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Abstract:
In this paper I present industry-level indices of embodied R&D that are meant to capture

the extent of research and development applied to the capital goods in which an industry invests. 
Compiling and adjusting data from various National Science Foundation and Commerce
Department sources, I construct industry-level, time-series measures of these indices and
investigate their properties. The data indicate that the overall growth in embodied R&D over the
last three decades is nearly entirely due to increased R&D done on capital goods rather than
changes in the asset composition of capital.  

The measures of embodied R&D are compared to rates of embodied technological change
estimated using plant-level manufacturing data.  The level of embodied R&D is found to be
positively and significantly related to the estimated rates of embodied technological change, but
its growth rate is not.  Likewise, the level rather than the growth rate of embodied R&D is shown
to have a positive and significant effect on productivity growth as measured by the Solow
Residual.  This suggests that the constructed measures of embodied R&D are proportional to true
embodied technological change.  Rates of embodied technological change are thus imputed for
non-manufacturing industries using the estimated relationship between embodied R&D and
embodied technological change found in the manufacturing data.
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2The decomposition between embodied and disembodied technological change can be
inferred from the hedonic prices of investment and consumption given certain assumptions (see,
e.g., Hornstein and Krusell (1996)).

1.  Introduction

To properly model long-run productivity growth, at least within the framework of
Neoclassical production theory, one must accurately measure capital accumulation.  To this end,
one must understand the extent to which new capital is more productive (i.e. more
technologically advanced) than old capital.  This is the issue of capital-embodiment. 
Distinguishing between embodied (or investment-specific) and disembodied technological
change has been a long sought after goal in economics, as has the dual problem of distinguishing
between obsolescence and physical depreciation on the price/cost-side.  The field of hedonic
price measurement has provided a potential solution to this fundamental identification problem
(see Hall (1968)).2  However, hedonic methods require very specific time-series and cross-
sectional data on prices and product characteristics -- data which is not available for many capital
goods.

Sakellaris and Wilson (2000) developed an alternative, production-side approach to
measuring embodied technological change that exploits time-series and cross-sectional variation
in investment histories.  This model was estimated using plant-level manufacturing data from the
Longitudinal Research Database (LRD) available at the U.S. Census Bureau.  I extend this study
to allow the estimates of embodied technological change to vary by industry.  Nonetheless, there
remain two inherent limitations of these estimates:  (1) they can only be obtained for
manufacturing industries, and (2) there are no comparable results in the literature with which to
evaluate the reasonableness of these estimates.  That is, how does one know whether it is sensible
for one industry to have a higher estimated rate of embodied technological change than another. 
An inspection of capital flows tables may be able to tell us which industries invest in goods that
are considered “high-tech,” but other than subjective priors, we have no way of quantifying how
high-tech an industry’s capital goods are.

In order to evaluate the realism of estimated rates of embodied technological change in
manufacturing industries and to extend these results to non-manufacturing industries, I propose
two alternative indices that are meant to capture the amount of research and development (R&D)
embodied in an industry’s capital and then investigate the effectiveness of each index in
explaining embodied technological change.  Each index is a weighted average of past and present
R&D performed on the (upstream) capital goods purchased by a (downstream) industry.  To
construct these indices, I create a data set containing R&D by product field from 1957 to 1997,
using various releases of the National Science Foundation’s Research and Development in
Industry.  This data is then combined with Commerce Department data on industry investment by
asset type.  The product field R&D data allows me to avoid measurement problems associated
with using R&D by performing industry.

After discussing many of the interesting features of the constructed indices, I search for
some reduced-form relationships between embodied R&D and either the estimated rates of
embodied technological change that I find at the plant-level or the Solow Residual.  It turns out
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3There is a large literature seeking to measure the effects of R&D on productivity. 
However, the R&D variable that is generally used is R&D done by the firm, industry, or
economy for which productivity is being measured.  There is also a growing literature on the
productivity effects of R&D spillovers -- that is, R&D done by other firms that are “close” to the
firm/industry in question in terms of distance, industry, production process, input-output
linkages, etc..  Though interesting in their own right, these types of R&D effects are likely to
affect disembodied technological change and thus are separate from the embodied effects of
R&D discussed in this paper.  

that the level, but not the growth rate, of embodied R&D is positively and significantly related to
both the Solow Residual and the estimates of embodied technological change.3  This mirrors the
relationship I find between the product-oriented R&D applied to equipment assets and the rates
of technological change in these assets implied by their relative price movements.

2. Estimating Embodied Technological Change at the Plant-Level

In this section, I will briefly discuss the main empirical model used to estimate industry-
specific rates of embodied technological change.  The methodology, data, and motivation for the
empirical model are discussed in detail in Sakellaris and Wilson (2000).  The empirical model, 
which we estimated using establishment-level manufacturing data housed at the Center for
Economic Studies, U.S. Census Bureau, can be summarized in four equations:

Capital Services
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where:
J = equipment capital stock in efficiency units
UJ = equipment capital utilization rate 
E = Energy usage
�J = parameter representing the elasticity of energy with respect to equipment capital

utilization.

An exactly analogous equation is specified for the structures capital services.

Equipment Capital Stock
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where:
It-s = Real investment in vintage t-s equipment (deflated using a non-hedonic deflator)
Dt,t-s = the fraction of one dollar’s worth of vintage t-s investment that is still used in 
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production in year t
� = parameter representing the rate of embodied technological change
t = current year (so t-s denotes vintage)
t0 = numeraire year in which level of embodied technology is 1.
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where:
Q = real gross output (i.e. plant shipments adjusted for inventory change)
L = labor hours
M = real materials
I denotes plant.

The services of structures capital, S*, is defined analogously to (1) and (2) except that �
is assumed to be zero in the construction of the structures stock.  The “Other Variables” in
equation (3) attempt to account for other factors that make plants with the same inputs more or
less productive.  They include year dummies, industry dummies, and a dummy variable
indicating whether or not the plant is owned by a multi-plant firm.  They also include dummy
variables indicating whether or not the plant had a large investment episode (spike) in the
previous year, two years ago, etc..., up to seven years ago.  These latter variables are meant to
capture the costs in terms of lost production due to the learning-by-doing accompanying a plant’s
use of large amounts of new equipment.

Substituting equations (1) and (2) into (3), assuming that �S = �J, and adding an error term
yields a single regression equation that can be used to estimate �, �, �, �, �, �, and the
coefficients on the control variables using nonlinear least squares.  A simple extension can be
done to allow � to vary by sector/industry (while constraining the other coefficients to be the
same across all plants in the sample).

The estimates of � by sector are shown in Table 1.  The estimates seem sensible, though
somewhat imprecise, for the most part with the exception of some slightly negative estimates and
unrealistically high values in Computers (16) and Electronic Components (19).  The negative
values are not too disturbing given their rather high standard errors.  They also occur in sectors
where one might expect low levels of embodied technology.  The very high �’s in sectors 16 and
19 are most likely a result of the use of the BEA’s 4-digit level shipments deflators.  These
deflators come from the BLS with two key exceptions: computers and semiconductors
(semiconductors are a component of sector 19).  I have also tried estimating the model using the
personal consumption expenditures (PCE) deflator (which has some theoretical justification as
discussed in Sakellaris and Wilson (2000)).  Yet, this results in strongly negative �’s for these
two industries which is clearly unrealistic.  Therefore, throughout the paper I use the �’s in Table
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4Correspondingly, rank (Spearman’s) correlations will be provided in addition to the
ordinary (Pearson’s) correlations.

5As discussed in Sakellaris & Wilson (2000), the proper unit of measurement for It-s is
nominal investment deflated by the PCE deflator.

1, with the caveat that the relative rank of � may be more informative than the actual levels.4

3.  Embodied R&D as a Proxy for Embodied Technology

A natural choice for a variable that is likely to be related to � would be the amount of
research and development (R&D) that went into developing the technology that is embodied in
an industry’s capital.  As Hulten (1996) puts it: “Most advances in knowledge are the result of
systematic investments in research and development.”  So if R&D is how technology is produced
(I provide evidence of this in Section 5), then R&D directed towards the equipment assets used
by an industry is the main input into the “production” of its capital-embodied technology.  To
capture this notion of “capital-embodied R&D,” I create two alternative indices which are
weighted averages of past and present R&D done on an industry’s equipment capital.  As
opposed to inferring embodied technology from an industry’s asset composition, embodied R&D
has the advantage of being a single metric which reflects both the changing asset mix of an
industry’s capital and the technological advances (to the extent they are due to R&D) that have
taken place in each asset type.  The hope is that these indices will be useful predictors of either
the level or the change in embodied technology.  We can define the level of embodied technology
for investment of vintage t-s in terms of equation (2) as:

       (4)q t s
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Note that from equation (2) it is clear that q refers to the level of embodied technology per unit of
investment.5

The indices I construct in this paper are related yet very different from the usual measures
of embodied or “indirect” R&D in capital that are used in the literature on R&D spillovers.  The
literature on indirect/embodied R&D is concerned with measuring the extent to which upstream
R&D affects the productivity of downstream industries.  Clearly, process-oriented R&D should
exclusively benefit the industry(ies) who utilize the R&D-induced process innovations and
should have no effect on either the measured or real productivity of those industries who
purchase the R&D performer’s product.  

However, the effects of product-oriented R&D (which is the majority of R&D) are more
complex.  As pointed out by Scherer (1982) and Griliches (1979), much of measured
downstream benefits of R&D may be due to measurement error in the price of capital goods.  If
prices adjusted fully for quality change, real output for capital producers and real investment for
downstream industries would be augmented to reflect the increased quality embodied in the
capital being produced.  One would then expect to observe the majority of (total factor)
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6Of course, both the supplying and the purchasing industries would have substantial
measured and real average labor productivity gains: the supplying industry due to the increase in
output and the purchasing industry due to capital deepening in terms of quality units.

7Yet another avenue through which upstream R&D could cause downstream investment-
specific technological change is knowledge spillovers, i.e. technological diffusion from supplier
to customer facilitated by their business interactions.

8See, e.g., Goto & Suzuki (1989), Sveikauskas (2000), Scherer (1982, 1984), and Sakurai,
et al. (1997).

productivity gains, if there were any, in the capital-supplying industry and smaller TFP gains in
the downstream industries.6  These smaller downstream gains that do occur, known as pure rent
spillovers (pure in the sense that they are not due to mismeasurement), are the result of price
competition in the upstream industry which prevent the nominal price of newly-invented capital
from increasing in proportion to the increase in quality.  On the other hand, if prices do not adjust
for quality, then real output of the supplying industry and real investment of purchasing
industries will be understated.  In this case, increases in measured TFP should show up primarily
in the downstream industries.  Whether the downstream measured productivity gains are due to
mismeasured capital prices or to pure rent spillovers, either way these gains reflect investment-
specific technological change since they would cease to appear if the downstream industry did
not invest.7

For the purposes of comparison and to avoid confusion with more traditional measures of
embodied R&D, it will be helpful to see the measure of indirect R&D in capital generally used in
the R&D spillover literature:

       (5)IRD t B t
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where Bji is industry j’s sales of capital to industry i, RDj is the R&D stock for industry j, and Yj

is industry j’s output.  The R&D stock is generally measured using a perpetual inventory
accumulation of past and present R&D expenditures assuming some rate of depreciation.  RD/Y
is referred to as “R&D intensity.”  Thus, investment in each upstream industry is multiplied by
the R&D intensity of that industry and then summed across industries.  This measure was
developed by Terleckyj (1974) and has been used in numerous studies.8

A problem with the Terleckyj approach is that R&D spending (and therefore R&D stock)
by an industry is not necessarily equal to the total R&D done on that industry’s products. The
use of own-R&D is inappropriate if there are non-zero off-diagonal elements in the interindustry
R&D flows matrix -- i.e., if industries perform R&D on products other than their own.  There are
two reasons to expect this to be a problem.  As Griliches and Lichtenberg (1984) put it:  

(1) Many of the major R&D performers are conglomerates or reasonably widely diversified firms. 
Thus, the R&D reported by them is not necessarily “done” in the industry they are attributed to. 
(2) Many firms perform R&D directed at processes and products used in other industries.  There is
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a significant difference between the industrial locus of a particular R&D activity, its “origin,” and
the ultimate place of use of the results of such activity, the locus of its productivity effects. (p.466)

Evidence of this can be seen in the NSF’s annual tables on applied R&D by industry and by
product field which show numerous large off-diagonal elements in any given year.  Thus, a key
innovation of this paper is the use of product-field R&D rather than industry own-R&D when
measuring embodied R&D.  

Surprisingly, though the data is readily available, the NSF data on R&D by product field
has rarely been used in economic studies.  When it has been used, for example in Griliches &
Lichtenberg’s study, the productivity effects of product field R&D are sought within the industry
which produces that product rather than in downstream industries.

For the purposes of predicting either q or �, the Terleckyj measure is inappropriate
because it uses investment flows (Bji) rather than investment shares (i.e. Bji divided by total
investment of industry i).  That is, q is the level of embodied technology per unit of investment
and therefore should be independent of the scale of an industry’s investment (as should its
growth rate).  Thus, in the indices described below, I use investment shares rather than
investment flows.

The first index I construct is based on the premise that an industry’s q in a given year is
simply a weighted average of the level’s of embodied technology in each of the capital goods the
industry purchases.  So, let us define the first index, denoted �1, as:

       (6)Φi pi p
p

t x t q t1

1

13

( ) ( ) ( )= ⋅
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where xpi is the share of industry i's equipment investment spent on capital good p, and qp is the
level of technology embodied in capital of asset category (product field) p.  We can proxy for qp

with a perpetual inventory accumulation of past and present R&D done on that product field
(assuming some depreciation rate), normalized to be 1 in the base year of the prices used to
deflate nominal investment:

       (7)q t d q t r t q tp p p p Base( ) [( ) ( ) ( )] / ( )= − − +1 1

where d is the assumed rate of depreciation and rp is the R&D spending on product field p,
deflated by the PCE deflator.  Given that the real marginal product must be equal across all types
of equipment (a necessary condition for the existence of an equipment capital stock) and the fact
that real units are identical to nominal units in the base year, qp must be equal across p in the base
year.

It is possible that the productivity of a new capital good depends on the composition of
capital in place in a firm or industry.  Under this hypothesis, past changes in asset mix should
affect an industry’s current level of embodied technology.  An index which allows for this
possibility is defined by the following equations:

, where        (8)Φ Φi i it d t r t2 21 1( ) ( ) ( ) ( )= − − +
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9It was not conducted in 65, 66, 69, 78, 80, 82, 84, 86, 88, 90, 92, 94, and 96.

10Hard copies of the tables, one for each year of the survey, containing total R&D by
product field, were generously compiled and provided by Raymond Wolfe of the NSF.
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Here a weighted average of current R&D spending on capital goods is fed into a perpetual
inventory accumulation.  So past R&D as well as past changes in the composition of an
industry’s capital determine the current level of �2.

An interesting issue is whether �i
2 should be a predictor of qi, the level of embodied

technology, or for �i, the growth rate of embodied technology.  Perhaps the composition of
capital in place affects not how productive the current vintage of investment is (relative to the
base year), but rather how much more productive the current vintage is than last year’s vintage. 
This is left as an open question; in sections 6 and 7, both the level and the growth of �i

2 will be
compared to the Solow Residual and the estimated rates of �i.

4.  Data

The principal source for industrial R&D data in the U.S. is the survey of companies done
by the Census Bureau and financed by the NSF.  This survey has been done on an irregular basis
between 1957 and 1997.9  Among other things, the NSF asks respondents how much R&D they
spent in each “product field.”  The vast majority of these product fields correspond to categories
of equipment.  The industry aggregates of this data are published in the NSF’s Funds for
Research and Development in Industry.10  Unfortunately, there are many holes in the data due to
non-disclosure of certain values and changes in the product field classification over time.  Holes
were due to one of several factors.  First, R&D was collected for the “Professional and scientific
instruments” field but not separately for its subfields “Scientific and mechanical measuring
instruments” and “Optical, surgical, photographic, and other instruments” until 1987.  I used the
average split between these two subfields between 1987 and 1997 and applied it to the pre-87
totals for the two fields.  Second, in 8 of the 28 years in which the survey was conducted, the
value for R&D in motor vehicles could not be disclosed for reasons of confidentiality.  In these
cases, values were imputed using the share of motor vehicles R&D to total transportation
equipment R&D in the nearest adjacent year.  Third, in 1957 data was R&D data was collected
for the broad field of “Machinery” but not separately for the 6 product fields within machinery. 
The value of R&D for each product field was imputed using the machinery total and the 1958
share of the product field’s R&D in total machinery R&D.  Finally, product field R&D for years
in which the survey was not done were interpolated using values from the closest adjacent years. 
These interpolations and imputations may lower the informational content from intertemporal
movements in the data but should have little or no affect on the cross-product field relationships. 
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11There is very little evidence on the stability of the process vs. product R&D split over
time.  Stability was assumed given the lack of evidence to the contrary.

12Investment in non-equipment asset types was dropped from the matrix.  Of the 37 NSF
product fields, only the 13 which referred to equipment assets were kept.  Thus, the embodied
R&D indices I construct exclude R&D embodied in structures.  This is appropriate since � refers
only to embodied technological change in equipment .

Another discontinuity in the data comes from the fact that after 1983, R&D by product
field was no longer imputed for non-respondents of the survey.  Fortunately, the NSF does supply
the coverage ratios so that total R&D by product field can be approximated under the assumption
that non-respondents have a similar product field decomposition of their total R&D as have
respondents.  After these adjustments were made to the raw data, what was left was a matrix of
applied R&D by product field for 1957-97.  For the purposes of this project I was only interested
in the R&D applied to equipment product fields and thus I omit from this matrix rows
corresponding to non-equipment fields (e.g. Chemicals).  The field “Electrical Equipment”
contains one subfield, “Electronic Components,” whose applied R&D consists mainly of
semiconductor research.  In the LRD (as well as in the NIPA), semiconductors are considered an
intermediate input rather than a capital asset and therefore I subtracted out all “Electronic
Components” product field R&D from that of “Electrical Equipment.”

As mentioned above, the type of R&D that causes downstream productivity gains is the
product-oriented type.  Unfortunately, the NSF survey does not distinguish between product- and
process-oriented R&D.  Scherer (1984), however, does provide a detailed industry-level table of
the percentages of issued patents, sampled between June 1976 and March 1977, that were
product-oriented.  Using Scherer’s table, I aggregated these percentages to the NSF product field
level by taking weighted averages of the percentages for the component industries that comprise
a product field.  For each component industry, the weight was its 1974 R&D divided by the 1974
R&D for the product field as a whole. 1974 was the relevant year here since the sampled patents
were applied for, on average, in 1974.  It seems reasonable to assume that the split between
process- and product-orientation in patents is similar to that in R&D and also that this split is
relatively stable over time.11  Subject to these assumptions, the resulting share of each product
field’s R&D that is product-oriented is shown in Table 3.  The shares are quite high with the
lowest, 77.5%, occurring in “Aircraft and parts.”  Multiplying these shares by the corresponding
product fields’ R&D for 1957-97 gives the rp(t)’s in equations (7) and (8) above.

The other data ingredient necessary for creating the desired embodied R&D indices is a
capital flows matrix by year.  I use the BEA’s unpublished table of nominal investment by asset
type for 62 industries for 1957-97 provided in the Fixed Reproducible Tangible Wealth in the
United States, 1925-1997.12  First, a many-to-one mapping was made between the BEA’s asset
types and the NSF’s equipment product fields.  This mapping is shown in Table 3.  The mapping
was used to convert the capital flows matrix to one that is by product field rather than by asset
type.  This flows matrix was then converted into a coefficients (shares) matrix using the industry
investment totals (over all equipment product fields).  The elements of this matrix correspond to
the xpi’s in equations (7) and (8) above.

The xpi’s and rp’s are used, according to equations (7) and (8), to construct each of the two
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indices.  The depreciation rate, d, is assumed to equal 15%, which is commonly used in the R&D
literature when direct R&D stocks are constructed.  There is also evidence that, at least for R&D
directed towards an industry’s product (rather than its capital), a depreciation rate closer to zero
may be more appropriate (see Griliches and Lichtenberg (1984)).  Therefore, as an alternative, I
also construct indices using a 2% depreciation rate.  The choice turns out to have very little effect
on the growth of an index or its correlation with the Solow Residual or estimated �.  For both of
these stocks, a unit bucket adjustment is made to “fill in” the stock for early periods (see Almon
(1994), p. 87).

Table 3 shows the annual growth rate of �1 (assuming a 15% depreciation rate) for each
industry from 1972-96, ranked in descending order.  1972-96 is the relevant period for comparing
embodied R&D to � since � refers to the rate of embodied technological change between 1972-
96.  The annual growth for the overall economy, shown at the bottom of the table, has been about
2%.  Notice that services, particularly financial services, tend to have the fastest growth in
embodied R&D while manufacturing industries exhibit far slower growth.  This could be because
services have been changing their capital asset mix, relative to manufacturing, towards higher-
tech equipment (e.g. computers), or because the equipment goods service industries traditionally
invest in have undergone rapid increases in R&D (causing high growth in qp), or both.  More
generally, we would like to know for the overall economy, as well as for individual industries,
whether the growth in embodied R&D over the past few decades is driven more by changes in
capital composition or growth in R&D spending.

The following equation provides just such a decomposition:

       (9) 
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The first term in the decomposition captures the contribution to total change from changes in
R&D embodied in capital goods holding constant the composition of capital.  The second term
gives the contribution from changes in asset mix holding constant R&D embodied in specific
goods.  The third is an interaction term, giving the contribution from the covariance of changes in
R&D embodied in goods with changes in asset mix.  Dividing both sides of (9) by �1(T0) yields
a growth rate decomposition.

Figure 1 graphs this decomposition for the 1972 to 1997 growth rates across industries. 
The industries are ordered from left to right according to their total growth rate.  The figure also
gives the unweighted averages across industries.  The chart shows that the primary driver of
increases in embodied R&D, as measured by �1, has been increases in R&D spent on equipment
assets rather than changes in asset mix.  We can also see that the difference in embodied R&D
growth between those industries with high growth such as services and those with low growth
such as manufacturing, is primarily due to fact that high growth industries channel a higher
fraction of their total investment into goods whose embodied R&D is growing rapidly.  It is not
because they have been changing the composition of the goods in which they invest.

Recall that the qp’s that go into the equation for �1 were normalized, as theory dictates, to
equal one in the base year of the price deflator.  This is because the real marginal product of



10

13Consider a simple Cobb-Douglas production function where there are two types of
capital goods 1 and 2: Yt = Kt

"Lt
$ where Kt = Kt-1(1-�) + it

1qt
1 + it

2qt
2.  In the base year, the

marginal product of a current dollar’s worth of investment is identical to the marginal product of
a constant-quality unit of investment as quality is defined relative to the base year’s level.  The
marginal product of a current dollar’s worth of investment in good j (ij) is �Yqj/K.  Equalizing
across goods yields q1 = q2.  In non-base years, the equality between nominal and real marginal
products breaks down and thus q1 need not equal q2.

14The value of embodied R&D in “Transportation by air” may be artificially high since
the R&D on aircraft includes R&D on military planes financed by the Defense Department.

investment must be equal across asset types.13  This means that by construction �1(t), which is
just a weighted average of the qp’s, will be one in the base year.  Therefore, differences across
industries in the level of �1 only imply interindustry differences in the growth of embodied R&D
relative the base year.

The base year value of index �2, on the other hand, does not necessarily have to be equal
across industries nor equal to one.  This is true whether �2 is proportional to the true industry qi

or to the true industry �i.  Neither qi nor �i must be equal across industries, even in the base year. 
Nonetheless, since the actual levels of �i

2 (t) are only meaningful in their relation to index values
for other years or industries, I normalize �i

2 (t) to be one for average value (over the 1972-96
period) of the index for the overall private economy.  All �2's are thus relative to the average
extent of R&D embodied in capital economy-wide.

Table 4 displays the results of the construction of �2.  Column 2 shows the mean level of
the index over the 1972-96 period.  The third column gives its annual growth rate over the same
period.  The industries are ordered according to their mean value of �2.  For the overall economy,
the growth rate of the index was about 3.3%.  The ranking of industries seems quite reasonable. 
Transportation by air tops the list which is not unexpected since a great deal of R&D is done on
airplanes.14  One can also see that the service industries tend to be high on the list.  Though
services are not capital-intensive, what investments they do make tend to be in high-tech
equipment such as computers.  The bottom of the list also fits with our a priori notions of which
industries tend to use relatively low-tech equipment.  The final four are Construction, Coal
Mining, Trucking and Warehousing, and Farms.

5. Is Embodied R&D related to Estimates of Embodied Technology?

In section 4 I argued that �1 should proxy for the level of embodied technology and
therefore its growth rate should proxy for the rate of embodied technological change (�).  I also
argued that either the level or the growth rate of �2 should be proportional (though not
necessarily serve as a proxy) to �.  Table 5 shows the ordinary and Spearman’s rank correlations,
among the 22 manufacturing industries, between �̂ and each of 3 variables: 1) the 1972-96
annualized growth in �1, 2) the 1972-96 annualized growth in �2, and 3) the 1972-96 mean of
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15The correlations shown refer to �1 and �2 constructed using a 15% depreciation rate. 
Assuming a 2% rate yield very similar results.

16Another interesting finding, not shown, is that the growth in �1 has a Pearson’s
correlation with the mean of �2 of 0.53 and a Spearman’s rank correlation of 0.62, both of which
are significant at the 99% level.

�2.15  Neither of the growth rates appear to be correlated with �̂.  Yet, the mean of �2 is
positively correlated with �̂, with an ordinary correlation coefficient of 0.54, which is significant
at the 99% level.  The rank correlation is 0.42, significant at the 95% level.16

Viewed as a test of the reasonableness of the Sakellaris and Wilson estimated rates of
embodied technological change, this exercise yields mixed results.  It is encouraging that we
have found strong evidence that these estimated rates are positively and significantly correlated
with observable patterns of R&D spent on capital goods.  Yet, the nature of the correlation is not
as one would expect.  Whether these results reflect that interindustry differences in true
embodied technological change are proportional to interindustry differences in the average level
of embodied R&D (as defined by �2), or whether they imply that our �̂‘s are actually capturing
an industry’s level of embodied technology and not its rate of change, is difficult to say.

A third possibility is that the growth rates of embodied R&D, as measured by growth in
either �1 or  �2, are badly mismeasured since the time-series dimensions of both the BEA capital
flows tables and the NSF product field R&D tables are highly suspect.  The annual capital flows
tables are based on input-output studies that 1) are only done every five years, and 2) are largely
based on the occupational composition of industries, which may fluctuate due to reasons
unrelated to capital mix.  The NSF data underlying the annual R&D by product field tables
constructed in this paper have many missing years that were filled in by interpolation as well as
other discontinuities that had to be dealt with.  For these reasons the time series dimension of the
indices constructed in this paper may be less reliable than the cross-sectional dimension.  This is
especially problematic for �1 because the normalization that causes �1 to equal one in all
industries in the base year implies its interindustry differences in levels are really determined by
the time series movements.  Interindustry differences in the level of  �2, on the other hand,
should be fairly reliable though differences across growth rates may not be.  Nonetheless, this
intertemporal measurement error can only explain the lack of correlation that �1 and the growth
of �2 have with �̂; it cannot explain why the mean level of �2 would actually have a positive and
significant correlation.

One way of sorting out whether the positive correlation between �2 growth and �̂ is due
to �̂ measuring the level and not the growth rate of embodied technological change or rather is
due to the level of �2 being a good predictor of the true rate of embodied technological change, is
to go back to the data on product-oriented R&D by product field and ask whether it is the level or
growth in R&D that predicts technological change at the product field level.  Of course, there are
no observables of true technological change so one must look to the literature for evidence on the
rates of technological change in equipment assets.  Gordon’s (1990) major study of durable
goods provides alternative price indexes for equipment from 1947-1983 which inter alia attempt
to account for quality change.  Hornstein and Krusell (1996) and others, using a 2-sector model
of investment and consumption, argue that the growth rate of Gordon’s aggregate producer
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17Recall that indices are independent of the total amount of investment done by an
industry.  Rather, they depend on the R&D done on each capital type and the industry’s
investment composition across capital types.  Therefore, there is no danger of reverse causation
from productivity shocks (affecting SRD) simultaneously affecting the embodied R&D indices
by affecting total investment.

durable equipment (PDE) price index relative to the consumption deflator is equal to the negative
of the rate of embodied technological change.  Thus, one can use the rate of relative price decline 
of each equipment product field, according to Gordon’s indexes, as a proxy for the rate of
technological change in that field.

From the 22 PDE categories for which Gordon constructed price indexes, I constructed
13 Törnqvist price indexes corresponding to the 13 equipment product fields.  I then compute the
annual growth rates of these prices relative to the PCE deflator from 1957 (the R&D data does
not begin until 1957) to 1983.  These growth rates can be compared to the levels and growth rates
of the rp’s and qp’s constructed above.  It should be noted that an equipment asset’s relative price
may fluctuate not only due to technological change but also due to substitution effects between
equipment assets.  However, one would expect substitution between such broad product fields as
those in Table 2 to be quite limited.

Table 6 shows the ordinary and rank correlations between this average relative growth of
Gordon’s price indexes to three variables defined over the 1957-1983 period: 1) growth of qp, 2)
growth of rp, and 3) mean of rp.  The correlations are perfectly consistent with those found in
Table 5.  Again, it is the mean level of R&D and not its growth rate that is strongly related to
technological growth.  The mean of product-oriented R&D applied to an equipment type (rp) has
a negative correlation with the growth rate of that equipment type’s relative price of -0.504
(significant at the 10% level) and a negative rank correlation of -0.674 (significant at the 5%
level).  The other two variables are insignificantly different from zero.  The significant
correlation between the 1957-83 averages of the R&D stocks and the price declines is illustrated
in Figure 2 which presents a scatter plot of these two series.  The label next to each data point is
the initials of the product field corresponding to that point (see Table 2, Column 1 for the product
field titles).

 
6.  Relationship Between Embodied R&D and the Solow Residual

To further investigate whether the positive correlation found above between (average) �2

and �̂ is indicative of a true relationship between �2 and embodied technological change, we can
see if either the growth or level of �2 is a good predictor of the Solow Residual.  If there is
embodied technological change, the Solow Residual (SRD) will be an upwardly biased estimator
of true total factor productivity (TFP) growth.  This bias is larger the larger is �.  Therefore, if the
indices are positively proportional to the true �, then they should have a positive effect on SRD.17

The panel nature of the measured data on �1 or �2 allows us to separately investigate the
effect of these indices on SRD over the cross-industry dimension (emphasizing long-run/growth
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18See Griliches & Mairesse (1995) for a discussion of the advantages and disadvantages
of different panel data estimation techniques.

19The R2 for this regression is 0.22, implying that 22% of the cross-industry variation in
the Solow Residual can be explained by variation in embodied R&D as measured by �2.

patterns), the time-series dimension (emphasizing short-run fluctuations), or both.18  The cross-
industry relationship can be estimated using a “between” regression which regresses the
intertemporal mean of the dependent variable on the intertemporal mean of the regressor.  A
“within” regression isolates the time-series relationship by regressing the dependent variable net
of its intertemporal mean on a similarly demeaned regressor.  Lastly, I estimate the total effect
via a first-difference regression: the change in the dependent variable between t and t-1 regressed
on the change in the independent variable.  The first-differencing simply allows for the intercept
to vary by industry.

Table 7 shows the results from estimating these three different types of regressions.  The
dependent variable in these regressions is the Solow Residual.  The first column lists the
independent variable used.  The estimated coefficient (and standard error) on that variable, when
all industries are included in the regression, is shown in the second column.  The independent
variable (aside from the constant), which is denoted X in the table, is one of the three variables
whose average I compared to �̂ in Section 5 and Table 5.  They are the level of �2, the growth of
�2, and the growth of �1.  The signs and confidence intervals found in the between regression,
which is the most comparable to the simple correlations of Table 5, are quite similar to those
estimated correlations.19  Yet again, the mean of �2 is the only variable found to be positive and
significant.  This seems to lend even further support to the hypothesis that the positive correlation
found between �̂ and the mean level of �2 is due to �2 being a good predictor of true embodied
technological change, rather than �̂ inadvertently capturing the level and not the growth in
embodied technology.

The within and first-difference regressions find no significant effect of these indices on
SRD.  This may be due to the intertemporal measurement errors, discussed above, that are likely
in the data on �1 and �2.  

On the Solow Residual side of the equation, data, particularly real output data, outside of
manufacturing is generally considered less reliable than manufacturing data.  Thus, the third
column gives the estimated coefficients obtained when only manufacturing industries are
included.  Now, �2 shows up as positive and significant in all three types of regressions
(although in the between regression its coefficient is no longer significant at the 5% level but
rather at the 10%).  With but one exception, the growth rate of �1 or �2 again has no significant
effect on SRD.  The one exception is the growth rate of �2 in the first-difference regression.

These results are quite consistent with other studies on indirect R&D which generally find
stronger effects on productivity in the cross-section than in the time-series.  Interestingly, they are
also very similar to the findings of Bartelsman, Caballero, and Lyons (1994).  They find that
upstream suppliers' activity (as measured by cost-share-weighted input growth) does not have a
significant effect on downstream productivity in their within estimates but does in their between
estimates.  It is possible that upstream activity is simply a good predictor of upstream R&D
spending (or more broadly, upstream innovation), for they are certain to be correlated.  Then,
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20For this regression, I exclude “Computers” and “Electronic Components” which have
unrealistic outlier �̂‘s of 2.93 and 0.77, respectively.

under the joint hypothesis that embodied R&D, as measured by �2, is proportional to embodied
technological change and that capital good price deflators do not fully account for quality change,
some of what Bartelsman, et al. find may be due to “spillovers” stemming from this price
mismeasurement -- the same spillovers that cause upstream embodied R&D to have downstream
effects on measured productivity.

Given our relative confidence in the measurement of the across-time means of �2, and
their demonstrated correlation with �̂ and the Solow Residual, I then use these means to impute
�’s for nonmanufacturing industries (where �̂‘s are not available) via the estimated relationship
obtained from a linear regression across manufacturing industries of �̂ on a constant and the
1972-96 mean of �2.20  This regression yielded the following:

�̂ = -0.036  +  0.054×(mean �2); R2 = 0.060.
  (0.047)   (0.051)

The imputed values of � for nonmanufacturing sectors, computed using this estimated
relationship, are shown in Table 8.  There were five negative imputed values which were
replaced with zero’s.  The �’s range from 0 to 19%.  It should be noted that the estimated
coefficients in the above regression have large standard errors, thus the imputed �’s have
correspondingly large standard errors associated with them.  Nonetheless, the magnitudes and the
cross-sectoral ranking of these rates of embodied technological change seem quite reasonable. 
These imputed rates provide at least some indication of the embodied technological change
occuring in nonmanufacturing industries, which seems useful given a complete lack of rival
estimates, precise or otherwise, in the literature.

7.  Conclusion

The title of this paper asks “Is embodied technology the result of upstream R&D?”  The
answer seems to be a cautious yes.  If the R&D applied to an industry’s capital goods is not the
actual cause of the industry’s embodied technological change, it is at the very least highly
correlated with whatever the true cause or causes are.  This is evidenced by the finding that the
extent of R&D embodied in an industry’s capital is highly correlated with both the industry’s
estimated rate of embodied technological change as well as the industry’s productivity growth as
measured by the Solow Residual.  Furthermore, the extent of R&D applied to a particular capital
good is found to be highly correlated to the relative decline in the price of that good, providing
further evidence that technological advances in capital are the result of R&D oriented toward the
creation of new capital goods.  As for the possibility of reverse causation, given the lags between
R&D and innovation it is difficult to imagine how increases in an industry’s embodied
technology could actually cause increased past and present R&D spending by capital goods
suppliers.

The results of this paper show that data on upstream product-field R&D can be used to
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measure the relative differences among industries in their rates of embodied technological
change, which are an inherently unobservable.  Armed with estimates of embodied technological
change in manufacturing industries, where plant-level longitudinal data is available, I was able to
use the constructed measures of embodied R&D to impute rates of embodied technological
change for nonmanufacturing industries.  Thus, aside from its other contributions, this paper
provides the first industry-level estimates of embodied technological change spanning the entire
private economy.
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Appendix A - Construction of the Solow Residual

The Solow Residual (SRD) is defined as:

dlog(Y) - cLdlog(L) - cJdlog(J) - cSdlog(S) - (1- cL- cJ-cS)dlog(M),

where Y is gross output, L is labor, J is equipment, S is structures, and M is materials.  ci is the
share of input i in total costs.  Data by industry on real equipment investment, structures
investment, and materials come from the BEA.  Equipment and structures capital stocks were
constructed via the perpetual inventory methods using industry-level physical depreciation
schedules derived from the Federal Reserve Board’s Capital Stock study (Mohr and Gilbert
(1996)).  Cost shares for equipment and structures are constructed according to the Hall-
Jorgenson user cost of capital formula using data from BEA.  The rate of return used in the user
costs was the AAA corporate bond rate minus the rate of CPI inflation.   

Data on real output, labor, and hourly labor compensation in manufacturing industries
come from the Annual Survey of Manufacturers (Census).  Labor hours and hourly labor
compensation for all other industries come from the Bureau of Labor Statistics (BLS).  Labor
quality is captured only to the extent that worker skill/quality is reflected in wages.  Real output
data for most nonmanufacturing industries is from the BLS’s Office of Employment Projections
(exceptions listed below).  According to the November 1999 Monthly Labor Review, data
sources for nonmanufacturing industries “include the Service Annual Survey, National Income
and Product Accounts (NIPA) data on new construction and personal consumption expenditures,
IRS data on business receipts, and many other sources.  The constant dollar industry output
estimates for the most recent years are based on BLS employment data and trend prodctions of
productivity.”  It is unclear how the BLS obtains real output prior to “recent” years.

Real output data for Construction , Health Services, and Educational and Social Services
are based on PCE for the corresponding categories in the unpublished NIPA.  Data on real output
in the mining industries is from the Minerals Yearbook, Energy Statistics Sourcebook.  That for
Agriculture, Forestry and Fisheries is from the USDA.  Finally, quantity and price data for output
of Air Transportation is based on data from the U.S. Statistical Abstract.
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Table 1

Sector Sector Title SIC (1987 basis) �̂

1 Food & Tobacco 20 and 21 -0.056 (0.021)
2 Textiles and knitting 22 0.098 (0.030)
3 Apparel 23 0.004 (0.025)
4 Paper 26 -0.064 (0.027)
5 Printing & publishing 27 -0.053 (0.023)
6 Chemicals 28 -0.004 (0.024)
7 Petroleum refining & Fuel Oil 29 0.017 (0.039)
8 Rubber & Plastic products 30 0.084 (0.026)
9 Shoes & leather 31 -0.046 (0.052)

10 Lumber 24 0.007 (0.023)
11 Furniture 25 -0.056 (0.028)
12 Stone, clay & glass 32 0.006 (0.026)
13 Primary metals 33, 3462, 3463 0.080 (0.029)
14 Metal products 34, exc. 3462,3463 -0.005 (0.022)
15 Industrial Equipment, except computers &

office eqp.
35, exc SIC's in sector 16 0.031 (0.024)

16 Computers & other office equipment 3571,3572,3575,3577,3578,
3579

2.927 (0.202)

17 Electrical eqp. except communications and
elec. components

36, exc. 366, 367 0.049 (0.029)

18 Communication equipment 366 0.141 (0.044)
19 Electronic components 367 0.766 (0.059)
20 Motor vehicles & parts 371 -0.064 (0.028)
21 Other transportation equipment 37, exc. 371 0.098 (0.033)
22 Scientific Instruments 38, exc. 384, 385 -0.023 (0.034)
23 Other instruments 384, 385, 382, 386, 387 0.087 (0.039)
24 Miscellaneous manufacturing 39 0.029 (0.032)



Table 2

NSF Product Field

   Percent        
   Product-     
    Oriented BEA Asset Type

Other fabricated metal
products

83.9
Other fabricated metal products

Engines and turbines 91.7
Internal combustion engines
Steam engines

Farm machinery and
equipment

98.3
Agricultural machinery, except tractors
Farm tractors

Construction, mining, and
materials handling machinery

99.1

Construction tractors
Construction machinery, except tractors
General industrial, including materials handling,
equipment
Mining and oilfield machinery

Metalworking machinery and
equipment

98.5
Metalworking machinery

Office, computing, and
accounting machines

94.5

Mainframe computers
Personal computers
Direct access storage devices
Computer printers
Computer terminals
Computer tape drives
Computer storage devices
Other office equipment

Other machinery, except
electrical

96
Special industry machinery, n.e.c.
Service industry machinery

Electrical equipment
81.8

Electrical transmission, distribution, and
industrial apparatus
Communication equipment
Household appliances
Other electrical equipment, n.e.c.

Motor vehicles and equipment 94.9
Autos
Trucks, buses, and truck trailers

Other transportation
equipment

99.5
Ships and boats
Railroad equipment

Aircraft and parts 77.5 Aircraft
Scientific and mechanical
measuring instruments

97.5
Instruments

Optical, surgical,
photographic, and other
instruments

93.2
Photocopy and related equipment



Table continued on next page...

Table 3

Industry Annual Growth in �1 from 1972-96
Federal reserve banks 0.060
Security and commodity brokers 0.057
Financial holding and investment offices 0.056
Legal services 0.054
Educational services 0.054
Nonfinancial holding and investment offices 0.050
Insurance carriers 0.048
Other services, n.e.c. 0.045
Insurance agents, brokers, and service 0.041
Trucking and warehousing 0.039
Local and interurban passenger transit 0.037
Pipelines, except natural gas 0.037
Auto repair, services, and parking 0.032
Wholesale trade 0.031
Construction 0.030
Metal mining 0.029
Other depository institutions 0.028
Miscellaneous repair services 0.028
Transportation services 0.027
Industrial machinery and equipment 0.026
Gas services 0.026
Oil and gas extraction 0.026
Business services 0.025
Water transportation 0.025
Electric services 0.024
Leather and leather products 0.024
Amusement and recreation services 0.024
Personal services 0.024
Agricultural services, forestry, and fishing 0.023
Tobacco products 0.023
Radio and television 0.022
Sanitary services 0.021
Retail trade 0.021
Nonmetallic minerals, except fuels 0.021
Telephone and telegraph 0.021
Coal mining 0.021
Railroad transportation 0.020
Real estate 0.020
Nondepository institutions 0.019
Health services 0.019
Motion pictures 0.018
Hotels and other lodging places 0.017
Petroleum and coal products 0.017
Other transportation equipment 0.016



Electronic and other electric equipment 0.016
Instruments and related products 0.016
Printing and publishing 0.016
Farms 0.015
Lumber and wood products 0.015
Apparel and other textile products 0.014
Miscellaneous manufacturing industries 0.014
Stone, clay, and glass products 0.014
Chemicals and allied products 0.014
Furniture and fixtures 0.013
Food and kindred products 0.013
Paper and allied products 0.013
Primary metal industries 0.012
Fabricated metal products 0.009
Textile mill products 0.006
Rubber and miscellaneous plastics products 0.005
Motor vehicles and equipment 0.005
Transportation by air 0.003
TOTAL 0.022



Table continued on next page...

Table 4

INDUSTRY Mean �2 from 1972-96 Annual Growth in �2 from
1972-96

Telephone and telegraph 1.644 1.673
Radio and television 1.596 1.738
Transportation by air 1.569 -0.100
Security and commodity brokers 1.286 4.988
Legal services 1.284 4.713
Trucking and warehousing 1.243 3.997
Insurance agents, brokers, and service 1.238 4.408
Financial holding and investment offices 1.184 4.473
Business services 1.149 3.222
Local and interurban passenger transit 1.124 2.798
Hotels and other lodging places 1.122 3.999
Other services, n.e.c. 1.121 4.796
Insurance carriers 1.119 3.688
Nonfinancial holding and investment offices 1.115 3.752
Wholesale trade 1.101 4.436
Pipelines, except natural gas 1.075 2.645
Auto repair, services, and parking 1.075 4.489
Other depository institutions 1.072 2.802
Real estate 1.044 4.172
Health services 1.022 3.568
Educational services 1.020 3.348
Amusement and recreation services 1.017 2.390
Electric services 1.014 1.751
Federal reserve banks 1.004 3.094
Miscellaneous repair services 0.986 6.658
Personal services 0.905 4.252
Electronic and other electric equipment 0.880 1.801
Nondepository institutions 0.865 5.049
Retail trade 0.854 4.177
Gas services 0.847 3.393
Industrial machinery and equipment 0.772 3.763
Apparel and other textile products 0.714 2.008
Other transportation equipment 0.699 4.223
Metal mining 0.678 4.189
Agricultural services, forestry, and fishing 0.676 2.899
Sanitary services 0.660 4.141
Construction 0.637 5.665
Motion pictures 0.620 5.939
Instruments and related products 0.579 6.202
Railroad transportation 0.577 5.414
Stone, clay, and glass products 0.565 4.381
Transportation services 0.564 8.177
Primary metal industries 0.548 2.035



Leather and leather products 0.548 3.755
Tobacco products 0.528 3.595
Printing and publishing 0.525 3.950
Furniture and fixtures 0.523 3.978
Oil and gas extraction 0.520 4.135
Lumber and wood products 0.507 2.293
Petroleum and coal products 0.501 0.581
Chemicals and allied products 0.499 2.015
Paper and allied products 0.492 0.995
Food and kindred products 0.486 2.566
Miscellaneous manufacturing industries 0.462 4.314
Nonmetallic minerals, except fuels 0.438 0.426
Fabricated metal products 0.382 1.817
Textile mill products 0.358 2.379
Coal mining 0.326 3.471
Water transportation 0.321 7.174
Farms 0.307 3.947
Motor vehicles and equipment 0.271 2.976
Rubber and miscellaneous plastics products 0.265 2.582
TOTAL 1.000 3.303



Table 5

Pearson’s (ordinary)
Correlation with �̂ (p-value)

Spearman’s Rank Correlation
with �̂ (p-value)

1972-96 Annualized
Growth rate of �1

0.070
(0.757)

0.201
(0.370)

1972-96 Annualized
Growth rate of �2

-0.248
 (0.265)

-0.183
(0.416)

1972-96 Mean of �2 0.506
(0.016)

0.450
(0.036)



Table 6

Pearson’s (ordinary) Correlation
with the relative growth rate of

Gordon’s price indexes (p-value) 

Spearman’s Rank Correlation
with the relative growth rate of

Gordon’s price indexes (p-value)

Annual growth from
1957-83 in qp

0.016
(0.958)

0.206
(0.498)

Annual growth from
1957-83 in rp

-0.115
(0.710)

0.185
(0.546)

Mean rp over 1957-83 -0.504
(0.079)

-0.674
(0.012)



Table 7

X
Estimate of B1 (std error):

All Industries (n=55)
Estimate of B1 (std error):

Manufacturing Subset (n=32)

“Between” Regression: SRD B B Xi i i= + ⋅ +0 1 ε
�2 0.518*** (0.135) 0.544 (0.333)

dlog(�2) -0.139 (0.089) -0.211 (0.144)

dlog(�1) -1.327 (8.312) -21.314 (17.995)

“Within” Regression:  SRD SRD B B X Xit i it i− = + ⋅ − +0 1 ( ) ε
�2 0.001 (0.002) 0.0055** (0.0027)

dlog(�2) 0.032* (0.018) 0.0214 (0.0217)

dlog(�1) -0.002 (0.021) -0.0010 (0.0238)

Total/First-difference:  SRD SRD B B X Xit it it it i− = + ⋅ − +− −1 0 1 1( ) ε
�2 0.030* (0.017) 0.0563** (0.0260)

dlog(�2) 0.035** (0.018) 0.0555*** (0.0212)

dlog(�1) 0.017 (0.025) 0.0077 (0.0324)
* - significant at the 10% level.
** - significant at the 5% level.
*** - significant at the 1% level.



Table 8 - Imputed �’s for Nonmanufacturing sectors

Sector Name �
Agriculture, forestry, and fisheries 0.008
Metal mining 0.025
Coal mining 0.000
Natural Gas and Crude Petroleum extraction 0.011
Non-metallic mining 0.003
Construction 0.021
Railroads 0.016
Air transport 0.106
Other transportation 0.055
Communication services 0.111
Electric utilities 0.056
Gas utilities, and water and sanitary services 0.032
Wholesale trade 0.064
Retail trade, and restaurant and bars 0.041
Finance and Insurance 0.064
Real Estate 0.058
Hotels, and personal and repair services (exc. auto) 0.055
Business services 0.074
Automobile services 0.061
Movies and amusement parks 0.038
Medical services 0.056
Education, social services, membership organizations 0.061



FIGURE 1 - Decomposition of 72-97 q(i) growth
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FIGURE 2 - R&D Stock vs. Relative decline in Price (1957-83)
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