Comments on
"The Effect of Transaction Pricing on
the Adoption of Electronic Payments:
A Cross-country Comparison"
by Wilko Bolt, David Humphrey and
Roland Uittenbogaard.

Andrew Stone
Reserve Bank of Australia

Two Goals

Primary goal

 Estimate the effects of explicit pricing on adoption of alternative payment methods.

Two Goals

Primary goal

 Estimate the effects of explicit pricing on adoption of alternative payment methods.

Secondary goal

Gauge potential resource cost savings.

Methodology

- Compare relative take-up rates of payment instruments across two European countries.
- Use countries which differ in their approach to transaction-based pricing, but are otherwise expected to be similar.
 - Norway: has explicit pricing
 - Holland: doesn't have explicit pricing

Results

 Some evidence for a role for pricing in speeding the shift to electronic payments.

Results

- Some evidence for a role for pricing in speeding the shift to electronic payments.
- Indicative calculations of the potential importance of this finding for policymakers in present value terms.

Econometric Issues

Challenges include:

- Lack of data;
- Non-stationarity issues; and
- Possible omitted non-price attributes.

Lack of Data

Paper studies four payment mechanisms.

- Only 15 years of annual data on each.
- Authors' response is to estimate their four main equations as a system.
 - Leaves them with 60 data points to estimate
 22 parameters.

Lack of Data

One system of four equations, or two systems of two equations?

- If the latter, this strengthens the authors' giro estimates (30 data points for 8 coefficients); but
- Weakens their debit card/ATM estimates (30 data points for 14 coefficients).

Lack of data

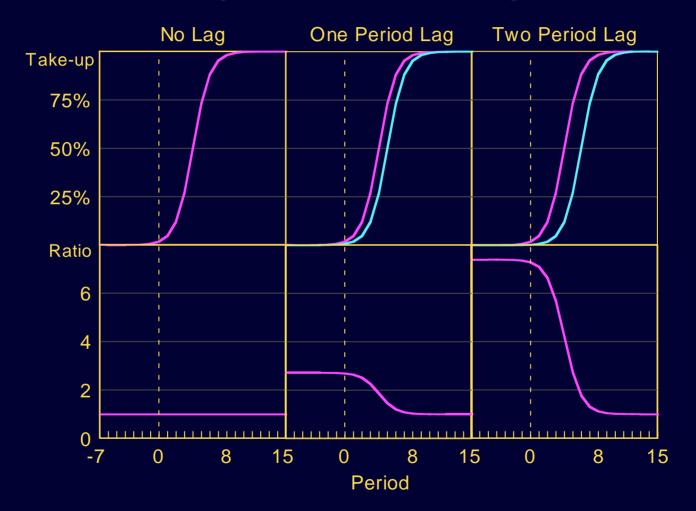
Also raises the questions:

- Why were the particular specifications of Equations 1 and 2 selected?
- How should one interpret the role of each explanator in these equations?

Non-stationarity

Dependent variables *inherently* prone to localised volatility and non-stationarity.

 Issue highlighted by extremely high R² values for the paper's main debit card and ATM withdrawal equations.


Non-stationarity

Each dependent variable defined as (log of) the *ratio* of the per capita use of a given instrument in Norway and The Netherlands.

 Take-up of such instruments in a country often follows a logistic or 'S-curve'.

Effect of a Lag on the Ratio of Two Logistic Curves

Possible Omitted Non-price Attributes

How sound is the assumption of similar non-price attributes across Norway and Holland?

 Authors' own evidence offers support – but also points to some interesting differences.

Possible Omitted Non-price Attributes

How sound is the assumption of similar non-price attributes across Norway and Holland?

- Authors' own evidence offers support but also points to some interesting differences.
 - Contrast between Holland's full catch-up to Norway in per capita ATM availability and its stalled catch-up in per capita EFTPOS terminal availability.

Summary

- Paper grapples with an important empirical issue for policymakers.
- Some reservations about the robustness of the paper's results – but this largely reflects irreducible problems posed by lack of data.

