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1 Background on Jump Estimation

A recent literature in financial econometrics is concerned with measuring the jump component in

intraday asset returns.1 Under very general conditions, no arbitrage implies that asset returns

admit a decomposition of the form

dXt = bt dt+ σt dWt︸ ︷︷ ︸
continuous variation

+ dJt︸︷︷︸
jump component

, t ∈ [0, T ] (1)

where Xt is the asset’s log price, and Wt is a Brownian motion.

In the jump estimation literature, observed asset returns are treated as discrete samples of this

continuous-time process. For simplicity, we assume that we have n observation times, and that

these observation times are equidistant and labeled i∆n for i = 0, 1, . . . , T/∆n. In this notation,

our discrete log-returns are {∆n
i X}

T/∆n

i=1 , where ∆n
i X ≡ Xi∆n−X(i−1)∆n

is the ith observed return.

Notice that ∆n
i X is the confluence of the three terms in (1): a deterministic drift bt, a measure

of continuous random variation σtdWt, and a measure of large, discontinuous variation dJt. One of

the goals of the jump estimation literature is to statistically measure when a given move in observed

prices, ∆n
i X, is due mostly to the continuous component, or the jump component.

2 Measuring Jumps in Illiquidity

We apply the logic of “separating continuous moves from jump moves” to measuring illiquidity

jumps, which is one way of statistically quantifying the notion of sudden liquidity evaporations.

Let Lt denote an illiquidity index that has been demeaned, so that E[∆n
i L] = 0, enabling us

∗The content of this note is based on an uncirculated working paper at the Federal Reserve Bank of New York.
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Bank of New York or the Federal Reserve System.

1See Aı̈t-Sahalia and Jacod (2014) for an introduction and survey.
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to abstract from modeling a drift term.2 Thus, we think of illiquidity as dynamically evolving

according to a process with a continuous component and a jump component,

dLt = σt dWt + dJt. (2)

If the illiquidity index does not jump, then this simplifies to dLt = σtdWt, which heuristically

says that dLt is distributed N(0, σ2
t dt) by definition of a Brownian motion. Hence, we can interpret

any observed moves that are statistically unlikely to have been generated by a N(0, σ2
t dt) random

variable as evidence for the presence of a jump increment dJt.

The σt term is sometimes referred to as continuous local variation: continuous because it de-

termines the variance of a Brownian increment, and local because it is time-varying and hence

describes Gaussian variation that is local to time t. Since σt is unobserved, it must be estimated.

In our blog, we use a trailing 12-month window of daily observations on the illiquidity index, ∆n
i L,

and compute the bipower variation

BVt−∆w,t =
π

2

∑
i

|∆n
i L| |∆n

i−1L|, (3)

where ∆w is the 12-month window. Barndorff-Nielsen and Shephard (2004) show that this measure

asymptotically converges to
∫ t
t−∆w

σ2
sds as the sampling interval ∆n → 0, leading naturally to an

estimate σ̂2
t = 1

∆w
BVt−∆w,t ≈ 1

∆w

∫ t
t−∆w

σ2
sds→ σ2

t as ∆w → 0. Thus, this asymptotic approxima-

tion requires both the sampling interval ∆n as well as the local estimation window ∆w to shrink

to zero as the sample size increases. Note that as opposed to standard realized variance or even a

GARCH estimate, the bipower variation measure asymptotically excludes the jump increments in

the computation of the local variation. In other words, we wish to avoid a situation wherein our

estimate of local variance σ2
t includes dJt increments, as those would wrongly inflate our estimate

of σ2
t . Also of note is that the asymptotic theory stipulates that the sampling interval ∆n and local

volatility window ∆w should tend to zero, and does not say that the length of time T needs to tend

to infinity. Hence these liquidity jump measurements should improve with higher frequency data,

which is intuitively appealing in the context of measuring flash events.

With this estimate in hand, we consider moves in Lt to be a jump when the standardized

increment Zi ≡
∆n

i L

σ̂i∆n

√
∆n

> 2, which means that the illiquidity index has moved more than two

standard deviations relative to local variation.3 By counting all such jumps in a given window of

time, one can measure the illiquidity index’s jump intensity.

3 Motivation, Discussion, and Caveats

We took this approach in order to quantitatively and objectively capture sudden deteriorations in

relative liquidity conditions. Some of these deteriorations are well-known and readily observable –

2Examples of illiquidity indexes are discussed below.
3This Z statistic is the basis for the formal jump test in Lee and Mykland (2008).
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the equity market flash crash in May 2010 and the October 15, 2014 flash rally in Treasuries come to

mind. Others are more subtle and have at times been termed liquidity illusions or liquidity mirages:

while bid-ask spreads and other metrics are historically favorable for equities and Treasuries, a large

trade or other liquidity event may trigger sudden withdrawals of liquidity providers, which should

statistically appear as illiquidity jumps. Thus, our measure of illiquidity jump intensities is an

attempt to measure the relative stability of liquidity conditions.

We also note that our focus on liquidity metrics is a novel application of jump estimation

techniques, which have historically been applied to prices. The absence of arbitrage and trading

frictions mathematically implies that returns follow a semimartingale and hence permit a decom-

position similar to (1). This theory makes no promises with regard to quantities, which form the

basis of our liquidity metrics. Nevertheless, there are many situations in which stochastic processes

provide a useful description for observed time series, and hence we adopt this reduced-form ap-

proach to our illiquidity index. The assumption is that increments to the liquidity index are mostly

Gaussian (conditional on a time-varying and stochastic local volatility), but on occasion experience

large jumps, as in a flash crash. Thus using the theory of jump estimation in this context seems

like a reasonable application.

Finally, our focus on measuring jumps relative to local variation σt stems from the vastly chang-

ing nature of liquidity over our sample period. Since the 1990s, financial markets have experienced

everything from electronification to changes in tick size to competitive entry. Hence, what was

considered liquid in 2000 may not be liquid by 2015 standards, which suggests that it is difficult

to compare ∆n
i L for an i that is early in the sample to an i that is late in the sample. The focus

on local variation therefore mitigates this effect, because it separates changes in liquidity that are

normal relative to current trading conditions from changes in liquidity that are more severe than

recently experienced.

4 A Remark on the Illiquidity Index Construction

The jump measurement procedure is applied to an illiquidity index Lt. Candidates for Lt that

we have considered are the first principal component of a basket of illiquidity indicators, including

bid-ask spreads, Amihud (2002) price impact, Roll (1984) effective bid-ask spread, inverse depth

(when available), volume, and intraday price dispersion – a list that is by no means exhaustive, but

is guided by our desire to detect illiquidity events with our jump estimation procedure.

A simple rule of thumb is that the index should be constructed in a way such that the jump

estimator detects extreme events like the equity market flash crash on May 6, 2010 (while keeping

false positives to a minimum). If a liquidity variable is so noisy that it masks such key events (for

example by inflating local volatility σ̂t), then it is excluded from the index. Next, it is desirable to

use high-frequency intraday liquidity metrics. For equities and Treasuries, we have used information

at the 1-minute frequency. This is because (a) flash crashes are often short-lived, and so measures

like end-of-day bid-ask spreads could completely miss the intraday illiquidity event, and (b) the
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jump test’s asymptotic theory is based on so-called fill-in asymptotics, so that the sampling interval

∆n → 0. However, for reasons of comparability to our daily corporate bond metrics, we aggregated

this intraday information to the daily frequency and conducted the jump test on daily data. In

ongoing work, therefore, we are refining these procedures to higher frequencies, a wider collection

of liquidity metrics, and larger cross-sections of securities.
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