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Abstract

Many individuals simultaneously have significant credit card debt and money in the bank.

The so-called credit card debt puzzle is, given high interest rates on credit cards and low

interest rates on bank accounts, why not pay down this debt? Economists have gone to some

lengths to explain this. As an alternative, we present a natural extension of the standard

model in monetary economics to incorporate consumer debt, which we think is interesting

in its own right, and which shows that the coexistence of debt and money in the bank is no

puzzle.
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1 Introduction

A large number of households in the U.S. simultaneously have significant credit card debt and a

significant amount of money in checking and savings accounts. Although there are many ways

to measure this, a simple summary statistic is that 27% of U.S. households in 2001 had credit

card debt in excess of $500, and over $500 in checking, savings and brokerage accounts. This

is the so-called credit card debt puzzle: given 14% interest on credit card debt and 1 or 2% on

bank accounts, why not pay down the debt? “Such behavior is puzzling, apparently inconsistent

with no-arbitrage and thus inconsistent with any conventional model.” (Gross and Souleles 2001,

emphasis added).

Economists have gone to elaborate lengths to explain this phenomenon. For example, some

people assume that consumers cannot control themselves (Laibson et al. 2000); others assume

they cannot control their spouses (Bertaut and Haliassos 2002; Haliassos and Reiter 2003); still

others hypothesize, counter to the facts, that all such households are on the verge of bankruptcy

(Lehnert and Maki, 2001). We show that one does not have to resort to such extremes. This is

not to say that these ideas have no merit, but simply that standard theory is not inconsistent

with the observation that households simultaneously have substantial debt and money in the

bank. By standard theory we mean modern monetary economics. These models are designed

to study liquidity. They predict that agents may hold assets with low rates of return if they are

liquid — i.e. if they have use as a medium of exchange.1

Our hypothesis accounts for the credit card debt puzzle in the following way. Households

need money — more generally, liquid assets — for situations where credit cannot be used. The

obvious and standard examples include taxis, cigarettes, and so on, although increasingly credit

cards can be used for some of these, but we want to emphasize that there are also some big-

ticket examples. For instance, usually rent or mortgage payments cannot be made by credit

card. Thus, even if a household is revolving credit card debt, it needs to have money in the

bank in order to meet these obligations. According to the Consumer Expenditure Survey, the

median household that holds both debt and liquidity revolves $3,800 of credit card debt, has

about $3,000 in the bank, and spends $1,993 per month on goods purchased with liquid assets

1Some version of this idea is in all of search-based monetary theory going back to Kiyotaki and Wright (1989).
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(see Telyukova 2005). Moreover, according to the U.S. Statistical Abstract, 77% of consumer

transactions in 2001 were done in liquid assets.

We develop a micro-founded model of monetary exchange to formalize these ideas. While we

build upon recent work, and in particular Lagos and Wright (2005), we need to extend existing

models to incorporate consumer credit, since the typical model in this literature does not have

anything along these lines. This seems like a natural and interesting extension of modern

monetary theory in its own right, and also allows us to argue that coexistence of consumer debt

and money in the bank is not a puzzle. Whether this approach is able to account quantitatively

for salient aspects of the data is the subject of ongoing research (Telyukova 2005).2

2 The Basic Model

We build on Lagos and Wright (2005), hereafter LW. That model gives agents periodic access

to a centralized market, in addition to the decentralized markets where, due to various frictions,

money is essential for trade as in the typical search-based model. Having some centralized

markets is interesting for its own sake, and also makes the analysis more tractable than in much

of the literature on the microfoundations of money.3 We will extend this framework along several

dimensions.

We now describe the basic physical environment. In this section, we consider a special

case; later on, we will generalize the model. Time is discrete and there is a [0,1] continuum of

infinitely-lived agents. There is one general consumption good at each date that is nonstorable

and perfectly divisible. Agents can produce the good in each period using labor as an input.

There is also money in this economy, an object that is storable and perfectly divisible; it is

intrinsically worthless but potentially has use as a medium of exchange. The money supply is

2To be concrete, there are several facets to the credit card debt puzzle. For example, in addition to having debt

and liquidity in their portfolios at the same time, we observe households persistently revolving debt, something

we do not address. In Telyukova (2005), the current model is generalized to account for key empirical features of

the credit card debt puzzle and to assess the validity of the theory quantitatively.
3See Molico (1997), Green and Zhou (1998), Camera and Corbae (1999), Zhou (1999) or Zhu (2003). A

framework related to LW is described in Shi (1997). Earlier models, like Shi (1995) or Trejos and Wright (1995),

were also tractable, but only because money was assumed to be indivisible.
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fixed for now at M , but see below.

Although we frame the discussion as though agents literally use money to transact, it is

now well known how to recast the model with agents depositing money into bank accounts and

paying for goods using checks or debit cards. This is discussed in detail in He, Huang and Wright

(2005). This is relevant for our purposes because what we have in mind is not necessarily cash,

per se, but liquid assets generally. So when we say “agents carry money" in what follows, one

should interpret this liberally as “agents hold liquid assets" or “have money in the bank".

In LW each period is divided into two subperiods. In one, say the morning, there is a cen-

tralized (frictionless, Walrasian) market. In the other, say the evening, there is a decentralized

market where agents meet anonymously according to a random bilateral-matching process, which

makes a medium of exchange essential. After each evening’s meeting of the decentralized mar-

ket, the next morning agents can consume, produce, and adjust their money holdings in the

centralized market. Under the assumption of quasi-linear utility, it turns out that all agents will

take the same amount of money out of the centralized and into the next decentralized market,

which is a big simplification.

There is no role for credit in LW. Credit is not possible in the decentralized market, and not

necessary in the centralized market. It is not possible in the decentralized market because of the

assumption that agents are anonymous, which is needed to make money essential, and it is not

necessary in the centralized market because of the assumption that all agents can produce, which

is needed to make the distribution of money degenerate. Our idea is to introduce an intermediate

subperiod, say afternoon, where at random some agents want to consume but cannot produce

and vice-versa. There is a centralized market in this subperiod, where agents may use either

credit or cash. This allows us to introduce consumer credit while maintaining both a role for a

medium of exchange and the simplicity of LW.4

All agents want to consume in subperiod s = 1, and u1(x1) is their common utility function.

Only a random, and not necessarily the same, subset want to consume in s = 2, 3, and conditional

on this, us(xs) is their utility function. All agents are able to produce in subperiod s = 1, and

4We will generalize this below, but having three subperiods is sufficient to make the basic point. Berentsen,

Camera and Waller (2005a) also have a third subperiod, but it is a second round of decentralized exchange, and

hence there is no possibility of credit (but see also Berentsen, Camera and Waller 2005b).
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the disutility of working h1 hours is linear, c1(h1) = h1. A random subset are able to produce

in subperiods s = 2, 3, and conditional on this, the disutility of working is some general convex

function cs(hs).When they can produce, all agents can transform labor one-for-one into output,

xs = hs.5 Let x∗s denote efficient level of production — i.e. the solution to u0s(x∗s) = c0s(x∗s). Let

βs be the discount factor between s and the next subperiod.

Generally, an individual’s state variable is (mts, bts), denoting money and debt in period

t = 1, 2, ..., subperiod s = 1, 2, 3, but we drop the t subscript when there is no risk of confusion.

Let Ws(ms, bs) be the value function in subperiod s. The value of money in the centralized

markets at s = 1, 2 is φs; that is, ps = 1/φs is the nominal price of the consumption good in

subperiod s. There is no φ3 since there is no centralized market at s = 3, although there will

be an implicit price defined by bilateral trades in the decentralized market. Similarly, the real

interest rate in the centralized markets at s = 1, 2 is rs, but there is no r3. Our covention for

notation is as follows: if you bring debt bs into subperiod s = 1, 2 you owe (1 + rs)bs.

The plan now is to consider each subperiod in turn. After this, we put the markets together

and describe equilibrium.

2.1 Subperiod 1

In the morning, there is a standard centralized market. Given the state (m1, b1), agents solve6

W1(m1, b1) = max
x1,h1,m2,b2

{u1(x1)− h1 + β1W2(m2, b2)}
s.t. x1 = h1 + φ1(m1 −m2)− (1 + r1)b1 + b2.

where x1 is consumption, h1 is labor, (m2, b2) gives the money and debt taken into subperiod

2, φ1 is the value of money and r1 is the interest due in subperiod 1 (of course this interest

5The real wage w is constant, and normalized to 1, because implicitly we have firms with a linear technology;

nothing of substance changes if we introduce more general firms and determine w endogenously (Aruoba and

Wright 2003).
6To rule out Ponzi schemes, one normally imposes a credit limit bj ≤ B̄, either explicitly or implicitly. We do

not need this, because we are going to explicitly impose that agents pay off all debts in subperiod 1 each period.

Due to quasi-linearity, this will not be a binding constraint, in the sense that it does not affect agents’ payoffs,

just like the usual no-Ponzi- scheme conditions are not binding. Of course this assumes agents are at interior

solutions; see LW for conditions on fundamentals to guarantee that this is valid in these types of models.
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does not have to be paid now, and can be rolled over into b2). Substituting h1 from the budget

constraint into the objective function, we have the Bellman equation

W1(m1, b1) = max
x1,m2,b2

{u1(x1)− [x1 + φ1(m2 −m1) + (1 + r1)b1 − b2] +W2(m2, b2)} .

The first-order conditions are

1 = u01(x1) (1)

φ1 = β1W2m(m2, b2) (2)

−1 = β1W2b(m2, b2). (3)

The first condition implies x1 = x∗1 for all agents. The other two determine (m2, b2), independent

of x1 and (m1, b1), a generalization of one of the basic results in LW. As long as W2 is strictly

concave, there is a unique solution. It is simple to check that the conditions to guarantee strict

concavity in m in LW also apply here, so we can use this to conclude m2 = M for all agents.

However, W2 is actually linear in b2, which means we cannot pin down b2 for any individual.

This is no surprise with a perfectly competitive credit market and quasi-linear utility: given

the equilibrium interest rates (see below), agents are indifferent to working a little more today

and less tomorrow, so for any one of them we can raise h1 and lower b2. We cannot do this in

the aggregate, of course, since average labor input h̄1 must equal total output x∗1. We resolve

this payoff-irrelevant indeterminacy by focusing on symmetric equilibria, in the sense that when

two agents have the same set of solutions to a maximization problem, they choose the same one.

Nothing of substance hinges on this; other equilibria are payoff equivalent, and observationally

equivalent at the aggregate level. It simply means that we have b2 = b̄2 for all agents.

Aggregating budget equations across agents,

x̄1 = h̄1 + φ1(m̄1 − m̄2)− (1 + r1)b̄1 + b̄2.

We have h̄1 = x̄1 = x∗1 and m̄1 = m̄2 = M , clearly, and b̄1 = 0 because average debt must be

0. Hence in equilibrium b2 = b̄2 = 0 for all agents. This simply says that in equilibrium agents

settle all past debts in subperiod 1; they are happy to do so, given quasi-linear utility. Hence
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we have7

m2 =M and b2 = 0 for all agents.

To close the analysis of subperiod 1, we have the envelope conditions

W1m(m1, b1) = φ1 (4)

W1b(m1, b1) = −(1 + r1). (5)

So W1 is linear in (m1, b1).

2.2 Subperiod 2

In the afternoon, some agents want to consume but cannot produce, and vice-versa. To ease

the presentation, assume these events are i.i.d., and each period a measure π ≤ 1/2 of agents
want to consume but cannot produce, and the same measure π can produce but do not want to

consume (to reduce the notation, we assume that no agent does both, but this is easy to relax).

Feasibility requires xC2 = hP2 , where x
C
2 is the consumption of those who want to consume and

hP2 the production of those able to produce (it is also easy to relax the assumption that there is

the same measure of producers and consumers). The expected value of entering the subperiod

2 centralized market is

W2(m2, b2) = πWC
2 (m2, b2) + πWP

2 (m2, b2) + (1− 2π)WN
2 (m2, b2),

where WC
2 , W

P
2 and WN

2 are the value functions for a consumer, a producer and a nontrader.

For a nontrader,

WN
2 (m2, b2) = max

m3,b3
β2W3(m3, b3)

s.t. 0 = φ2(m2 −m3)− (1 + r2)b2 + b3,

where r2 interest due on debt brought into the subperiod (which again can be rolled over to the

next subperiod). Note that although a nontrader neither consumes not produces, he can adjust

7The condition b2 = 0 is the aforementioned payoff-irrelevant condition that also rules out Ponzi schemes;

hence we do not need any additional credit constraints.
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his portfolio.8 One can rewrite

WN
2 (m2, b2) = max

m3

β2W3 [m3, φ2(m3 −m2) + (1 + r2)b2] ,

which implies the solution (mN
3 , b

N
3 ) satisfies

W3m(m
N
3 , b

N
3 ) = −φ2W3b(m

N
3 , b

N
3 ) (6)

plus the budget equation. The envelope conditions are

WN
2m(m2, b2) = β2W3m(m

N
3 , b

N
3 ) (7)

WN
2b (m2, b2) = β2(1 + r2)W3b(m

N
3 , b

N
3 ). (8)

For a consumer,

WC
2 (m2, b2) = max

x2,m3,b3
{u2(x2) + β2W3(m3, b3)}

s.t. x2 = φ2(m2 −m3)− (1 + r2)b2 + b3.

One can rewrite

WC
2 (m, b) = max

m3,b3
{u2 [φ2(m2 −m3)− (1 + r2)b2 + b3] + β2W3(m3, b3)} ,

which implies the solution (xC2 ,m
C
3 , b

C
3 ) satisfies

φ2u
0
2(x

C
2 ) = β2W3m(m

C
3 , b

C
3 ) (9)

−u02(xC2 ) = β2W3b(m
C
3 , b

C
3 ) (10)

plus the budget equation. Using these, we write the envelope conditions as

WC
2m(m2, b2) = φ2u

0
2(x

C
2 ) = β2W3m(m

C
3 , b

C
3 ) (11)

WC
2b(m2, b2) = −(1 + r2)u

0
2(x

C
2 ) = (1 + r2)β2W3b(m

C
3 , b

C
3 ). (12)

For a producer,

WP
2 (m2, b2) = max

h2,m3,b3
{−c2(h2) + β2W3(m3, b3)}

s.t. 0 = h2 + φ2(m2 −m3)− (1 + r2)b2 + b3.

8Hence, it might appear that calling these agents nontraders is inaccurate, but we will see that in fact they do

not trade in equilibrium.
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We rewrite

WP
2 (m2, b2) = max

m3,b3
{−c2 [φ2(m3 −m2)− b3 + (1 + r2)b] + β2W3(m3, b3)}

and the solution (hP2 ,m
P
3 , b

P
3 ) satisfies

φ2c
0
2(h

P
2 ) = β2W3m(m

P
3 , b

P
3 ) (13)

−c02(hP2 ) = β2W3b(m
P
3 , b

P
3 ) (14)

plus the budget equation. The envelope conditions are

WP
2m(m2, b2) = φ2c

0
2(h

P
2 ) = β2W3m(m

P
3 , b

P
3 )

WP
2b(m2, b2) = −(1 + r2)c

0
2(h

P
2 ) = (1 + r2)β2W3b(m

P
3 , b

P
3 ).

We cannot conclude here that (m3, b3) is independent of (m2, b2), as we could for subpe-

riod 1, where we had (m2, b2) independent of (m1, b1), since we are not necessarily assuming

quasilinearity here. Thus, if xC2 depends on (m2, b2) then so will (mC
3 , b

C
3 ), in general, unless

u2 is linear, and if hP2 depends on (m2, b2) then so will (mP
3 , b

P
3 ), in general, unless c2 is linear.

This actually does not make a big difference in equilibrium, since we already established that

(m2, b2) = (M, 0) for all agents. But even if, e.g., all consumers choose the same (x2,m2, b2), so

far we have nothing to say about the comparison of (m3, b3) across consumers, producers and

nontraders.

In any case, we can combine envelope conditions to write

W2m(m2, b2) = β2π[W3m(m
C
3 , b

C
3 ) +W3m(m

P
3 , b

P
3 ) +

1−2π
π W3m(m

N
3 , b

N
3 )] (15)

W2b(m2, b2) = β2(1 + r2)π[W3b(m
C
3 , b

C
3 ) +W3b(m

P
3 , b

P
3 ) +

1−2π
π W3b(m

N
3 , b

N
3 )] (16)

Again, note that the continuation value W3(m3, b3) does not depend on whether one was a con-

sumer, producer or nontrader in subperiod 2, except inasmuch as this affects the state (m3, b3).

2.3 Subperiod 3

In the evening, agents enter the decentralized market where trade occurs via anonymous bilateral

meetings. Here, we assume that trading is done via bargaining, but this is not restrictive: we
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could, instead, model this market using price taking or price posting, as in Rocheteau and

Wright (2005), or using auctions, as in Kircher and Galenianos (2006). Because of anonymity,

you cannot use credit: I will not take your promise for payment tomorrow because I understand

that you can renege without fear of punishment (Kocherlakota 1998; Wallace 2001).9 I will,

however, take cash. I will also take a check in the version of the model laid out in He, Huang

and Wright (2005), because there a check is a claim on your bank and not you personally (think

of travellers’ checks). Similarly, I would take a debit card, which is tantamount to cash. So you

can pay with money, or with money in the bank, but you cannot get credit.10

Before presenting the value functions, consider a single-coincidence meeting, where one agent

wants to consume and the other can produce. Call the former agent the buyer and the latter

the seller. They bargain over the amount of consumption for the buyer x3 and labor by the

seller h3, and also a dollar payment d from to the former to the latter. Since feasibility implies

x3 = h3 we denote their common value by q. If (m3, b3) is the state of a buyer and (m̃3, b̃3) the

state of a seller, the outcome satisfies the generalized Nash bargaining solution,

(q, d) ∈ argmax S(m3, b3)
θS̃(m̃3, b̃3)

1−θ s.t. d ≤ m3, (17)

where the constraint says the buyer cannot transfer more cash than he has, θ is the bargaining

power of the buyer, and

S(m3, b3) = u3(q) + β3W1,+1(m3 − d, b3)− β3W1,+1(m3, b3)

S̃(m̃3, b̃3) = −c3(q) + β3W1,+1(m̃3 + d, b̃3)− β3W1,+1(m̃3, b̃3)

9A question may arise why agents in the third subperiod cannot trade claims to the good in the first-subperiod

centralized market. We assume that these claims, even if they were issued by some entity in the centralized

market, could be counterfeited by agents in the decentalized market, while money can never be counterfeited.

This rules out the use of these claims, as sellers in the DM would not accept them.
10Since the model is highly stylized, it is not clear exactly what a credit card might be; whatever it is, it cannot

be used in this market. Although it is perhaps good to be agnostic about this, it is also good to have a story.

One story is that agents can produce fake credit cards. Note that fake debit cards are not possible, because these

involve instant settlement using money that is already on deposit at the bank. The same is true for travellers’

checks, or personal checks that are verified using a check card. The point is that although we think the model

captures nicely the distinction between cash and credit, one has to work a little to use it to discuss credit cards

and other means of payment.
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are the surpluses. A +1 in the subscript denotes next period. Using (4) and (5), the surpluses

simplify to

S(m3, b3) = u3(q)− β3φ1,+1d

S̃(m̃3, b̃3) = −c3(q) + β3φ1,+1d

Now the following result is a straightforward generalization of LW; see the Appendix for the

the proof.

Lemma 1. ∀(m3, b3) and (m̃3, b̃3), the solution to the bargaining problem is

q =

 g−1(β3m3φ1,+1) if m3 < m∗3
q∗ if m3 ≥ m∗3

and d =

 m3 if m3 < m∗3
m∗3 if m3 ≥ m∗3

(18)

where q∗ solves u03(q∗) = c03(q∗), the function g(·) is given by

g(q) =
θu03(q)c3(q) + (1− θ)u3(q)c

0
3(q)

θu03(q) + (1− θ)c03(q)
, (19)

and m∗3 = g(q∗)/β3φ1,+1.

Clearly, the bargaining solution (q, d) depends on the buyer’s money holdings m3, but on

no other element of (m3, b3) or (m̃3, b̃3); hence we write q = q(m3) and d = d(m3) from now

on. Of course, q and d at t also depend on φ1 at t+ 1, but this is left implicit in the notation.

We argue in the Appendix that, as in LW, m3 < m∗3 in any equilibrium. So from Lemma 1,

buyers always spend all their money m3 and receive q = g−1(β3m3φ1,+1). Notice g
0 > 0; thus,

if the buyer brings an additional dollar to this market, the terms of trade change according to

∂q/∂m3 = β3φ1,+1/g
0(q) > 0 and ∂d/∂m3 = 1.

Define

z(q) =
u03(q)
g0(q)

. (20)

As is usual in this type of model, it is useful to make the assumption that z0(q) < 0 (see e.g.

Rocheteau and Wright 2005). This assumption is not completely standard, as it involves third

derivatives of utility.11 We will not dwell on this here, except to say that conditions on preferences

11Since g depends on u03 and c03, g
0 depends on u003 and c003 , and the monotonicity of u

0/g0 depends on third

derivatives.

11



to guarantee that the assumption holds can be found in LW, and also to note that it always

holds (for any preferences) when θ ≈ 1, because at θ = 1, g(q) = c3(q) and z(q) = u03(q)/c03(q).

This completes the analysis of bargaining in a single-coincidence meeting. Let σ denote the

probability of such a meeting — i.e. the probability that two agents meet, one wants to consume

the other’s good but cannot produce, and the other can produce but does not want to consume.12

Given the above results, the value function W3(m3, b3) satisfies the Bellman equation

W3(m3, b3) = σ {u3[q(m3)]+β3W1[m3 − d(m3), b3]}
+σE {−c3[q(m̃3)]+β3W1[m3 + d(m̃3), b3]}
+(1− 2σ)β3W1[m3, b3], (21)

where E is the expectation of m̃3 (the money holdings of other agents, which may be nonde-

generate even though all agents carry the same amount of money out of subperiod 1, because

they may leave subperiod 2 with different amounts, depending on whether they are consumers,

producers or nontraders).

Differentiating (21), using the linearity ofW1 derived in (4) and (5), and q0(m3) = β3φ1,+1/g
0(q),

we have

W3m(m3, b3) = β3φ1,+1 {σz [q(m3)] + 1− σ} (22)

W3b(m3, b3) = −β3(1 + r1,+1), (23)

where z(q) is given by (20). Here (22) gives the marginal value of money in the decentralized

market as a weighted average of the values of using it in the decentralized market and of carrying

it forward to the next subperiod. According to (23), the marginal value of debt is simply the

value to rolling it over into subperiod 1 at t+1, since credit is not adjusted in the decentralized

market.
12 In general, in the standard version of the model with many specialized commodities, one interprets a single-

coincidence meeting as one where one agent wants what the other can produce, but not vice-versa. Since there is

only one good in this paper, we interpret it instead as a meeting where one agent wants to consume but cannot

produce, while the other can produce but does not want to consume. In the standard model, it is easy to allow

some double-coincidence meetings, where both agents want what the other can produce. Here we can similarly

allow some agents to both consume and produce in subperiod 3 — in which case they do not even need a meeting

— but it adds little of interest.
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2.4 Equilibrium

We now define formally an equilibrium. The definition is relatively standard, except that there

is no market-clearing condition for s = 3: since all trade is bilateral in this market, it clears

automatically. For similar reasons there are no market prices in subperiod 3: the terms of trade

are defined implicitly via the bargaining solution. Also, to reduce notation we describe every

agent’s problem at s = 2 in terms of choosing (x2, h2,m3, b3), although it is implicit that for

producers xP2 = 0, for consumers hC2 = 0, and for nontraders xN2 = hN2 = 0. Also to reduce

notation, we do not index individual objects by an agent’s identity i or his state, although agents

in different states generally make different decisions.13

Definition 1. An equilibrium is a set of (possibly time-dependent) value functions {Ws},
s = 1, 2, 3, decision rules {xs, hs,ms+1, bs+1}, s = 1, 2, bargaining outcomes {q, d}, and prices
{rs, φs}, s = 1, 2, such that:

1. Optimization: In every period, for every agent, {Ws}, s = 1, 2, 3, solve the Bellman equa-
tions, {xs, hs,ms+1, bs+1}, s = 1, 2, solve the maximization problem, and {q, d} solve the
bargaining problem.

2. Market clearing: In every period,

x̄s = h̄s, m̄s+1 =M , b̄s+1 = 0, s = 1, 2

where for any variable y, ȳ =
R
yidi denotes the aggregate.

Definition 2. A steady state equilibrium is an equilibrium where the endogenous variables are

consatnt across time periods (although not generally across subperiods within a period).

13We do not include the distribution of the state variable in the definition of equilibrium, but it is implicit:

given an initial distribution F1(m, b) at the start of subperiod 1, the decision rules generate F2(m, b); then the

decision rules at s = 2 generate F3(m, b); and the bargaining outcome at s = 3 generates F1,+1(m, b). Also,

we only consider interior equilibria, in the sense that h > 0, and if there is an upper bound for labor, say H,

then h < H. This is important because we cannot impose Inada conditions on utility of labor in the centralized

market, since utility is quasilinear in labor. It is possible instead to impose conditions on primitives to guarantee

interiority; see LW.
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We are mainly interested in equilibira where money is valued, and hence where it is valued

in all subperiods in every period, by the usual logic (if it is not valued at some point, then it is

never valued).

Definition 3. A monetary equilibrium is an equilibrium where, in every period, φs > 0, s = 1, 2,

and q > 0.

We now establish strong results about steady-state equilibria (we relax the steady state

condition below). First, however, recall that in equilibrium we impose that in subperiod 1, if

two agents have multiple solutions for b2 they choose the same one, which means b2 = 0. As

we discussed above, due to quasi-linear utility, there are other equilibria but they are payoff-

equivalent for individuals and observationally equivalent at the aggregate level. In these other

equilibria, b2 and h1 may be different for individuals, although not at the aggregate level, but

all other variables will be identical for every individual to what is described below.14

Theorem 1. In any steady state monetary equilibrium:

1. At s = 1, all agents choose x1 = x∗1, m2 =M , b2 = 0, and

h1 = h1(m1, b1) = x∗1 − φ1(m1 −M) + (1 + r1)b1,

which implies h̄1 = x∗1.

2. At s = 2,

consumers choose x2 = x∗2, m3 =M and b3 = x∗2;

producers choose h2 = x∗2, m3 =M and b3 = −x∗2;
nontraders choose m3 =M and b3 = 0.

3. At s = 3, in every trade d =M and q solves

1 +
ρ

σ
=

u03(q)
g0(q)

= z(q), (24)

where ρ is the rate of time preference defined by
1

1 + ρ
= β1β2β3.

4. Prices are given by:

r1 =
u02(x∗2)− β2β3

β2β3
, r2 =

ρ− r1
1 + r1

,

φ1 =
g(q)

β3M
, and φ2 =

φ1 [σz(q) + 1− σ]

1 + r1
.

14Recall that we also focus only on equilibria with interior solutions for hs.
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Proof : To begin, insert the envelope condition for W3b from (23) into the first order condi-

tions for consumers and producers with respect to b3, (10) and (14), to get

u02(x
C
2 ) = β2β3(1 + r1,+1) (25)

c02(h
P
2 ) = β2β3(1 + r1,+1). (26)

Hence, u02(xC2 ) = c02(hP2 ), and xC2 = hP2 = x∗2. Similarly, insert the envelope condition for

W3m from (22) in to the first order conditions for consumers and producers with respect to m3,

(9) and (13), to get

φ2u
0
2(x

C
2 ) = β2β3φ1,+1

©
σz
£
q(mC

3 )
¤
+ 1− σ

ª
(27)

φ2c
0
2(h

P
2 ) = β2β3φ1,+1

©
σz
£
q(mP

3 )
¤
+ 1− σ

ª
(28)

Given z(q) is decreasing and q(m) is increasing for all m < m∗3, and since xC2 = hP2 = x∗2, we

conclude that mC
3 = mP

3 .

Similarly, inserting the envelope conditions (23) and (22) into the first order condition for a

nontrader,

φ1,+1
©
σz
£
q(mN

3 )
¤
+ 1− σ

ª
= φ2(1 + r1,+1) (29)

Exactly the same condition results from combining (25) and (27) for a consumer, or (26) and

(28) for a producer. Hence, we conclude mN
3 = mC

3 = mP
3 =M , and everyone carries the same

amount of money into subperiod 3. From the budget equations, this means debt is given by

bC3 = x∗2 + (1 + r2)b2

bP3 = −x∗2 + (1 + r2)b2

bN3 = (1 + r2)b2.

This completes the description of subperiod 2. Moving back to subperiod 1, clearly (1)

implies x1 = x∗1. Inserting the envelope conditions for W2 and W3 into the first order conditions

(2) and (3) for m2 and b2, we have

φ1 = β1β2β3φ1,+1{σz[q(M)] + 1− σ} (30)

1 = β1β2β3(1 + r2)(1 + r1,+1), (31)
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where we have used in the first case that W3m depends on m3 but not b3, and everyone has the

same m3 = M . Notice that (31) is an arbitrage condition between r2 and r1,+1: if it does not

hold there is no solution to the agents’ problem at s = 1; and if it does hold then any choice of

b2 is consistent with optimization. Hence we can set b2 = 0 in any equilibrium. On the other

hand, (30) implies

(1 + ρ)
φ1

φ1,+1
= σz[q(M)] + 1− σ. (32)

In steady state this implies (24).

The only things left to determine are the prices. We get r1 from (25) with x2 = x∗2, and

then set r2 in terms of r1 to satisfy the arbitrage condition (31). Given q, Lemma 1 tells us

φ1 = g(q)/β3M , and (29) gives

φ2 =
φ1[σz(q) + 1− σ]

(1 + r1)
.

This completes the proof. ¥

We now consider the relative rates of return on money and debt. First notice that condition

(29) gives equality of values of a dollar taken out in liquid assets and a dollar taken out on credit:

the value of a dollar in liquid assets is equal to its rate of return plus the liquidity premium that

a consumer would get from spending it in the decentralized market. Suppose now that we do

not consider the liquidity premium, and consider only the pure rate or return on money relative

to debt. When a consumer in subperiod 2 at t makes a purchase, for every unit of the good he

buys, his debt goes up by 1 unit. In subperiod 1 at t+ 1, he pays it off (principal plus interest)

in the amount 1+r1,+1. Hence, the interest rate on consumer debt is r1,+1. In contrast, a dollar

is worth φ2 units of consumption in subperiod 2 at t, and worth φ1,+1 units of consumption in

subperiod 1 at t+ 1. Hence the rate of return on money over the same period is φ1,+1/φ2. We

now show that the rate of return on money is strictly less than the return on debt. That is, our

model generates rate of return dominance, and therefore, since the same consumer is holding

credit card debt and cash, our model generates the observation that has been called the credit

card debt puzzle. In the following argument we leave the time subscript +1, even though we

are (for now) focusing on steady states, because it facilitates the economic intuition, as in the

above discussion.
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1 2 3 1 2 3
t t+1 t+2

Buy on credit Pay off debt

Figure 1: Computing Relative Rates of Return in Theorem 2

Theorem 2. (Rate of Return Dominance) In any steady state monetary equilibrium,

φ1,+1
φ2

< 1 + r1,+1.

Proof : By (29),
φ1,+1
φ2

=
1 + r1,+1

1− σ + σz(q)
.

Hence we have the desired result if 1− σ + σz(q) > 1, or z(q) > 1. But by (24), in steady state

monetary equilibrium z(q) = 1 + ρ/σ > 1. ¥

We can, of course, also consider the relative returns on money and debt over an entire period.

From subperiod 1 at t to subperiod 1 at t + 1, the return on money is 1 in steady state, while

the cost of debt taken out in subperiod 1 is (1 + r2)(1 + r1,+1). We readily get from (31) that

(1 + r2)(1 + r1,+1) > 1 as long as β1β2β3 < 1, so the rate of return dominance holds across an

entire period as well. Since we have established, however, that noone borrows in subperiod 1,

this result is of less interest.

To summarize, note that point 2 in theorem 1, and theorem 2, give that in equilibrium

the observation known as the credit card debt puzzle arises. Consumers in subperiod 2 choose

m3 = M > 0 and b3 = x∗2 > 0, so in their portfolios we observe coexistence of debt and liquid

asset holdings, even though the cost of debt is strictly higher than the rate of return on money.

The reason consumers do this is because of the liquidity premium that holding money provides

by giving them purchasing power in the decentralized market.
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3 Discussion

The analysis is easily extended along a number of dimensions. First, in any equilibrium, and

not just in any steady state equilibrium, essentially everything in the previous Theorem is

true, except (32) does not reduce to (24). However, we can insert the bargaining solution

q = g−1(β3m3φ1,+1) from Lemma 1, which holds at every date in any equilibrium, to get

(1 + ρ)
g(q)

g(q+1)
= σz(q+1) + 1− σ. (33)

A monetary equilibrium is now any (bounded, positive) solution {qt} to this difference equation.
Now there typically exist many (bounded, positive) solutions to (33), and hence many non-

steady-state monetary equilibria, as is standard. However, in all of these equilibria, most of the

results in Theorem 1 still hold: in every period we still have x1 = x∗1 and b2 = 0, xC2 = x∗2,

bC3 = x∗2, hP2 = x∗2, bP3 = −x∗2, and bN3 = 0 for all agents, and at the aggregate level we still

have h̄1 = x∗1. Also, r1 and r2 are the same at every date as given in the Theorem, although φ1

and φ2 vary over time when q does. This is an another example of the dichotomy discussed in

Aruoba and Wright (2003): in the LW framework, one can solve for the real allocations in the

centralized and decentralized markets independently.15

Second, suppose M+1 = (1 + γ)M , that is, money supply is changing over time at constant

rate γ. Then we cannot have a steady state as defined above, but it is natural to look for an

equilibrium where all real variables are constant, including q and real balances φM . Inserting

this into (32), we have

(1 + ρ)(1 + γ) = σz[q(M)] + 1− σ.

Indeed, if we use the Fisher equation for the nominal interest rate, the left hand side is simply

1 + i, and so we have

1 +
i

σ
= z(q). (34)

Hence, q is decreasing in i and, therefore, γ. But again, this does not affect the real allocation

in the centralized market. Note also, that as is standard in these models, Friedman rule is the

lower bound on inflation, and it is also the welfare-maximizing policy. Comparing the above

15There are some extensions of the model where the dichotomy does not hold; see Aruoba, Waller and Wright

(2005).
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condition with (24), it is clear that with money supply growth, z(q) ≥ 1, which weakens the
strict inequality we get in the case with constant money supply. At the Friedman rule, the

relative returns of the two assets are equated, which means that, as is to be expected, the rate

of return dominance is maintained only away from the Friedman rule.

Third, it should be clear that it is no puzzle that some agents carry debt and cash simulta-

neously. In particular, consumers in subperiod s = 2 choose positive money and debt holdings.

Thus, we get co-existence, within any period, of liquid assets and consumer debt in their port-

folios. However, in this model, agents do not roll over debt across periods: they pay it off at

s = 1 in each the period. Nonetheless the model captures the idea in a straightforward way that

agents may have high-interest consumer debt but not want to part with their liquid assets: they

simply need the latter should they want to consume, in s = 3, when they cannot use credit.

Finally, this model may seem special in structure, but we think that it captures a general

idea that since consumers may find themselves in situations when they want to consume but

cannot use credit or get instant access to additional income, they will endogenously choose to

keep some of their wealth in liquid assets even at the cost of not paying down high-interest

debt. One of the ways that the model may seem special is the particular sequencing of markets:

market 1 is centralized with no double-coincidence problem, market 2 has a double-coincidence

problem, but since it is centralized, credit is possible, and market 3 has a double-coincidence

problem and is sufficiently decentralized that credit is not available. In the next section we

sketch a generalization that relaxes these strong assumptions and shows that the main results

still hold.

4 A General Model

In this section, we pursue two generalizations. First, we allow any number n of subperiods per

period, instead of only 3, and n may even change from period to period. Second, we allow

the decentralized market to be open in all but the first subperiod, simultaneously with the

centralized market, and have agents randomly transiting between markets: δs is the probablitiy

that an agent in the centralized market at s will find himself in the decentalized market at

s + 1.This means that when the centralized market meets in any subperiod, agents will have
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1 − δ1

1 2 3 ... n

Figure 2: Market Structure of the Simultaneous-Market Model

a demand for liquidity because they may not be able to use credit next subperiod. The only

special assumptions we make are: (a) at the end of subperiod n, all agents transit back to the

centralized market to start the next period there (δn = 0), but this is mainly for convenience

and is not critical; and (b) if an agent is in the decentalized market at s, then he returns to the

centralized market at s+ 1 with probability 1.16

At the beginning of period t, during subperiod 1, the centralized market is the usual fric-

tionless market from LW, with no double-coincidence problem. Again, here agents are assumed

to have preferences that are nonlinear in consumption, but linear in labor, and everyone can

produce output 1 for 1 with their own labor. In each of the subsequent subperiods s ∈ {2, ..., n},
the centralized market is in the spirit of the market at s = 2 presented before: we retain the

assumption that at least some of the consumers cannot produce. Here, the ability to pro-

duce is determined by a stochastic shock on productivity, denoted by ωs, where the subscript

s ∈ {2, ..., n} stands for the subperiod, and the t subscript is omitted. We have already assumed
above ε1 = 1.

The decentralized market that is open simultaneously during any subperiod (but the first)

is the standard LW decentralized market, where agents meet randomly, bargain, and trade

bilaterally. The meetings are, as always, anonymous, so credit cannot be used in this market.

As before, let us associate the value function Ws with the centralized market in subperiod s,

and the value function Vs with the decentralized market in subperiod s. Figure 2 demonstrates

the market structure that we have in mind.
16This assures that agents in the decentralized market are willing to spend all their money — they know that

next period they will be back in the centralized market where they can get more. We borrow this idea from

Williamson (2005).
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4.1 Subperiod 1

In the first subperiod, everyone solves the same problem, with the usual variables taken as states:

W1(m1, b1) = max
x1,h1,m2,b2

{U1(x1)− h1 + β1(1− δ1)EW2(ω2,m2, b2) + β1δ1V2(m2, b2)}
s.t. x1 = h1 + φ1(m1 −m2) + b2 − (1 + r1)b1

From this, we get the following first-order conditions:17

U1x(x1) = 1 (35)

β1(1− δ1)EW2m(ω2,m2, b2) + β1δ1V2m(m2, b2) = φ1 (36)

β1(1− δ1)EW2b(ω2,m2, b2) + β1δ1V2b(m2, b2) = −1. (37)

The envelope conditions are

W1m(ω1,m1, b1) = φ1 (38)

W1b(ω1,m1, b1) = −(1 + r1) (39)

So we have, again, linearity of the first-subperiod value function W1 in (m1, b1). Also,

everyone chooses the same x1 as the solution to (35). Finally, (m2, b2) is determined as the

solution to (36) and (37), independent of (m1, b1), which does not appear in these conditions,

as long as these conditions can be solved. This is the same as a standard LW model, and indeed

collapses to such a model when δ1 = 1. As in the LW framework ,we must look to future periods

in order to solve (36) and (37).

4.2 Subperiod s ∈ {2, ..., n}

In any subperiod s ∈ {2, ..., n}, agents in the centralized market solve the following problem,
where the current realization of the shock εs is also taken as a state:

Ws(ωs,ms, bs) = max
xs,hs,ms+1,bs+1

{Us(xs, hs) + βs(1− δs)EWs+1(ωs+1,ms+1, bs+1)

+ βsδsVs+1(ms+1, bs+1)}
s.t. xs = ωshs + φs(ms −ms+1) + bs+1 − (1 + rs)bs

17Note that just as before, we do not impose an explicit credit limit, but the assumption that everyone returns

to the first-subperiod LW centralized market at the beginning of each period again rules out Ponzi schemes, as in

the first model.

21



At the end of subperiod n, everyone must return to the standard LW centralized market again,

where preferences are quasilinear. The formulation of the problem at s = n is therefore a special

case, where δn = 0.

The first-order conditions of this problem in the centralized market are:

ωsUsx(xs, hs) + Ush(xs, hs) = 0 (40)

βs(1− δs)EWs+1,m(ωs+1,ms+1, bs+1) + βsδsVs+1,m(ms+1, bs+1) = φsUsx(xs, hs) (41)

βs(1− δs)EWs+1,b(ωs+1,ms+1, bs+1) + βsδsVs+1,b(ms+1, bs+1) = −Usx(xs, hs) (42)

Note that (35) from subperiod 1 is a special case of (40), where ω1 = 1 and U1h(x1, h1) = −1.
Similarly, (36) and (37) are special cases of (41) and (42) where U1x(x1, h1) = 1. The envelope

conditions are

Wsm(ωs,ms, bs) = φsUsx(xs, hs) (43)

Wsb(ωs,ms, bs) = −(1 + rs)Usx(xs, hs). (44)

which generalize (38) and (39). It is not at all obvious at this stage that Ws is linear in (ms, bs),

or that all agents choose the same

Meanwhile, agents who are in the decentralized market in any subperiod s solve a Nash

bargaining problem, where for simplicity we assume take-it-or-leave-it offers by buyers. Then,

ds must still satisfy ds = ms as before, while qs will solve

c(qs) = βsEWs+1[ωs+1,ms + ds, (1 + rs)bs]− βsEWs+1[ωs+1,ms, (1 + rs)bs] (45)

The value function in this market, given that seller’s surplus will be 0, is

Vs(ms, bs) = σ {u(qs) + βsEWs+1 [ωs+1,ms − ds, (1 + rs)bs]}
+(1− σ)βsEWs+1 [ωs+1,ms, (1 + rs)bs]

Thus, the envelope conditions are:

Vsm(ms, bs) = (1− σ)βsEWs+1,m [ωs+1,ms, bs(1 + rs)] + σu0(qs)q0(ms) (46)

Vsb(ms, bs) = βs(1 + rs)EWs+1,b [ωs+1,ms, bs(1 + rs)] . (47)
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We now use first-order and envelope conditions of the centralized and decentralized markets

in subperiod s to characterize the solution of the model. We proceed backwards, starting at

subperiod n. Recall that δn = 0. Thus, the first-order conditions for money and debt in the

centralized market are

φnUnx(xn, hn) = βnW1,+1,m(m1,+1, b1,+1)

Unx(xn, hn) = −βnW1,+1,b(m1,+1, b1,+1)

and using the envelope conditions (38) and (39), we get

φnUnx(xn, hn) = βnφ1,+1 (48)

Unx(xn, hn) = βn(1 + r1,+1). (49)

The envelope conditions for subperiod n are, predictably:

Wnm(ωn,mn, bn) = φnUnx(xn, hn) (50)

Wnb(ωn,mn, bn) = −(1 + rn)Unx(xn, hn) (51)

Observe that combining (50)-(51) with (48)-(49) gives that the subperiod-n centralized-market

value functions are again linear in the current portfolio variables. Finally, turning to the

subperiod-n decentralized market, using (45), the linearity of Wn in m as given by (38), and

the fact that ds = ms∀s, we get consumption in the decentralized market in this subperiod as
c[qn(mn)] = βnφ1,+1mn, which implies

q0n(mn) =
βnφ1,+1
c0(qn)

. (52)

In any subperiod prior to n, agents can go from the centralized market to either the central-

ized or the decentralized market. The first-order conditions for money and debt in subperiod

n− 1 become, after using envelope conditions of both markets and simplifying:

φn−1Un−1,x(xn−1, hn−1) = βn−1(1− δn−1)βnφ1,+1

+βn−1δn−1[(1− σ)βnφ1,+1 + σu0(qn)q0(mn)]

Un−1,x(xn−1, hn−1) = βn−1βn(1 + r1,+1)(1 + rn)
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The envelope conditions for the centralized market in n− 1 are as in any subperiod s, so we do

not reproduce them here. We now use (52) to simplify the first-order condition above to

φn−1Un−1,x(xn−1, hn−1) = [1− δn−1 + δn−1(1− σ)]βn−1βnφ1,+1

+ δn−1σβn−1βnφ1,+1
u0(qn)
c0(qn)

We can continue back in this fashion, which allows us to draw some general conclusions

about the characterization of the problem in any subperiod s. First, the first-order conditions

with respect to bs+1 give

Usx(xs, hs) = βsβs+1...βn(1 + rs+1)...(1 + rn)(1 + r1,+1) (53)

This makes clear that in any subperiod, the solution of the agent’s problem is independent

of his previous portfolio and shock history. Moreover, we can use this to derive the following

characterization of the decentralized-market problem:

c[qs(ms)] = φs+1βsβs+1...βn(1 + rs+1)(1 + rs+2)...(1 + r1,+1)ms, (54)

which can be used to simplify the first-order condition with respect to ms. Putting this simpli-

fication aside for the moment, we have the first-order condition with respect to money holdings

generalized as follows:

φsUsx(xs, hs) = βs(1− δs)φ2Us+1,x(xs+1, hs+1) (55)

+βsδs[(1− σ)βs+1φs+2Us+2,x(xs+2, hs+2) + σu0(qs+1)q0s+1(ms+1)] (56)

The decision on how much money to hold depends on the probabilities of participating in the

decentralized market in any of the subperiods that follow s. Using (53) we observe that this

decision does not depend on the current portfolio holding, since Us+1(·), Us+2(·) and qs+1(·) are
all independent of (ms, bs). This means that agents will all carry equal amounts of money, in

anticipation of possibly finding themselves in the decentralized market, and will transact in the

centralized market using credit only.

Thus, we have shown that neither the sequential setup of subperiods and markets initially

presented, nor the number of subperiods in a period are restrictive. Even if centralized and

decentralized markets operate simultaneously, with each agent having an idiosyncratic path
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through them, and with any number of subperiods in a period, we retain the essence of the

credit card debt puzzle in the model. Since we allow any number of subperiods within a period,

one could interpret this by thinking of a period as a month consisting of 30 or 31 day-long

subperiods. For 30 days, an agent can accumulate debt whenever he transacts in the centralized

market, and spend his cash whenever he finds himself in the decentralized market. On the first

day of the following month, he receives his paycheck and pays off his “credit card bill" in full,

but during the month, we observe the co-existence of the two assets in a household portfolio,

just as we did in the first version of the model, and the agent, in addition, revolves the debt for

the entire duration of the month.

5 Conclusion

In this paper, we re-visit the issue of co-existence of assets with differing returns, motivated

by the credit card debt puzzle - the empirical fact that many U.S. households simultaneously

hold significant credit card debt and significant liquid accounts in the bank. We build on recent

monetary literature with micro-foundations, in particular Lagos and Wright (2005), to introduce

the option of credit in trade. Taking seriously frictions that arise in some trades, we show that

existence of markets where the use of credit is precluded by anonymity and other features of

the environment will induce households to hold money even in the presence of other assets that

dominate it in return. We extend the basic model in several ways and show that this co-existence

is robust to many such extensions. We consider our theoretical contributions interesting in their

own right, in the context of the literature where rate of return dominance is a classic problem.

We also show that the credit card debt puzzle itself need not be puzzling once we take certain

trade frictions seriously.
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Appendix A Properties of the General Nash Bargaining Solu-

tion in the Decentralized Market

In this Appendix we do several things. First we derive the bargaining solution given in Lemma

1. The necessary and sufficient conditions for (17) are

θ
£
β3φ1,+1d− c3 (q)

¤
u03 (q) = (1− θ)

£
u3 (q)− β3φ1,+1d

¤
c03 (q) (57)

θ
£
β3φ1,+1d− c3 (q)

¤
β3φ1,+1 = (1− θ)

£
u3 (q)− β3φ1,+1d

¤
β3φ1,+1 (58)

−λ £u3 (q)− β3φ1,+1d
¤1−θ £

β3φ1,+1d− c3 (q)
¤θ

where λ is the Lagrange multiplier on d ≤ m3. There are two possible cases: If the constraint

does not bind, then λ = 0, q = q∗ and d = m∗. If the constraint binds then q is given by (57)

with d = m3, as claimed.

We now argue that m3 < m∗3. First, as is standard, in any equilibrium φ1,+1 ≤ (1 + ρ)φ1;

this just says the nominal interest rate i is nonnegative. In fact, again as is standard, although

we allow i→ 0, we only consider equilibria where i > 0, so that φ1,+1 < (1+ρ)φ1. Now suppose

m3 > m∗3 at some date for some agent. Since the bargaining solution tells us he never spends

more than m∗3, he could reduce m3 by reducing h1 at t, then increase h1 at t + 1 so that he

need not change anything else. It is easy to check that this increases utility, so m3 > m∗3 cannot

occur in any equilibrium.

Hence m3 ≤ m∗3. To show the strict inequality, suppose m3 = m∗3 for sme agent. Again he

can reduce h1 at t and carry less money. If he is a buyer in subperiod 3, he gets a smaller q, but

the continuation value is the same since by the bargaining solution he still spends all his money.

If he does not buy then he can increase h1 at t+1 so that he need not change anything else. It

is easy to check that the net gain from carrying less money is positive, exactly as in LW.
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