Modeling, Estimation and Control of Complex Interactive Systems:
Toward Self-healing National Infrastructures

Massoud Amin, D.Sc.
Honeywell/H.W. Sweatt Chair and Director, Center for the Development of Technological Leadership (CDTL)
Professor, Electrical & Computer Engineering
University of Minnesota, Twin Cities

New Directions for Understanding Systemic Risk: Models of Systemic Phenomena in Other Complex Interactive Situations
Federal Reserve Bank of New York and the NAS, May 18-19, 2006

Some of the material and findings for this presentation were developed while the author was at the Electric Power Research Institute (EPRI) in Palo Alto, CA. EPRI’s support and feedback is gratefully acknowledged.
Transforming Society

The vast networks of electrification are the greatest engineering achievement of the 20th century

– U.S. National Academy of Engineering
Power Law Distributions: Frequency & impacts of major disasters

Hurricane and Earthquake Losses 1900–1989
Flood Losses 1986–1992
Electric Network Outages 1984–2000

Cumulative Number of Events per Year

Loss Per event (million 1990 dollars)

Outages
Model + Data

D = –0.74

10 times per year

100 1000 10,000

D = –0.41

Once a year

D = –0.98

Once per decade

Aug. 10, 1996

Once per century

Hurricanes

Copyright © 2006 No part of this presentation may be reproduced in any form without prior authorization.
Context: Threats to Security
Sources of Vulnerability

- Interdependence: Gas pipelines, compressor stations, etc.; Dams; Rail lines; Telecom – monitoring & control of system
- Transformer, line reactors, series capacitors, transmission lines...
- Protection of ALL the widely diverse and dispersed assets is impractical
- Control Centers
- Combinations of the above and more using a variety of weapons:
 - Truck bombs; Small airplanes; Gun shots – line insulators, transformers; more sophisticated modes of attack...
- Hijacking of control
- EMP
- Biological contamination (real or threat)
- Over-reaction to isolated incidents or threats
- Internet Attacks – over 50,000 hits a day at an ISO
- Storms, Earthquakes, Forest fires & grass land fires
- Loss of major equipment...
Cyber Threats to Controls

Prioritization: Security Index

General
1. Corporate culture (adherence to procedures, visible promotion of better security, management security knowledge)
2. Security program (up-to-date, complete, managed, and includes vulnerability and risk assessments)
3. Employees (compliance with policies and procedures, background checks, training)
4. Emergency and threat-response capability (organized, trained, manned, drilled)

Physical
1. Requirements for facilities (critical list, inventory, intrusion detections, deficiency list)
2. Requirements for equipment (critical list, inventory, deficiency list)
3. Requirements for lines of communications (critical list, inventory, deficiency list)
4. Protection of sensitive information

Cyber and IT
1. Protection of wired networks (architecture analysis, intrusion detection)
2. Protection of wireless networks (architecture analysis, intrusion detection, penetration testing)
3. Firewall assessments
4. Process control system security assessments (SCADA, EMS, DCS)
Assessment & Prioritization: A Composite Spider Diagram to Display Security Indices
Example: Threats to the Transmission Grid
September 2002 fires

Biscuit Fire - Cascade Fire (Oregon)
Iron Mountain fire
Hickok fire - 776 acres
Freeway Fire - no threat to SCE facilities
Curve Fire: San Gabriel Canyon Road. 30-Miles N/O Azusa, 10,000 acres
Curb Fire: 19,500 acres
Leona Fire: Midway-Vincent area
Whitmore fire: Kilarc-Deschultes 60kV lost
Glendale - Eagle Rock fire: Near Gould-Sylmar 220kV line
Olita Fire: El Dorado County –Gold Hill SS
Mountain Fire: Rutledge - Hardie area
Croy Fire: Morgan Hill area -Metcalf-Green Valley 115kV line impacted
Williams Fire: 35,000 acres

Source CA-ISO
Example: Fire under the 500 kV Lines – Sept 2002
Example: Midway – Vincent 500 kV line tower damage
Midway – Vincent 500 kV line damage
Vincent Substation before Transformer Explosion & Fire

Source: CA-ISO
Lessons learned, e.g.:
Redundancy Lowers Impact of Threats

- Two Separate Control Rooms – 500 miles apart
- Dual EMS systems at each location + Training/testing EMS
- Diversified communications networks
Overview of my research areas (1998-2003):
Initiatives and Programs I developed and/or led at EPRI

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EPRI/DoD</td>
<td>Enterprise</td>
<td>Infrastructure</td>
<td>Consortium</td>
</tr>
<tr>
<td>Complex</td>
<td>Information</td>
<td>Security</td>
<td>for Electric</td>
</tr>
<tr>
<td>Interactive</td>
<td>Security</td>
<td>Initiative</td>
<td>Infrastructure</td>
</tr>
<tr>
<td>Networks</td>
<td>(EIS)</td>
<td>(ISI)</td>
<td>to Support a</td>
</tr>
<tr>
<td>(CIN/SI)</td>
<td></td>
<td></td>
<td>Digital Society</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(CEIDS)</td>
</tr>
</tbody>
</table>

Underpinnings of Interdependent Critical National Infrastructures

- Information Sharing
- Intrusion/Tamper Detection
- Comm. Protocol Security
- Risk Mgmt.
- Enhancement
- High Speed Encryption

Response to 9/11 Tragedies
- Strategic Spare Parts Inventory
- Vulnerability Assessments
- Red Teaming
- Secure Communications

- Self Healing Grid
- IntelliGrid™
- Integrated Electric Communications System Architecture
- Fast Simulation and Modeling

Tools that enable secure, robust & reliable operation of interdependent infrastructures with distributed intel. & self-healing
Recent Directions: EPRI/DOD Complex Interactive Network/Systems Initiative

“We are sick and tired of them and they had better change!”

Chicago Mayor Richard Daley on the August 1999 Blackout

Complex interactive networks:

- **Energy infrastructure**: Electric power grids, water, oil and gas pipelines
- **Telecommunication**: Information, communications and satellite networks; sensor and measurement systems and other continuous information flow systems
- **Transportation and distribution networks**
- **Energy markets, banking and finance**

1999-2001: $5.2M / year — Equally Funded by DoD/EPRI

Develop tools that enable secure, robust and reliable operation of interdependent infrastructures with distributed intelligence and self-healing abilities
Background: EPRI/DOD Complex Interactive Network/Systems Initiative (CIN/SI)

The Reason for this Initiative: “Those who do not remember the past are condemned to repeat it.”
George Santayana

- Two faults in Oregon (500 kV & 230 kV) led to...
 - ...tripping of generators at McNary dam
 - ...500 MW oscillations
 - ...separation of the Pacific Intertie at the California-Oregon border
 - ...blackouts in 13 states/provinces

- Some studies show with proper “intelligent controls,” all would have been prevented by shedding 0.4% of load for 30 minutes!

August 10, 1996

Everyone wants to operate the power system closer to the edge. A good idea! but where is the edge and how close are we to it.
Complex Interactive Networks

Failure Analysis

Information & Sensing

Vulnerability Assessment

Self Healing Strategies

Strategy Deployment

GPS Satellite

LEO Satellite

Internet

Intranet

Intricate Interactive Networks
Network Centric Objective Force

- Indirect Fire Function *
- Direct Fire Function *
- Indirect Fire Function *
- Direct Fire Function *
- Organic & inorganic RSTA
- Networked Comms
- Sensor Function *
- Infantry Carrier Function

* Manned or unmanned
CIN/SI Funded Consortia

107 professors in 28 U.S. universities are funded: Over 360 publications, and 19 technologies extracted, in the 3-year initiative

- Defense Against Catastrophic Failures, Vulnerability Assessment
- Intelligent Management of the Power Grid
- Modeling and Diagnosis Methods
- Minimizing Failures While Maintaining Efficiency / Stochastic Analysis of Network Performance
- Context Dependent Network Agents
- Mathematical Foundations: Efficiency & Robustness of Distributed Systems

- U Washington, Arizona St., Iowa St., VPI
- Purdue, U Tennessee, Fisk U, TVA, ComEd
- Harvard, UMass, Boston, MIT, Washington U.
- Cornell, UC-Berkeley, GWU, Illinois, Washington St., Wisconsin
- CMU, RPI, UTAM, Minnesota, Illinois
- Cal Tech, MIT, Illinois, UC-SB, UCLA, Stanford

Copyright © 2006 No part of this presentation may be reproduced in any form without prior authorization.
Background: Power Laws

US Power Outages
1984-Present

Model

Data

August 10, 1996

N = # of Customers Affected by Outage

Frequency (Per Year) of Outages > N

EPRI/DoD CIN/S Initiative
Infrastructure Interdependencies

- Critical system components
- Interdependent propagation pathways and degrees of coupling
- Benefits of mitigation plans
Integrated Protection and Control

- Information, Cyber, and Communication Systems (I, C)
- Energy System (S)
- Energy Markets (M, G, D)
- Human Agents (H)
- Threats or Disturbances
- Protection and Control Systems (P, K)

Copyright © 2006 No part of this presentation may be reproduced in any form without prior authorization.
Background: The Self Healing Grid
Background:
The Case of the Missing Wing

Believe it or not, this one made it back! This F-15, with half its wing missing, is a good example of what is currently considered an "unflyable" aircraft. However, the pilot's success in bringing it home helped to inspire a new program at Aeronautical Systems Division's Flight Dynamics Laboratory aimed at enabling future fighter pilots to fly aircraft with severely damaged control surfaces. The pilot of this F-15 configured in unusual ways the control surfaces that were still working to compensate for the damaged wing. The FDL program will make the "survivors" reaction automatic to the aircraft. Therefore, flying a damaged aircraft will be much easier on the pilot. Through a self-repairing flight control system nearing development, a computerized "brain" will automatically reconfigure such surfaces as rudders, flaperons, and ailerons to compensate for grave damage to essential flying surfaces, according to FDL.

Only smart work by the pilot and the unique combination of interworking control surfaces on the F-15 brought this one back alive. With old-fashioned conventional ailerons and horizontal stabilizer, it couldn't have happened.

Goal: Optimize controls to compensate for damage or failure conditions of the aircraft*
Dynamical System Estimation: Topology of RHONN

Figure 2: Network structure with higher-order unit \((d_{jk} = 1) \)

- Dynamical elements in the form of feedback connections.
- Dynamical components are distributed in form of dynamical units throughout the network.
- Higher-order interactions between neurons: the input to a unit is a linear combination of the components of outputs and their products.
System Estimator: Unit Dynamics

\[\dot{x}_i = -a_i x_i + \sum_{k=1}^{L} w_{ik} \prod_{j \in I_k} y^d_{jk}, \quad x_i(0) = x_{i0}, \quad i = 1, \ldots N \]

\[y = [y_1, y_2, \ldots, y_M, y_{M+1}, \ldots, y_{M+N}]^T \]

\[= [u_1, u_2, \ldots, u_M, h(x_1), h(x_2), \ldots, h(x_N)]^T \]

where
- \(\{I_1, I_2, \ldots, I_L\} \): collection of \(L \) not-ordered subsets of \(\{1, 2, \ldots, M + N\} \)
- \(M \): number of inputs \(u_i \)
- \(N \): number of dynamical units (states) \(x_i \)
- \(a_i > 0 \): dynamical parameter
- \(w_{ik} \): weight parameter
- \(d_{jk} > 0 \): integer
- \(h(\cdot) \): nonlinear continuous functions
RHONN Overall System Dynamics

\[
\dot{x} = Ax + Bg(x, u), \quad x(0) = x_0 \\
y_{\text{ext}} = Cx
\]

where

\[
g = \left[\prod_{j \in I_1} y_j^{d_{j1}}, \prod_{j \in I_2} y_j^{d_{j2}}, \ldots, \prod_{j \in I_L} y_j^{d_{jL}} \right]^T \in \mathbb{R}^L \\
x = [x_1, x_2, \ldots, x_N]^T \in \mathbb{R}^N \\
A = -\text{diagonal} \{a_1, a_2, \ldots, a_N\} \in \mathbb{R}^{N \times N} \\
b_i = [w_{i1}, w_{i2}, \ldots, w_{iL}]^T \in \mathbb{R}^L \\
B = [b_1, b_2, \ldots, b_N]^T \in \mathbb{R}^{N \times L}
Architecture

Plant

on-line RHONN

a priori knowledge
(pre-trained baseline network)

Update

ΔDerivatives

Derivatives

Error

Analytical determ. of deriv. using eqn. of motion
On-Line Learning Without Baseline Network

Partial Derivative of Pitching moment w.r.t pitch rate \((d/s)^{-1}\)

Partial Derivative of Pitching moment w.r.t AoA \((d)^{-1}\)
On-Line Learning Without Baseline Network

Partial Derivative of Pitching moment w.r.t AoA \((d)^{-1}\)
Roll Axis Response of the Intelligent Flight Control System

IFCS DAG 0 full lateral stick roll at 20,000 ft, 0.75 Mach, Flt 126

Lateral Stick (inches):

- Commanded
- Obtained

Roll Rate (deg/sec):

- Commanded
- Obtained

Time [sec]:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Accomplishments in the IFCS program

• The system was successfully test flown on a test F-15 at the NASA Dryden Flight Research Center:
 – Fifteen test flights were accomplished, including flight path control in a test flight envelope with supersonic flight conditions.
 – Maneuvers included 4g turns, split S, tracking, formation flight, and maximum afterburner acceleration to supersonic flight.

• Stochastic Optimal Feedforward and Feedback Technique (SOFFT) continuously optimizes controls to compensate for damage or failure conditions of the aircraft.

• Flight controller uses an on-line solution of the Riccati equation containing the neural network stability derivative data to continuously optimize feedback gains.

• Development team: NASA Ames Research Center, NASA Dryden Flight Research Center, Boeing Phantom Works, and Washington University.
Self-healing Grid

Building on the Foundation:

• Anticipation of disruptive events
• Look-ahead simulation capability
• Fast isolation and sectionalization
• Adaptive islanding
Tools: EPRI/DOD Complex Interactive Network/Systems Initiative (CIN/SI)

Tools:
- Dynamical systems
- Statistical physics
- Information & communication science
- Computational complexity

To measure and model coupled large-scale systems including:
- Electricity Infrastructure
- Telecommunication networks
- Economic markets
- Cell phone networks and the Internet
- Other complex systems
Wide-Area Measurement System (WAMS)
Integrated measurements facilitate system management

“Better information supports better - and faster - decisions.”

Source: DOE/EPRI WAMS project-- BPA & PNNL
Detecting Precursors: Disturbance records the August 10, 1996

Source: DOE/EPRI WAMS project
Detecting Precursors: Classification of fault signatures

Loss of Nearby Generator Events

Loss of Remote Generator Events

Loss of Load Events

Line Trip Events
Disturbance Feature Extraction

<table>
<thead>
<tr>
<th>Disturbance</th>
<th>Frequency change</th>
<th>Frequency derivative</th>
<th>Line flow change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss of nearby generation</td>
<td>Negative</td>
<td>Steep</td>
<td>Large</td>
</tr>
<tr>
<td>Loss of remote generation</td>
<td>Negative</td>
<td>Moderate</td>
<td>Negligible</td>
</tr>
<tr>
<td>Loss of load</td>
<td>Positive</td>
<td>Moderate</td>
<td>Detectable</td>
</tr>
<tr>
<td>Line trip close to DRD</td>
<td>Negligible</td>
<td>Steep</td>
<td>Large</td>
</tr>
<tr>
<td>Oscillations</td>
<td>Negligible</td>
<td>Small</td>
<td>oscillations</td>
</tr>
</tbody>
</table>
Time-Scale of Actions & Operations Within the Power Grid

<table>
<thead>
<tr>
<th>Action or Operation</th>
<th>Timeframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wave effects (fast dynamics such as lightning)</td>
<td>Microseconds to milliseconds</td>
</tr>
<tr>
<td>Switching overvoltages</td>
<td>Milliseconds</td>
</tr>
<tr>
<td>Fault protection</td>
<td>100 milliseconds or a few cycles</td>
</tr>
<tr>
<td>Tie-line load frequency control</td>
<td>1 to 10 seconds</td>
</tr>
<tr>
<td>Economic load dispatch</td>
<td>10 seconds to 1 hour</td>
</tr>
<tr>
<td>Load management, load forecasting, generation scheduling</td>
<td>1 hour to 1 day or more</td>
</tr>
</tbody>
</table>
Transmission Limits

• High dimensional problem
 – Large interconnection models require ~40,000 buses & ~50,000 lines, and ~3,000 generators with ~120 control areas
 – Each line has a capacity limit
 – The system must withstand of loss of any one line or generator (~53,000 contingencies)
 – 53,000 x 50,000 = 2,650,000,000 possible constraints

• Reliable operation requires an operating point that satisfy these 2.65 billion constraints!
New Challenges: Can Operators Predict Market Behavior?

- Economic dispatch
- Strong correlation between power flow and demand

- Market-based dispatch
- Poor correlation between power flow and demand
Example: WECC Network Model & Tools

- One single model for Regional studies
- 13,000 buses
- Need Real-time State Estimator and Security Assessment Applications
- Need System Restoration analysis tools

Source: CA-ISO
Communication Requirements

<table>
<thead>
<tr>
<th>Power System Tasks</th>
<th>Bandwidth Requirement</th>
<th>Current Response Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load Shedding (Local Decision)</td>
<td>Low</td>
<td>Seconds</td>
</tr>
<tr>
<td>Adaptive Relaying (e.g., Blocking relay)</td>
<td>Low</td>
<td>Not Available</td>
</tr>
<tr>
<td>Hierarchical Data Acquisition and Transfer</td>
<td>High</td>
<td>Seconds (e.g., 2-12 seconds / scan for RTUs)</td>
</tr>
<tr>
<td>Line / Bus Reconfiguration</td>
<td>Low</td>
<td>Minutes (manual)</td>
</tr>
<tr>
<td>Control Devices (e.g., FACTS, Transformer, …)</td>
<td>Medium</td>
<td>Seconds (manual)</td>
</tr>
<tr>
<td>Fault Event Recorder Information</td>
<td>Medium</td>
<td>Minutes</td>
</tr>
<tr>
<td>Generator Control</td>
<td>Low</td>
<td>Seconds</td>
</tr>
<tr>
<td>Strategic Power Infrastructure Defense & Coordination with Control Centers (EPRI/DoD CINSI)</td>
<td>High</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>
State Estimation:

\[Z = h(X) + V \]

where:
- \(Z \) = The measurement vector
- \(X \) = The state vector
- \(V \) = The measurement error vector
- \(h(X) \) = Non-linear observation function, the set of electrical equations relating MW and MVAR values to bus voltages and angles

\[
\text{Min. } J(X) = \left[Z - h(X) \right]^\top R^{-1} \left[Z - h(X) \right]
\]

- \(R \) = The measurement error covariance matrix

Extended to Advanced Topology Estimator: Determine unknown substation switch settings from voltages, power flows, and current measurements
Local area grids (LAG)
Efficient and designed networks
... relations to Topology & Dynamics?

- Topology affects dynamics (Watts/Strogatz ‘98; Watts’99).
 - “small world” topology enhances signal propagation.
 - Dynamics of cascading failures is related to the topology of the telecommunication network or power grid.
 - The Transmission network of Western U.S. has a small world topology (Watts & Strogatz, ‘98; Watts, ‘99)

![Diagram showing regular, small world, and random network topologies](image-url)
Small-World Models: Objectives

• Develop protection strategies that are:
 – self-optimizing
 • minimize the load lost due to disturbances
 – self-healing
 • Resilient and Robust providing efficient restoration

• First step: understand collapse phenomena.

Source: EPRI/DOD CIN/SI
Circuit Breaker Action ⇔ virus spreading

1) Lightening strikes a line.
2) Induced transient trips breakers at neighboring busses with probability $0 \leq q \leq 1$.
3) Continue until cascade stops.
4) Blackout size \propto number of busses affected.
Experiments conducted using topology data for a portion of the Western U.S. power grid.

- 932 busses
- 1288 lines

Fortification: Illustration (real topology data)

Heuristic 1: Degree fortification
mean = 13.36

Heuristic 2: Cluster fortification
mean = 22.90

Heuristic 3: Far Edge fortification
mean = 11.62
Look-Ahead Simulation Applied to Multi-Resolution Models

• Provides faster-than-real-time simulation
 – By drawing on approximate rules for system behavior, such as power law distribution
 – By using simplified models of a particular system

• Allows system operators to change the resolution of modeling at will
 – Macro-level (regional power systems)
 – Meso-level (individual utility)
 – Micro-level (distribution feeders/substations)
Macro-Level Modeling: The U.S. Power Grid

Simplified models

Low-resolution model

Detailed models

MODEL REFINEMENT

• Variable levels of details
• Lines, loads, generators are dynamic
The system can be modeled at many levels of detail.
At this level, dynamic models include the *swing equations*

\[m_i \ddot{\delta}_i + D_i \dot{\delta}_i = P_i + \sum_j b_{ij} \sin(\delta_i - \delta_j) \]
Fast Simulation

Capturing System Dynamics and Accelerating Computations Using Novel Model Reduction

Original system

Reduced system
Fast Look-Ahead Simulation Of Cascading Failures

Line Failure

Generator Tripped

0.25
0.25
1.764
1.773
1.845
1.848
2.570
2.574
2.582
2.594

Failure time:
Original system
Reduced system
(Predicted up to 12-times faster)

(EPRI/DOD CINSI)
Control Strategies

- Centralized
- Perfectly decentralized
- Distributed
Background: The Self-Healing Grid

- Dependability/Robustness/Self-Healing (min-hours)
 - Vulnerability Assessment Agents
 - Event identification Agents
 - Reconfiguration Agents
 - Restoration Agents

- Autonomy/Fast Control (msec)
 - Event/Alarm Filtering Agents
 - Model Update Agents
 - Fault Isolation Agents
 - Command Interpretation Agents
 - Frequency Stability Agents
 - Generation Agents
 - Protection Agents

- Triggering Events
- Plans/Decisions Check Consistency
- Knowledge/Decision Exchange

- Inputs
- Events/Alarms
- Events/Alarm Filtering Agents

- Inhibitor Signal Controls

- Power System
- EPRI/DoD CIN/S Initiative
Background: Intelligent Adaptive Islanding
Background: Simulation Result

No Load Shedding Scheme

New Scheme
EPRI’s Reliability Initiative-- Sample Screen of Real-time Security Data Display (RSDD)
Vulnerability Indices

A new method to measure the vulnerability of the communication system and its impact on the performance of the power grid; will be extended to use dynamical PRA and sensor data.
Information Networks for On-Line Trade, Security and Control

- Trade Data Net
 - OASIS
 - TTC
 - DSA
 - VSA
 - TRACE

- Security Data Net
 - ISN
 - API
 - FACTS Controllers
 - Event Recording and Diagnostics
 - Stabilizer Tuning

- Control Data Net
 - CC-RTU
 - PSAPAC
 - TRELSS
 - RCM
 - MMW

- Dynamic Data Net
 - WAMS
 - CIM
 - DTCR
 - TRACE

 crossover technologies and services:

- Ancillary Services
- Transmission Reservation
- Congestion Management

- Integrated Substation Diagnostics

- Integration Platform for Market Operations (IPM)
What can be Done?
Vulnerability Assessment

- Profile Threats (Determine Intent & Capabilities)
- Identify Likely Targets
- Develop Attack Scenarios*

- Apply War Gaming Theory
- Develop Countermeasures
- Assess Risks (probability of successful attack x impact)
- Assess Vulnerabilities to each Attack

*Evolving spectra of targets and modes of attack
PRA - In Depth
Voltage Root Causes

Sensitive
Systems Control Challenge

- Enhancing Reliability and Security of Network Operation via quantification of the system state and its “direction/speed/momentum” toward a major failure
- Making Network Availability (quick restoration) a key requirement
- Introducing Quality of Service as an additional constraint
- Ultimately, enabling operators to act more efficiently and with greater confidence in difficult (sometimes unclear, unexpected or even conflicting) circumstances

Which trajectories lead to catastrophic failures?
An Assessment Methodology

Infrastructure Disruption

Disruption of nearly Infinite size & duration

0

1/size

1/Duration

Stable

Operation

Subspace

Identify/“measure” destabilizing trajectories and impacts
Complex Interactive Networks/Systems

Failure Propagation on Grid

Percolation

Designed System

Barriers
Complex Interactive Networks/Systems

Failure Propagation on Grid – Topology & Probability

\[\text{Yield} = \text{Density} - \text{Loss} \]
“The reasonable man adapts himself to the world; the unreasonable one persists in trying to adapt the world to himself. Therefore all progress depends on the unreasonable man.”

George Bernard Shaw (1856 - 1950)
One of my research areas: S&T Assessment, Scan and Map (April 2005-Feb 2006; Galvin Electricity Initiative)

Objectives:

- Identify the most significant Science & Technology innovations which would meet energy service needs over the next 10 or 20 years;

- Determine Science & Technologies areas and concepts which address customer aspirations and hopes; when conceived, they will lead to:
 - Technologies that encourage job creation and address the needs of the society;
 - An energy system so robust and resilient that it will not fail;
 - A totally reliable, secure communication system that will not fail.

Source: Galvin Electricity Initiative www.galvinelectricity.org
Toward High Reliability Infrastructures

- Realistic and scalable models, estimation and control
- Coupling to state estimation, dynamic monitoring, simulation, identification, disturbance analysis
- Multiresolution models for wide-area data, distributed control
- Real-time wide-area sensing, communications, analysis and control for contingency planning
- Sensor mix and placement; new sensors
- Communication, intelligent data management
- Integrated System Assessment, Security, Planning & Interoperability
- Wide-area control for operation near margins; control with uncertain delays; layered fail-safe control; control mix/placement.
Research Challenges

- Intelligent sensors as elements in real-time data base; seek appropriate high level query tools for such a database? Sensor interface to models? Metrics?
- Dependability/security/robustness is the key… V&V remains a big challenge
- Restructuring “trilemma”: Unresolved Issues Cloud Planning for the Future-- Regulatory issues
- Increased dependence on information systems and software
- Effect of market structures, distributed generation, other new features on above issues; economic evaluations
Thank you