The No Surcharge Rule and Card User Rebates:

Vertical Control by a Payment Network

by

Marius Schwartz

Daniel R. Vincent

September 2005

1. Introduction

Electronic Payment Network (EPN)

- Enables transactions between card users & merchants (we abstract from credit role)
- 2 types of EPN:

Proprietary Network (e.g. Amex, Discover)

• Same entity sets fees to card users and merchants

Bankcard Association (e.g. MasterCard, Visa)

- In typical transaction, merchant's bank ("acquirer") differs from card user's bank ("issuer")
- Acquirer pays Issuer *interchange fee*.

Bankcard Network

Controversial practices

- *Interchange fee*: Too high? Joint setting = price fixing?
- *Tying* some cards to other(s): 'Honor All Cards' rule
- *No Surcharge 'Rule'* (NSR) our focus: Merchant may not charge higher price for card vs. other payment modes (cash, checks,...). NSR constraint may reflect:
 - 1) laws (federal or state in US), or EPN rules
 - 2) trading environment: merchant reluctance to set different prices; transaction costs

Importance of NSR

- With unrestricted surcharging, *tying* is ineffectual. *Interchange fee* also is **'neutral'** only EPN's total fee matters, not its allocation between merchants & card users
- With NSR: EPN's fee *structure* matters; *total* fee also changes. Some policy issues:
 - In case 1), repeal NSR? In case 2), intervene in EPN pricing?

2. Model

- 2 consumer groups: *e* use only cards; *c* only cash
 - α = ratio of cash/card users (relative size of cash market) exogenous
 - b = merchant's extra benefit from card v. cash sale
- Same demand curves for transactions; downward sloping not fixed quantity
 - Existing literature: mix of cash v. card users is endogenous;
 but total quantity of transactions is fixed
 - Here, users are exogenous, but *per capita* transactions of *e* and *c* are endogenous
- Price > marginal cost at successive levels: single EPN, local monopolist merchants
 - abstract from inter-network competition
 - abstract from imperfect merchant competition

Two Models of EPN's Conduct:

Main Model: *Proprietary EPN* sets all fees; \Rightarrow double-marginalization in card pricing. So NSR has potentially efficient role in boosting card transactions.

Model also fits bank association *if* 1) & 2) met:

- 1) Acquirers are *competitive* but issuers have market power; \Rightarrow issuers set merchant discount d via interchange fee i to maximize issuers' profits.
- 2) Issuers are *collusive* in setting fees to card users; \Rightarrow card user fee (*t*) also set to maximize issuers' joint profit.

Another polar case: retain 1), but assume *issuers almost perfectly competitive*:

- 2') Earn a minimal margin ε banks compete away almost all their rents from interchange fee *i* via rebates to card users $(i + t_b = \varepsilon \Rightarrow t_b = -i + \varepsilon)$.
 - Banks' net profit = ε X (total card transactions). EPN maximizes issuers' profit by imposing NSR and setting *i* to maximize card transactions.

SOME QUESTIONS & ANSWERS

- 1. Given double marginalization on card pricing, does NSR which squeezes merchant's card margin improve overall pricing? In general, NO:
 - <u>Maximum RPM analogy is flawed</u>: NSR impacts also other market (cash)
 - <u>Optimal Taxation (Ramsey Pricing) analogy is flawed</u>, as EPN is unregulated
 - For given EPN fees, NSR ⇒ merchant sets uniform *intermediate* price for cash & cards, so overall welfare ↑
 - But NSR induces change in fees: with No Rebates, total fee (i+t) can \uparrow ; with Rebates, can get greater reverse misallocation (cash \rightarrow cards)
- 2. Do rebates to card users (cash, miles...) necessarily reflect EPN's inability to limit competition among its issuing banks? NO:
 - Rebates help also a monopolist proprietary EPN to increase impact of NSR
- 3. If card issuers are (almost) perfectly competitive, is NSR irrelevant? NO:
 - NSR + rebates \Rightarrow worsens cards v. cash 'mix' if b small, improves mix if b large.

3. EPN's Preferred Fee Structure with NSR

Now EPN wants to maximize merchant fee, *minimize* card user fee (Prop. 2):

- Suppose EPN
 - (1) raises merchant fee by Δ , and
 - (2) cuts card fee by Δ (or increases rebate), so total EPN fee is unchanged
- (1) raises merchant's Marginal Cost for card sales by Δ ;
 - (2) raises card users' Demand by Δ

With surcharging, merchant raises only card price by $\Delta \Rightarrow$ transactions unchanged ('neutrality')

• With NSR, merchant raises price *less than* Δ , because price must be same for cash, where (1) & (2) are absent. So *card transactions* \uparrow , hence EPN profit \uparrow .

What Determines EPN's equilibrium fees? Relevant constraints:

- *Merchant Acceptance (MA)*: (*i*, *t*) must leave merchant at least the profit it would get if served only cash users.
 - As size of cash market (α) \uparrow , cash-only profit \uparrow , so EPN's latitude \downarrow
- Rebates to card users feasible or not?
 - Section 4—"No Rebates" $(t \ge 0)$: EPN sets card user fee t = 0, and MA constrains merchant fee *i* if and only if $\alpha >$ some threshold α^*
 - Section 5—Rebates Feasible: EPN will grant them (t < 0). MA determines (i, t)

(unless α is fairly small; then binding constraint is ensuring merchant does not price out *cash* users)

4. EPN Fees Under No Rebates

Proposition 3 (fees): EPN sets

i) Card user fee: t = 0. So per-capita cash & card transactions are equal

- ii) Merchant fee: Let $\alpha^* = \text{lowest } \alpha$ for which *Merchant Acceptance (MA)* binds - If $\alpha \le \alpha^*$ (*MA* does not bind), *i* is at EPN's optimal level given t = 0
 - If $\alpha > \alpha^*$, *MA* constraint determines *i*.
- iii) For $\alpha > \alpha^*$: EPN's 'net tax' $(i b) \downarrow$ as $\alpha \uparrow$ (but unaffected by *b*, merchant benefit)
- iv) (Linear Demand): For all α , under NSR i > EPN's total fee under no NSR

Proposition 4 (transaction quantities & welfare — NSR w No Rebates vs. no NSR):

- i) <u>*MA* not binding</u>. For $\alpha \le \alpha^*$, under NSR:
 - a) **Cash** users' per-capita quantity (& consumer surplus) \downarrow
 - b) Card users' quantity unchanged if merchant's benefit b = 0, and ↓ if b > 0
 ⇒ NSR harms *Total Surplus*, *Consumer Surplus* of each group, *Merchant Profit*.
- ii) <u>*MA* binding</u>. For $\alpha > \alpha^*$, under NSR merchant's profit \downarrow , and:
 - a) **Cash** quantity \downarrow
 - b) **Card** quantity \uparrow if α sufficiently > α^*
 - c) (*Linear Demand*): $\forall \alpha$ and b, Total quantity $\downarrow \&$ overall Consumer Surplus \downarrow Total Surplus: For b = 0, TS \uparrow at α sufficiently > α^*
 - Let $\Delta TS^{NR} = [\text{Total Surplus} | \text{NSR}, \text{ No Rebates} \text{TS} | \text{ No NSR}]:$ $\Delta TS^{NR} \uparrow \text{ in } \alpha; \quad \Delta TS^{NR} \downarrow \text{ in } b \quad [\text{reverse under NSR with Rebates} - \text{ section 5}].$

5. EPN Pricing if Rebates Are Feasible (linear demand)

- EPN always grants rebates to card users even when cash market large enough that *MA* binds on merchant fee *i* when t=0 ($\alpha > \alpha^*$) and raises *i*
- To respect *MA*, rise in *i* is less than fall in *t* (size of rebate), so total EPN fee (i+t) under NSR is lower with rebates than without. Total fee is now same as under No NSR
 - Despite lower total fee, EPN grants rebates because card transactions rise enough
- Total transactions, cash + cards, are higher with rebates than without (since total fee \downarrow) \Rightarrow effect of NSR on Total Surplus is better with rebates (but is still bad if α is small)
- Rebates harm cash users: merchant price \uparrow as (i) card users' demand \uparrow & (ii) EPN raises *i*
- With rebates, card users always gain from NSR
- Overall Consumer Surplus \downarrow relative to No NSR if α relatively *large* opposite of TS. (Large $\alpha \Rightarrow$ dispersion in total prices to cash v. card users is less than under No NSR).

Proposition 5 (fees):

- i) For all α , EPN grants rebates (t < 0). So per-capita transactions higher for card users
- ii) When *i* determined by *MA* constraint ($\alpha > approx. 0.22$):
 - EPN total fee (i+t) same as with No NSR (=(1+b)/2)
 - As α rises, merchant fee *i* falls and rebate |*t*| falls (so spread *i*-*t* shrinks)

Proposition 6 (quantities & welfare): When *i* determined by *MA*, compared to No NSR:

- i) Per-capita quantities: card ↑ (card users gain), cash ↓; total quantity same (so changes in Total Surplus below are driven solely by changes in mix)
- ii) $\Delta TS^{R} \uparrow$ in α . For b = 0, TS is higher under NSR if and only if $\alpha > \alpha^{*}$ (=1/3).
- iii) $\Delta CS^R \downarrow$ in α . For b = 0, CS is lower under NSR if and only if $\alpha > \alpha^*$
- iv) $\Delta TS^R \& \Delta CS^R \uparrow \text{ in } b$. For b > 0, there is range of α where NSR raises both TS and CS.

• If repeal of NSR is not an option, what are the welfare effects of Rebates?

Proposition 7 (NSR, Rebates vs. No Rebates): Moving from No Rebates to Rebates:

- i) Consumer Surplus for card users \uparrow , for cash users \downarrow , and overall \uparrow .
- ii) For α large enough that *MA* binds in both cases, *total quantity* and *Total Surplus* \uparrow .
- Cash users lose for 2 reasons: rebates induce higher p directly, and indirectly since $i \uparrow$.
- Total quantity \uparrow because EPN has lower total fee (*i*+*t*) under rebates
- Overall consumer surplus \uparrow because total quantity \uparrow and spread $|q_e q_c| > 0$ with rebates but = 0 without.

6. Competitive Card Issuers

- Suppose now EPN is association of independent card-issuing banks and sets *i*, but each bank set own card user fee *t*. (A bank gets *i* on purchases by its card users.) If competition among issuing banks is vigorous (perfect-substitutes Bertrand), what are effects of NSR?
- Simple game:
 - 1. Banks, via EPN, set merchant fee *i* (and choose NSR or No NSR)
 - 2. Given *i*, merchant and banks set their respective prices (p's & t's) simultaneously
 - 3. Each of the *m* banks that charges lowest *t* gets 1/m of all card users, rest get 0.
- Bertrand equilibrium => $t_b = -i + \varepsilon$ (*t* is set in discrete units, ε , banks compete away almost all their rents via rebate, $t_b + i = \varepsilon \approx 0$). Banks' net profit = $\varepsilon \propto$ (total card transactions). To maximize card transactions, EPN will again impose NSR.

Proposition 8: (strongly competitive issuers): Consider b = 0. In the equilibrium with NSR:

- i) If $\alpha < 1$, merchant strictly prefers to accept NSR, and EPN raises *i* until merchant is indifferent to dropping cash customers; if $\alpha > 1$, merchant's *MA* binds.
- ii) Cash sales (q_c) are lower, card sales (q_e) are higher, but total sales $(Q = \alpha q_c + q_e)$ are the same as under No NSR.
- iii) $\forall \alpha$, NSR \Rightarrow overall Consumer Surplus \uparrow , but merchant profit & Total Surplus \downarrow .
- iv) As $\alpha \rightarrow \infty$, $q_c \rightarrow 1/2$ (single-level monopoly quantity), and $q_e \rightarrow 1$ (competitive quantity).

Remarks:

iii) Total Surplus \downarrow since Q is now misallocated: NSR + card user rebates => $q_e > q_c$ [If b=0, efficiency requires $q_e = q_c$; with No NSR & competitive issuers, $q_c \approx q_e$ (=1/2)]

But overall Consumer Surplus \uparrow for similar reason (dispersion argument for $q_e \neq q_c$).

7. Conclusions and Extensions

Effects of NSR	No Rebates	Rebates	Rebates Bertrand Issuers
Merchant π Cash users' CS	↓	Ļ	\downarrow
Card users' CS	$\downarrow iff \alpha$ small	ſ	↑
Overall CS	\downarrow	$\downarrow iff \alpha$ large	ſ
Total Surplus	$\downarrow iff \alpha$ small	$\downarrow iff \alpha$ small	\downarrow if <i>b</i> small
$\partial \mathrm{TS}/\partial b \mid_{\mathrm{MA \ binds}}$	< 0	> 0	> 0

Possible extensions: – imperfect competition at merchant level

- endogenous choice of means of payment
- competing EPNs.