is assumed to be constant.  The growth

rate of investment is consistent with a decline in capital-stock growth in the early 1990s,

but the magnitude of the decline in capital growth was apparently augmented by

increasing rates of depreciation.27 

Table 2a documents the correlations of actual with simulated data when

investment-specific growth-shocks are included.  Comparing the correlations to those

resported in Table 1, it is apparent that the addition of investment-specific growth shocks

does little to quantitatively enhance the correspondence between actual and simulated

growth rates.  The correlations are slightly higher for capital and productivity growth, and

slightly lower for investment and work-effort.   Note that the correlation between capital

stock growth and the underlying trend is now negative, with the endogenous dynamics

explaining all of the correspondence between actual and simulated series.  The relative

contributions of exogenous trend growth and endogenous model dynamics are generally
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similar to those found for neutral growth shocks alone, although the negative correlations

between actual and simulated series for productivity, output and consumption are now

smaller in absolute value.

Table 2b decomposes the model’s endogenous component into responses

attributable to the two type of growth trends separately (similar to the decomposition

described in equation 10).  The first column reports the correlations of actual series with

the endogenous component of the simulated series, as shown in the final column of Table

2a, with the remaining columns separating the roles of the two type of shocks.  The

contribution of investment-specific growth shocks is clarified by this decomposition. 

Most notably, the endogenous responses to these capital-embodied growth shocks are all

positively correlated with the actual series, accounting for the improvement in fit for

productivity, output and consumption.  Although investment-specific technology growth

shocks give rise to relatively smaller changes in long-run productivity growth, the

impulse response functions in Figure 4 show that the impact-responses are sharper for

this type of shock.  Evidently, these initial responses to changes in the underlying growth

trend match the data in such a way as to improve the overall fit of the model with respect

to output and productivity.

When both types of  shocks are included in the analysis, the simulation results

continue to be supportive of a role for adjustment of the capital/labor ratio in response to

growth-trend changes.  Other aspects of the model simulations are less convincing, with

negative correlations between the data and the endogenous components of the model

simulation.  In terms of verifying the theory examined in this paper, the results for labor

productivity might appear particularly problematic in light of the model’s prediction that



28In Figure 11, the underlying trend and simulated productivity series are adjusted slightly
(approximately 0.2%) so that simulated and actual series have equal means.   No effort was made
to account for differences in the first moments of actual and simulated series, and for the most
part, the measures of fit used to evaluate the simulations are invariant to differences in means.
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productivity growth responds with a lag to changes in underlying technology growth

trends.

However, the decompositions between underlying trend and endogenous

dynamics reported in Tables 1 and 2 might not be the best way to assess the ability of the

model to explain productivity growth.  The most important aspect of the relationship

between growth shocks and productivity is not in the initial impact response that would

feature prominently in contemporaneous correlations, but in the gradual convergence of

productivity growth to trend.  Alternative measures of the correlations between actual and

simulated productivity growth are revealing in this regard.  For example, the correlation

of productivity growth minus trend with the model’s endogenous growth dynamics (a

common RBC-evaluation metric) is positive at 0.203.  Similarly, the partial correlation

between actual and simulated series, holding the growth trend constant, is small but

positive (0.149).   These results suggest that the negative contemporaneous relationship

between trend and endogenous responses, which tends to smooth the simulated

productivity series relative to trend, is largely responsible for the negative results in the

decompositions of Tables 1 and 2.

Figure 11 illustrates this relationship.28  The simulated series for productivity

growth appears as a smoothed version of the exogenous trend.  Some of the higher-

frequency variations in the trend series that correspond to fluctuations in the data are

ironed out by the model’s dynamics, leaving what appears as a smoother trend line.  For
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most sub-sample periods, the simulated series fits the data better than the raw trend in

terms of root-mean-squared error.

As suggested by the previous analysis of the model’s dynamics, the simulated

series is above trend when technology growth is slowing, and above trend when

technology growth is rising.  In particular, simulated productivity growth is lower than

that predicted by technology trends alone over most of the 1980s and 1990s, as

investment-embodied growth-trend shocks have gradually ratcheted-up the underlying

trend, while simulated productivity growth has lagged the trend implied by technology

growth alone.

Shocks to the Level of Technology

The final simulation experiment adds the effects of level-shocks to the analysis. 

Figure 12 shows the results of this simulation, which now includes the full panoply of

shocks identified by the Kalman-filter decomposition.  Table 3a reports the correlations

between the actual and simulated growth rate series for this case.

The inclusion of level shocks increases the correlations significantly for output,

productivity and consumption, in particular.  Evidently, much of the high-frequency

variation in the growth rates of these series is related to the short-term effects of the RBC-

type shocks to the level of technological change With both level shocks and growth

shocks included, the standard-deviations of the data and simulations of these series are

also very close.  Investment and capital growth are now far more variable in the

simulations than in the data.
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Table 3b decomposes the contribution of endogenous model responses into

components attributable to the growth-shocks and the level-shocks.  Clearly, the

transitory level-shocks account for much of the short-run variability of output,

consumption and productivity growth.  For investment and work effort, the level-shocks

account for about half of the overall correlation between the data and the model’s

endogenous dynamics.  Note that for capital stock growth, the inclusion of level-shocks

induces greater volatility in the simulated series without making any positive contribution

to the overall correlation of the simulated series with the data.

The overall conclusion to be drawn from these simulation experiments is that

changes in growth trends do appear to contribute significantly to the dynamics of capital

accumulation, investment and – to a lesser extent – work effort.  The growth trends, and

the dynamics they generate, explain much of the long-run movements in growth rates for

other model variables.  However, for consumption and output growth in particular,

transitory RBC-type level-shocks explain most of the year-to-year variability in growth

patterns. 

Implications For the Future: Outsample Forecasts

As observed above, the relationship between the technology trend and measured

productivity growth implied by the model is such that the simulated productivity growth

path tends to be higher than the underlying trend when the trend is falling, and above it

when the trend is rising.   Since at least the mid-1999s, a rising trend in technology

growth has meant that productivity has lagged behind the trend.
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The implication of this observation is that the technological advances of the past

two decades have contributed to a rising growth rate of labor productivity, but that higher

productivity growth has yet to catch up to the trend implied by underlying technology. 

That is, the fundamental model dynamics suggest that we have yet to observe the full

productivity-enhancing effects of recent technological progress.

Table 4 reports the results of outsample simulations, providing estimates of the

model’s implications for future productivity growth.    In order to abstract from small

differences in long-run average growth rates among the simulations and the data, the

productivity growth rates shown in Table 4 are reported relative to average growth over

the period 1973-2000.   In the data, productivity growth was slightly more than 0.1%

below this average over the first 23 years of this period, and nearly three-quarters of a

percentage point above the average during the past five years.

Simulated averages for productivity growth are shown for each of the three

simulation experiments described above.   In the simulations including only growth

shocks, the change in average growth rates between the 1973-1995 and 1996-2000 are

both smaller than shown in the data, although the simulation including investment-

specific shocks shows an increase that is relatively close to actual experience.  Each of

these simulations suggest that productivity growth over the next five to ten years will be

above the 1996 average – by ½ a percentage point or more.  The simulation that includes

transitory level-shocks shows an increase in the 1996-2000 period that is larger than the

data, as part of the increase in this case is due to a series of positive innovations in

technology.  As these transitory, cyclical components dissipate over time, the increase in

productivity growth predicted for 2001-2010 is smaller than for the simulations including
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only growth shocks.  Nevertheless, this version of the model also suggests that the

productivity gains of the 1990s are not entirely transitory, but are predicted to be

sustained into the future.  

 

Conclusions

Current prospects for economic growth in the U.S. are fundamentally related to the

question of whether or not the rapid rate of expansion of the late 1990s signaled an increase

in the underlying trend rate of growth.   Speculation about shifting growth trends has been

an important topic in macroeconomics since well before the recent acceleration of growth. 

Indeed, explaining the apparent productivity slowdown of the early 1970s has proven to be

one of the most challenging issues faced by macroeconomists in recent years.

Despite the apparent practical importance of changes in growth trends, however,

there has been little fundamental analysis of how a change in underlying technology

growth would be expected to work itself through the economy from a simple general

equilibrium perspective.  This paper addresses that question, modifying a basic RBC-type

model to incorporate stochastic growth trends.

The model predicts that a shift in the underlying trend rate of technology growth

has potentially important implications in terms of adjustment dynamics: Changes in

growth trends give rise to incentives to alter the mix of capital and labor in the production

process, resulting in an extended period during which measured productivity lags behind

the potential trend implied by technological progress.  Simulations of post-WWII U.S.

economy reveal that the model’s implied dynamics are consistent with some key features

of investment growth and capital accumulation over the sample period.  The model also
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generates a path for employment growth that qualitatively replicates much of the growth

variation in that key variable over the sample period.

Not surprisingly, this single propagation mechanism is insufficient for generating

artificial economic growth paths that match the data along all dimensions.  In particular,

the simulations suggest that much of the short-term, year-to-year variation in the growth

rates of consumption, output and labor productivity are more closely associated with

transitory fluctuations in the level of technological change around its growth trend.

When simulated out of sample, the model suggests that the increases observed in

productivity growth over the late 1990s are partly cyclical, but largely attributable to an

acceleration in underlying technology growth.   Because of the lagged relationship

between trend changes in technology and productivity growth, the model’s dynamics

suggest that the recent acceleration in economic growth represented only a transitory

phase in this process.  The model predicts that the trend rate of productivity growth will

remain strong, or even accelerate, over the horizon of the next five to ten years.
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Appendix A:  Data 

Basic Data Set: Summary

The full sample period is 1947-2000.  Except where otherwise noted, data are
from the National Income and Product Accounts, available from the Bureau of Economic
Analysis.

Variables are constructed as follows: 

PI:  A quality-adjusted measure of the price deflator for private nonresidential fixed
investment.   Details of the quality-adjustment methodology are described below.   

PC:  The price deflator for nondurable consumption goods and services, calculated as the
ratio of nominal expenditures on nondurables plus services to a chain weighted
aggregate of those two consumption components (1996 dollars).

Q:  The relative price of quality-adjusted investment goods in terms of consumption: PC/ PI. 

C:  Real Consumption of nondurable goods and services, chain-weighted 1996 dollars.

I:   Nominal private nonresidential fixed investment, deflated by PC.

Y:  Nominal gross business output, deflated by PC.

K:  The capital stock is generated iteratively from the accumulation equation, beginning
with a 1947 base of equipment and structures from the Fixed Reproducible Tangible
Wealth tables (BEA). Capital stock observations are updated using annual real figures for
private nonresidential fixed investment (1996 dollars) and depreciation rates derived from
the wealth tables (details below).

N: Hours of all persons, as used in the calculation of business sector productivity (BLS).

Z:  The Solow residual, calculated using a capital share of 0.30 and a labor share of 0.70.

All variables are transformed into per capita terms using annual figures on total resident
population, as reported by the U.S. Census Bureau. 

Estimating and Incorporating Embodied Technological Change 

In recent years, the BEA has been very diligent in adapting its methodologies to the

rapid rate of innovation in the Information and communications technology sectors.  In
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addition to the introduction of hedonic indices for computer equipment and purchased

software, quality improvement has been examined and incorporated in measures for

telephone switching equipment, cellular services and video players, among others. 

Indeed, the BEA has even changed it’s aggregation methodology to more accurately

measure the contribution of quality change to GDP growth: the adoption in 1996 of a

chain-weighting methodology was intended to allow aggregates to track quality-

improvement better over time.

Nevertheless, many economists contend that a significant amount of quality

change goes unmeasured in the official statistics, particularly in cases where quality

improvement is more incremental.  As detailed in his 1990 book, The Measurement of

Durable Goods Prices, Robert Gordon undertook to quantify the extent of this

unmeasured quality change.  Drawing data from a variety of sources, including special

industry studies, Consumer Reports, and the Sears catalogue, Gordon compiled a data set

of more than 25,000 price observations.  Using a number of methodologies, he compiled

the data into quality-adjusted price indexes for 105 different product categories, then

aggregated the data to correspond to the individual components of the BEA’s measure of

producers durable equipment expenditure.  In particular, he calculated a “drift ratio”,

representing the difference between the growth rates of his quality-adjusted price data and

the official NIPA price indexes, then aggregated the components to create a new real,

quality-adjusted investment series.

Table D1 shows trends in the drift ratios calculated by Gordon for individual

components of investment spending.  The table is organized by the contemporary

categories and definitions for Private Nonresidential Fixed Investment in Equipment and
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Software, which differs somewhat from the taxonomy used at the time of that Gordon

constructed his drift ratios.  (Some specific differences will be discussed in more detail

below).  The growth rates in Table D1 represent the spreads between the official growth

rates and the growth rates of Gordon’s quality-adjusted measures.  

Over the span of the entire sample period, 1947-83, the drift ratios are uniformly

positive, indicating unmeasured quality improvement.  In many cases, the magnitude of

the quality adjustments is remarkable.  Not surprisingly, Gordon’s estimates of

unmeasured quality improvement are particularly large for the high-tech categories of

computing and communications equipment (prior to the adoption by the BEA of hedonic

methodologies for these categories).   Drift ratios for some components of transportation

equipment, particularly aircraft, also indicate substantial under-measurement of quality

change over the post-war period.  

Generally speaking, the magnitude of the drift ratios is smaller in the later years of

the sample period (and in some cases, marginally negative).  This observation is

consistent with the hypothesis that the official statistics more accurately measure quality

change in the 1970s and 1980s than they did in earlier decades.    

The bottom-line of Gordon’s study was that the official NIPA data understated the

true growth rate of investment spending by nearly three percentage points over his post-

war sample period. Unfortunately, because Gordon’s data set extends only through 1983,

some extrapolation is necessary in order to use his findings to evaluate recent U.S.

economic experience. 
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Applying Gordon’s Adjustments to Contemporary Data

In order to apply Gordon’s quality adjustment to contemporary NIPA data, it is

necessary to make some assumptions about unmeasured quality adjustment in the post-

1983 period.  In addition, changes in the BEA’s definitions and methodology

implemented over the past two decades require some attention.

The basic procedure I adopt is to assume that the growth rate of unmeasured

technological change over the 1983-2000 period is the same as Gordon’s measured drift

rate over the last 10 years of his sample.  That is, Gordon’s actual drift ratios are

extrapolated to 2000 using the growth rates in the second column of Table D1.   The base

period for the drift ratios is updated to 1996, to match the present NIPA convention, then

the price deflator for each component is divided by the corresponding drift ratio to

produce a quality-adjusted measure of price for each of the components of fixed

investment.  Deflating the nominal series by these price indexes yield quality-adjusted

measures of real investment expenditure.

The drift ratios are extrapolated on a component-by-component basis and then

aggregated to create a quality-adjusted measure of total investment spending.  This

disaggregated approach is preferable to a simple extrapolation of the aggregate trend for

two reasons:  First, several changes in the BEA’s definitions and methodology have, for

some components, eliminated or at least mitigated the measurement problems suggested

by Gordon.   In addition, the procedure of re-aggregating the quality-adjusted components

using a chain-weighting methodology allows the role of changing expenditure shares over

time to be incorporated into the total investment data.



29 See Parker (2000) and Landefeld and Fraumeni (2001).
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Of the changes to the BEA’s definitions and methodology, most apply to the elements

of information processing equipment and software.  Many of these changes are consistent

with recommendations from Gordon’s study.  First, the category previously known as

“office, computing and accounting machinery (OCAM)” was divided into two categories:

“computers and peripheral equipment” and “office and accounting equipment.”  Most of

the unmeasured quality change for this component was in the computers and peripherals

element, for which a hedonic price index approach was adopted in late 1985.  Because

current BEA practice carefully accounts for quality change, Gordon’s calculations are

superfluous for evaluating the growth rate of computer equipment.  For the remaining

elements of that category, data from Gordon’s Tables 6.1 and 6.2 (which detail the

construction of a deflator for OCAM) were used to separate out the computer component,

with the remaining drift ratio to be applied to office and accounting machinery.   

Software was incorporated as a component of fixed investment only in 1999, and

was therefore not examined by Gordon.  The BEA applies a hedonic approach to some

components of software investment: In particular, a hedonic index is used to deflate

prepackaged software, while in-house software is deflated using an input cost index. 

Custom software is deflated using a weighted-average of these two deflators.29  This

practice amounts to applying a hedonic price index to about one-half of all software.  For

the purpose of this study, I assume that the BEA methodology accurately measures

quality change in software.



30 Moulton and Seskin (1999).

31 Gordon, p. 538.
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Next to computers, the largest drift ratios measured by Gordon were for

communications equipment.  In particular, Gordon found that the official price index for

telephone transmission and switching equipment (by far the largest item in the

communications equipment category) vastly understated improvements associated with

electronics and transmissions technologies in the 1960s and 1970s.  In 1997, the BEA

introduced a quality-adjusted price index for telephone switching and switchboard

equipment, and carried back these revisions to 1985 in the 1999 comprehensive revision

of the national accounts.30   Because these revisions addressed the most serious concerns

raised by Gordon about the measurement of quality change in communications

equipment, I assume that the post-1985 data accurately reflect quality improvements. 

Consequently, I use Gordon’s drift ratios and extrapolations only for years prior to 1985.

Another category that requires special attention is automobiles.  As shown in Table

3, the automobile component showed a negative drift ratio over the 1973-83

period—suggesting that the BEA overestimated quality change over the decade. 

However, Gordon explains this finding as the result of a  “spurious decline in the NIPA

automobile deflator during 1980-83”31 that he attributed to the use of a deflator for used

cars that is inconsistent with quality-change measured in the index for new cars.   (Used

car sold from business enterprises to households—reflecting a reclassification from

business capital to consumer durables—represent a factor that subtracts from investment.) 

In the absence of this inconsistency, Gordon notes that the drift ratio for automobiles



32 Fox (1987). 

33 Fox and Parker (1991).

34 In addition, because the BEA’s methodological changes affected both nominal and real series, I use
Gordon’s actual price index figures (rather than applying his drift ratios directly to the contemporary
deflator series) for years prior to 1983.

35 This reclassification was associated with the incorporation of new data from the 1992 I-O accounts. 
See Taub and Parker (1997)

36 The “special industry machinery” component was one of six that Gordon referred to as “secondary”
categories, for which the underlying price data overlapped with the other sixteen “primary” categories. 
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would be close to zero for the 1973-83 period.  In 1987, the BEA began to adjust used

automobile by applying a quality-adjustment factor derived from its treatment of new car

prices.32  In the comprehensive revision of 1991, this change was carried back to years

prior to 1984.33 This change altered both the nominal and real data series on investment

spending for automobiles, and largely eliminated the “spurious decline” in the automobile

deflator for 1980-83.  Consequently, in extrapolating Gordon’s data on quality change for

autos, I assume a drift ratio equal to zero for the post 1983 period.34 

Some other re-classifications of the components of equipment investment proved

to be simple to address:  For example, the reclassification of analytical instruments from

the Photocopy and Related Equipment category to the Instruments category in 199735

required no special adjustments, because Gordon’s drift ratio applies to the combined

Instruments and Photocopy Equipment category that was in use at the time.  Similarly, a

reclassification of some equipment from Metalworking Machinery to Special Industry

Machinery was also innocuous, since Gordon found that the deflator for the latter was

based on a subset of raw prices from the former.  In calculating his drift ratios, Gordon

simply applied the same factor to both categories.36
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Finally, there is the issue of aggregation methodology.  At the time of his writing,

Gordon criticized the BEA’s continuing practice of using fixed-weight deflators.  

Particularly in light of his modifications accounting for quality change, a fixed-weight

approach tends to underestimate the importance of goods that are declining in price (or

increasing in quality) while overstating the importance of goods that have rising prices

(see shaded box).  Gordon proposed the use of a Törnqvist index, which uses share

weights from adjacent periods to construct deflators for both the individual components

of equipment purchases, and for aggregating the totals.  The BEA subsequently adopted a

“Fisher ideal” chain-weighting formula that is similar to the Törnqvist approach in that it

incorporates share-weights from adjacent periods that are allowed to evolve over time.

While the two approaches are very similar, they are not identical.  For the purposes of this

study, however, I assume that the two methodologies are essentially interchangable.  

While I use Gordon’s Törnqvist-aggregated measures disaggregating and re-aggregating

the elements of OCAM into their contemporary definitional categories, I use the BEA’s

chain-weighting formula for aggregating the quality-adjusted components of investment

spending.

Unmeasured Quality Change for Nonresidential Structures

The investment aggregate used in this paper includes both durable equipment and

structures.  In order to account for unmeasured quality change in the structures

component of the aggregate, I utilize the estimate of Gort, Greenwood and Rupert (1999). 

 That study finds that the quality-improvement in structures that is not captured in the

official NIPA data amounts to approximately one percent growth per year.  



37See Katz and Herman (1997).
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Consequently, I add one percentage point to each year’s growth rate in real nonresidential

structures over the sample period of 1947-2000, then construct an adjusted real series

expressed in 1996 chain-weighted dollars.  This measure is then aggregated by chain-

weighting with the adjusted measure of fixed investment in equipment and software to

produce a total quality-adjusted measure of private nonresidential fixed investment.

Construction of Capital Stock Data

With this measure of  investment in hand, the final step in compiling a quality-

adjusted data set is the construction of an aggregate capital stock measure.  The

procedure  used to construct the capital stock measure follows the methodology of the

BEA’s estimates of fixed reproducible wealth.37

The BEA uses a perpetual inventory method with geometric depreciation – the

same general form as in the capital accumulation equation in the model [equation (3)]. 

Each year’s capital stock is constructed as he sum of un-depreciated capital from the

previous year plus gross investment.  The net stocks  calculated by the BEA are end-of-

year values, with investment assumed to be placed in service, on average, at mid-year. 

Consequently, it is assumed that new assets depreciate at a rate equal to one-half of the

annual depreciation rate on existing assets:

To parallel this construction, I begin be using equation (A1) with data for net

stocks of private nonresidential capital and fixed investment to calculate a series of



38The BEA constructs measures of net stocks for individual components, then uses chain-
weighted aggregation to build aggregates.  The use of these annual depreciation factors approximately
adjusts for  changes in the composition of the capital stock and total depreciation that arise from this
procedure.
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implied depreciation factors.38  Given a starting value for the capital stock, an adjusted

measure is then constructed by applying these depreciation factors to the quality-adjusted

investment series, corresponding to QtIt in the model.  

The starting value for the capital stock is calibrated by exploiting the steady-state

properties of the model.  Specifically, the accumulation equation (3') implies that the

investment/capital ratio depends on the capital stock growth trend and the depreciation

rate:

The ratio of the adjusted capital stock to the official BEA measure is therefore related to

the implied growth rates of the two measures, as well as the initial ratio of adjusted

investment to NIPA investment:

The numerator incorporates quality-adjusted investment (qi) and the associated

growth rate of capital, γk = γy γq while the denominator is related to official investment

(iNIPA) and the steady-state requirement that output and capital grow at the same rate (in

the absence of explicit quality improvement).   Taking 1948 to be the base year, the ratio

of the quality-adjusted investment series to the official series is 0.441.  Average growth

rates over the sample period are γy=1.0228 and γq=1.0276.  Hence, the implied ratio of

kADJ to kNIPA is approximately 0.34.
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Table A1:
Drift in the Ratio of Official to Alternative Deflators for Components of 

Private Nonresidential Fixed Investment in Equipment and Software

   Growth Rates (Percent)
  1947-83    1973-83

Information processing equipment and software
  Computers and peripheral equipmenta     15.33  7.37

Softwareb  na   na
Communication equipment 6.42  8.13
Instrumentsc,d 3.50  2.99
Photocopy and related equipmentc,d 3.50  2.99
Office and accounting equipmente 6.80  6.82

Industrial equipment
Fabricated metal products 1.78 -0.42
Engines and turbines 3.50  0.47
Metalworking machinery 1.15  0.96
Special industry machinery, n.e.c.c 2.47  2.81
General industrial, incl. materials handling, equipment 1.79  1.25
Electrical transmiss., distrib., and industrial apparatus 2.09  0.40

Transportation equipment
Trucks, buses, and truck trailersc 3.00  0.56
Autos 1.35 -2.07
Aircraft 8.29  3.65
Ships and boatsc 1.93  1.39
Railroad equipment 1.47  1.78

Other equipment
Furniture and fixtures 1.44  0.53
Tractors 1.41  3.17
Agricultural machinery, except tractors 0.68 -0.19
Construction machinery, except tractors 1.62  0.68
Mining and oilfield machineryc 1.62  0.68
Service industry machinery 3.15  3.64
Electrical equipment, n.e.c. 1.08  0.18
Otherc 1.98  1.68

SOURCE:  Gordon (1990), Appendix B, Appendix C and Tables 6.11 and 6.12.
NOTES:
a.   The official BEA statistics now incorporate quality-adjustment using a hedonic-price index 

approach, obviating the need to use Gordon’s figures.
b. Software expenditures have been included in official measures only since 1999.
c. Classified by Gordon as  “secondary” category, with price data derived from primary categories.
d. At the time of Gordon’s study, Instruments and Photocopy comprised a single component.
e. Derived from data on the category of Office, Computing and Accounting Machinery, adjusted to

exclude computers and peripherals



39A thorough description of the general Kalman filter procedure can be found in Hamilton
(1994), Chapter 13.
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APPENDIX B:  Application of the Kalman Filter

 This appendix describes the application of the Kalman filter procedure to the

signal extraction problem outlined in the limited-information version of the model.39  The

Kalman filter is used to decompose each of the technology growth-rate series into trend

and transitory components.  The procedure is described here in terms of the investment-

embodied technology variable, Qt.  The neutral technology index is treated in an identical

manner.

Letting xt = ln(Qt-Qt-1), an appropriate state-space representation of the growth

rate of investment-embodied technological change described by equations (9) can be

written compactly in the form:

Observation Equation:  x Ht t� ��

State Equation: � �t t tF v
� �

� �1 1

with 
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The variance-covariance matrix of underlying shocks is:

Given initial values for the mean and variance of the state vector, and  P1|0,�
|�1 0

estimates of the subsequent values of the state vector at each time t can be found as the

update of a linear projection:

        

The mean-squared error of the current forecast, Pt|t, can then be calculated

iteratively from

where Pt|t-1 is the estimated mean-squared error of the previous period’s forecast. 

Given information at time t, the best t+1 forecast of the state vector, can be� ,|�t t�1

found by using the state equation as

and the mean-squared error estimate of the one-period-ahead forecast is then given by

As estimates of  the current, transitory component of technology growth, the level

shocks, v, are derived from the time-t elements of equation (B1).   Similarly in
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constructing the simulated growth paths for model variables, the component representing

the current underlying trend is taken to be the first element of the vector  from�
|�t t

equation (B1).

Growth shocks, on the other hand, derive their relevance from their forward-

looking, long-run effects.  Consequently, the growth shocks are assumed to be

represented by the first element of the state vector  given in equation (B3). �
|�t t�1

Moreover, time-aggregation issues arise in this context: using annual data and an

accumulation specification that requires a full period for any investment to be

incorporated into productive capital, it could be argued that this measure does not fully

reflect information available to investment decision-makers.  This is particularly so given

the adaptive-expecations nature of the univariate Kalman filter algorithm.  In order to

better represent a forward-looking measure of expected growth trends, I assume that

growth-trend estimates are constructucted using data from t+1 – that is, I assume one-

period-ahead perfect foresight in the construction of growth-trend shocks.

Under general assumptions of normality, the distribution of xt conditional on

information available at time t-1 is distributed normally with mean H�  and variance�
|�t t�1

H�Pt|t-1H.  It is therefore straightforward to construct a sample log likelihood function,

which can be maximized numerically to estimate values for the parameters of the matrices

F and W.  
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Table 1: 
Correlations of Actual with Simulated Data – Neutral Growth Shocks

x Corr(x, x̂)
Standard Deviations (%) Growth Trend Endogenous Dynamics

sd(x) sd(x̂) Corr(x,γ) sd(γ)/sd(x̂) Contribution Corr(x,r̂) sd(r̂)/sd(x̂) Contribution

K 0.442 1.217 1.544 0.056 0.970 0.054 0.366 1.058 0.387

I 0.566 6.173 5.267 0.316 0.284 0.090 0.562 0.846 0.476

N 0.538 2.409 0.465 0.000 0.000 0.000 0.538 1.000 0.538

Y/N 0.570 1.867 1.276 0.644 1.174 0.756 -0.409 0.454 -0.185

Y 0.313 2.808 1.452 0.382 1.032 0.394 -0.288 0.283 -0.082

C 0.087 1.182 1.252 0.291 1.197 0.348 -0.473 0.552 -0.261

Table 2a: 
Correlations of Actual with Simulated Data – Neutral and Embodied Growth Shocks

x Corr(x, x̂)
Standard Deviations (%) Growth Trend Endogenous Dynamics

sd(x) sd(x̂) Corr(x,γ) sd(γ)/sd(x̂) Contribution Corr(x,r̂) sd(r̂)/sd(x̂) Contribution

K 0.480 1.217 1.372 -0.029 1.006 -0.029 0.389 1.308 0.509

I 0.505 6.173 6.148 0.340 0.226 0.077 0.477 0.898 0.428

N 0.515 2.409 0.555 0.000 0.000 0.000 0.515 1.000 0.515

Y/N 0.601 1.867 1.258 0.615 1.106 0.681 -0.157 0.507 -0.080

Y 0.330 2.808 1.413 0.410 0.985 0.404 -0.218 0.339 -0.074

C 0.098 1.182 1.257 0.347 1.107 0.385 -0.469 0.612 -0.287

Table 2b: 
Contributions of Neutral and Embodied Growth Shocks to Endogenous Dynamics

x Corr(x, r̂)
Neutral Growth Shocks Embodied Growth Shocks

Corr(x,r̂) sd(r̂)/sd(x̂) Contribution Corr(x,r̂) sd(r̂)/sd(x̂) Contribution

K 0.509 0.366 1.190 0.436 0.088 0.831 0.073

I 0.428 0.562 0.725 0.408 0.037 0.555 0.021

N 0.515 0.538 0.838 0.451 0.106 0.600 0.064

Y/N -0.080 -0.409 0.460 -0.188 0.334 0.324 0.108

Y -0.074 -0.288 0.290 -0.084 0.049 0.201 0.010

C -0.287 -0.473 0.550 -0.260 -0.070 0.389 -0.027
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Table 3a: 
Correlations of Actual with Simulated Data – Growth Shocks and Level Shocks

x Corr(x, x̂)
Standard Deviations (%) Growth Trend Endogenous Dynamics

sd(x) sd(x̂) Corr(x,γ) sd(γ)/sd(x̂) Contribution Corr(x,r̂) sd(r̂)/sd(x̂) Contribution

K 0.320 1.217 1.667 -0.029 0.828 -0.024 0.428 0.803 0.344

I 0.458 6.173 12.031 0.340 0.116 0.039 0.430 0.972 0.418

N 0.458 2.409 1.109 0.000 0.000 0.000 0.458 1.000 0.458

Y/N 0.868 1.867 1.808 0.615 0.770 0.474 0.610 0.647 0.394

Y 0.849 2.808 2.559 0.410 0.544 0.223 0.794 0.788 0.626

C 0.434 1.182 1.657 0.347 0.840 0.292 0.233 0.612 0.143

Table 3b: 
Contributions of Growth Shocks and Level Shocks to Endogenous Dynamics 

x Corr(x, r̂)
Growth Shocks Level Shocks

Corr(x,r̂) sd(r̂)/sd(x̂) Contribution Corr(x,r̂) sd(r̂)/sd(x̂) Contribution

K 0.344 0.389 1.077 0.419 -0.070 1.071 -0.075

I 0.418 0.477 0.459 0.219 0.224 0.892 0.200

N 0.458 0.515 0.500 0.257 0.224 0.895 0.200

Y/N 0.394 -0.157 0.353 -0.056 0.573 0.786 0.450

Y 0.626 -0.218 0.187 -0.041 0.772 0.864 0.667

C 0.143 -0.469 0.464 -0.218 0.484 0.744 0.360

Table 4:
Simulated and Forecasted Productivity Growth Rates

Productivity Growth Relative to 1973-2000 Average (Percent)

1973-1995 1996-2000 2001-2005 2001-2010

Data -0.13 0.74     —     —

Neutral Growth Shocks -0.08 0.35 0.80 0.87

Both Growth Shocks -0.04 0.59 1.22 1.27

All Shocks -0.22 1.01 1.05 1.03
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Figure 1:
Growth Rate of Output per Hour, Business Sector
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Figure 3:
Responses of Capital Stock and Consumption to a Technology Growth Shift
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Figure 4:
Responses to Technology Growth Shifts
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Figure 5:

Capital Stock Growth Per Capita
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Figure 6:

Capital Stock Growth Per Capita, 
Adjusted for Investment-Specific Technology 
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Figure 7:

Neutral and Investment-Specific Technology
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   Figure 8:

Stochastic-Trends in Technology Growth
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Figure 9:
Actual vs. Simulated Growth Rates -- Neutral Growth Shocks Only
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Figure 10:
Actual vs. Simulated Growth Rates -- Neutral and Investment-Specific Growth Shocks
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Figure 11: 
 Actual and Simulated Productivity Growth
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Figure 12:
Actual vs. Simulated Growth Rates -- Growth-shocks and Level-shocks
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