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Abstract
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certainty equivalence and “mean forecast targeting” to more general certainty non-equivalence
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1 Introduction

In recent years there has been a renewed interest in the study of optimal monetary policy under

uncertainty. Classical analysis of optimal policy consider only additive sources of uncertainty, where

in a linear-quadratic framework the well-known certainty-equivalence result applies and implies that

optimal policy is the same as if there were no uncertainty. Recognizing the uncertain environment

that policymakers face, recent research has considered broader forms of uncertainty for which

certainty equivalence no longer applies. While this may have important implications, in practice

the design of policy becomes much more difficult outside the classical linear-quadratic framework.

In this paper we develop a relatively general form of model uncertainty that remains quite

tractable. Our approach allows us to move beyond the classical linear-quadratic world with additive

shocks, yet remains close enough to the linear-quadratic framework that the analysis is transparent.

We examine optimal and other monetary policies in an extended linear-quadratic setup, extended

in a way to capture model uncertainty. The form of model uncertainty our framework encompasses

includes: simple i.i.d. model deviations; serially correlated model deviations; estimable regime-

switching models; more complex structural uncertainty about very different models, for instance,

backward- and forward-looking models; time-varying central-bank judgment about the state of

model uncertainty; and so forth. We provide an algorithm for finding the optimal policy as well as

solutions for arbitrary policy functions. This allows us to compute and plot consistent distribution

forecasts–fan charts–of target variables and instruments. Our methods hence extend certainty

equivalence and “mean forecast targeting” (Svensson [16]) to more general certainty non-equivalence

and “distribution forecast targeting.”

In section 2, we lay out the model, a so-called Markov jump-linear-quadratic (MJLQ) model,

where model uncertainty takes the form of different “modes” that follow a Markov process. We

extend existing MJLQ models to incorporate forward-looking variables, the existence of which

makes the model nonrecursive. We show that the recursive saddlepoint method of Marcet and

Marimon [11] can nevertheless be applied to express the model in a convenient recursive way, derive

an algorithm for determining the optimal policy and value functions, and discuss how different kinds

of model uncertainty are incorporated by our framework. In section 4, we present examples based on

two empirical models of the US economy: regime-switching versions of the backward-looking model

of Rudebusch and Svensson [13] and the forward-looking New Keynesian model of Lindé [9]. In

section 5, we show how probability distributions of forecasts–fan charts–of relevant variables can
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be constructed for arbitrary time-varying instrument-rate paths or functions. In section 6, we show

how the same probability distributions can be constructed for arbitrary time-invariant instrument

rules and optimal restricted instrument rules. In section 7, we show how the optimal policy and

value functions can be expressed as a function of the probability distribution of the modes, when

these modes are not observed. In section 8 [to be added], we present some conclusions. Appendices

A-E contain some technical details.

2 The model and its interpretation

We set up a relatively flexible model of an economy with a central bank, which allows for serially

correlated additive and multiplicative uncertainty as well as different relevant representations of

the central bank’s information and judgment about the economy.1

2.1 The baseline model

Consider the following model of an economy with a central bank,

Xt+1 = A11,t+1Xt +A12,t+1xt +B1,t+1it + Ct+1εt+1 (2.1)

EtHt+1xt+1 = A21,tXt +A22,txt +B2,tit, (2.2)

where Xt is an nX-vector of predetermined variables in period t, xt is an nx-vector of forward-

looking variables in period t, it is an ni-vector of central-bank instruments (control variables) in

period t, and εt is a zero-mean i.i.d. shock realized in period t with covariance matrix σ2I. The

matrix A22,t is nonsingular, so equation (2.2) determines the forward-looking variables in period

t. There is no restriction in including the shock εt only in the equations for the predetermined

variables, since, if necessary, the set of predetermined variables can always be expanded to include

the shocks and this way enter into the equations for the forward-looking variables. The expression

Etwt+1 denotes the conditional expectation in period t of a random variable wt+1 realized in period

t+ 1. The information assumption for the conditional expectations operator Et is specified below.

The central bank has an intertemporal loss function in period t,

Et

∞X
τ=0

δτLt+τ , (2.3)

1 As shown in appendix A, our framework can also incorporate additive central-bank judgment as in Svensson [16].
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where the period loss, Lt, satisfies

Lt ≡

⎡⎣ Xt

xt
it

⎤⎦0Wt

⎡⎣ Xt

xt
it

⎤⎦ (2.4)

and the matrix Wt is symmetric and positive semidefinite.

The matrices A11,t, A12,t, B1,t, Ct, Ht, A21,t, A22,t, B2,t, and Wt (assumed to be of appropriate

dimension) are random and can each take n different values in period t, corresponding to the n

modes jt = 1, 2, ..., n in period t. We denote these values A11,t = A11jt , A12,t = A12jt , and so forth,

for jt = 1, 2, ..., n. The modes jt follow a Markov process with constant transition probabilities

Pjk ≡ Pr{jt+1 = k | jt = j} (j, k = 1, ..., n). (2.5)

Importantly, the shocks εt and the modes jt are assumed to be independently distributed (although

we allow the impact on the economy of the shocks to depend on the modes jt through the matrix

Cjt). Furthermore, P denotes the n×n transition matrix [Pjk], pjt ≡ Pr{jt = j} (j = 1, ..., n), and

pt ≡ (p1t, ..., pnt)0 denotes the probability distribution of the modes in period t, so

pt+1 = P 0pt.

Finally, p̄ denotes the stationary distribution of the modes, so

p̄ = P 0p̄.

In the beginning of period t, before the central bank chooses the instruments, it, the central

bank’s information set includes the realizations of Xt, jt, εt, Xt−1, jt−1, εt−1, xt−1, it−1, ... . The

central bank also knows the probability distribution of the innovation εt, the transition matrix P ,

and the n different values each matrices can take. Hence, the conditional expectations operator,

Et, refers to expectations conditional on that information. In section 7 we consider the alternative

and more realistic situation when the mode jt is not observed in period t and policy in period t is

based on the probability distribution pt of the modes.

We consider the optimization problem of minimizing (2.3) subject to (2.4), (2.1), (2.2), and Xt

given. In particular, we consider the optimization under commitment in a timeless perspective (see

Woodford [19] and Svensson and Woodford [18]).

Optimization problems of this type have been studied in the control-theory literature for the

special case when there are no forward-looking variables. Such models are known as Markov jump-

linear-quadratic (MJLQ) systems, as the model is conditionally linear but operates in multiple
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modes which are governed by a Markov jump process. Such MJLQ systems have been widely

studied in the control-theory literature in the last few years (see Costa and Fragoso [3], Costa,

Fragoso, and Marques [4], do Val, Geromel, and Costa [6], and the references therein).

2.2 Reformulation according to the recursive saddlepoint method

In order to apply the methods developed in control theory, we require that the system be recursive.

However, the presence of the forward-looking variables in (2.2) makes the problem nonrecursive.

Fortunately, the recursive saddlepoint method of Marcet and Marimon [11] can be applied to

reformulate the non-recursive problems with forward-looking variables as recursive saddlepoint

problem (see Marcet and Marimon [11] and Svensson [17] for details).

The problem of minimizing the intertemporal loss function in each period under commitment

in a timeless perspective can be reformulated as the modified saddlepoint problem,

max
{γt+τ}τ≥0

min
{xt+τ ,it+τ}τ≥0

Et

∞X
τ=0

δτ L̃t+τ , (2.6)

with the modified period loss function,

L̃t+τ ≡
∙
X̃t+τ

ı̃t+τ

¸0
W̃jt+τ

∙
X̃t+τ

ı̃t+τ

¸
, (2.7)

subject to the modified model

X̃t+τ+1 = Ãjt+τ+1X̃t+τ + B̃jt+τ+1 ı̃t+τ + C̃jt+τ+1εt+τ+1 (2.8)

for τ ≥ 0, where X̃t and jt are given. Here, the new nX̃-vector of predetermined variables X̃t

(nX̃ ≡ nX ++nx) and the new nı̃-vector of instruments ı̃t (nı̃ ≡ nx + ni + nx) are defined as

X̃t ≡
∙

Xt

Ξt−1

¸
, ı̃t =

⎡⎣ xt
it
γt

⎤⎦ . (2.9)

The elements of the nx-vector Ξt−1 are the Lagrange multipliers for the equations (2.2) for the

forward-looking variables in period t−1 from the optimization problem in that period. Hence, Ξt−1
captures the history dependence of the optimal policy under commitment in a timeless perspective

(see Woodford [19] and Svensson and Woodford [18]). The elements of the nx-vector γt are the

Lagrange multipliers for equations (2.2) in period t, considered as control variables in period t.

Hence, we have

Ξt = γt
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as an additional dynamic equation, which is incorporated in (2.8).

The matrix W̃jt in (2.7) is constructed so the modified period loss L̃t satisfies

L̃t ≡ Lt + γ0t(−A21jtXt −A22jtxt −B2jtit) +
1

δ
Ξ0t−1Hjtxt. (2.10)

The matrices Ãjt+1 , B̃jt+1 , and C̃jt+1 satisfy

Ãjt+1 ≡
∙
A11jt+1 0
0 0

¸
, B̃jt+1 ≡

∙
A12jt+1 B1jt+1 0
0 0 Inx

¸
, C̃jt ≡

∙
Cjt+1

0

¸
. (2.11)

2.3 Optimal policy and dynamics

The solution of the modified saddlepoint problem will result in a linear optimal policy function

ı̃t = FjtX̃t (jt = 1, ..., n) (2.12)

and a modified quadratic value function

X̃tṼjtX̃t + w̃jt = max
{γt+τ}τ≥0

min
{xt+τ ,it+τ}τ≥0

Et

∞X
τ=0

δτ L̃t+τ , (jt = 1, ..., n) (2.13)

(see appendix B for details and a convenient algorithm for computing Vj and Fj for j = 1, ..., n).

The optimal policy function for the modified problem is also the solution to the original problem.

Consider the composite state (X̃t, jt) in period t, where ı̃t = FjtX̃t. The transition from this

composite state to the composite state (X̃t+1, jt+1) in period t+1 with ı̃t+1 = Fjt+1X̃t+1 will satisfy

X̃t+1 =Mjtjt+1X̃t + C̃jt+1εt+1,

where

Mjtjt+1 ≡ Ãjt+1 + B̃jt+1Fjt ,

and will, for given realization of εt+1, occur with probability Pjtjt+1 . This determines the optimal

distribution of future X̃t+τ , jt+τ , and ı̃t+τ (τ ≥ 1) conditional on (X̃t, jt).

Such conditional distributions can be illustrated by plots of future means, medians, and per-

centiles (fan charts). Plots of future means, medians, and percentiles can also be constructed for

individual chains of the modes, for instance, the median or mean chain corresponding to no model

uncertainty.

Note that the above value function is the value function corresponding to the modified period

loss function and the modified saddlepoint problem. The value function for the original problem
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of minimizing (2.3) subject to (2.1), (2.2), and (2.4) under commitment in a timeless perspective

with X̃t given is

X̃ 0
tVjtX̃t +wjt .

The matrices Vj and the scalars wj for j = 1, ..., n, are determined in the following way:

Let Fjt be decomposed conformably with xt, it, and γt,

Fjt ≡

⎡⎣ Fxjt
Fijt
Fγjt

⎤⎦ ,
and note that we have ⎡⎣ Xt

xt
it

⎤⎦ =
⎡⎣ I 0

Fxjt
Fijt

⎤⎦ X̃t.

It follows that we can write the period loss function as

Lt = X̃ 0
tW̄jtX̃t,

where

W̄jt ≡

⎡⎣ I 0
Fxjt
Fijt

⎤⎦0Wjt

⎡⎣ I 0
Fxjt
Fijt

⎤⎦ . (2.14)

The matrix Vj will then satisfy the Lyapunov function

Vj = W̄j + δ
X
k

PjkM
0
jkVkMjk, (2.15)

and the constant wj will satisfy the equation2

wj = δ
X
k

Pjk[tr(Vkσ
2C̃kC̃

0
k) + wk]. (2.16)

3 Interpretation of model uncertainty in our framework

The assumptions that the random matrices of coefficients take a finite number of values correspond-

ing to a finite number of modes and that these modes follow a Markov process independent of the

additive innovations allow us to use the convenient and flexible framework of MJLQ systems–once

we apply the recursive saddlepoint method of Marcet and Marimon to reformulate the non-recursive

model with forward-looking variables as a recursive model. By specifying different configurations of

modes and transition probabilities, we can approximate many different kinds of model uncertainty.

2 Note that σ2C̃kC̃
0
k is the covariance matrix of the shocks C̃kεt+1 to X̃t+1 when jt+1 = k (k = 1, ..., n).
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• Both i.i.d. and serially correlated random coefficients of the model can be handled.

• The modes can correspond to different structural models. The models can differ by having

different relevant variables, different number of leads or lags, or the same variable being

predetermined in one model and forward-looking in another. Thus, one mode can represent a

model with forward-looking variables such as the New Keynesian model of Lindé [9], another

a backward-looking model such as that of Rudebusch and Svensson [13] (see appendix C for

details).

• The modes can correspond to situations when variables such as inflation and output have more

or less inherent persistence (are more or less autocorrelated), when the exogenous shocks have

more or less persistence (add a new predetermined variables equal to the serially correlated

shock, and let this new predetermined variable be an AR(1) process with a high or low

coefficient), or when the uncertainty about the coefficients or models are higher or lower.

• The modes can be structured such that they correspond to different central-bank judgments

about model coefficients and model uncertainty. Let jt = 1, ..., n correspond to n different

model modes (different coefficients, different variance or persistence of coefficient disturbances,

or different variance of the εt shocks (via different matrices Cj)). Let kt = 1, ...,m correspond

to m different central-bank judgment modes. Let each judgment mode correspond to some

central-bank information about the model modes. This can generally be modeled as a situ-

ation where the transition matrix for the model modes, P̃ , depends on the judgment mode.

Let the transition matrix for model modes be P̃ (kt), for kt = 1, ...,m, and hence depend on

kt. Let P 0 denote the transition matrix for the judgment modes (assumed independent of the

model modes). We can then consider a composite model-judgment mode (jt, kt) in period t,

with the transition probability from model-judgment mode (h, k) in period t to mode (j, l)

in period t + 1 given by P̃ (k)hjP
0
kl. For instance, the judgment modes may correspond to

different persistence of the model modes.

• The mode jt may be observed in period t, in which case optimal policy and the value function

is conditional on the mode jt. Alternatively, and more realistically, we may assume that the

mode is not perfectly observed. Then we can represent the central bank’s information in

period t about the mode as the distribution pt of the modes. Then optimal policy and the

value function in period t will depend on the distribution pt.
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• As noted in appendix A, we can combine multiplicative uncertainty about the modes with

the additive uncertainty about future deviations. This way we can simultaneously handle

central-bank judgment about future additive deviations as in Svensson [16] and central-bank

judgment about model modes as in this paper. For instance, we can handle situations when

there is more or less uncertainty about shocks farther into the future relative those in the

near future.

Generally, aside from dimensional and computational limitations, it is difficult to conceive of a

situation for a policymaker that cannot be approximated in this framework.

4 Examples

In this section, we present examples based on two empirical models of the US economy: regime-

switching versions of the backward-looking model of Rudebusch and Svensson [13] and the forward-

looking New Keynesian model of Lindé [9].

4.1 An estimated backward-looking model

In this section we consider the effects of serially correlated parameter variation in the quarterly

model of the US economy of Rudebusch and Svensson [13], henceforth RS. Using the same data set

as in their paper, we estimate a three-mode MJLQ (or Markov-switching) model using the Bayesian

Gibbs sampling methods described in Kim and Nelson [8], and we compare the implications to the

constant-coefficient version of RS.3

The key variables in the model are quarterly annualized inflation πt, the output gap yt, and the

interest rate (the federal funds rate) it. The model has the following form:

πt+1 =
2X

τ=0

ατjπt−τ +

Ã
1−

2X
τ=0

ατj

!
πt−3 + α4jyt + επ,t+1, (4.1)

yt+1 = β1jyt + β2jyt−1 + β3j (̄ıt − π̄t) + εy,t+1,

where j ∈ {1, 2, 3} indexes the mode, ı̄t ≡
P3

τ=0 it−τ/4 and π̄t ≡
P3

τ=0 πt−τ/4 are 4-quarter

averages, and the shocks επt and εyt are distributed N(0, σ2πj) and N(0, σ2yj), respectively.

Table 4.1 reports our estimates of the posterior mean, with the estimates from the constant-

parameter version of the model for comparison. Details of the estimation method and prior setting

3 The estimation is preliminary and will be refined in future revisions.
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Parameter Constant Mode 1 Mode 2 Mode 3
α0 0.6922 0.7076 0.6509 0.7090
α1 −0.1033 −0.0864 −0.0892 −0.0934
α2 0.2786 0.2188 0.2990 0.2312
α3 0.1021 0.1600 0.1393 0.1532
β1 1.1591 1.1040 1.1731 1.1373
β2 −0.2521 −0.1980 −0.2845 −0.2362
β3 −0.0990 −0.1598 −0.0699 −0.0677
σπ 1.0090 1.6279 3.3033 1.1764
σy 0.8190 1.0490 2.1371 0.7971

Table 4.1: Estimates of the constant-parameter and three-mode Rudebusch-Svensson model.

are in an appendix (to be written). Here we see that many of the coefficient estimates are quite

stable across modes. The biggest differences come in the slope of the IS curve β3, which is largest

in magnitude in mode 1, and in the sizes of the shocks, where we see that mode 2 is roughly

twice as volatile as the other modes. The estimated transition matrix P and its implied stationary

distribution p̄ are

P =

⎡⎣ 0.8911 0.0072 0.1017
0.0029 0.9425 0.0547
0.1098 0.0074 0.8827

⎤⎦ , p̄ =
£
0.4473 0.1123 0.4404

¤
.

Thus mode 2 is the most volatile and has the smallest mass in the invariant distribution.

The estimated probabilities of being in the different modes are shown in figure 4.1. The plots

show both the filtered estimates, in which the distribution in period t is only estimated by using

data up to t, as well as the smoothed estimates, in which the distribution in period t is estimated

with data for the whole sample. Clearly, there are more fluctuations in the filtered estimates than

in the smoothed ones, since by looking backward we can better assess the chance of being in a

particular regime. We see that for most of the sample, the economy was assessed to be in either

modes 1 or 3, where the volatile mode 2 only shows significant probability around 1975.

Model/Mode πt πt−1 πt−2 πt−3 yt yt−1 it−1 it−2 it−3
Constant 0.9921 0.3465 0.4273 0.1381 1.7974 −0.4639 0.3713 −0.0899 −0.0456
Mode 1 1.2350 0.4422 0.5240 0.2361 1.6501 −0.3480 0.2813 −0.1205 −0.0626
Mode 2 1.1634 0.4434 0.5378 0.1854 1.7698 −0.5240 0.4680 −0.0634 −0.0314
Mode 3 1.1965 0.3820 0.4831 0.2098 1.6910 −0.3937 0.4095 −0.0749 −0.0360

Table 4.2: Optimal policy functions for the constant parameter and three-mode Rudebusch-

Svensson model.
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Figure 4.1: Estimated probabilities of being the different modes. Smoothed (full-sample) inference

is shown with solid lines, while filtered (one-sided) inference is shown with dashed lines.

We let the period loss function be

Lt =
1

2
[π2t + λy2t + ν(it − it−1)

2] (4.2)

with the parameters λ = 1, ν = 0.2, and δ = 1 (δ is the discount factor in the intertemporal loss

function, (2.3)). We then solve for the optimal policy function,

it = FjXt,

where Xt = (πt, πt−1, πt−2, πt−3, yt, yt−1, it−1, it−2, it−3)0, using the methods described above. The

optimal policy functions are given in table 4.2. In figure 4.2, we plot the average impulse responses

of inflation, the output gap, and the interest rate to the two shocks in the model. In particular,

for 10,000 simulation runs we first draw an initial mode of the Markov chain from its stationary

distribution, then simulate the chain for 50 periods forward, tracing out the impulse responses. The

figure plots the median response at each date, along with 5% and 95% quantiles of the empirical

distribution. Also shown for comparison are the responses under the optimal policy for the constant-

coefficient estimates given above.
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Figure 4.2: Unconditional impulse responses to shocks under the optimal policy for the Rudebusch-

Svensson model. Shown are the median response (solid lines) and the 90% probability bands

(dotted), along with the optimal responses with constant coefficients (dashed).

Both the table and the figure illustrate that the Markov uncertainty leads to a change in the

nature of policy. In all three modes the optimal policy is more aggressive in response to inflation

in the MJLQ setting versus the constant coefficient optimal rule. However in response to a shock

to the output gap, the optimal policy is nearly the same as in the constant coefficient case. This

suggests that uncertainty about the Phillips curve coefficients may be more important in this model.

4.2 An estimated forward-looking model4

We now consider the effects of uncertainty in a model with both forward- and backward-looking

elements. We use the same data set as above, and again estimate a three-mode MJLQ model. The

4 This section reports the results of a preliminary maximum-likelihood estimation. A more thorough Bayesian
estimation is in progress.
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Parameter Constant Mode 1 Mode 2 Mode 3
ωf 0.5187 0.4920 0.5454 0.5214
γ 0.0020 0.0001 0.0017 0.0032
βf 0.4467 0.3241 0.4523 0.4838
βr 0.0062 0.0154 0.0038 0.0034
βy 1.2215 1.4357 1.3326 1.0337
ρ1 0.9861 0.5901 0.9502 1.1285
ρ2 −0.0849 −0.1496 0.0369 −0.2071
γπ 1.4824 1.5797 1.1056 1.2002
γy 0.9463 0.2217 1.6165 0.8691
σπ 0.5761 0.3408 1.0050 0.4575
σy 0.3871 0.5630 0.4624 0.2673
σi 1.0023 1.1480 1.2006 0.3026

Table 4.3: Estimates of the constant parameter and three-mode Lindé model.

structural model is a simplification of the model of the US economy in Lindé [9] and is given by

πt = ωfjEtπt+1 + (1− ωfj)πt−1 + γjyt + επt, (4.3)

yt = βfjEtyt+1 + (1− βfj)
£
βyjyt−1 + (1− βyj)yt−2

¤
− βrj (it −Etπt+1) + εyt,

it =
¡
1− ρ1j − ρ2j

¢ ¡
γπjπt + γyjyt

¢
+ ρ1jit−1 + ρ2jit−2 + εit.

where again j ∈ {1, 2, 3} indexes the mode, and the shocks επt, εyt, and εit are normally distributed

with zero means and variances σ2πj , σ
2
yj , and σ2ij , respectively.

Table 4.3 reports our estimates, with the estimates from the constant-parameter version of the

model for comparison. Our constant-parameter estimates are similar to those in Lindé [9], with the

main difference that we find much smaller estimates of γ and βr. We also see that many of the key

structural parameters change relatively little across modes, while the policy-function coefficients

and shock standard deviations display much more variability. For example, mode 2 has relatively

large inflation shocks and a relatively large policy response to the output gap. Mode 3 on the other

hand has a super-inertial policy response to the lagged interest rate, coupled with relatively small

shocks to all variables. The estimated transition matrix P and its implied stationary distribution

p̄ are given by:

P =

⎡⎣ 0.9885 0.0049 0.0065
0.0333 0.8650 0.1016
0.0039 0.0108 0.9854

⎤⎦ p̄ =
£
0.3658 0.0593 0.5749

¤
Thus modes 1 and 3 are quite persistent, and have the largest mass in the invariant distribution.

The estimated probabilities of being in the different modes are shown in figure 4.3. Again

the plots show both the smoothed and filtered estimates. We see that mode 1 was unlikely to be

12
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Figure 4.3: Estimated probabilities of being the different modes. Smoothed (full-sample) inference

is shown with solid lines, while filtered (one-sided) inference is shown with dashed lines.

Model/Mode πt−1 yt−1 yt−2 επt εyt Ξπ,t−1 Ξy,t−1
Constant -0.9146 1.3792 0.0388 -0.4490 2.0407 0.0005 0.0411
Mode 1 -0.8641 1.9232 -0.4429 -0.0696 1.9819 0.0000 0.0216
Mode 2 -0.9533 1.5144 -0.1579 -0.3984 2.0750 0.0003 0.0389
Mode 3 -0.8212 0.9970 0.5740 -0.9068 1.8688 0.0011 0.0343

Table 4.4: Optimal policy functions of the constant parameter and three-mode Lindé model.

experienced throughout much of the sample, only showing significant probability around 1980. The

1970s and early 1980s were a period when mode 2 was predominant, while mode 3 was predominant

before 1970 and after 1985.

We again solve for the optimal policy function,

it = FijX̃t,

where X̃t ≡ (πt−1, yt−1, yt−2, επt, εyt,Ξπ,t−1,Ξy,t−1)0, using the methods described above. The opti-

mal policy functions are given in table 4.4, and in figure 4.4 we plot the average impulse responses

of inflation, the output gap, and the interest rate to the structural two shocks in the model. Again

we consider 10,000 simulations of 50 periods, and plot the median responses along with the 90%

13
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Figure 4.4: Unconditional impulse responses to shocks under the optimal policy for the Lindé

model. Shown are the median response (solid lines) and the 90% probability bands (dotted), along

with the optimal responses with constant coefficients (dashed).

bands and the corresponding optimal responses for the constant-coefficient estimates.

Again the Markov uncertainty leads to a dramatic change in the nature of policy. This is

most noticeable in the response to a shock to the output gap, where the optimal policy response

is more aggressive and longer-lived than in the constant-coefficient case. Interestingly, there is

relatively little variation in the distribution of responses to this shock, but significantly variation in

the responses to an inflation shock. Although the median responses track the constant-coefficient

version here, there is significant dispersion.
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5 Arbitrary time-varying instrument path rules

In this section we derive the dynamics of the system, including the distribution of forecasts of

relevant future variables, for arbitrary time-varying instrument rules, including time-varying in-

strument paths such as a constant interest rate for arbitrary (but finitely many) periods. We also

specify the optimization problem for instrument rules in a given class of instrument rules.

Consider implementing an arbitrary time-varying instrument rule during period t = 0, 1, ..., T−1

and implementing the optimal policy function from period T on. Let the arbitrary instrument rule

be linear but otherwise of the rather general form

it = FX̃tjt
X̃t + Fxtjtxt (0 ≤ t ≤ T − 1), (5.1)

where X̃t denotes the nX̃-vector (X
0
t,Ξ

0
t−1)

0, FX̃tjt
and Fxtjt are (ni × nX̃) and (ni × nx) matrices,

respectively, which depend on both the period t and the mode jt. For added generality, we also

allow a response to the forward-looking variables, xt.

If Fxtjt ≡ 0, this is an explicit instrument rule; that is, the instrument responds to predetermined

variables only (policy functions and explicit instrument rules are the same. If Fxtjt 6≡ 0 (Fxtjt 6= 0

for some mode jt with positive probability), it is an implicit instrument rule; that is, the instrument

depends also on forward-looking variables. In the latter case, there is a simultaneity problem, in

that the instrument and the forward-looking variables are simultaneously determined. An implicit

instrument rule can be interpreted as an equilibrium condition. As discussed in Svensson [16] and

Svensson and Woodford [18], the implementation of an implicit instrument rule is problematic, since

any consideration of the practical implementation of an instrument rule leads to the conclusion that

a central bank can literally only respond to predetermined variables.5 We disregard these problems

here, and consider (5.1) as just another equilibrium condition added to equations (2.1) and (2.2).

We can write (5.1) in the more general form

0 = FX̃tjt
X̃t − Fı̃tjt ı̃t (0 ≤ t ≤ T − 1), (5.2)

where

Fı̃tjt ≡ [Fxtjt − Ini 0ni×nx ], (5.3)

where ı̃t ≡ (x0t, i0t, γ0t)0. Assume that the policy function shifts permanently to the optimal policy

function (2.12) in period T . This is a reasonably general formulation. Since one of the elements
5 In practice, because of a complex and systematic decision process (Brash [2], Sims [14], Svensson [15]), the

information modern central banks respond to is at least a few days or a week old, and most of the information is one
or several months old.
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of Xt may be unity, (5.1) includes the case of an exogenous time-varying and mode-dependent

instrument level for the first T periods, including the case of a constant instrument level.

It follows from section 2 that there exists Ṽj and w̃j (j = 1, ..., n) such that, for t ≥ T , the

intertemporal loss for the modified saddlepoint problem satisfies

X̃ 0
tṼjtX̃t + w̃jt ≡ maxγt

min
(xt,it)

{L̃t +Etδ(X̃
0
t+1Ṽjt+1X̃t+1 + w̃jt+1)} (t ≥ T )

subject to

X̃t+1 = Ãjt+1X̃t + B̃jt+1 ı̃t + C̃jt+1εt+1 (5.4)

and X̃t given (X̃t, L̃t, ı̃t, Ãjt+1 , B̃jt+1 , and C̃jt+1 are defined as in (2.10) and (2.11)). Recall that

this modified intertemporal loss is the intertemporal loss associated with the modified loss function,

not the true loss function.

For t = T − 1, T − 2, ..., 0, by the recursive saddlepoint method of Marcet and Marimon [11],

we can define Ṽtjt and w̃jt recursively from the saddlepoint problems,

X̃ 0
tṼtjtX̃t+w̃tjt ≡ max

(γt,ϕt)
min
(xt,it)

(
L̃t + ϕ0t

³
−FX̃tjt

X̃t + Fı̃tjt ı̃t

´
+Etδ(X̃

0
t+1Ṽt+1,jt+1X̃t+1 + w̃t+1,jt+1)

)
(0 ≤ t ≤ T−1), (5.5)

subject to (5.4) and (5.2), where ṼTjt ≡ Ṽjt and w̃Tjt ≡ w̃jt . Here, ϕt can be interpreted as an ni-

vector of Lagrange multipliers for the ni equations (5.1). Formally, (5.2) is added to the equations

(2.2) and the Lagrange multiplier γt is augmented to (γ
0
t, ϕ

0
t)
0. Normally, the recursive saddlepoint

method would then involve augmenting the Lagrange multiplier Ξt−1 to (Ξ0t−1,Φ
0
t−1)

0, with the

added dynamic equation

Φt = ϕt.

However, the augmented period loss is here

L̂t ≡ L̃t + ϕ0t

³
it − FX̃tjt

X̃t − Fxtjtxt

´
. (5.6)

Since the analogue of EtHt+1xt+1, the left side of (5.2), is zero, there is no term including Φ0t

augmented to the period loss. Hence, we do not need to consider Φt as an additional predetermined

variable here.

The recursive saddlepoint method provides a simple and compact way to incorporating the fact

that the equilibrium forward-looking variables xt and the Lagrange multiplier Ξt−1 will be affected

by the constraint (5.1). We have to remember that the resulting value functions are those of the

modified period loss, not those of the actual loss.
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The solution determines the time- and mode-dependent optimal policy function F̃tjt ,

ı̃t ≡

⎡⎣ xt
it
γt

⎤⎦ = F̃tjtX̃t ≡

⎡⎣ F̃xtjt
F̃itjt
F̃γtjt

⎤⎦ X̃t (0 ≤ t ≤ T − 1),

where of course it in ı̃t satisfies (5.1). The interesting part of the solution is

xt = F̃xtjtX̃t, (5.7)

and F̃xtjt will satisfy

F̃itjt ≡ FX̃tjt
+ FxtjtF̃xtjt .

There is also a solution for ϕt, ϕt = F̃ϕtjtX̃t, but that solution is not needed for the intertemporal

loss and the dynamics. It follows that the dynamics of X̃t satisfies

X̃t+1 = Mtjtjt+1X̃t + C̃jt+1εt+1 (0 ≤ t ≤ T − 1),

X̃t+1 = Mjtjt+1X̃t + C̃jt+1εt+1 (t ≥ T )

where

Mtjtjt+1 ≡ Ãjt+1 + B̃jt+1F̃tjt (0 ≤ t ≤ T − 1),

Mjtjt+1 ≡ Ãjt+1 + B̃jt+1F̃jt (t ≥ T ).

The intertemporal loss in period 0 for the modified period loss function (5.6) will be given by

X̃ 0
0Ṽ0j0X̃0 + w̃0j0 .

However, this is not the intertemporal loss in period 0 for the original period loss function, (2.4).

In order to find that, note that the intertemporal loss for the optimal policy for t ≥ T will be given

by

X̃ 0
tVjtX̃t +wjt ,

where the matrix Vj will satisfy the Lyapunov function (2.15) and the constant wj will satisfy

(2.16).

For t = T − 1, T − 2, ..., 0, we can define Vtj and wtj recursively from equations

W̄tj ≡

⎡⎣ I 0

F̃txj
F̃tij

⎤⎦0Wj

⎡⎣ I 0

F̃txj
F̃tij

⎤⎦ .
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Vtj ≡ W̄tj + δ
X
k

PjkM
0
tjkVt+1,kMtjk,

wtjt ≡ δ
X
k

Pjk[tr(Vt+1,kσ
2C̃kC̃

0
k) + wt+1,k],

where VTj ≡ Vj and wTj ≡ wj .

Then, the intertemporal loss in period 0 for the original period loss function (5.6) is

X̃ 0
0V0j0X̃0 + w0j0 .

This corresponds to the loss under commitment in a timeless perspective when the instrument is

restricted to fulfill (5.1) and shifts to optimal policy in period T . That is, when the restriction (5.1)

is removed in period T and optimal policy is feasible, the commitment is not from scratch in period

T (in which case ΞT−1 would equal zero) but takes into account the previous Lagrange multiplier

ΞT−1. In principle, this formulation also allows us to consider nonzero Ξ−1 in period 0.

The above recursive saddlepoint method also works for the backward-looking case, in which

case

L̃t ≡ Lt

and there are no variables γt, xt, and Ξt−1 (equivalently, they are identically equal to zero). Then

the intertemporal loss for the saddlepoint problem is equal to the intertemporal loss for the original

problem.

Details about the computation of F̃tjt are provided in appendix D.

5.1 Optimization

Let Ft ≡ {FX̃tjt
, Fxtjt}njt=1 for 0 ≤ t ≤ T − 1, and let F ≡ {Ft}T−1t=0 denote the given time- and

mode-dependent policy functions for 0 ≤ t ≤ T −1. We may assume that there is a feasible set F of

such policy functions, so F ∈ F . Then we can, in principle, consider choosing the policy functions

optimally according to

min
F∈F

X̃ 0
0V0j0(F )X̃0 + w0j0(F ), (5.8)

where the notation emphasizes that that V0jt and w0jt will depend on F . With the policy problem

formulated this way, the optimal F would depend on X̃0 (including Ξ−1) and j0 as well as the

covariance matrix σ2C̃kC̃
0
k of the shocks C̃kεt+1 to X̃t+1 in mode jt+1 = k (k = 1, ..., n). If the

class of time- and mode-dependent policy functions is sufficiently big, it would include the optimal

policy function (2.12). If we would add 1
δΞ−1Hj0x0 to the period loss function in period 0, the

optimal policy function would then be the solution to (5.8).
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Note that, if F is such that Fxtjt 6= 0, the optimal F is generally not unique. The reason is that

for (5.7), if

it = FX̃tjt
X̃t + Fxtjtxt

is a solution, so is

it = FX̃tjt
X̃t + Fxtjtxt + θ0(xt − F̃xjtX̃t) = (FX̃tjt

− θ0F̃xjt)X̃t + (Fxtjt + θ0)xt

for any nx-vector θ.

6 Arbitrary time-invariant instrument rules and optimal restricted

instrument rules

In this section we derive the dynamics of the system, including the distribution of forecasts of rele-

vant future variables, for arbitrary time-invariant instrument rules. We also specify the optimization

problem for time-invariant instrument rules in a given class of instrument rules.

Consider an arbitrary time-invariant instrument rule,

it = FX̃jt
X̃t + Fxjtxt (jt = 1, ..., n), (6.1)

combined with (2.1) and (2.2). We can consider this as a special case of the time-invariant instru-

ment rules in section 5, if we let FX̃tjt
= FX̃jt

and Fxtjt = Fxjt and apply the algorithm of that

section by iterating from t = T > t0 to t = t0 but instead of stopping at t0 = 0 letting t0 → −∞.

In practice, the iteration would stop when F̃tjt and Ṽtjt have converged to F̃jt and Ṽjt . Partitioning

F̃jt conformably with xt, it, and γt, we have

xt = F̃xjtX̃t,

it = FX̃jt
X̃t + FxjtF̃xjtXt ≡ F̃ijtXt,

X̃t+1 = Mjtjt+1X̃t + C̃jt+1εt+1 (jt = 1, ..., n).

This gives rise to a probability distribution of X̃t+τ , xt+τ , and it+τ (τ ≥ 0) conditional on X̃t

and jt.

This solution will be associated with a value function for the original period loss function,

X̃ 0
tVjtX̃t +wjt .
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6.1 Optimization

For a given restricted class F of instrument rules, we can consider the optimal restricted (time-

invariant) instrument rule F̂ , the instrument rule in F that minimizes an intertemporal loss func-

tion.

This intertemporal loss function could be the conditional loss in a given period, say period 0,

F̂ ≡ argmin X̃ 0
0Vj0(F )X̃0 + wj0(F ),

where the notation takes into account that Vj0(F ) and wj0(F ) depend on F ∈ F . This would make

the optimal restricted time-invariant instrument rule depend on X̃0, j0, and the covariance matrices

σ2C̃jC̃
0
j of the shocks C̃jεt+1 to X̃t+1 in mode j = 1, ..., n.

The intertemporal loss function could also be the unconditional mean of the period loss function,

E[Lt],

F̂ = arg min
F∈F

E[Lt].

Note that

E[Lt] = (1− δ){E[X̃ 0
tVjt(F )X̃t +wjt(F )} = (1− δ){tr[VjtE(X̃tX̃

0
t)] + wjt}.

Furthermore, the unconditional and conditional loss are approximately the same when the uncon-

ditional loss is scaled by 1− δ and δ is close to one,

lim
δ→1−

Et

∞X
τ=0

(1− δ)δτLt+τ = E[Lt] = lim
δ→1−

(1− δ)E[wjt ] = E[tr(Vjtσ
2C̃jtC̃

0
jt)]

7 Policy conditional only on the distribution of modes

In this section, we show how the optimal policy and value functions can be expressed as a function

of the probability distribution of model modes, when these modes are not observed.

Assume that central bank knows the distribution of modes in period t, pt, but does not observe

the actual mode. Conditional on pt in period t, the distribution of the modes in period t + τ is

given by

pt+τ = (P
0)τpt (τ ≥ 0).

We examine the optimal policy function and the value function under the simplification that

there are no forward-looking variables, so the model is

Xt+1 = Ajt+1Xt +Bjt+1it + Cjt+1εt+1.
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Then the recursive saddlepoint method need to be applied. We also assume that the period loss

function,

Lt =

∙
Xt

it

¸0
W

∙
Xt

it

¸
,

is independent of the mode.

The optimal policy function and the value function can then be written

it = F (pt)Xt,

X 0
tV (pt)Xt + w(pt).

Appendix E shows how the functions F (pt), V (pt), and w(pt) can be computed by modifying the

iterations specified in appendix B. Computing the functions F (pt) and V (pt) for all feasible values

of pt requires standard function approximation methods. Computing the functions for a particular

value pt = p̃t is straightforward.

Consider the degenerate distributions, pt = ej where ej is the distribution where pj = 1, pk = 0

(k 6= j). That is, ej corresponds to the case when the mode j is observed in period t. Note that

V (ej) 6= Vj and F (ej) 6= Fj , where Vj and Fj (j = 1, ..., n) denote the value function and optimal

policy function matrices for the case when the modes are observed in each period. The reason is

that even if pt = ej and the mode is observed in this period, the distribution of the modes in the

next period will be pt+1 = P 0ej = (Pj1, Pj2, ..., Pjn)
0 and the modes will not be observed in the

next period. In contrast, Vj and Fj follow under the assumption that the modes are observed in

this period and every future period.

8 Conclusions

[To be added.]
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Appendix

A Incorporating central-bank judgment

In order to incorporate (additive) central-bank judgment as in Svensson [16], consider the model

Xt+1 = A11,t+1Xt +A12,t+1xt +B1,t+1it + Ct+1zt+1, (A.1)

EtHt+1xt+1 = A21,tXt +A22,txt +B2,tit, (A.2)

where zt, the (additive) deviation, is a an exogenous nz-vector stochastic process. Assume that zt

satisfies

zt+1 = εt+1 +
TX
j=1

εt+1,t+1−j ,

where (ε0t, ε
t 0)0 ≡ (ε0t, ε0t+1,t, ..., ε0t+T,t)0 is a zero-mean i.i.d. random (T + 1)nz-vector realized in the

beginning of period t and called the innovation in period t. For T = 0, zt+1 = εt+1 is a simple i.i.d.

disturbance. For T > 0, the deviation is a version of a moving-average process.

The dynamics of the deviation can be written∙
zt+1
zt+1

¸
= Az

∙
zt
zt

¸
+

∙
εt+1
εt+1

¸
,

where zt ≡ (Etz0t+1,Etz0t+2, ...,Etzt+T )0 can be interpreted as the central bank’s (additive) judgment

in period t and the (T + 1)nz × (T + 1)nz matrix Az is defined as

Az ≡

⎡⎣ 0nz×nz Inz 0nz×(T−1)nz
0(T−1)nz×nz 0(T−1)nz×nz I(T−1)nz
0nz×nz 0nz×nz 0nz×(T−1)nz

⎤⎦ ≡ ∙ 0 Az21

0 Az22

¸
;

in the second identity Az is partitioned conformably with zt and zt. Hence zt is the central bank’s

mean projection of future deviations, and εt can be interpreted as the new information the central

bank receives in period t about those future deviations.6

It follows that the model can be written in the mode-space form (2.1) and (2.2) as⎡⎣ Xt+1

zt+1
zt+1

⎤⎦ = Â11,t+1

⎡⎣ Xt

zt
zt

⎤⎦+ Â12,t+1xt + B̂1,t+1it + Ĉt+1

∙
εt+1
εt+1

¸
,

EtHt+1xt+1 = Â21,t

⎡⎣ Xt

zt
zt

⎤⎦+A22,txt +B2,tit,

6 The graphs in Svensson [16] can be seen as impulse responses to εt.
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where

Â11,t+1 ≡

⎡⎣ A11,t+1 0 Ct+1Az21

0 0 Az21

0 0 Az22

⎤⎦ , B̂1,t+1 ≡

⎡⎣ B1,t+1
0
0

⎤⎦ , Ĉt+1 ≡

⎡⎣ 0 Ct+1

Inz 0
0 Inz

⎤⎦ ,
Â11,t+1 ≡

⎡⎣ A21,t+1
0
0

⎤⎦ ,
and the new predetermined variables are (X 0

t, z
0
t, z

t 0)0.

B An algorithm for the value function and optimal policy function

Consider the modified saddlepoint problem of (2.6) subject to (2.7), (2.8), and X̃t given. Let us

use the notation Zt = Zjt for any matrix Z that is a function of the mode jt, and let the matrix

W̃t = W̃jt be partitioned conformably with X̃t and ı̃t as

W̃t ≡
∙
Qt Nt

N 0
t Rt

¸
.

We use that the value function for the modified problem will be quadratic and can be written

X̃ 0
tṼtX̃t + w̃t,

where Ṽt is a matrix and w̃t a scalar. It will fulfill the Bellman equation

X̃ 0
tṼtX̃t + w̃t = max

γt
min
(xt,it)

n
X̃ 0
tQtX̃t + 2X̃

0
tNtı̃t + ı̃0tRtı̃t +Et(X̃t+1Ṽt+1X̃t+1 + w̃t+1)

o
,

where X̃t+1 is given by (2.8) and Et refers to the expectations conditional on X̃t and jt.

The first-order condition with respect to ı̃t is

X 0
tNt + ı̃0tRt + X̃ 0

tEtÃ
0
t+1Ṽt+1B̃t+1 + ı̃0tEtB̃

0
t+1Ṽt+1B̃t+1 = 0,

which can be written

Jtı̃t +KtX̃t = 0,

where

Jt ≡ Rt +EtB
0
t+1Ṽt+1B̃t+1, (B.1)

Kt ≡ EtB̃
0
t+1Ṽt+1Ãt+1 +N 0

t. (B.2)

This leads to the optimal policy function

it = FtX̃t, (B.3)
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where

Ft ≡ −J−1t Kt. (B.4)

Furthermore, the value function satisfies

X̃ 0
tṼtX̃t ≡ X̃ 0

tQtX̃t + 2X̃
0
tNtFtX̃t + X̃ 0

tF
0
tRtFtX̃t + X̃ 0

tEt[(Ã
0
t+1 + F 0t B̃

0
t+1)Ṽt+1(Ãt+1 + B̃t+1Ft)]X̃t.

This implies

Ṽt = Qt +NtFt + F 0tN
0
t + F 0tRtFt +Et[(Ã

0
t+1 + F 0t B̃

0
t+1)Ṽt+1(Ãt+1 + B̃t+1Ft)],

which can be simplified to the Riccati equation

Ṽt = Qt +EtÃ
0
t+1Ṽt+1Ãt+1 −K 0

tJ
−1
t Kt. (B.5)

Equations (B.1), (B.2), and (B.5) show how Vt+1 = Vjt+1 for jt+1 = 1, ..., n is mapped into Vt = Vjt

for jt = 1, ..., n.

Iteration backwards of (B.4) and (B.5) from any constant positive semidefinite matrix Ṽ should

converge to stationary matrices functions Fj and Ṽj (j = 1, ..., n), where Vj satisfies the Riccati

equation (B.5) with (B.1) and (B.2).

Taking account of the finite number of modes, we have

Fj ≡ −J−1j Kj

Jj ≡ Rj +
nX

k=1

B̃0kṼkB̃kPjk

Kj ≡
nX

k=1

B̃0kṼkÃkPjk +N 0
j ,

Ṽj = Qj +
nX

k=1

Ã0kṼkÃkPjk −K 0
jJ
−1
j Kj (j = 1, ..., n), (B.6)

where Pjk is the transition probability from jt = j to jt+1 = k.

The scalars w̃j will fulfill the equations

w̃j = δ
X
k

Pjk[tr(Ṽkσ
2C̃kC̃

0
k) + w̃k].

Thus determining the optimal policy function (B.3) reduces to solving a system of coupled

algebraic Riccati equations (B.6). In order to solve this system numerically, we adapt the algorithm

of do Val, Geromel, and Costa [6]. In a very similar problem, they show how the coupled Riccati

equations can be uncoupled for numerical solution.7

7 In their problem, the matrices A and B next period are known in the current period, so the averaging in the
Riccati equation is only over the Vj matrices.
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The algorithm consists of the following steps:

1. Define Âj =
p
PjjÃj , B̂j =

p
PjjB̃j and initialize Ṽ 0j = 0, j = 1, . . . , n.

2. Then at each iteration l = 0, 1, . . . , for each j define:

Q̂j = Qj +
X
k 6=j

Ã0kṼ
l
kÃkPjk

R̂j = Rj +
X
k 6=j

B̃0kṼ
l
kB̃kPjk

N̂j = Nj +
X
k 6=j

Ã0kṼ
l
kB̃kPjk.

Then for each j solve the standard Riccati equation for the problem with matrices (Âj , B̂j , Q̂j ,

R̂j , N̂j). Note that these are uncoupled since Ṽ l
k is known. Call the solution Ṽ l+1

j .

3. Check
Pn

j=1 kṼ l+1
j − Ṽ l

j k. If this is lower then a tolerance, stop. Otherwise, return to step 2.

do Val, Geromel, and Costa [6] show that the sequence of matrices Ṽ l
j converges to the solution of

(B.6) as l→∞. In order to understand the algorithm, recall that, in the standard linear-quadratic

regulator (LQR) problem (Anderson, Hansen, McGrattan, and Sargent [1] and Ljungqvist and

Sargent [10]), we have

F ≡ −J−1K

J ≡ R+B0V B

K ≡ B0V A+N 0,

V = Q+A0V A−K 0J−1K.

If we can redefine the matrices so the equations conform to the standard case, we can use the

standard algorithm for the LQR problem to find Fj and Vj . The above definitions indeed allow us

to write

Fj ≡ −J−1j Kj ,

Jj ≡ R̂j + B̂0jṼjB̂j ,

Kj ≡ B̂0jṼjÂj + N̂ 0
j ,

Ṽj = Q̂j + Â0jṼjÂj −K 0
jJ
−1
j Kj (j = 1, ..., n),

so we can indeed use the standard algorithm.

Note that the above algorithm is easily modified to solve the Lyapunov equation (2.15) for the

matrix Vj for the true value function of the original problem.
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C Alternative models with different predetermined and forward-

looking model

Our MJLQ framework allows us to consider situations when the modes j = 1, ..., n correspond to

alternative structural models, including not only when some coefficients are zero or nonzero but

also when a variable is predetermined in one model and forward-looking in another. This allows

us include optimal policy when it is known what structural model is true in the current period but

there is uncertainty about the true structural model in the future.8

In order to see this, consider a particular simple example, when there are two modes, j = 1, 2,

with transition matrix P = [Pjk], j, k = 1, 2. Let j = 1 corresponds to a model with an acceleration

Phillips curve (the AP model),

πt+1 = πt + αyt + ε1,t+1,

and let j = 2 corresponds to a New Keynesian Phillips curve (the NK model),

Etπt+1 = πt − κyt − ε2,t,

where ε1t and ε2t are i.i.d. with zero means. Thus, inflation, πt+1 is predetermined in AP model and

forward-looking in the NK model. Regard the output gap, yt, as the control variable, for simplicity.

Let πt denote actual inflation in period t, and introduce the two variables π1t and π2t, where π1t

is predetermined and denotes inflation in the AP model (AP inflation) and π2t is forward-looking

and denotes inflation in the NK model (NK inflation). Actual actual inflation then satisfies

πt = θtπ1t + (1− θt)π2t,

where θt = 1 in mode 1 and θt = 0 in mode 2. We thus have

π1,t+1 = πt + αyt + ε1,t+1,

Etπt+1 = π2t − κyt − ε2t, (C.1)

where we assume that, in the AP model, current actual inflation affects future AP inflation and,

in the NK model, the expected future actual inflation affects current NK inflation.

We want to write this model as (2.1) and (2.2) by suitable definitions of Xt, xt, it, and εt, and

the matrices. The trick is to treat actual inflation, πt, as a nonpredetermined variable even though

8 If the current model is not observed, we would have to include Bayesian learning of the subjective probabil-
ity distribution over models and encounter problems of experimentation versus “adaptive” loss minimization [give
reference(s)].
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this is not the case when the AP model is true. This works, because an additional predetermined

variable identical to an existing predetermined variable can always be introduced as a trivial non-

predetermined variable by adding an equation in the block of equations for the forward-looking

variables. Suppose that the new variable, yt, is identical to an existing predetermined variable,

X1t, say. Then we can just add the equation

0 = X1t − yt,

to that block, where the left side has zero instead of a linear combination of expected future forward-

looking variables. Generally, a new variable that is a linear combination of current predetermined

and forward-looking variables can always be introduced as a new forward-looking variable in this

way.

Observe that

Etπt+1 = Et[θt+1π1,t+1 + (1− θt+1)π2,t+1]

= Etθt+1(πt + αyt) + Et(1− θt+1)π2,t+1

and use this to substitute for Etπt+1 in (C.1). Let Xt ≡ (π1t, ε2t)0, xt ≡ (π2t, πt)0, and it ≡ yt.

Then we can write the model in the form (2.1) and (2.2) as

Xt+1 =

∙
1 0
0 0

¸
Xt +

∙
0 0
0 0

¸
xt +

∙
α
0

¸
it +

∙
ε1,t+1
ε2,t+1

¸

Et

∙
1− θt+1 0

0 0

¸
xt+1 =

∙
0 −1
θt 0

¸
Xt +

∙
0 1− Etθt+1

1− θt −1

¸
xt +

∙
−κ− αEtθt+1

0

¸
it.

D Details for arbitrary time-varying instrument rules

For t = 0, ..., T − 1, introduce the new (nı̃ + ni)-vector of instruments,

ı̂t ≡
∙

ı̃t
ϕt

¸
,

and write the model

X̃t+1 = Ãjt+1X̃t + B̂jt+1 ı̂t + C̃jt+1εt+1,

where the new nX̃ × (nı̃ + ni) matrix B̂jt+1 satisfies

B̂jt+1 ≡
£
B̃jt+1 0nX̃×ni

¤
.
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Partition the (nX̃ + nı̃)× (nX̃ + nı̃) matrix W̃jt conformably with X̃t and ı̃t as

W̃jt =

∙
Qjt Njt

N 0
jt

Rjt

¸
.

Furthermore, write the augmented period loss as

L̂t ≡
∙
X̃t

ı̂t

¸0 "
Qjt N̂jt

N̂ 0
jt

R̂jt

# ∙
X̃t

ı̂t

¸
,

where the new nX̃ × (nı̃ + nx) and (nı̃ + nx)× (nı̃ + nx) matrices N̂jt and R̂jt satisfy, respectively,

N̂tjt ≡
h
Njt −F 0X̃tjt

/2
i
, R̂tjt ≡

∙
Rjt −F 0ı̃tjt/2

−Fı̃tjt/2 0

¸
.

Then, the first-order condition for an optimum of the Bellman equation will, in the standard

way, result in a time- and mode-dependent optimal policy function

ı̂t = F̂tjtX̃t (0 ≤ t ≤ T − 1, 0 ≤ jt ≤ n),

which is defined in a compact way as

F̂tjt ≡ −J−1tjt
Ktjt ,

where Jtjt and Ktjt are defined recursively from Ṽt+1,jt as

Jtjt ≡ R̂tjt +EtB̂
0
jt+1 Ṽt+1,jt+1B̂jt+1 = R̂tjt +

X
k

B̂0kṼt+1,kB̂kPjtk,

Ktjt ≡ EtB̂
0
jt+1 Ṽt+1,jt+1Ãjt+1 + N̂ 0

jt =
X
k

B̂0kṼt+1,kÃk + N̂ 0
tjt .

Substitution of this optimal policy function in the Bellman equation results in the recursive equation

for Ṽtjt ,

Ṽtjt = Qjt +EtÃ
0
jt+1 Ṽt+1,jt+1Ãjt+1 −K 0

tjtJ
−1
tjt

Ktjt = Qjt +
X
k

Ã0kṼt+1,kÃk −K 0
tjtJ

−1
tjt

Ktjt .

Finally, the optimal policy function F̃tjt for t = 0, ..., T −1 can be identified by partitioning F̂tjt
conformably with ı̃t and ϕt,

F̂tjt ≡
∙

F̃tjt
Fϕtjt

¸
.
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E Details when modes are not observable

We adapt the iterative process we have used in appendix B to determine Fj and Vj in the present

case. We assume that beginning sometime far into the future, the modes can be observed. Once

the modes are observed, we have the mode-dependent value-function matrices, Vj (j = 1, ..., n) de-

termined in appendix B. Consider the period before the modes can be observed, let p = (p1, ..., pn)0

denote an arbitrary distribution in that mode, and let V 0(p) be the matrix of the value function in

that period. Think of this as iteration l = 0. The matrix function V 0(p) will be given by

J0(p) ≡ R+
X
k

X
j

pjPjkB
0
kVkBk,

K0(p) ≡
X
k

X
j

pjPjkB
0
kVkAk +N 0,

V 0(p) = Q+
X
k

X
j

pjPjkA
0
kVkAk −K0(p)0J0(p)−1K0(p),

where the matrix W is partitioned conformably with Xt and it as

Wj ≡
∙

Q N
N 0 R

¸
.

Given this, consider the iteration for l = 1, 2, ...,

J l(p) ≡ R+
X
k

X
j

pjPjkB
0
kV

l−1(P 0p)Bk

Kl(p) ≡
X
k

X
j

pjPjkB
0
kV

l−1(P 0p)Ak +N 0

V l(p) = Q+
X
k

X
j

pjPjkA
0
kV

l−1(P 0p)Ak −Kl(p)0J l(p)−1K l(p).

Continue these iterations until V l(p) has converged, which gives J(p), K(p), and V (p). The policy

function is then given by

F (p) = −J(p)−1K(p).

Note that V l−1(P 0p) in the above iteration takes into account that, if the distribution is p this

period, it is P 0p next period. Also, in the sums above, V l−1(P 0p) does not depend on the mode

k next period (except for l = 0). Furthermore, the current distribution matters only because of

the information about the future distribution it conveys. Finally, consider pt = ej , where ej is the

distribution where pj = 1, pk = 0 (k 6= j). That is, ej corresponds to the case when the mode j is

observed in period t. Note that it does not follow that V (ej) = Vj . This equality would follow, if

the mode were observed in each period in the future, but in the above case, even if the mode is by
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chance observed in the current period, it is not observed in the future period. The distribution in

period t+ 1 is then pt+1 = P 0ej = (Pj1, Pj2, ..., Pjn)0.

Note that from the above follows that, in a particular period t, we can always find V (pt) and

F (pt) for a given pt = p̃ with the following algorithm: Let τ = 1, 2, ..., T − 1 refer to periods t+ τ

ahead for a given T ≥ 1, and define

p̃τ ≡
¡
P 0
¢τ

p̃ (τ = 1, ..., T − 1).

Hence, p̃τ denotes the probability distribution of the modes jt+τ in period t+ τ conditional on the

current distribution pt = p̃. Assume for convenience that the modes become observable beginning

in period t+ T and define

JT−1 ≡ R+
X
k

X
j

p̃T−1,jPjkB
0
kVkBk, (E.1)

KT−1 ≡
X
k

X
j

p̃T−1,jPjkB
0
kVkAk +N 0, (E.2)

V T−1 = Q+
X
k

X
j

p̃T−1,jPjkA
0
kVkAk − (KT−1)0(JT−1)−1KT−1. (E.3)

Given this, consider the iteration for l = T − 2, ..., 0,

J l ≡ R+
X
k

X
j

p̃ljPjkB
0
kV

l+1Bk, (E.4)

Kl ≡
X
k

X
j

p̃ljPjkB
0
kV

l+1Ak +N 0, (E.5)

V l = Q+
X
k

X
j

p̃ljPjkA
0
kV

l+1Ak − (Kl)0(J l)−1Kl. (E.6)

Then,

V (p̃) = V 0,

F (p̃) = − (J0)−1K0.

Obviously, T should be chosen so large that V 0, J0, and K0 are insensitive to T . Thus, given

any p̃, the central bank can through this iteration determine the optimal policy. In future periods

t+ τ for small τ ≥ 0, if there is no new information, the relevant future probability distribution is

given by pt+τ = p̃τ , and the corresponding V (p̃τ ) and F (p̃τ ) are given by

V (p̃τ ) = V τ ,

F (p̃τ ) = − (Jτ )−1Kτ .
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However, for larger τ , the corresponding V τ , Jτ , and Kτ would start being sensitive to T–that

is, T − τ would not be sufficiently large–and the iteration should be redone. Furthermore, any

additional information or judgment may lead to the relevant probability distribution in period t+τ

to deviate from p̃τ , in which case the iteration (E.1)-(E.6) also needs to be redone.9

9 A related paper is do Val and Basar [5], who consider the problem of “receding horizon control.” They introduce
a terminal payoff, and at each date t they solve a finite-horizon optimization problem looking ahead T periods given
the current probability distribution. The action taken at the current date is then the first optimal choice in the
solution of the finite horizon problem. Then the distribution is updated and the problem repeats.

31



References

[1] Anderson, Evan W., Lars Peter Hansen, Ellen R. McGrattan, and Thomas J. Sargent (1995),

“Mechanics of Forming and Estimating Dynamic Linear Economies,” working paper.

[2] Brash, Donald T. (2000), “Making Monetary Policy: A Look Behind the Curtains,” speech in

Christchurch, January 26, 2000, Reserve Bank of New Zealand, www.rbnz.govt.nz.

[3] Costa, O.L.V., and M.D. Fragoso (1995), “Discrete-Time LQ-Optimal Control Problems for

Infinite Markov Jump Parameter Systems,” IEEE Transactions on Automatic Control 40,

2076—2088.

[4] Costa, O.L.V., M.D. Fragoso, and R.P. Marques (2005), Discrete-Time Markov Jump Linear

Systems, Springer, London.
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