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Linear-Quadratic Approximation to Optimal Policy

1 Introduction

In recent years there has been considerable theoretical progress in deriving welfare-based
optimal monetary policy in DSGE models. There have been however relatively few applica-
tions of those results, probably due to computational di¢ culties in applying those results, in
particular to models which are to some extent suitable for policy analysis. This paper aims at
partly �lling this gap in two ways. First, the paper presents an explicit algorithm and a Mat-
lab function built to implement the theoretical results in Benigno and Woodford (2005b).1

This function is general enough so that it can be readily implemented to a broad range of
models.2 The paper provides two applications of an approximation to optimal monetary
policy, based on a linear-quadratic (LQ) approximation to the optimal policy programme in
a timeless perspective. In doing this, we provide the description of the algorithm followed
and show that, in our applications, LQ optimal monetary policy can be computationally
solved for in a relatively simple way.3

The �rst of our two application is to a stylised closed economy model with monetary
frictions. In this case the analysis of LQ optimal monetary policy takes three (related)
dimensions. The �rst one is concerned with the steady state, the second entails the compar-
ison to the cashless limiting case and the third is the evaluation of optimal policy vis-à-vis
a standard Taylor rule.
In what concerns the steady state, under the cashless limiting case the in�ation is always

optimally set to zero. However, when monetary frictions are present there is always some
de�ation in the optimal steady state, at the same time that the nominal interest rate falls
short of the discount rate of the households. Under the presence of monetary frictions, the
Friedman rule is always valid if prices are �exible. It is moreover also valid under nominal
rigidity, if taxes are not set to eliminate the monopolistic competition distortions and the
level of price stickiness is very low.
Under the second dimension of analysis, the responses to the di¤erent shocks are very

similar in the cashless limiting case when compared to the monetary frictions case, with
exactly the same pattern in both cases and only minor di¤erences in magnitude.
Finally, the comparison between the simple interest rate rule to the optimal policy in

this economy reveals that, under increases to the tax rate or the price markup, the Taylor
rule is not aggressive enough in reacting to in�ation, compared to the optimal policy. Under
a shock to the government expenditures the Taylor rule appears to be not as aggressive in
reacting to the output changes as the optimal policy is. The responses to an output shock
are however very di¤erent when we consider optimal policy and a simple Taylor rule. The
optimal policy keeps the in�ation close to the steady state values by switching the aggregate
demand in the direction of the change in the aggregate supply (hence in the considered case

1The Matlab function uses the symbolic toolbox and therefore can be used only if that toolbox is installed.
2In each application we provide a small section detailing the transformations of the basic models that are

needed in order to �t the structure for the code.
3For an additional application of the proposed algorithm to the linear-quadratic approximation of optimal

policy to a model of a currency union, see Altissimo, Benigno, and Rodriguez-Palenzuela (2004).
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of a positive shock the optimal monetary policy is further expansionary). The Taylor rule
instead will react to correct the increase in the output vis-à-vis the steady state (the Taylor
rule is not de�ned in terms of output gap) and therefore it will be a contractionary policy,
further deepening the output gap in existence.
Our second application of LQ optimal policy in a timeless prespective is to a version

of the standard Neo-Keynesian model of a closed economy with various structural shocks,
which follows closely Smets and Wouters (2003). This class of models is increasingly popular
in empirical studies as well as policy applications. One feature that is very typical of this
class of estimated models is the assumption of Taylor rules. It then becomes especially
important to investigate the extent to which a Taylor rule diverges from optimal policy.
The results presented here show that the di¤erences between the two are not negligible both
qualitatively and quantitatively. In sum, the results suggest that LQ policy di¤erentiates to
a larger extent its impact taking into account the supply or demand nature of the shocks, in
general exacerbating the e¤ects of the former and dampening the e¤ects of the latter relative
to the Taylor case.
While results obtained are preliminary, the work indicates that the relatively light com-

putational burden for calculating LQ optimal policy puts a premium to this approach when
using it in the context of policy simulations. Moreover, the method proposed by Benigno
and Woodford (2005b) and used in our algorithm is robust to any model that can be put in
the form presented here, yielding a correct �rst-order approximation to the optimal policy
problem. These properties promote the future implementation of the algorithm in models
with high empirical content, useful for policy analysis.
The remainder of the paper is organized as follows. Section 2 presents the structure of

the problem and the LQ solution. The code used to implement this solution is then discussed
in section 3. The two applications, with model description, implementation of the code and
results, follow in sections 4 and 5. Section 6 concludes.

2 The problem

Following the framework of Benigno and Woodford (2005b), consider a general maxi-
mization problem of the form:

Vt0 � E

1X
t=t0

�tU(xt; ut; Xt; �t); (2.1)

where U(�) is a functional, 0 < � < 1; Xt is a vector of predetermined endogenous state
variables of dim(Xt) = nX ; xt is a vector of non-predetermined endogenous variables of
dim(xt) = nx and ut is a vector of control variables of dim(ut) = nu; �t is a vector of
stochastic disturbances of dimension dim(xt) = ne. The maximization is subject to the
vector of law of motion of dimension nX

Xt+1 = F (xt; ut; Xt; �t) (2.2)
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for the predetermined state variables and to structural equations that de�ne the set of
possible rational-expectations equilibria and that include a set of forward-looking relations
of the form

EtG(xt; ut; Xt; �t;xt+1) = 0 (2.3)

where set of constraints is of dimension nG. In particular nG < nx + nu: We also assume
that the shocks follow

�t+1 = S�t + "t+1 (2.4)

where "t should be a white noise with mean zero.
It is well known that the solution of the problem in (2.1) subject to the constrains in (2.2,

2.3 and 2.4) implies that the solution is generally not time-consistent. However if the policy
is selected so that it ful�ls some additional constrain on the value of the non-predetermined
endogenous variables in the initial period, then the resulting problem has a well de�ned
recursive structure and the implied policy are time invariant. Therefore the optimization
problem is further subject to the constrain that the economy�s initial evolution be the one
associated with the implementation of the policy in question. In the terminology of Woodford
(2003), we are looking for the optimal from a timeless perspective. Any such optimal policy
will have to satisfy the additional constraint that the forward looking variables, in the initial
period, need to be equal to their precommitted values, xt0 = �xt0.
For future purposes, let us also de�ne:

yt �

24 xt
ut
Xt

35 zt �

2664
xt
ut
Xt

�t

3775
where dim(yt) = ny = nx + nu + nX and dim(zt) = nz = ny + ne.

2.1 The linear-quadratic approximation of the problem

While general solution of the problem of interest involves the solution of non-linear ratio-
nal expectation models associate to the �st order condition of the optimization problem in
(2.1) under the constrains (2.2, 2.3 and 2.4) and the proper initial conditions, the aim here is
to provide a proper ranking of policies which is correct in terms of welfare up to the second
order in a proper neighbourhood of the deterministic steady state. To this end, Benigno
and Woodford (2005b) construct a second order approximation of the objective function by
a discounted sum of purely quadratic term in deviation from the steady state, up to terms
that are independent for the policy. Their approximation begins by de�ning steady-state
values (�x; �u; �X) of the endogenous variables, and the steady-state values of the Lagrange
multipliers (��; �'), associated with the problem of maximizing (2.1) under the constrains
(2.2) and (2.3). They then consider second-order Taylor approximations of the U , F , and
G functions, for the values of the endogenous variables near the steady-state values. For
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example, for the I element of the F function, they obtain

XI
t+1 = F I(xt; ut; Xt; �t) (2.5)

= �X +DF I(zt � �z) +
1

2
(zt � �z)0D2F I(zt � �z) +O(k�k3);

whereDF I andD2F I refer to the Jacobian and Hessian of the I-th element of F with respect
to zt, respectively.
By manipulating these local expansions and the FOCs of the constrained maximization

problem at the steady state values, they obtain a local approximation of the objective func-
tion (2.1) of the form

V0 � 1

2
E

1X
t=t0

�t [(zt � �z)0Q(zt � �z) + (zt � �z)0R(zt�1 � �z)] (2.6)

�J(xt0 ; z�1) + tip+O(k�k3)

where

Q � D2U +H;

H � ��JD
2F J + �'j

h
D2Gi + ��1I

0

xD̂
2GiIx

i
;

R � ��1�'jI
0

xD̂DG
j;

and ��J and �'j are steady state values of the Lagrange multipliers associated with the J-th
constraint (2.2) and the j-th constraint (2.3).4

The second order approximation of the law of motion for the predetermined variables,
F , and the forward looking relations, G; as well as their values in steady states were used to
eliminate �rst order terms from the second order approximation of the objective function.
Furthermore if we consider allocations which satisfy the initial commitment that xt0 = �xt0,
then the value of the J term is nil and does not di¤er across policies considered.
Therefore the approximated objective function delivers a proper ranking in terms of

welfare, up to second order, of di¤erent policies which satisfy the proper initial commitments
("timeless perspective"). In the class of policies satisfying those constrains, it follows that a
correct linear approximation to optimal policy can be obtained by maximizing the quadratic
function of deviation of variables from targets as:

E
1X
t=t0

�t [(zt � �z)0Q(zt � �z) + (zt � �z)0R(zt�1 � �z)] (2.7)

4Further notice that D2Gi refers to the Hessian of the i-th element of G with respect to zt, D̂2Gi to the
Hessian of the i-th element of G with respect to xt+1 and D̂DGj to the matrix of cross derivatives between
zt and xt+1 of the j-th element of G, and Ix is notation for the selection matrix such that Ixzt = xt
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subject to

XI
t+1 = �X +DF I(zt � �z)
0 = DGi(zt � �z) + D̂Gi(xt+1 � �x):

The problem (2.7) has the standard form of a linear-quadratic optimization and can be easily
solved by standard tools; furthermore this provides easy to check second order conditions.

3 The LQ code

While the solution of the model in (2.7) is standard all the intermediate steps necessary
in order to transform the general problem in (2.1) into its linear-quadratic equivalent are
quite involved and lengthy, in particular in the case of models of medium size. To this end,
we designed the following Matlab routine:

[A,B,C,Q,R,nr,nw,nd,labels] = LQ(x_t,u_t,X_t,csi_t,x_tt,X_tt,U,F,...

G,BETA,S,x_ss,u_ss,X_ss,FLM_ss,...

GLM_ss,Gcheck)

which, utilizing the symbolic tools of Matlab, �nds for the linear-quadratic form associated
to a generic optimization problem as in (2.1) under the constrains (2.2 and 2.3), solves for
the optimal policy of the linear-quadratic problem and checks the second order conditions
of such a problem.

3.1 Input in the programme

The inputs needed for the routine:

� list of the endogenous variables xt, Xt and ut: [x_t,u_t,X_t];

� list of the exogenous variables �t (shocks) that satisfy (2.4) with Et ["t] = 0: [csi_t];

� list of the endogenous variables next period xt+1 and Xt+1: [x_tt,X_tt];

� the functional forms U (�), F (�) and G (�): [U,F,G]

� the parameter values � (intertemporal discount factor) and S (autocorrelation of
shocks): [BETA,S];

� steady state values (�x; �u; �X; ��; �'): [x_ss,u_ss,X_ss,FLM_ss,GLM_ss];

� Gcheck, which is a binary variable �agging the optional testing for existence and
uniqueness of the solution: [true, false].
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The routine requires as inputs the steady state values of the endogenous variables as
well as of the multipliers associated with the optimal policy problem.5 To this end the
main routine, before calling the LQ function, is required to solve the non-linear system of
equations as described in Benigno and Woodford (2005b). However solving such a system is
not a trivial task, in particular for large dimensional system and it requires careful attention
in the choice of initial conditions of the solution. Therefore we preferred to keep the steady
state computation as separate and to treat steady state values as an input with respect to the
LQ routine.It is important to notice that it is not advisable to use numerical minimization
algorithms for the solution of the system due to their signi�cant inaccuracy. Instead methods
aimed at the solution of systems of non-linear equations yield much more precise solutions
for the steady state values. This is all the more important given that these values will enter
the matrices presented in (2.7).6

In what follows, the steps performed by the code are described.

1. Variables in log deviations with respect to the steady states
The �rst step of the routine expresses all variables z in log terms performing the
following transformation:

ẑj;t :

�
ẑj;t = log zj;t) if �zj 6= 0
ẑj;t = zj;t if �zj = 0

:

2. Quadratic objective function
This �rst step forms the quadratic objective function of the above policy problem which
has a form

Vt0 =
1

2

1X
t=t0

�t�t0
�
(bzt � b�z)0Q(bzt � b�z) + 2(bzt � b�z)0R(bzt � b�z)� (3.1)

where

b�z =

�
log �zj if �zj 6= 0
�zj if �zj = 0

;

Q � D2U +H;

H � ��JD
2 ~F J + �'j[D

2Gj + ��1I 0x;zD̂
2GjIx;z];

R � ��1�'jI
0
x;zD̂DG

j;

where D2U , D2 ~F J and D2Gj are the Hessian of U , ~F J , Gj with respect to ẑt; D̂2Gj

is the Hessian of Gj with respect to x̂t+1; and D̂DGj is a matrix of cross derivatives

5For further details on the exact system of equations that needs to be solved refer to Benigno and
Woodford (2005b).

6A method for solving the system is provided in the codes used to generate the results of this paper, for
the two applications. The algorithm used is based on the csolve.m Matlab function created by Christopher
Sims. These codes can be obtained, upon request.
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between x̂t+1 and ẑt. The code uses the steady-state values for the Lagrangian mul-
tipliers; computes analytically the above Hessians and evaluates them imposing the
steady-state condition and using the steady-state values obtained as input. It then
computes the matrices Q, H and R. Furthermore, we needed to use the log of F
because the constraint must be satis�ed given that we log transformed the variables
and so we de�ne:

~F (ẑt) :

�
~F J (ẑt) = log

�
F J (ẑt)

�
if �XJ 6= 0

~F J (ẑt) = F J (ẑt) if �XJ = 0
.

Finally note that we use the notation Ix;z for the selection matrix such that Ix;z ẑt = x̂t.

3. Solve the LQ problem
This third step maximizes (3.1) under the log-linear approximation to the constraints

X̂t+1 � b�X = D ~F � (bzt � b�z)
DG � (bzt � b�z) + Et

h
D̂G(bxt+1 � b�x)i = 0

where again the derivatives D ~F , DG, D̂G are with respect to ẑt, ẑt, x̂t+1, respec-
tively. The code computes analytically these derivatives that are evaluated imposing
the steady-state condition and at steady-state values.
By assuming a process for the shocks as �t+1 = S�t + "t+1 where "t+1 is a vector of
white-noise shocks, the set of conditions that is used to determine the optimal path is

0 = Iu;zQI
0
y;z �

�
ŷt � by�+ Iu;zQI

0
�;z � �t + Iu;zRI

0
y;z �

�bwt � bw�+
�Iu;zR

0I 0y;z �
�
Etŷt+1 � by�+ Iu;zRI

0
�;z � �t�1 + �Iu;zR

0I 0�;zS � �t (3.2)

+Iu;zD ~F
0 � �t + Iu;zDG

0 � 't

0 = Ix;zQI
0
y;z �

�
ŷt � by�+ Ix;zQI

0
�;z � �t + Ix;zRI

0
y;z �

�bwt � bw�
+�Ix;zR

0I 0y;z �
�
Etŷt+1 � by�+ Ix;zRI

0
�;z � �t�1 + (3.3)

�Ix;zR
0I 0�;zS � �t + Ix;zD ~F

0 � �t + Ix;zDG
0 � 't + ��1D̂G0 � dt

0 = IX;zQI
0
y;z �

�
Etŷt+1 � by�+ IX;zQI

0
�;zS � �t + IX;zRI

0
y;z �

�
ŷt � by�

+�IX;zR
0I 0y;z �

�
Etrt+1 � by�+ IX;zRI

0
�;z � �t + �IX;zR

0I 0�;zS
2 � �t (3.4)

���1�t + IX;zD ~F
0 � Et�t+1 + IX;zDG

0 � Et't+1

0 = �IX;y
�
Etŷt+1 � by�+D ~FI 0y;z �

�
ŷt � by�+D ~FI 0�;z � �t (3.5)
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0 = DGI 0y;z �
�
ŷt � by�+DGI 0�;z � �t + D̂GIx;y

�
Etŷt+1 � by� (3.6)

0 = wt+1 � ŷt (3.7)

0 = dt+1 � 't (3.8)

0 = Etŷt+1 � rt (3.9)

0 = �t � S�t�1 � "t (3.10)

We can write more compactly the above system as

AEtkt+1 = Bkt + C"t (3.11)

where

kt �

2666666664

rt � by
�t
't

ŷt � by
wt � by
dt
�t�1

3777777775
The code inputs the above ten conditions and �nds representation (3.11). Then stan-
dard packages as REDS-SOLDS can be used to �nd the optimal path.7

4. Check for Second Order Conditions
It is possible to evaluate second order conditions of the solution of the linear-quadratic
problem and the code prints a message with a con�rmation of their veri�cation or,
instead, a warning, if these conditions are not satis�ed.

3.2 Output of the programme

The code provides the following outputs:

1. after solving the LQ problem the code yields matrices A, B and C for the solution in
(3.11);

2. provides the Q and R matrices characterizing the approximated objective function;

3. prints a message about the status of the second order conditions;

4. if Gcheck is true, prints a message regarding the existence and uniqueness of the
solution;

5. returns the number of arti�cial variables created and the entire list of labels for the kt
vector.

7The setup is not immediately in the form of the GENSYS routine but can be adapted as the code itself
does for the Gcheck option.
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4 Optimal policy in a model with monetary frictions

In this section we present a model that follows closely Benigno and Woodford (2005a)
with the change that we introduce monetary frictions as suggested in Schmitt-Grohé and
Uribe (2004). Given that the model is no di¤erent in any other respect, here we present only
its main characteristics.

4.1 The model

The representative household maximizes

Ut0 =
1X
t=t0

�t�t0
�
~u (Ct; �t)�

Z 1

0

~v (Ht (j) ; �t) dj

�
;

where Ct is a Dixit-Stiglitz aggregate of consumption of each of a continuum of di¤erentiated
goods:

Ct �
�Z 1

0

ct (i)
��1
� di

� �
��1

;

with the elasticity of substitution equal to � > 1, and ht (j) is the supply of labour of type
j. The functional forms for ~u and ~v are the following ones:

~u (Ct; �t) � C1�~�
�1

t
�C1�~�

�1
t

1� ~��1
;

~v (Ht; �t) � �

1 + �
H1+�
t

�H1+�
t :

We follow Schmitt-Grohé and Uribe (2004) in modelling monetary frictions by assuming
that money facilitates consumption purchases. In particular, we impose a proportional
transaction cost to consumption purchases, s (nt), that depends on households consumption-
based money velocity, nt � PtCt=Mt. The exact speci�cation for s (�) is given by

s (n) = an+
b

n
� 2
p
ab:

The budget constraint is therefore

(1 + �ts (nt))PtCt +Mt +Bt =
�
1 + imt�1

�
Mt�1 + (1 + it�1)Bt�1 (4.1)

+

Z 1

0

Wt (j)Ht (j) dj +

Z 1

0

�t (i) di+ Tt;

where �t is a shock to the transaction costs with mean one, it is the interest rate on bonds
and imt is the interest rate paid on money balances and set by the monetary authorities. We
further have

PtCt �
Z 1

0

pt (i) ct (i) di;
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with pt (i) as the price of good i and Pt is the Dixit-Stiglitz aggregate price index,

Pt �
�Z 1

0

pt (i)
1�� di

� 1
1��

: (4.2)

Using �t to denote the Lagrangian multiplier of the budget constraint in the consumer�s
problem, we get the following equations:

~u0 (Ct; �t)

Pt
= �t [1 + �ts (nt) + �ts

0 (nt)nt] ; (4.3)

ct (i) = Ct

�
pt (i)

Pt

���
; (4.4)

�t = (1 + it) �Et�t+1; (4.5)

�ts
0 (nt)n

2
t =

it � imt
1 + it

: (4.6)

This last equation conveys the money demand of this economy. Notice that it depends
on the spread between the interest rate on bonds relative to the interest rate on money
balances. This is crucial because it allows us to distinguish between the monetary frictions
model and the cashless limiting case as in Woodford (1998). In the case with monetary
frictions, which will be our baseline case, the monetary authority simply sets the interest
rate on money balances to zero and then uses the money supply to manage the money
market so as to in�uence the interest rate in the bonds market. Therefore we can think of
the operational target as it and the way to achieve that left to operations department of the
monetary authority. In the cashless limiting case then we assume that money is not an issue
in the economy and therefore money satiation is satis�ed, meaning that we must have the
two interest rates equal. And so again we can proceed as if the central bank actually controls
it. In terms of modelling this and allowing the model to �ow smoothly into the computer
codes that we are proposing in this paper we set

imt =  it; (4.7)

with 0 �  � 1 and (4.6) becomes

�ts
0 (nt)n

2
t = (1�  )

it
1 + it

: (4.8)

We then assume that  = 0 as the benchmark case and, in the opposite case,  = 1, we
recover the cashless limiting case, in which nt = n and s (nt) = 0, for all t.
Labour market conditions allow the households to charge an exogenous markup so that

we have the wage determination by

wt (j) = �t
~v0 (Ht (j) ; �t)

�t
: (4.9)
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Each di¤erentiated good is supplied by a monopoly. The technology is common for all
goods:

yt (i) = Atf (ht (i)) = Atht (i)
1=� ; (4.10)

where � > 1. In equilibrium output is equal to spending by the households and by the
government hence

Yt = (1 + �ts (nt))Ct +Gt; (4.11)

where the real government expenditures are exogenous. Hence we can write consumption as

Ct =
Yt �Gt

1 + �ts (nt)
: (4.12)

Notice that the real money balances are determined by

mt �
Yt �Gt

nt (1 + �ts (nt))
; (4.13)

which is a residual equation with the only purpose of determining mt �Mt=Pt.
Each �rm sets prices at a given period with probability (1� �), with 0 � � < 1. Hence

there is a fraction � of prices (by the law of large numbers) that remain unchanged. The
stochastic discount factor is in equilibrium equal to

�t;T = �T�t
�T
�t
; (4.14)

so that the �rms maximize the net present value of their pro�ts:

Et

1X
T=t

�T�t�t;T�
�
pt (i) ; p

j
T ; PT ;YT ; �T

�
;

where the after-tax pro�t function is

�
�
pt (i) ; p

j
t ; Pt;Yt; �t

�
� (1� � t) pt (i)Yt

�
pt (i)

Pt

���
� ht (i)wt (i) :

The optimal pricing can be expressed as

(p�t )
1+�! =

Et
P1

T=t �
T�t�t;T�

�
��1��TY

1+!
T P

�(1+!)
T A

�(1+!)
T

�H��
T =�T

Et
P1

T=t �
T�t�t;T (1� �T )YTP �T

:

But, in order to be able to apply the computer routines presented with this paper we
need to have all expressions in a recursive way. In order to get that we can write then

p�t
Pt
=

�
Kt

Ft

� 1
1+!�

; (4.15)
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and de�ne

Ft � Et

1X
T=t

(��)T�t (1� �T )�TPTYT

�
PT
Pt

���1
; (4.16)

Kt � Et

1X
T=t

(��)T�t
�

� � 1�T�y (YT ;�T ; �T )
YT
�T

�
PT
Pt

��(1+!)
: (4.17)

The price index evolves through the following law of motion:

Pt =
h
(1� �) (p�t )

1�� + �P 1��t�1

i 1
1��

: (4.18)

Now insert (4.15) into this equation to get

Pt =

"
(1� �)

�
Ft
Kt

� ��1
1+!�

P 1��t + �P 1��t�1

# 1
1��

;

hence
Ft
Kt

=

�
1� ����1t

1� �

� 1+!�
��1

; (4.19)

where �t � Pt=Pt�1.
Finally the desired recursive representations of Ft and Kt are

Ft = (1� � t)�tPtYt + ��Et
�
���1t+1Ft+1

�
; (4.20)

and

Kt =
�

� � 1�t�y (Yt;�t; �t)
Yt
�t

+ ��Et

h
�
�(1+!)
t+1 Kt+1

i
; (4.21)

where �t is a measure of the price dispersion, de�ned as:

�t �
Z 1

0

�
pt (i)

Pt

���(1+!)
di:

For the law of motion of the price dispersion, from its de�nition,

�tP
��(1+!)
t = ��t�1P

��(1+!)
t�1 + (1� �) (p�t )

��(1+!) ;

because we know that for the industries in which prices do not change their relative prices
are still the same. With some more manipulation we obtain

�t = ��t�1�
�(1+!)
t + (1� �)

�
1� ����1t

1� �

� �(1+!)
��1

: (4.22)
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Finally, we rewrite the utility function in a more convenient way,8

Ut0 =

1X
t=t0

�t�t0 [u (Yt; nt; �t)� � (Yt;�t; �t)] ; (4.23)

with

u (Yt; nt; �t) =
�C1�~�

�1
t

1� ~��1
�

Yt �Gt
1 + �ts (nt)

�1�~��1
; (4.24)

� (Yt;�t; �t) =
�

1 + �

Y 1+!
t

A1+!t
�H�
t

�t; (4.25)

where ! � � (1 + �)� 1.9
Given that we will need to consider explicitly the value of the Lagrangian multiplier it

is convenient to consider it normalised in such a way that it converges to a constant value
in steady state. Therefore we de�ne ~�t � �tPt. Taking this transformation into account we
can summarise all the relevant equations in the economy as follows:

~�t =
1 + �ts (nt)

1 + �ts (nt) + �ts
0 (nt)nt

uY (Yt; nt; �t) ; (4.26)

~�t = (1 + it) �Et

"
~�t+1
�t+1

#
; (4.27)

�ts
0 (nt)n

2
t = (1�  )

it
1 + it

; (4.28)

mt �
Yt �Gt

(1 + �ts (nt))nt
; (4.29)

Ft
Kt

=

�
1� ����1t

1� �

� 1+!�
��1

; (4.30)

Ft = (1� � t) ~�tYt + ��Et
�
���1t+1Ft+1

�
; (4.31)

Kt =
�

� � 1�t�y (Yt;�t; �t)
Yt
�t

+ ��Et

h
�
�(1+!)
t+1 Kt+1

i
; (4.32)

�t = ��t�1�
�(1+!)
t + (1� �)

�
1� ����1t

1� �

� �(1+!)
��1

: (4.33)

8For the derivation of these expressions, refer to Appendix A.2.
9As mentioned in Benigno and Woodford (2005a), de�ned as is, ! refers to the elasticity of real marginal

cost with respect to a �rm�s own output.
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Finally we can summarise all the shocks in this economy by making explicit the vector
�t. This vector includes the shocks already normalized so that they have zero mean,

10 the
assumed value in steady state. We can then write

�t �
h
�̂ t �̂t Ĝt

b�Ct b�H t Ât �̂t

i0
:

4.2 Model in the LQ form

In order to use the code described in section 3 we need to match the structure presented
in section 2. In the current setup we can de�ne

xt �
�
Ft; Kt;�t; ~�t

�0
;

ut � (it; Yt; nt;mt)
0 ;

Xt � �t�1;

and the vector of constraints G is de�ned in (4.26-4.32) and the predetermined constraint,
with the implicit de�nition of F (�) is presented in (4.33).
We must have the functional U (�) with the arguments fxt; ut; Xt; �tg but, in this model,

inside it we have � (Yt;�t; �t) hence U (�) depends on �t which is one element of the Xt+1

vector. In order to solve for this issue we can plug F (�) into U (�) so that it will depend
on �t�1, i.e. Xt. This substitution must be done only after the constraints are created,
in particular (4.32). This shows that the framework necessary for applying the proposed
computer routines is not so restrictive as it might look at a �rst glance.

4.3 Optimal policy

In this section we compare the impact of the monetary frictions in the model, starting
with the impact in the optimal steady state. We then analyse how the optimal monetary
policy di¤ers in the case with monetary frictions and in the cashless limiting case. For the
parameterization of the model we will follow the baseline parameters proposed by Benigno
and Woodford (2005a) for easier comparison and for the monetary frictions we use the values
estimated in Schmitt-Grohé and Uribe (2004). All of the parameters are shown in Table 1.

4.3.1 Optimal steady state

The optimal steady state is a focal point of the entire analysis as the approximations are
all derived around these numbers.11 Given its importance, we make here a thorough analysis
of it in the most relevant scenarios considered.
10These normalizations are the following ones: 1 � � t = (1� ��) exp (��̂ t); �t = �� exp (�̂t); Gt = Ĝt

if �G = 0 and Gt = �G exp
�
Ĝt

�
otherwise; �Ct = �C exp

�b�Ct�; �Ht = �H exp
� b�Ht

�
; At = �A exp

�
Ât

�
; and

�t = exp (�̂t), in which we assume �� = 1. Notice that �� , ��, �G, �C, �H, �A and �� refer to the steady state
values of the respective variables.
11In the calculation of the steady state no approximation is made.
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The �rst result worth mentioning is that under the cashless limiting case,  = 1, in the
optimal steady state we �nd that in�ation is always set to zero and therefore the nominal
(and real) interest rate is then set to equal the discount rate of the households, roughly 4%
in annual terms. When we consider the presence of monetary frictions, however, it is always
the case that we get some de�ation in the optimal steady state, at the same time that the
nominal interest rate falls short of the discount rate of the households. The degree of optimal
steady state de�ation depends, among other things, on the price stickiness of the economy
and on the tax rate. To help understand the optimal setting of both the nominal interest
and in�ation rates in steady state, Figure 1 presents these against di¤erent levels of price
rigidity, and for two di¤erent levels of the tax rate. In panel A we have the baseline scenario,
in which the tax rate is set to 0.2. In panel B we present the results under the level of taxes
that would eliminate the distortions generated by the monopolistic competition.12

The �rst result is that the degree of optimal de�ation in steady state decreases with price
rigidity (�) and, in the limiting case, as the probability of not adjusting prices converges to
unity the de�ation level gradually converges to zero. Therefore, on this basis, the divergence
between the monetary frictions and cashless limiting cases optimal de�ation increases with
price �exibility. This evolution of steady state in�ation rate is also present in Khan, King,
and Wolman (2003) and Schmitt-Grohé and Uribe (2004).
When commenting on the Friedman rule Khan et al. (2003) mention that due to the

Keynesian frictions the nominal interest rate is kept above zero. Figure is in accordance
with this indeed but if those frictions are weak enough then in our model the nominal
interest rate begin to fall below zero. Because that is not operationally possible then the
interest rate hits the so called "lower bound" and is set to be zero, as in the Friedman rule.
Therefore the de�ation takes place, in order to put the real interest rate in line with the time
discount rate. However this happens only if the Calvo probability of not changing prices,
�, falls to 16% or below, which are rather low numbers for this parameter. If, instead, the
tax rate is set to eliminate the distortions created by the monopolistic competition then the
�gure shows that the nominal interest rate is always positive, converging to zero, but always
from above. What happens in our model is that the monetary frictions are u-shaped as a
function of the money velocity of consumption, not being restricted to be equal to zero after
the minimum. Therefore if the distortions are eliminated the e¢ cient optimum for output
and real money balances can then be achieved. When, instead, the monopolistic distortions
are not o¤set, reducing real money balances reduces output and then this is not the direction
to go. So real money balances should be increased to the possible extent and this will raise
steady state output but not up to the e¢ cient level. Because the monetary frictions may
have a negative slope, for values of the velocity below the e¢ cient one, then the interest rate
is pushed to the lower bound. Notice that Schmitt-Grohé and Uribe (2004) use exactly the
same frictions in a model very similar to ours and they to not get this result (they never hit
the lower bound of the nominal interest rate). The reason for that is that they are instead

12We actually should refer to it as subsidy rate: in order to eliminate the monopolistic competition
distortions the tax rate must be set equal to �� = �1= (� � 1) and considering � > 1 implies a negative tax
rate.

16



Linear-Quadratic Approximation to Optimal Policy

optimizing on both monetary and �scal policy simultaneously.
We can nevertheless reach the conclusion that under the existence of monetary frictions

the Friedman rule is always valid in the �exible prices case. It is also valid if taxes are not
set to eliminate the monopolistic competition distortions and the level of price stickiness is
very low.
To conclude the optimal steady state analysis we report in Table 2 the values for some

variables under di¤erent scenarios, in order to allow a clear comparison between the cashless
limiting case and the monetary frictions one.
Regarding interest rates and in�ation rate the most relevant conclusions were already

mentioned before. The only thing that we can add is that the level of price stickiness
will not in�uence the optimal steady state levels of the interest rate or in�ation in the
case of the cashless limiting case, precisely because as reported already in Benigno and
Woodford (2005a), it is always optimal to set in�ation to zero. More interesting, in the
monetary frictions case, even though the nominal interest rate and in�ation rate do change
quite signi�cantly across di¤erent levels of price rigidity, the level of price dispersion barely
changes. Also notice that the velocity of money, n, does not change much. Moreover, the
value of the velocity is about 6.3% above the satiation level, the one prevailing in the cashless
limiting case. Only when we get very close to �exible prices does the velocity begin e¤ective
convergence to that level.
Finally it is important to verify the impact of the monetary frictions in the real side of

the economy, namely, in the output level. In this respect we notice that the level of output
is fairly constant across di¤erent levels of price stickiness and always lower under the case of
monetary frictions relative to the cashless limiting case. However the di¤erence in output is
not very signi�cant, about 0.6% of the cashless limiting level. So on this measure we can say
that the monetary frictions do not have a signi�cant impact on the real side of the economy.

4.3.2 Optimal responses to shocks

In this section we show the behaviour of optimal policy in face of the various shocks
present in the economy. Notice however that we do not show the responses to shocks to the
labour supply just because they are qualitatively exactly the same as a technology shock in
an economy in which labour is the only input. The only di¤erences are numerical due to
di¤erent scales but that is not relevant in the current analysis.13 In the following analysis the
vertical axis in all the �gures should be interpreted as percentage points and the responses
of the interest rate and in�ation are annualized. In the baseline case we use a persistence
level corresponding to a 0.7 coe¢ cient for AR(1) process describing the logs of the shocks.
We �rst compare the two main cases of our model: the frictions and cashless economies.

The responses under the two cases are shown in Figures 2 through 7. The main results can be
summarised as follows: �rst, the responses are very similar in the two scenarios considered,
with exactly the same pattern in both cases and only minor di¤erences in magnitude; second,

13Indeed the two shocks appear always together in the reduced set of equations for the economy with the
form A1+!t

�H�
t and that is why the qualitative e¤ects are exactly the same and the scales di¤erent.
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the consumption based velocity of money (nt) stays constant in the cashless case and mimics
the pattern of the interest rate in the frictions case and this is the case in all scenarios and
shocks except for the shock to the transaction costs; and, third, the shock to the transaction
costs can be considered negligible in their impact on the other variables. To be more speci�c
about some of these issues we analyse now the responses to each of the shocks.
In Figure 2 we can observe that an increase of one percentage point in the tax rate

leads �rms to reduce production and increase prices. In response to the shock the monetary
authority (optimally) sets higher interest rates to bring the in�ation under control, so that
the �nal impact on the in�ation rate is only 0.08% in both scenarios and quickly is brought to
levels very close to zero. Indeed the path of in�ation is the same in the two cases. However
there are slight di¤erences in the policy that led to this outcome. Interest rates should
increase 3 basis points more on impact in the monetary frictions case, which then leads to a
minor worsening of the recession in that scenario.
The responses to an increase of the price markup of 1% is shown in Figure 3. Once more

the e¤ects in the variables are the expected ones. The increase in the price markup leads
to in�ationary pressures that lead the monetary authorities to use contractionary policy
through the increase of the interest rate in 15 basis points. This in turn will slow down the
economy, leading to a fall in output of the order of 0.8% and control in�ationary pressures.
This case is in fact very similar to the case of an increase in the tax rate. In the latter,
however, the similarities between the two scenarios, are even more pressing, being hard to
distinguish the two.
An increase in the government expenditures of the order of 1% of the GDP is shown in

Figure 4. The increase in government expenditures is an aggregate demand (AD) expansion
that generates in�ationary gap, promptly closed by the monetary authorities with a sub-
stantial increase in the interest rate. The authorities react so strong that the in�ation not
only is brought under control but it actually goes to zero from below, on impact. Due to
that policy the impact on output is rather small and the multiplier e¤ect simply is erased, so
that a 1% increase in government expenditures led to only 0.2% increase in output. Again
the di¤erences between the monetary frictions and the cashless limiting cases are very small,
consisting of an increase in the interest rate of 20 basis points in the frictions scenario and
about 22 basis points in the cashless case. On output there seems to be some di¤erence in
magnitude but not signi�cant at all. A similar pattern ensues in the case of a positive shock
to household preferences for consumption, which also entails an expansion in AD, as shown
in Figure 5.
The responses to an increase in 1% in the productivity of labour are presented in Figure

6. As should be expected the output increases with the productivity. However the magnitude
of the increase is remarkable, of the order of 2.5%, compared to a 1% shock. The reason
for this is that as the output has some tendency to increase on impact, due to sluggish
price adjustment, not all �rms can adapt fully and so there is still a recessionary gap that
is promptly closed by the monetary authorities with a very aggressive interest rate policy.
Indeed the interest rate falls by 60 basis points in both scenarios considered. This closes
the gap and prevents the prices from falling (they actually marginally increase on impact).
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Again the responses are identical in the two scenarios. The in�ation response seems a bit
more di¤erent but given the scale that distinction can be considered to negligible.
Finally, the responses to the transactions cost shock are depicted in Figure 7. The only

thing worth mentioning is that all the responses have scales that make the paths meaningless
and basically we can say that all relevant variables are essentially set to zero. The exception
is the velocity, nt, which falls on impact under the frictions scenario, and then gradually
recovers. This is the only departure from the the idea that the velocity is a scaled version
of the path of the interest rate. This is also consistent with the fact that monetary frictions
have very little impact in the economy. Actually it can be interpreted as the result that the
transaction costs are very close to zero in the optimal steady state.
We now bring the analysis further and connect it to the discussion in the previous sub-

section relating the two cases for taxes: one in which the tax rate is simply set at 20% in
steady state (and therefore the monopolistic distortions are not o¤set) and a second case
in which the tax rate is set so as to o¤set these distortions, becoming actually a subsidy.
The resulting responses in the case of monetary frictions under distorted steady state and
no distortions are presented in Figures 8 through 12. The main conclusion that we can take
is that the interest rate is less volatile in the non-distorted scenario relative to the distorted
one. In particular, in response to an increase in the tax rate, an increase in the price markup
or an increase in the government expenditures, the interest rate increases always less than in
the distorted case, or even decreases on impact, allowing the in�ation deviations from steady
state to slightly be higher at the expense of higher output levels. In the case of a positive
technological shock the interest rate is decreased in both cases but less so in the distorted
one. This leaves in�ation essentially at zero in both cases even if the paths are symmet-
ric around the steady states. However output is slightly higher, relative to the respective
steady state, in the distorted case. In the case of a consumption preferences shock, there is
absolutely no change what so ever.
Finally, in order to close the analysis we compare the optimal policy to an alternative

policy. That alternative policy could be de�ned in multiple ways but just as an illustrative
example we use a simple Taylor rule with the following form:

1 + it = (1 +�{)

�
�t
��

��� �Yt
�Y

��y
4

where �� and �y have the usual interpretations and the division by four of the latter is
meant to keep the interpretation of �y in annual terms (given that each period in this model
is considered to be a quarter). We use, just for illustrative purposes, coe¢ cients equal to
1.5 and 0.5 respectively. Notice that these were not optimized in any respect. This example
shows that it is also easy in the framework proposed to evaluate a simple rule and compare
it to the optimal policy responses, as presented in Figures 13 through 18.
The comparison between the simple interest rate rule to the optimal policy in this econ-

omy reveals that under increases to the tax rate (Figure 13) or the price markup (Figure
14) output, in�ation and nominal interest rates are higher on impact under the alternative
Taylor rule compared to the optimal policy. The reason for this is that in�ation is relatively
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higher than the interest rate so that the real interest rate is actually lower under the alterna-
tive policy. This implies that probably the reaction of the nominal interest rate to in�ation
is not as aggressive as it should optimally be.
In the case of the increase of government expenditures (Figure 15) we can observe under

the alternative rule higher output level and lower interest rate, with the in�ation rate very
close to the steady state. This might imply that the interest rate is actually not aggressive
enough to output changes. In the case of the consumption preferences shock nothing changes,
though.
The responses to a positive productivity shock (Figure 17) under the alternative rule

yields radically di¤erent responses than under the optimal policy. Now the output expansion
is substantially trimmed down due a much higher interest rate. This leads to a signi�cant
level of de�ation in the short run (0.25%). This shows that the interest rate falls in response
to de�ation but essentially real interest rates are left at the steady state level and so output
does not expand as much as before. This shows that the monetary policy is rather passive,
not reacting to the recessionary gap that formed (the potential output expanded much more
than the output did). This is the result of the interest rate rule taking into account the output
deviations from steady state instead of the actual output gap. In light of this interpretation
we can review the other ones and conclude that this seems like a likely cause of the previous
di¤erences from optimal policy as well. So it could be interesting to incorporate an interest
rate rule in terms of output gap, instead of just output deviations from steady state.

5 Optimal monetary policy in a Neo-Keynesian model
(Smets-Wouters (2003))

In this section we discuss results on the Linear-Quadratic optimal monetary policy in a
slightly simpli�ed version of the closed economy model in Smets and Wouters (2003). We
�rst lay out the model equations and the equilibrium conditions de�ning the LQ programme,
as well as the calibration used. We then describe the impulse responses of selected variables
to the shocks in the model, both under LQ optimal policy and under a standard monetary
policy rule.

5.1 The model

5.1.1 Consumers

At time t, the utility function of the rapresentative agent is

Ut = Et

"X
s�t

�s�t
�
U
�
Ct+s; Ct+s�1; E

B
t

�
� V

�
Lht+s; E

L
t ; E

B
t

��#
; (5.1)
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with

U
�
Ct+s; Ct+s�1; E

B
t

�
� EBt

(Ct+s � �Ct+s�1)
1��C

1� �C
;

V
�
Lht+s; E

L
t ; E

B
t

�
� EBt

Z 1

0

L

�
Lht+s

�1+�L
1 + �L

ELt dh:

where it is understood that households obtain utility from consumption of an aggregate index
Ct; relative to an internal habit depending on past aggregate consumption, while receiving
disutility from labour Lht . Utility also incorporates a consumption preference shock E

B
t and a

labour supply shock ELt . Each household h maximizes its utility function under the following
budgetary constraint:

Bt
Pt(1 + it)

+ It + Ct =
Bt�1
Pt

+

R 1
0
(1� �W;t)W

h
t L

h
t dh+ At + TTt

Pt
+RktCUtKt � � (CUt)Kt;

where Bt is a nominal bond, W h
t is the wage, A

h
t is a stream of income coming from state

contingent securities, TT ht and �W;t are government transfers and time-varying labour tax
respectively, and

�
RktCUtKt � � (CUt)Kt

�
represents the return on the real capital stock

minus the cost associated with variations in the degree of capital utilization. As in Christiano,
Eichenbaum, and Evans (2005), the income from renting out capital services depends on the
level of capital augmented for its utilization rate and the cost of capacity utilization is zero at
full capacity (�(1) = 0). Separability of preferences and complete �nancial markets ensure
that Households have identical consumption plans.
The �rst order condition related to consumption expenditures is given by

�t = UC1;t + �EtUC2;t+1 (5.2)

where �t is the Lagrangian multiplier associated with the budget constraint. The �rst order
conditions corresponding to the quantity of contingent bond is:

�t = (1 + it)�Et
�
�t+1

Pt
Pt+1

�
(5.3)

5.1.2 Labour supply and wage setting

Each household is a monopoly supplier of a di¤erentiated labour service. For the sake
of simplicity, we assume that he sells his services to a perfectly competitive �rm (Labour
Packers) which transforms it into an aggregate labour input using the following technology:

Lt =

�Z 1

0

Lht
�W�1
�W dh

� �W
�W�1

:

The household faces a labour demand curve with constant elasticity of substitution:

Lht =

�
W h
t

Wt

���W
Lt;
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where the aggregate wage is given by

Wt =

�Z 1

0

W h
t

1��W dh

� 1
1��W

:

The real wage setting equations can be written in the following recursive form (see Ap-
pendix B.2 for a derivation):

(1� �W )

� ewt
Pt

� 1
1��W

= (1� �W )

�
�w
ZW1;t

ZW2;t

�� 1
�W (1+�L)�1

(5.4)

= W
1

1��W
R;t � �WW

1
1��W
R;t�1

 
�t

�

W
t�1�

1�
W
t

! �1
1��W

; (5.5)

ZW1;t = LW
(1+�L)�W
�W�1

R;t L1+�Lt ELt E
B
t + ��WEt

0@ZW1;t+1

�
�t+1

�

W
t �1�
W

� (1+�L)�W
�W�1

1A ; (5.6)

ZW2;t = (1� �W;t)W
�W

�W�1
R;t Lt�t + ��WEt

 
ZW2;t+1

�
�t+1

�

W
t �1�
W

� 1
�W�1

!
: (5.7)

5.1.3 Investment decisions

The capital is owned by households and rented out to the intermediate �rms at a rental
rate Rkt . Households choose the capital stock, investment and the capacity utilisation rate in
order to maximize their intertemporal utility function subject to the intertemporal budget
constraint and the capital accumulation equation given by:

Kt+1 = (1� �)Kt + EIt

�
1� S

�
It
It�1

��
It; (5.8)

where � is the depreciation rate and S(�) the adjustment cost function, where it is assumed
that

S

�
It
It�1

�
= S(

It
It�1

) =
�i
2
(
It
It�1

� 1)2:

First-order conditions result in the following equations for the real value of capital, in-
vestment and the capacity utilisation rate:

Qt = Et
�
�
�t+1
�t

�
Qt+1(1� �) +Rkt+1CUt+1 � � (CUt+1)

��
EQt (5.9)

22



Linear-Quadratic Approximation to Optimal Policy

1 = Qt
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(5.10)

Rkt = �
0 (CUt) (5.11)

5.1.4 Final goods sector

Final producers are in perfect competition and aggregate a continuum of di¤erentiated
intermediate products. The elementary di¤erentiated goods are imperfect substitutes with
elasticity of substitution denoted �, such that

Y =

�Z 1

0

Y (h)
"�1
" dh

� "
"�1

:

The aggregate price index is de�ned as

P =

�Z 1

0

p(h)1�"dh

� 1
1�"

;

and domestic demand is allocated across the di¤erentiated goods as follows

8h 2 [0; 1] Y (h) =

�
p(h)

P

��"
Y:

5.1.5 Intermediate �rms

Intermediate goods are produced with a Cobb-Douglas technology as follows:

8h 2 [0; 1], Yt(h) = EAt (CUt(h)Kt(h))
� Lt(h)

1�� � 
;

where EAt is an exogenous technology shock and 
 is a �xed cost ensuring that pro�ts are
zero in the steady state.
Firms are monopolistic competitors and produce di¤erentiated products. In each period,

a �rm h faces a constant probability, 1� �P , of being able to reoptimize its nominal price.
This probability is independent across �rms and time. The average duration of a rigidity
period is 1

1��P . If a �rm cannot reoptimize its price, the price evolves according to the
following simple rule:

pt(h) =

�
Pt�1
Pt�2

�
H
�1�
Hpt�1(h):

Therefore, �rm h chooses ~pt(h) to maximize its intertemporal pro�t

Et

" 1X
j=0

�jp�t;t+jYt+j(h)

 
(1� � t)~pt(h)

�
Pt�1+j
Pt�1

�
 � �Pt�1+j
�Pt�1

�1�

�MCt+jPt+j

!#
;
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where

�t;t+j = �j
�t+jPt
�tPt+j

is the marginal value of one unit of money to the household,MCt+j is the real marginal cost,
� t is a time-varying tax on �rm�s revenue. Due to our assumptions on the labour market
and the rental rate of capital, the real marginal cost is identical across producers,

MCt =
W

(1��)
t

�
Rkt
��

EAt �
�(1� �)(1��)

:

In our model, all �rms that can reoptimize their price at time t choose the same level.
The �rst order condition associated with the �rm�s choice of ~Pt(h) is

Et

" 1X
j=0

�j�t;t+jYt+j(h)Pt+j

 
(1� � t)

~pt(h)

Pt+j

�
Pt�1+j
Pt�1

�
 �
P t+j
Pt

�1�

� "

"� 1MCt+j

!#
= 0:

When the probability of being able to change prices tends towards unity, this implies that
the �rm sets its price equal to a constant markup �

1�� (with � =
�
��1) over marginal cost as

in the �exible-price model. Otherwise the �rm imposes this markup to the weighted-average
of marginal costs over time.
Only a fraction 1��p of producers can reoptimize its price, each period. So the aggregate

producer-price-index has the following dynamic:

P 1�"t = �p

��
Pt�1
Pt�2

�

�1�
t Pt�1

�1�"
+ (1� �p) ~p

1�"
t (h) :

This price setting scheme is easily rewritten in the following recursive form:�
�
Z1;t
Z2;t

� 1
1��

(1� �p) = 1� �p

�
�t

�
t�1�
1�


� 1
��1

; (5.12)

Z1;t = �tMCtYt + �p�Et

"�
�t+1
�
t �

1�


� �
��1

Z1;t+1

#
; (5.13)

Z2;t = EPt �tYt + �p�Et

"�
�t+1
�
t �

1�


� 1
��1

Z2;t+1

#
: (5.14)

Capital labour ratio is equalized across �rms and linked to the relative cost of factors:

WtLt
RktCUtKt�1

=
1� �

�
:
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5.1.6 Government

Public expenditures are subject to random shocks EGt . The government �nances public
spending with labour tax, product tax and lump-sum transfers,

PtE
G
t � �W;tWtLt � � tPtYt � PtTTt = 0:

Specifying the interest rate rules followed by the monetary authorities �nally closes the
model. In the case of the Taylor rule the exact expression is, much like in the previous model,

1 + it
1 +�{

=

�
1 + it�1
1 +�{

��r 24��t
��

��� �Yt
�Y

��y
4

351��r :
This is not exactly the same policy rule that Smets and Wouters (2003) consider but it is one
�rst approximation to it. In order to make it close to theirs we consider �r = 0:85, �� = 1:5
and �y = 0:8 (hence �y=4 = 0:2, similar to their estimates). One big di¤erence is that we
are not considering the output gap but only deviations from steady state output. This can
have an important impact in policy and therefore shall be investigated in future research.

5.1.7 Market clearing conditions

Aggregate productions are obtained using the CES aggregator�Z 1

0

� ��1� dz
� �
��1

;

and labour demands are given by the following relations:

YtDt = EAt (CUtKt)
� (Lt)

1�� � (�� 1)Y ;

as 
 = (�� 1)Y implies that pro�ts are zero in steady state.

Price dispersion is de�ned as Dt =
R 1
0

�
pt(h)
Pt

�� �
��1

dh, and follows the law of motion given
by

Dt = (1� �p)

�
�
Z1;t
Z2;t

�� �
��1

+ �pDt�1

�
�t

�
t�1�
1�


� �
��1

; (5.15)

while DW;t =
R 1
0

�
Wt(h)
Wt

�� (1+�L)�W
�W�1

dh and the derivation of the related equations follows.
Aggregate demand is given by

Yt = Ct + It + EGt + �(CUt)Kt�1
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5.2 Summary of model equations

The set of structural equations is given by:

�t = EBt (Ct � hCt�1)
��C � ��EtEBt+1 (Ct+1 � hCt)

��C (g1)

�t = (1 + it)�Et
�
�t+1

Pt
Pt+1

�
(g2)

Qt = Et
�
�
�t+1
�t

(Qt+1(1� �) + �0 (CUt+1)CUt+1 � � (CUt+1))
�
EQt (g3)

1 = Qt

�
1� S
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+�Et

"
Qt+1

�t+1
�t

�
It+1
It

�2
S 0
�
It+1
It

�
EIt+1

#
Rkt = �

0 (CUt) (g5)

WtLt =
1� �

�
CUt�

0 (CUt)Kt�1 (g6)

Yt = Ct + It + EGt + �(CUt)Kt�1 (g7)

Dt

�
Ct + It + EGt + �(CUt)Kt�1

�
= EAt (CUtKt)

� (Lt)
1�� � (�� 1)Y (g8)�
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(1� �W )

�
�w
ZW1;t
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�� 1
�W (1+�L)�1

= W
1

1��W
t � �WW

1
1��W
t�1

�
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(g14)

Kt = (1� �)Kt�1 + EIt

�
1� S

�
It
It�1

��
It (f1)

Dt = (1� �p)

�
�
Z1;t
Z2;t

�� �
��1

+ �pDt�1

�
�t

�
t�1�
1�


� �
��1

(f2)

DW;t = (1� �W )W
(1+�L)�W
�W�1

t

�
�w
ZW1;t

ZW2;t

�� �W (1+�L)
�W (1+�L)�1

(f3)

+�WDW;t�1

�
Wt

Wt�1

�t
�

W
t�1�

1�
W

� (1+�L)�W
�W�1

knowing that the following de�nition holds:

MCt =
W

(1��)
t �0 (CUt+1)

�

EAt �
�(1� �)(1��)

:

and that

S(
It
It�1

) =
�i
2
(
It
It�1

� 1)2

and
� (CUt) =

1

rc
Rkss exp(rc � (CUt � 1)):

5.3 The model in LQ form

We now need to match the structure presented in section 2 one more time. First of all
notice that in the model there are two elements of �t+1 showing up in the G-type constraints,
which would violate the framework for the LQ function. In order to overcome this issue we
de�ne two new variables to include in the xt vector, FBt and F It . In this way they will show
up in xt+1 and not violate the framework. In order to connect these to the true shocks we
insert two extra equations to the G-type constraints,

EBt = FBt ; (g15)

and
EIt = F It : (g16)

We can then de�ne:

xt �
�
Ct; �t; Qt; It;CUt; R

k
t ;Wt; Z1;t; Z2;t; ZW1;t; ZW2;t;�t; F

B
t ; F

I
t

�0
;

ut � (Yt; Lt; it)
0 ;

Xt � (Kt; Dt; DW;t; It�1; Ct�1;Wt�1; �t�1; it�1)
0 ;

and the vector of constraints G is de�ned in (g1-g14), added by (g15-g16) and the predeter-
mined constraint, with the implicit de�nition of F (�) is presented in (f1-f3).
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5.4 Optimal responses to shocks

In this section we compare the behaviour of optimal policy in face of the various shocks
present in the economy, using the behaviour under a standard Taylor rule as the comparative
benchmark.14 The calibration used for the parameters values is presented in Table 3.15

Results are shown in Figures (19-24).16

In the case of productivity shocks (Figure 19) optimal monetary policy exacerbates the
e¤ect on output and consumption components of the productivity shock, relative to the
Taylor rule benchmark. Under LQ optimal policy output, consumption and investment are
thus signi�cantly higher than under the Taylor rule case, in particular on impact. This leads
to steadily higher path for in�ation and real wages under LQ policy. Conversely, LQ policy
implies lower nominal interest rates relative to the Taylor case during the �rst quarters. A
possible interpretation of these results is that LQ policy aims at materisalising the e¢ ciency
gains that are hindered by nominal rigidities. By contrast, the Taylor rule, by muting the
favourable impact of the positive productivity shock, is over-restrictive relative to LQ.
For the preference shock (Figure 20), by contrast to the previous case, monetary policy

largely counters the in�ationary e¤ects of the preference shock on output that takes place
under the Taylor rule policy. In order to stabilise in�ation LQ optimal policy counters
the expansion in output and consumption that would take place, to the extent of actually
reversing the e¤ect and generating a contraction in these variables. This is achieved by a
higher path for nominal interest rates in the �rst quarters. In exchange of this, LQ policy
delivers a lower path for labour e¤ort and more stable prices.
In the case of the government purchase shock (Figure 21), optimal monetary policy

is again restrictive relative to the Taylor case. However, in this case the e¤ect on output
components is purely in composition, with the path for aggregate output being similar under
LQ and Taylor policies. Indeed, the LQ policy diminishes overall the extent of investment
crowding-out, while it has a more ambiguous e¤ect in terms of consumption crowding-out
relative to Taylor. The negative impact on wages is diminished under LQ compared to
Taylor. These e¤ects are, again, achieved with a relatively contractionary monetary policy
up-front, relative to Taylor policy. In both cases in�ation is stabilised around steady state
levels under both policies.
Figure 22 depicts the case of a (negative) labour supply shock. In this case the departure

between LQ and Taylor policies is relatively large compared to the other shocks. Under
Taylor all variables except wages are a¤ected to a rather limited extent, i.e. under Taylor the

14Unlike the case of the model with monetary frictions discussed above, in this case the calculation of
the model�s steady-sate is straightforward. In this case the steady-state is distorted as steady-state price
and wage mark-ups are assumed to be above one and their e¤ect on welfare is not compensated with lump-
sum transfers. Therefore, in this case, the focus is the comparison of model dynamics under optimal and
non-optimal monetary policies, around a distorted steady-state.
15The calibration used ensures that the impulse respond functions under this speci�cation for the Taylor

rule monetary policy case are qualitatively similar to the ones in Smets and Wouters (2003).
16The responses of the interest and in�ation rates were annualized so that we can read them in terms of

annual percentage points.
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transmission mechanism takes place mainly through wage adjustments and is very con�ned.
Under LQ policy, somewhat alike to the case of the productivity shock, monetary policy
exacerbates the e¤ect of the shock on output and output components, being restrictive
relative to the Taylor policy. Consequently, output, labour and output components are well
below steady state under LQ relative to Taylor policy. In�ation and wages are then also
below in the LQ case. In this case, as in the productivity shock case, monetary policy could
be seen as mimicking the adjustment process that would be seen under more �exible wages
and prices.
Finally, the investment shock and the equity premium shock (Figures 23 and 24) are

very similar, only with di¤erent scales. Much like in the productivity and labour supply
shocks optimal policy exacerbates the impact on output at the same time that minimizes
the e¤ects on in�ation. Again this can be understood as fostering the bene�cial e¤ects
of the temporary positive shocks occuring. It is interesting to note that while the Taylor
rule implies a negative initial path of consumption, implying that investment crowds out
consumtpion, optimal policy through its expansionary stance allows the possitive e¤ects on
the economy to spread to cocnsumption without any delays.
In sum, the previous results suggest that LQ policy di¤erentiates to a larger extent its

impact taking into account the supply or demand nature of the shocks, in general exacer-
bating the e¤ects of the former and dampening the e¤ects of the latter relative to the Taylor
case. These di¤erences may however be in�uenced by the lack of a measure of potential
output in the Taylor rule considered here. This is an issue that deserves future investigation.

6 Conclusion

This paper presents the evaluation of optimal policy in a timeless perspective for two
applications. In the �rst application a standard closed economy model is compared under
two alternatives cases: the cashless limiting case and the case with monetary frictions. In our
second application, optimal monetary policy is evaluated within a standard Neo-Keynesian
model of a closed economy with various structural shocks, close to a number of recently
estimated models.
The results from the �rst application show that the consideration of monetary frictions

or simply a cashless economy are not of signi�cant importance when it comes to optimal
policy. This is so because the responses of the economy to various shocks in the two cases
are very similar. In that model, comparing the optimal policy from a timeless perspective
to a simple Taylor rule yields substantially di¤erent results, with optimal policy stabilising
in�ation signi�cantly more. Similar results are obtained in the case of the Neo-Keynesian
model presented in the second application. In particular, the results suggest that LQ policy
di¤erentiates to a larger extent its impact taking into account the supply or demand nature
of the shocks, in general exacerbating the e¤ects of the former and dampening the e¤ects of
the latter relative to the Taylor case. This results should warn researchers about the use of
Taylor rules as proxies to optimal policy, indeed they can be substantially di¤erent.
The method for computing and evaluating the LQ optimal policy in these two examples
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makes use of a standardised approximation algorithm which can be applied to a broad class of
models, well beyond our two applications. In particular, the algorithm can be readily used
for fairly complicated models, probably without a large amount of further programming
involved beyond the adjustments required to �t the required structure, as exempli�ed in our
two applications. The provided algorithm could thus help in bridging the gap between, on
the one hand, theoretical model-based considerations on optimal policy �which has often
been discussed on the basis of rather stylised models � and models used in practice for
policy analysis, which are typically of large size and therefore less prone to deliver results on
optimal policy. The algorithm proposed here, together with the companion Matlab function,
is presented as one step in this direction.
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A Monetary-frictions model

A.1 Calibration

! 0.473 elasticity of real marginal cost with respect to a �rm�s own output
� 0.99 time discount factor
� 0.75 Calvo probability of not adjusting prices
� 0.7 scale of labour disutility
��1 0.157 intertemporal elasticity of substitution
� 1 production function parameter
� 10 elasticity of substitution of among di¤erent varieties of goods
a 0.0111 parameter of the transaction frictions
b 0.07524 parameter of the transaction frictions that regulates the concavity
sg 0.3 steady state ratio of government expenditures to output
�� 0.2 steady state tax rate

Table 1: Baseline parameters
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A.2 Conversion of the utility expressions

First, inverting (4.10) we can write

ht (i) = f�1 (yt (i) =At) =

�
yt (i)

At

��
;

and, because the demand for labour by each �rm in a given industry and the output are the
same, we can also write

Ht (j) = f�1
�
yjt=At

�
;

and plug this into the utility function in the households problem:

v
�
yjt ; �t

�
= ~v

�
f�1

�
yjt=At

�
; �t
�
:

By using the equilibrium condition for the resources we can also write the utility in terms
of Y instead of consumption:

u (Yt; nt; �t) = ~u

�
Yt �Gt

1 + �ts (nt)
; �t

�
;

and now we can write the intertemporal utility function as

Ut0 =
1X
t=t0

�t�t0
�
u (Yt; nt; �t)�

Z 1

0

v
�
yjt ; �t

�
dj

�
:

Notice that
~u0 (Ct; �t) = uY (Yt; nt; �t) (1 + �ts (nt)) ;

and so �t is de�ned as

�t =
uY (Yt; nt; �t)

Pt

1 + �ts (nt)

1 + �ts (nt) + �ts
0 (nt)nt

; (A.1)

which replaces (4.3).
In particular we know that

v
�
yjt ; �t

�
=

�

1 + �

�
yjt
��(1+�) �H��

t A
��(1+�)
t ;

but in industry j all goods are produced in the same quantity and the demand for good i is

yt (i) = Yt

�
pt (i)

Pt

���
;

so that

v
�
yjt ; �t

�
=

�

1 + �
Y
�(1+�)
t

�
pt (j)

Pt

����(1+�)
�H��
t A

��(1+�)
t :
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Integrating over all the industries j we getZ 1

0

v
�
yjt ; �t

�
dj =

�

1 + �
Y
�(1+�)
t

�H��
t A

��(1+�)
t

Z 1

0

�
pt (i)

Pt

����(1+�)
di;

and de�ne ! � � (1 + �)� 1, so that we can write the intertemporal utility as

Ut0 =
1X
t=t0

�t�t0 [u (Yt; nt; �t)� � (Yt;�t; �t)] ; (A.2)

with

u (Yt; nt; �t) =
�C1�~�

�1
t

1� ~��1
�

Yt �Gt
1 + �ts (nt)

�1�~��1
; (A.3)

� (Yt;�t; �t) =
�

1 + �

Y 1+!
t

A1+!t
�H�
t

�t: (A.4)
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A.3 Optimal steady state

Panel A: baseline
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Panel B: tax rate set to eliminate distortions
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Figure 1: Steady state nominal interest and in�ation rates for di¤erent levels of price sticki-
ness
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Monetary frictions Cashless limiting case
�{* ��* �Y �n �� �{* ��* �Y �n ��

Baseline tax rate
� = 0:3 2.526 -1.500 1.1378 2.710 1.0003 4.040 0 1.1429 2.604 1
� = 0:6 3.802 -0.236 1.1363 2.762 1.0001 4.040 0 1.1429 2.604 1
� = 0:7 3.926 -0.114 1.1362 2.767 1.0000 4.040 0 1.1429 2.604 1
� = 0:75 3.966 -0.074 1.1361 2.768 1.0000 4.040 0 1.1429 2.604 1
� = 0:8 3.995 -0.045 1.1361 2.769 1.0000 4.040 0 1.1429 2.604 1

Tax rate set to eliminate distortions
� = 0:3 3.853 -0.185 1.9144 2.764 1.0000 4.040 0 1.9252 2.604 1
� = 0:6 4.009 -0.031 1.9140 2.770 1.0000 4.040 0 1.9252 2.604 1
� = 0:7 4.025 -0.015 1.9139 2.771 1.0000 4.040 0 1.9252 2.604 1
� = 0:75 4.030 -0.010 1.9139 2.771 1.0000 4.040 0 1.9252 2.604 1
� = 0:8 4.034 -0.006 1.9139 2.771 1.0000 4.040 0 1.9252 2.604 1
* in annualized percentage points

Table 2: Optimal steady state values under di¤erent scenarios
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A.4 Responses to shocks

Monetary Frictions vs. Cashless Limiting Case
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Figure 2: Responses to one percentage point increase in the tax rate (�), under the case of
monetary frictions compared to the cashless limiting case
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Figure 3: Responses to one percent increase in the price markup (�), under the case of
monetary frictions compared to the cashless limiting case
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Figure 4: Responses to an increase in government expenditures (G) equivalent to one percent
of the output, under the case of monetary frictions compared to the cashless limiting case
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Figure 5: Responses to one percent increase in the shock to the marginal utility of consump-
tion ( �C), under the case of monetary frictions compared to the cashless limiting case
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Figure 6: Responses to one percent increase in productivity (A), under the case of monetary
frictions compared to the cashless limiting case
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Figure 7: Responses to one percent increase in the shock to the transaction costs (�), under
the case of monetary frictions compared to the cashless limiting case
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The Case of No Steady State Distortions
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Figure 8: Responses to one percentage point increase in the tax rate (�), under the case with
steady state distortions in compared to the case of no steady state distortions
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Figure 9: Responses to one percent increase in the makup (�), under the case with steady
state distortions in compared to the case of no steady state distortions
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Figure 10: Responses to an increase in government expenditures (G) equivalent to one
percent of the output, under the case with steady state distortions in compared to the case
of no steady state distortions
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Figure 11: Responses to one percent increase in the shock to the marginal utility of con-
sumption ( �C), under the case with steady state distortions in compared to the case of no
steady state distortions
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Figure 12: Responses to one percent increase in the shock to the transaction costs (�), under
the case with steady state distortions in compared to the case of no steady state distortions
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Alternative Policy Rule
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Figure 13: Responses to one percentage point increase in the tax rate (�), under an alterna-
tive policy rule compared to the optimal policy
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Figure 14: Responses to one percent increase in the makup (�), under an alternative policy
rule compared to the optimal policy
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Figure 15: Responses to an increase in government expenditures (G) equivalent to one
percent of the output, under an alternative policy rule compared to the optimal policy
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Figure 16: Responses to one percent increase in the shock to the marginal utility of con-
sumption ( �C), under an alternative policy rule compared to the optimal policy
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Figure 17: Responses to one percent increase in productivity (A), under an alternative policy
rule compared to the optimal policy
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Figure 18: Responses to one percent increase in the shock to the transaction costs (�), under
an alternative policy rule compared to the optimal policy
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B Smets Wouters model

B.1 Calibration

� 0.99 time discount factor
�p 0.83 Calvo probability of not adjusting prices
� 0.29 index of habit persistance in consumption
� 0.025 rate of capital depreciation
�w 0.79 Calvo probability of not adjusting wages

p 0.3 fraction of households subject to indexation in price setting

w 0.7 fraction of households subject to indexation in price setting
�C 2.19 Risk aversion coe¢ cient in consumer preferences
�L 1.49 Inverse of the Frisch elasticity of labor supply
� 1.2 steady state price mark up
�W 1.2 steady state wage mark up
rc 4.02 Elasticity of capacity utilisation cost
�i 1.18 Sensitivity of investment adjustment cost
p1 1.5 In�ation related term in Taylor rule
p2 0.2 Output related term in Taylor rule
�r 0.85 Nominal interest rate autocorrelation coe¤. in inertial Taylor r.

Table 3: Baseline parameters

B.2 Model�s wage equations

Households set their wage on a staggered basis. Each period, any household faces a
constant probability 1 � �W of changing its wage. In such a case, the wage is set to ewt,
taking into account that it will not be re-optimized in the near future. Otherwise, wages are
adjusted following an indexation rule on CPI in�ation and central bank objective:

W h
t =

�
Pt�1
Pt�2

�
W
�1�
WW h

t�1

and, in cumulated term,
W h
t+j = �

j�1
h=0�


W
t+h�

1�
WW h
t :

The consumer in the choice of the wages such that he maximizes the welfare and the FOC
is:

Et
1X
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(��W )
s

"
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W
t+h�

1�
W )Lht+j
�t+j
Pt+j

� "W (1� �W;t)W
h
t+j

Lht+j
W h
t

�t+j

+"WL
�
Lht+j

��L ELt EBt Lht+jW h
t

#
= 0
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and

Et

" 1X
j=0

(��W )
sLht+j

�
(1� �W;t) ("W � 1)

"W

ewt
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(�j�1h=0
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W
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#
= 0:

When wages are perfectly �exible, this relation collapses to

"W
("W � 1) (1� �W;t)

UhL;t = �t+j
W h
t

Pt
:

The real wage is equal to a constant markup �W
1��W (with �W = "W

"W�1) over the marginal rate
of substitution between consumption and labour.
Finally, the dynamics of the aggregate wage index given that a share (1� �W ) of workers

adjust threir wage (assuming symmetry) and a fraction �W follow an indexation rule is given
by:
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and so
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In a similar manner for the second term:
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Given that � ewt
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The real wage setting equations can be rewritten in the following recursive form:
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B.3 Responses to shocks
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Figure 19: Productivity shock
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Figure 20: Preferences shock
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Figure 21: Government expenditure shock
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Figure 22: Labour supply shock (negative shock)
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Figure 23: Investment shock
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Figure 24: Equity premium shock
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