FEDERAL RESERVE BANK of NEW YORK

Policy Implementation with a Large Central Bank Balance Sheet

Antoine Martin

Fed 21, March 24, 2015

Outline

- Monetary policy implementation before 2008
- Monetary policy implementation since 2008
- Tools available for normalization
- A framework to think about monetary policy implementation with large reserves

Monetary policy implementation before 2008

3

Pre-Crisis Operational Framework

- The level of reserve balances was quite low
 - Averaged around \$10 billion in 2006
- Desk and Board staff forecast factors driving supply of and demand for reserves
- Almost every day, conduct a repo operation to add enough reserves to hit the fed funds target rate
 - Averaged about \$5-10 billion per operation
- As demand for currency grew, banks' reserves would decrease, and the Desk would add reserves through purchases of Treasuries (long-run) and repos (short-run)

Framework was similar to a "corridor" system

5

Outline

- Monetary policy implementation before 2008
- Monetary policy implementation since 2008
- Tools available for normalization
- A framework to think about monetary policy implementation with large reserves

The crisis lead to a huge increase in reserves

7

Monetary policy implementation since 2008

8

- The level of reserve balances is much higher
 - Around \$2.7 trillion; a 27,000% increase!
- Little need to forecast factors driving supply of and demand for reserves each day
 - But market interest rates, including the fed funds rate, have been below IOER
- No need to conduct a repo operation to set the supply of reserves to the desired level
 - Relatively small-scale adjustments to the supply of reserves might do little to move the fed funds rate
- Large-scale asset purchase programs have meant that currency is no longer our largest single liability

Reserves and money market rates

Sources: FRED, Federal Reserve Economic Data, from the Federal Reserve Bank of St. Louis, Bloomberg, and Federal Reserve Data Releases, H15

Why are market rates below the IOER?

- Why is the federal funds (FF) rate below IOER?
 - The role of GSEs and FHLBs
- Why are other market rates below IOER?
 - Role of non-banks, particularly money market mutual funds (MMFs)

Outline

- Monetary policy implementation before 2008
- Monetary policy implementation since 2008
- Tools available for normalization
- A framework to think about monetary policy implementation with large reserves

Exit and Patching the Leaks

- Last September the FOMC published its Policy Normalization Principles and Plans. Fed intends to
 - Keep a target range for the FF rate
 - Move the FF rate primarily by adjusting IOER
 - Use overnight reverse repos and other tools as needed
 - Reduce securities primarily by ceasing reinvestments
- 3 tools have been discussed recently: IOER, overnight RRP, and TDF
 - What are they?

IOER

- Relatively recent authority granted to the Fed in 2008
- Allows the Fed to pay interest to banks on the balances that they leave in their account with the Fed
- How does it work?
 - If banks can earn, say, 0.25% leaving money in their Fed account, they won't have an incentive to lend it out below that rate
 - Provides a floor on interbank rates

Overnight RRP

- A tool we have used for decades
- New wrinkle: instead of operating in fixed size, operate at a fixed rate with a broader set of firms
- How does it work?
 - In tri-party repo system, investors give the Fed cash overnight and we give them Treasury securities as collateral (essentially, a collateralized loan to the Fed)
 - Used to support a floor under rates
 - Similar to IOER, if an investor can earn, say, 0.05% investing at the Fed, why invest with a private counterparty below that level?

TDF

- A relatively new tool
- Similar to IOER in many ways, but instead of overnight, deposit is for a specified term
- How does it work?
 - Banks can choose to place a fixed amount of their reserves in the TDF
 - Used to support a floor under rates--why lend below TDF rates?--and to drain reserves--transforms one type of liability (reserves) into another (TDF)
 - Typically needs to be offered above IOER; otherwise, why lock up your money for longer than you need to?

Outline

- Monetary policy implementation before 2008
- Monetary policy implementation since 2008
- Tools available for normalization
- A framework to think about monetary policy implementation with large reserves

Monetary policy with large reserves

- Questions:
 - Why are money market rates below IOER?
 - Do we have the tools to raise market rates?
 - If so, what is the most effective way to use our tools?
- Longer-term question:
 - How should we implement monetary policy?

A framework

- We build a simple model with households, firms, banks, and nonbanks
- In our model:
 - Households use the financial system to save for consumption at a later date
 - Firms produce consumption goods
 - Banks lend to firm, offer deposits, and have access to IOER
 - Nonbanks hold government debt on behalf of households and cannot earn IOER

Key Frictions

- There are two main frictions:
 - Banks face convex balance sheet costs: Explains why money market rates are below IOER
 - Banks face convex interbank monitoring costs (reserve scarcity): Explains why interbank rates are above IOER
- Nonbanks do not face balance sheet costs because they are more transparent

A Simple Real Economy

- Three periods: 0, 1, and 2
- Households
 - Sell endowment at t=0
 - Buy goods for consumption t=2
- Firms
 - Buy household endowment at t=0, use it as input for production, and sell goods at t=2

A More Complex Financial System

- Households can save through a variety of liquid or illiquid assets issued by banks, nonbanks, and the public sector (Government and CB)
- Households enjoy liquidity benefit from liquid assets
- Private sector prefers to issue liquid assets but banks must issue equity (moral hazard)

Benchmark Timeline

- Date 0: Bonds, deposits, equity, and loans
 - Yield return at *t*=2
 - Deposits can be withdrawn early at date 1
- Date 1: One sector has a liquidity shock
 - Potentially leads to interbank transactions
- Date 2: Assets mature and consumption

Two sectors and liquidity shock

Liquidity shock to **one** sector:

- Bank meets withdrawal with:
 - Reserves (IOER)
 - Interbank loans (FF)

Liquidity shock to **one** sector:

- Bank meets withdrawal with:
 - Reserves (IOER)

t=1

- Interbank loans (FF)

t=2 Consume firm's output Assets paid and profits realized

Implications of the model

- Firms:
 - Interest rate on loans equals return on marginal loan
- Households:
 - Expected return of different assets are equalized
- Banks:
 - Interbank market is inactive if reserve supply is high
 - Interbank monitoring costs create a wedge between IOER and bank lending rates (interbank/loan rates)
 - Balance sheet costs create a wedge between IOER and bank borrowing rates (deposit rates)

Two polar cases

- When the supply of reserves is small
 - Interbank market is active
 - Interbank market frictions are high
 - Balance sheet costs are low
- When the supply of reserves is high
 - Interbank market is inactive
 - Interbank market frictions are low
 - Balance sheet costs are high

New Federal Reserve Tools

- We study two tools (tested recently)
 - Term Deposit Facility (TDF)
 - Banks can deposit reserves with the Fed for a term maturity
 - Reverse Repurchase agreements (RRPs)
 - Banks and non-banks, such as MMFs, can lend to the Fed (against collateral)
 - Of particular interest are fixed-rate overnight RRPs
- We study other tools in the paper and could adapt the framework to study additional tools

How do the tools work?

- The tools work by affecting the two frictions that determine interest rates:
 - Balance sheet costs: Reducing balance sheet size raises market rates by decreasing the spread to IOER
 - Interbank market frictions: Increasing the interbank market activity raises interbank market rates
- Assessment:
 - TDF: Creates reserve scarcity but does not affect balance sheet size
 - RRPs: Create reserves scarcity and reduce balance sheet size (if RRP rate < IOER)

Do we have the tools to raise rates?

- Yes, TDF and RRPs will help raise rates
- Large reserves → RRPs are more effective
 - RRPs (but not TDF) reduce balance sheet size
 - Creating scarcity through TDF only would require massive drain of reserves

How should we use our tools?

- Welfare in our economy can be measured as the (negative of the) sum of the two frictions
- TDF: Increases rates by increasing interbank market costs
 Lower welfare
- RRPs: Increase rates by lowering balance sheet costs and increasing interbank costs
 - Trade-off: Effect on welfare can be ambiguous but likely positive when reserves are large
 - ON RRPs also stabilize rate by absorbing liquidly shocks

Implications for long-term framework

- What is the optimal supply of reserves?
 - Trade-off: Reserves alleviate interbank market cost but increase bank balance sheet costs
- Optimal amount is likely larger than pre-crisis supply
- Additional potential benefits:
 - Improves timing of payments
 - Increases public supply of safe assets

Conclusion

- Challenge of normalization in the US is to raise market rates with a large supply of reserves
- Our current set of tools is likely effective to raise market rates
 - RRPs can reduce bank balance sheet costs
 - TDF and RRPs can create scarcity if used in high enough quantity
- Our framework suggests benefits of (fairly) large reserves in the long run

Questions?