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Abstract

We study the implications of a particular form of irrationality on the
pricing behavior of firms in a monopolistic-competitive market with incom-
plete information. We assume that firms are overconfident, meaning that
they over-estimate their abilities to understand the correct model of the
economy. However, we allow firms to obtain information by paying a fixed
cost. We find two important implications: i) overconfident firms are less in-
clined to acquire information; ii) prices might exhibit excess volatility driven
by non-fundamental disturbances. We use our model to match some facts
related to recent empirical evidence on disaggregated price data for the US
economy.

∗We are grateful to Mike Woodford for useful discussions and comments and to seminar
participants at Columbia University, Federal Reserve Board of Governors and NYU.



Using micro data on consumer prices for the U.S. economy, Klenow and Kryvtsov

(2004), hereinafter KK, have documented that prices change frequently with an av-

erage absolute size of 8.5% on a monthly basis and that these frequent movements

are equally likely to be positive or negative in sign. In contrast, aggregate inflation

averages just at 0.6% over an horizon of 3 months. This evidence is an important

challenge for modelers of inflation dynamics, especially for those who believe that

nominal disturbances can have real and highly persistent effects on output. Indeed,

Golosov and Lucas (2004) have been able to match this empirical evidence with

a model in which pricing decisions are state dependent but subject to a cost of

changing prices. In their model the observed high volatility of prices is explained

by changes driven by highly volatile idiosyncratic productivity shocks. But, no

matter what the source and the size of the other disturbances in the economy, the

pricing decisions are dominated by the occurrence of this idiosyncratic component.

As a consequence, a nominal disturbance has negligible real effects on output since

it mixes up with the idiosyncratic shocks. To counteract this result, Gertler and

Leahy (2005) have shown that even a model with state-dependent pricing can be

consistent with important real effects of nominal disturbances.

In a recent work, Woodford (2002) has renewed interest on an alternative theory

of the real effects of monetary policy that originates from the Phelps (1970) and

Lucas (1972) hypothesis of decisionmakers that have imperfect information on the

nature of the disturbances that affect the economy. The important acumen of his

theory is to observe that it does not really matter whether information is publicly

available or not but what matters is the limited ability of agents to process available

information, as in the rational inattention theory of Sims (2003). The limited

processing ability leads to a “gap between reality and perception” (Woodford, 2002,

p.31), which can be modelled as if agents receive noisy signals about the shocks

of the economy. In particular, the hidden process of the stochastic disturbance

represents the objective “reality”, whereas the signals represent the “subjective

perception” of the decisionmakers (price-setters) and the “gap between reality and

perception” is the difference between the two.

When there is a “gap between reality and perception” and this gap is idio-

syncratic to each decisionmaker, then an important source of uncertainty is the

“perception” of others together with all their higher-order beliefs on them. The

slow adjustment of higher-order beliefs can produce real effects of a nominal shock
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that are highly persistent. The attractive feature of this theory is that it can justify

unequal adjustments of prices to different disturbances for the fact that decision-

makers can be more or less attentive to different disturbances. Along this line of

reasoning, Máckowiak and Wiederholt (2005) have been able to match the above-

mentioned empirical evidence in a model in which price setters have to dichotomize

their attention between an idiosyncratic productivity shock and an aggregate nomi-

nal shock. If the idiosyncratic disturbance is relatively more volatile, then they pay

more attention to it and therefore prices react more to these disturbances. On the

other side, when a nominal and less volatile disturbance perturbs the economy, de-

cisionmakers show rational inattention, which combined with the slow adjustment

of higher-order beliefs can produce highly persistent effects on output.

In the Woodford-Sims theory the “gap between reality and perception” is the

same whether one looks from the “reality” or the “perception” side of the world.

Decisionmakers have limited ability to process information but they are rational

in all other aspects. This assumption ignores the fact that decisionmakers may

exhibit various biases about their subjective perceptions.

We instead depart from a fully rational model. Our aim here is to explain

the excess volatility of prices documented by KK with price movements that fol-

low idiosyncratic non-fundamental noises in contrast with the other contributions

described above.1

In the Woodford-Sims theory, we assume that the “gap between reality and

perception” is smaller when one looks from the “subjective mind” of the deci-

sionmaker than from the objective “reality”. In practice, this translates into a

model in which price setters over-estimate their ability to understand “reality” by

overestimating the precision of their signals. This is overconfidence.

That overconfidence accords with “reality” is well documented by psycholog-

ical studies. For example, in a simultaneous study of US and Swedish drivers,

88% of the US group and 77% of the Swedish group asked believed that they are

safer drivers than the median (Svenson, 1981), or 90% of 168 federal magistrate
1A documented example is the following. Frozen concentrated orange juice in the US is for

the greatest part produced in Orlando, Florida. The most relevant fundamental variable that
changes on a day-to-day basis is then the weather around Orlando. Roll (1984) has shown that
weather surprises explain only a small fraction of the observed variability in futures prices and
on top of this no other demand or supply factors can be identified to explain more than a small

part of it.
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judges thought that they are above average as far as their reversal rate on ap-

peal is concerned (Guthrie, Rachlinski and Wistrich, 2001).2 Experimental studies

(see Soll and Klayman, 2004) have shown that subjective confidence intervals are

systematically too narrow given the accuracy of one’s information.3

A model with irrational behavior gives some degrees of freedom. In order

to bound it, we allow our price setters to pay a fixed cost in order to become

completely aware of “reality”.4 But who are going to be stuck with their own

perception of the world if not the ones that are overconfident and believe that the

“gap between reality and perception” is small? In consequence in our model a large

fraction of price setters is composed by inattentive and irrational decisionmakers.

Woodford’s theory then predicts that a nominal disturbance can have large and

persistent real effects.5 At the same time, the fact that the “gap between reality

and perception” is smaller in the “subjective mind” of the decisionmakers than

in “reality” helps to explain the high volatility of prices in an unrelated way to

fundamental disturbances. Indeed, overconfident decisionmakers place a lot of

weight on their subjective perceptions which include the under-estimated non-

fundamental noise.

We calibrate our model to be consistent with the mean and the variance of price

changes in the KK data. Moreover, we tight our parametrization to be compatible

with the persistence of the effects of nominal disturbances on output as found in

the VAR literature.

With rational price setters, our model implies that the average absolute size of

price changes is of the order of only 2%. But with overconfidence it increases up to

the value found in the data. In particular, for a reasonable degree of overconfidence

documented in experimental studies we find that the average absolute size of price
2See for example Compte and Postlewaite (2004) for further references.
3In finance researchers have analyzed the implications of overconfidence on the financial mar-

kets, see Daniel, Hirshleifer and Subrahmanyam (2001), Daniel, Hirshleifer, Teoh (2002) and
Scheinkman and Xiong (2003) among others.

4A recent related work is that of Reis (2005) in which he shows that information costs can
rationalize a model where fully rational price setters have different information sets as in Mankiw
and Reis (2002). However in his model information flows with delays while in our model, as in
the Sims’s theory, information flows in each period with a noisy channel.

5In a recent work Morris and Shin (2006) have emphasized that in models with forward-
looking expectations even the existence of a small fraction of uninformed agents about the future
path of fundamentals can generate persistence in the price behavior.
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changes is of the order of 4− 5%. This is quite a success for a model that does not
rely at all on idiosyncratic fundamental shocks.

The paper is structured as follows. Section 1 presents the static model under

full information. Section 2 discusses the incomplete-information model. Section

3 approximates and solves the incomplete-information model. Section 4 discusses

the price implications of the static model and the role of overconfidence. Section

5 extends the model to an infinite horizon. Section 6 performs the calibration

of the model and studies the success of the model in explaining the empirical

evidence. Section 7 presents some statistical tests to study whether overconfidence

is statistically detectable. Section 8 concludes.

1 Model

In this section, we present a partial-equilibrium model of price-setting behavior

in which firms have full information on the structure, parameters and variables

of interest.6 We consider a continuum of firms indexed by i on the unit inter-

val [0, 1]. Each firm produces a good that is differentiated in the preferences of

consumers. We do not explicitly model neither consumer preferences nor their

optimization problem. We just assume what is needed to characterize the price-

setting problem of firms. Firms are profit maximizers and set their prices in a

monopolistic-competitive market. The problem of a generic firm j is to choose the

price of its product P (j) to maximize real profits given by

P (j)

P
Y (j)− W

P
L(j) (1.1)

where Y (j) is the demand of good j given by

Y (j) =

µ
P (j)

P

¶−ε
Y (1.2)

that depends on the relative price of the good j with respect to the general price

index P given by

P =

∙Z 1

0

P (i)1−εdi

¸ 1
1−ε

(1.3)

6The model is similar to the one used in Ball and Romer (1989, 1991) and Blanchard and
Kiyotaki (1987).
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and on aggregate production Y .7 The parameter ε (with ε > 1) denotes the

elasticity of substitution across differentiated goods in consumer preferences. Firms

use labor L(j) to produce goods through the production function Y (j) = AL(j),

where A is a productivity shock common to all firms; W is the nominal wage paid

for one unit of labor in the labor market.

In this market (not modelled here) we assume that the labor-supply schedule

implies the following relation between real wage and aggregate production

W

P
= Y η (1.4)

with η > 0.8 We assume the existence of a monetary authority that has a perfect

control on the level of nominal spending in the economy. It follows that

M = PY (1.5)

where M , which may be labelled as money supply, is indeed controlled by the

monetary authority.

We can substitute (1.2), (1.4) and (1.5) into (1.1) to define a profit function of

firm j as

π(P (j), P, θ) ≡
∙
P (j)

P
− 1

A

µ
M

P

¶η¸µ
P (j)

P

¶−εµ
M

P

¶
. (1.6)

Profits of firm j are a function of the action (in game-theoretic sense) of firm j,

P (j), of the actions of all other firms synthesized by the index P and the vector

θ ≡ (A,M). Firm j is of measure zero with respect to the aggregate, so its pricing
decision does not affect the general price index P . We denote with P †(j) the

optimal price choice of firm j given by

P †(j) =
ε

ε− 1
P

A

µ
M

P

¶η

(1.7)

7In (1.3), we use the index i to emphasize that firm j is small with respect to the overall
market.

8This labor-supply schedule can be derived from the optimizing-behavior of households in a
general-equilibrium model. In particular, η would be a combination of the risk-aversion coefficient
in consumer preferences and of the Frisch elasticity of substitution of labor supply, or in case of
local labor market of ε as well. Assuming a more general labor-supply schedule does not change
the following analysis.
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which is just the familiar markup rule over marginal cost. Since the right-hand

side of (1.7) is independent of j, all firms set the same price. It follows that

P †(j) = P = P ∗ for all j where

P ∗ =

µ
ε

ε− 1
1

A

¶ 1
η

M.

For later use, we can use the definition of P ∗ to write (1.7) as

P †(j) = P 1−ηP ∗η. (1.8)

This rewriting shows that the parameter η determines whether price-setting de-

cisions are strategic complement (the case 0 < η < 1) or strategic substitutes

(η > 1). In the strategic-complement case, there is a positive elasticity between

the individual optimal price and the aggregate price level. The elasticity is negative

when pricing decisions are strategic substitutes.

2 Incomplete information

In this section, we formalize the incomplete-information version of the above model.

First, we assume that firms do not know the realization of the vector θ. In particular

we assume that θ belongs to a set of possible outcomes Θ and that each firm knows

that there is a probability distribution f(θ) over the possible outcomes.9 Each firm

can observe a signal sj that belongs to a set S. We model incomplete information

by assuming that each firm can only observe its own signal, which is then private

information.

Each firm believes that the signals are related to the possible outcomes θ

through a likelihood function l̃j(sj|θ) which might be specific to the firm j but

common knowledge to all firms. We call l̃j(sj|θ) the subjective likelihood function
to distinguish it from the objective likelihood lj(sj|θ) that characterizes the true
conditional probability distribution of signals. In this way we depart from full

rationality.10

9We are assuming that Θ is finite for the sake of the discussion.
10In the literature on ambiguity in the priors, see Gilboa and Schmeidler (1989), it is assumed

instead that there can be multiple likelihoods, whereas we assume a single likelihood, which may
not be the correct one though.
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Given its private signal sj, each firm can update its probability distribution

over the set of outcomes Θ using Bayes’ rule and obtain the posterior distribution

f̃ j(θ|sj) = l̃j(sj|θ)f(θ)P
Θ l̃

j(sj|θ)f(θ)
,

for each θ ∈ Θ. However the realization of θ is not the only element of uncertainty

in the profit function (1.6). Indeed profits depend also on the non-observable gen-

eral price index P , which consists of the non-observable prices chosen by other

firms and through them on the private signals of the other firms. Since the like-

lihoods and priors are all common knowledge, each firm can apply rules of condi-

tional probability to obtain the conditional probability distribution of other firms’

signals given the realization of its own signal. But this is not enough to characterize

all the relevant uncertainty since pricing decisions of other firms depend on their

beliefs about the signals of others as well as on the beliefs about others’ beliefs and

so on ad infinitum. As in a Bayesian game of incomplete information, each firm

is not only characterized by its private signal, but also by all the full hierarchy of

beliefs about others.

To define the objective function of firms in this incomplete-information game,

we need to specify a broader set of states of nature Ω whose element ω represents

the knowledge and the interactive beliefs of each firm.11 Each firm is then charac-

terized by a type tj belonging to a set T j and tj is related to ω through a function

τ(·) such that tj = τ j(ω).

Given this abstract formalization of the states of nature, each firm strategy can

be understood as a mapping of the form P (j) = P (tj) from the space of types to

the space of possible prices. Each firm can form a probability distribution p(ω|tj)
over the broader set of states of nature Ω conditional on being of type tj. We can

now write the objective function of a generic firm j as

Ej{π(P (j), P, θ)} ≡
X

{ω: (t̃−j ,θ̃)=(t−j ,θ)}

pj(ω|tj)π(P (j), P (t−j), θ), (2.9)

where t−j denotes all the other types of firms excluding firm j and with P (t−j) we

denote

P (t−j) =

∙Z 1

0

P (ti)1−εdi

¸ 1
1−ε

.

11We follow Battigalli (2003) in this construction.
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In a Bayesian equilibrium a firm of type tj chooses its action P (j) to maximize the

objective function (2.9) given the strategy of other firms. We denote this choice

by P̃ (j) and it satisfies

P̃ (j) =
Ej{P †(j)Z}
Ej{Z} , (2.10)

where Z is defined as Z ≡MP ε−2 and P †(j) is given by (1.8). In particular, P †(j)

denotes the complete-information price. Indeed this is the price that a generic

firm would set if it knew the realization of ω. But this price does not necessarily

coincide with the full-information price since it is not yet specified whether other

firms know ω. According to (2.10), when there is incomplete information, a generic

firm j sets its price as a subjective expectation (appropriately weighted) of the price

that would be set under complete information.

We enrich the above framework by allowing each firm to acquire complete

information on the state of the economy —i.e. to know the state ω. This process

of acquisition of information is costly: real profits are reduced by a fixed cost c̃j.

Moreover, this decision is conditional on the firm of being of type tj. In what

follows we label as ‘informed’ firms the ones that acquire information, while the

others are denoted as ‘uninformed’.

We have to specify the strategy of each firm in this modified problem. We can

compactly write the strategy as a mapping σ(·) that maps from the space T j of

types to the actions. It now involves two actions: the decision of whether or not to

acquire information and the price chosen following this decision. Note that when

informed a firm would set its price to P †(j). The expected profit function of a firm

j conditional of being of type tj is now

Ej{π(P (j), P, θ)} ≡
X

{ω: (t̃−j ,θ̃)=(t−j ,θ)}

pj(ω|tj)π(P (j),σ(t−j), θ).

A generic firm j of type tj chooses to acquire complete information when the

expected increase in profits in doing this is higher than the cost c̃j

Ej{π(P †(j), P, θ)− π(P̃ (j), P, θ)} ≥ c̃j. (2.11)

Indeed since the profit function is concave in the price P (j) then setting P (j) with

a finer knowledge of the state of nature does not worsen utility, so that the LHS

of the above expression is always non-negative. Having observed the realization of
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its own signal, a firm j evaluates the LHS of (2.11) and acquires information and

sets the price P †(j), if (2.11) holds, otherwise it chooses P̃ (j).

3 Approximation to the incomplete-information

model

In this section we solve the previous model in a log-linear approximation around

a steady-state in which θ = θ̄. As shown in the Appendix, a second-order approx-

imation to the objective function (2.11) leads to a criterion of the form

varj{p†(j)} ≥ cj, (3.12)

where varj{·} denotes the variance operator conditional on the subjective infor-
mation set, while p†(j) is the log of the price that firm j would set with complete

information and cj is a reparametrization of the cost c̃j. The decision of acquiring

or not information depends on whether the subjective variance of the price that a

firm sets under complete information is higher than the cost cj.

An important implication of the approximation taken is that (3.12) can be

evaluated using just a log-linear approximation to the equilibrium conditions. In

this log-linear approximation, equation (2.10) implies that the log of the price

under incomplete information is the expected value of the log of the price under

complete information

p̃(j) = Ejp†(j), (3.13)

where lower-case letters denote log of the respective variables.12 Moreover p†(j) is

independent of j and in a log-linear approximation to (1.8) is given by

p† = (1− η)p+ ηp∗, (3.14)

where p∗ is the log of the full-information equilibrium price level and p is given by

p =

Z 1

0

p(i)di

as a result of a first-order approximation of (1.3).
12In the steady-state all firms set the same constant price.
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Let us denote with µ the fraction of firms that in equilibrium decide to keep

the subjective information set and assuming without loss of generality that agents

j ∈ [0, µ] are the ones who remain uninformed, we can write the above equation as

p = µp̃+ (1− µ)p†, (3.15)

where we have defined with p̃ the average price of the subjectively-informed firms

as

p̃ ≡ 1

µ

Z µ

0

p̃(i)di. (3.16)

We can then plug (3.15) into (3.14) to obtain

p† = δp∗ + (1− δ)p̃, (3.17)

where

δ ≡ η

η + (1− η)µ
,

with δ a decreasing function of µ and η ≤ δ ≤ 1 in case of strategic complements
(η < 1) and δ an increasing function of µ with 1 ≤ δ ≤ η in case of strategic

substitutes (η > 1).

The set of equations (3.13), one for each firm that remains uninformed, together

with (3.16) and (3.17) determine the equilibrium prices of informed and uninformed

firms in a first-order approximation to the equilibrium conditions.

To solve for the equilibrium prices, we describe in details the information struc-

ture. First, we note that uncertainty about the vector θ has collapsed to uncer-

tainty about the full-information price p∗. We assume that p∗ is a random variable

of the form

p∗ = p̄∗ + u,

where p̄∗ is a constant and u is a Gaussian white-noise process with variance σ2u. It

follows that the prior distribution of p∗ is Gaussian with mean p̄∗ and variance σ2u.

These priors are common knowledge and correspond to the objective probability

distribution of p∗.13 Each firm receives a private signal sj that is linearly related

to p∗ as

sj = p∗ + ξj,

13In the non-linear model, these priors correspond to the assumption on the distribution f(θ).
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where ξj is an idiosyncratic Gaussian noise with mean zero and variance σ̄2ξ for

each j. Moreover ξj is statistically independent of u as well as of ξi for each i 6= j.
All this information is common knowledge. Instead, the realization of the signal

sj is private information.

In the previous section, we assumed that the subjective likelihood function

l̃(sjt |θt) can be different from the true likelihood through which signals are ex-

tracted. We capture this by assuming that the belief, σ̄2ξ, on the variance of the

noise ξj does not correspond to the true variance σ2ξ.

Given this information structure, each firm can form its own expectation of the

full-information price p∗ as in a standard signal-extraction problem

Ejp∗ = (1− r̄j)p̄∗ + r̄jsj, (3.18)

where the weight r̄j is defined as

r̄j = r̄ ≡ 1

1 + λ̄

with

λ̄ =
σ̄2ξ
σ2u
.

Since λ̄ is common and common knowledge across the different firms, then r̄j is

independent of j and equal to a common r̄. In particular λ̄ represents the noise-to-

fundamental variance ratio and can be interpreted as an index of confidence in how

a firm’s private signal is a good representation of the full-information price. Lower

values of λ̄ implies a higher weight to the signal when firms form expectations of

the full-information price and then a high degree of confidence on the subjective

information set. Since σ2ξ does not necessarily correspond to the prior σ̄
2
ξ, we define

a ‘true’ degree of confidence λ as

λ =
σ2ξ
σ2u
,

with a respective value for the weight r = 1/(1 + λ). When λ̄ < λ ( r̄ > r) firms

are over-confident and trust more their subjective perception of the world than in

the case they would have known the true likelihood. In the opposite case, there is

under-confidence.
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Each firm forms its own expectation of the signals of others as

Ejsi = Ejp∗ = (1− r̄)p̄∗ + r̄sj

which is then a first-order expectation belief.14 Furthermore, each firm can form

its subjective expectation of others’ first-order expectation belief as

EjEisk = Ej[(1− r̄)p̄∗ + r̄si] = (1− r̄)p̄∗ + r̄Ejp∗

and so on. We can construct all the hierarchy of expectation beliefs, first and

higher-order expectations as well as all the other relevant moments that identify a

generic type tj in the first-order approximation to the model.

To solve for the equilibrium prices of informed and uninformed agents and for

the equilibrium fraction of firms that acquire or not information, we first guess

that µ is known to each type tj. We then verify that this is indeed the case. Given

this guess, we can substitute (3.17) into (3.13) to get

p̃(j) = δEjp∗t + (1− δ)Ej p̃ (3.19)

which can be averaged across all uninformed price setters to obtain

p̃ = δĒp∗ + (1− δ)Ēp̃,

where we have defined the operator Ē(·) ≡ 1
µ

R µ
0
Ē(·)di which represents the aver-

age expectation among the uninformed firms. We can iterate the above expression

to obtain

p̃ = δ
∞X
k=0

(1− δ)kĒ(k+1)p∗, (3.20)

where the (k + 1)−order average expectation operator is defined as Ē(k+1)(·) ≡
Ē(Ē(k)(·)) for each k ≥ 1.15 It follows that the average price of uninformed

firms is a linear combination of their higher-order average expectations of the

full-information price. We can plug (3.20) into (3.19) to obtain

p̃(j) = δEjp∗ + δ(1− δ)
∞X
k=0

(1− δ)kEjĒ(k+1)p∗.

14See Allen et al. (2005) and Amato and Shin (2003, 2006) for examples of solutions of problems
with iterated expectations.
15Under the restriction that η(2µ− 1) < 2µ , δ is such that |1− δ| < 1.
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The price set by an uninformed firm depends on its own expectation of the full-

information price and its own expectation of the average expectation (of unin-

formed firms) of the full-information prices as well as on all higher-order expecta-

tions. Since (3.18) holds for all uninformed firms, we can obtain that

Ēp∗ = (1− r̄)p̄∗ + r̄p∗, (3.21)

where we have implicitly assumed that the law of large number holds on a positive

measure16
1

µ

Z µ

0

ξidi = 0. (3.22)

It follows that the firm i’s expectation of the average expectation of the full-

information price is given by

EiĒp∗ = (1− r̄)p̄∗ + rEip∗

= (1− r̄)p̄∗ + r̄(1− r̄)p̄+ r̄2si

from which it follows that the second-order average estimate is given

Ē(2)p∗ = (1− r̄)(1 + r̄)p̄∗ + r̄2p∗.

By re-iterating the above arguments, we get that the k-fold average expectation of

the full-information price is

Ēkp∗ = (1− r̄k)p̄∗ + r̄kp∗. (3.23)

We can substitute (3.23) into (3.20) to obtain

p̃ =
1− r̄

1− (1− δ)r̄
p̄∗ +

r̄δ

1− (1− δ)r̄
p∗

=
η(1− r̄) + (1− η)(1− r̄)µ

η + (1− η)(1− r̄)µ p̄∗ +
r̄η

η + (1− η)(1− r̄)µp
∗. (3.24)

Substituting (3.24) into (3.14) we obtain that the price set by any informed firm

is

p† =
(1− r̄)(1− η)µ

η + (1− η)(1− r̄)µp̄
∗ +

η

η + (1− η)(1− r̄)µp
∗. (3.25)

16See Uhlig (1996) for the conditions under which this holds.
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Given (3.25), it follows that a generic firm j decides to acquire information if the

following inequality holds∙
η

η + (1− η)(1− r̄)µ

¸2
varj{p∗} ≥ cj,

where varj{p∗t} is the variance of the full-information price level conditional on the
subjective information set of type tj. This is given by

varj{p∗} = σ2u(1− r̄j).

We can then write the above inequality as∙
η

η + (1− η)(1− r̄)µ

¸2
σ2u(1− r̄j) ≥ cj, (3.26)

where we have kept the distinction —since it matters for the discussion that follows-

between the own degree of confidence r̄j and the others’ degree of confidence r̄—

although we have assumed that they are the same.17

According to (3.26), several parameters of the model drive the incentives for

firm j to acquire information. The higher is the prior on the variance of the

full-information price, σ2u, the higher are the incentives to acquire information.

Obviously, the lower the cost cj, the higher those incentives. In the case of strategic

complementarity in the pricing decision, 0 < η < 1, the higher is the fraction of

firms that are acquiring information (i.e. the lower the µ) the higher are the

incentives for the individual firm to acquire information. This result is of the same

nature as the one found by Ball and Romer (1989) in a similar model but with

only imperfect information, in which firms’s decisions are on whether to change or

not prices.

Each firm’s decision is also influenced by the degree of confidence in the infor-

mativeness of the signal. If r̄j is high (λ̄j is low), i.e. it believes that the signal

conveys good information on the full-information price, it will not have incentives

to acquire finer information. A high degree of confidence implies that firms are

going to be stuck with their perceptions of the world when setting their prices.

Interestingly, if the confidence of others increases (λ̄ decreases and r̄ increases)

then the price under complete information has higher subjective variance since the
17Indeed, (3.25) could have been derived even if we didn’t have the same r̄i by defining r̄
≡
¡R µ
0
r̄idi

¢
/µ and by assuming a law of large numbers to hold for

R µ
0
ξir̄idi = 0.
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average price of uninformed firms is getting close to the full information price, as

shown in (3.21). Then, each individual firm has higher incentives to acquire infor-

mation and imitate other firms —when pricing decisions are strategic complements.

We move to characterize the equilibrium value of µ, under the assumption

r̄j = r̄ for each j. We define

c∗ ≡
"

η(1− r̄) 12
η + (1− η)(1− r̄)µ

#2
σ2u

and note that (3.26) implies that all firms with cj less than c∗ acquire information.

Assuming that the distribution of cj is common knowledge with a density function

f(cj) on a support [c
¯
, c̄], then the measure µ of agents that remain uninformed is

given by Z c̄

c∗
f(c)dc = µ. (3.27)

This solution confirms our initial guess that µ is a function of known parameters

and then known to each type tj. The properties of the distribution function f(·)
determines the existence and the characteristics of the equilibrium. Indeed when

cj = c for each j, multiple equilibria are possible for the same reasons as they

occur in the imperfect-information model of Ball and Romer (1989). For other

distributions f(·) multiple equilibria might disappear. Since this is not the focus
of this work, we assume that f(·) is such that there exists a unique equilibrium.
Using Leibniz rule and noting that c∗ = c∗ (r̄, µ (r̄)), we obtain that (3.27)

implies
dµ

dr̄
= −

f(c∗)∂c
∗

∂r̄

1 + f(c∗)∂c
∗

∂µ

. (3.28)

The denominator of (3.28) is positive when µ is a stable fixed point of the LHS

of (3.27).18 Moreover

dc∗

dr̄
=

η2σ2u
[η + (1− η)(1− r̄)µ]3

[−η + (1− r̄) (1− η)µ]

is negative for all η such that η > η̄ where η̄ is a function of r̄ bounded above by

1/2 and decreasing to zero when r̄ increases to one. It follows that for values of η
18The solution µ that we refer as stable is the one in which the LHS of (3.27), considered as a

function of µ, intersects the 45 degrees line with a positive slope less than unitary.
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in this range an increase in the degree of confidence (λ̄ decreases and r̄ increases)

raises the fraction of firms that remain uninformed.

In particular, overconfidence increases the equilibrium fraction of firms that

choose not to acquire information in comparison to the equilibrium fraction of

rational signal-extraction problem.

4 Price implications of incomplete information

and overconfidence

In the previous section, we have shown how to determine the fraction of firms that

in equilibrium decide to remain uninformed. A high degree of confidence under

standard regularity conditions implies a higher fraction of uninformed firms. In

this section we study the price implications of the model and in particular the

relation between excess volatility of prices and overconfidence.

A first important implication is that the model displays two levels of hetero-

geneity: at a first stage there are differences in prices between informed and unin-

formed firms, second, within uninformed firms, prices are related to the realization

of subjective signals. We can rewrite equation (3.25) and show that the price of

the informed firms is

p† = p̄∗ + (1 + λ̄)k̂u, (4.29)

where

k̂ =
r̄η

η + (1− η)(1− r̄)µ.

The prices of the informed firms react only to the fundamental shocks of the model.

On the opposite the uninformed firms set their prices as a subjective expectation

of p† , based on their signals which include also non-fundamental noises. We obtain

that a generic uninformed firm j sets

p̃(j) = p̄∗ + k̂u+ k̂ξj, (4.30)

while the average price of uninformed firms is given by

p̃ = p̄∗ + k̂u.
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We first discuss how prices react to fundamental shocks. Following (4.29) prices

of informed firms react less than proportionally to fundamental shocks when pric-

ing decisions are strategic complements, since (1 + λ̄)k̂ < 1, but more than pro-

portionally in the strategic-substitute case. As shown in (4.30), the response of

uninformed firms is always smaller than that of informed firms, since λ̄ > 0.

However, prices of uninformed firms react also to non-fundamental shocks, ξj,

in the same proportion as they do with fundamental shocks.

Overconfidence— modelled as the possibility that uninformed firms misinterpret

the model of the economy by using an incorrect likelihood — can affect the volatility

of prices. Using equation (4.30), we obtain that the “true” variance of prices for a

generic uninformed agent j is

var{p̃(j)} = (1 + λ)k̂2σ2u.

Equation (4.29) implies that the variance of the prices of informed firms is given

by

var{p†} = (1 + λ̄)2k̂2σ2u.

It follows that the ratio of the volatilities of prices of uninformed and informed

firms is given by

var{p̃(j)}
var{p†} =

"
(1 + λ)

1
2

(1 + λ̄)

#2
.

In a model in which there is no discrepancy between the “perception” and “reality”

so that the signal-extraction problem is rational (i.e. λ = λ̄), prices of uninformed

firms are always less volatile than informed firms. With overconfident firms, it is

instead possible for the reverse to happen. It is sufficient that (1 + λ̄) < (1 + λ)
1
2 .

In particular it is required to have that the true volatility of the idiosyncratic noise

σ2ξ is high enough with respect to the perceived σ̄2ξ.

A second important implication of overconfidence is that it is even possible to

have excess volatility of the price of an individual uninformed firm with respect to

the full-information (fundamental) price. Indeed we obtain that

var{p̃(j)}
var{p∗} =

"
ζ(1 + λ)

1
2

(1 + λ̄)

#2
where ζ is a positive parameter given by ζ = k̂/r̄ such that ζ < 1 (ζ > 1) when

pricing decisions are strategic complements (substitutes). To have excess volatility
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of the prices of uninformed firms with respect to fundamentals, it is required that

(1 + λ̄) < ζ(1 + λ)
1
2 which is then a more (less) stringent condition than before

when pricing decisions are strategic complements (substitutes).19

Overconfidence has two important roles in this model. On one side, it implies

that a higher fraction of firms is going to decide optimally not to acquire infor-

mation and just pay attention to their own perceptions. On the other side, the

prices of individual uninformed firms can be more volatile than fundamental dis-

turbances and this volatility can be mainly driven by the noise in the perception of

the full-information price. These two results prepare the stage for our explanation

of the high volatility of individual prices which is found in the data without neither

assuming high volatility of fundamental disturbances nor sacrificing persistence in

the response of prices to fundamental shocks—among which monetary shocks. In-

deed, in the dynamic extension of the above model, the fact that overconfident

price setters are less prone to acquire information implies that there can be a

high proportion of this kind of subjectively-driven price setters. Woodford (2002)

has shown that in this dynamic model higher-order expectations matter for deter-

mining persistent effects of output and prices following exactly those disturbances

to which agents are subjectively informed. On the other side, the existence of

subjectively-informed firms which are overconfident and have irrational beliefs can

produce in this context an excess volatility of prices with respect to fundamentals.

5 Infinite-horizon model

In this section, we consider an extension of the previous model to an infinite

horizon. We assume that each firm does not know the realization of the sequence

{θt}∞t=t0. However, each firm has a prior distribution on the sequence {θt}∞t=t0 that
coincides with the correct distribution and which is common knowledge. In each

period and contingency, each firm can observe a private signal sjt . In particular

the sequence of signals {sjt}∞t=t0 , one for each j, is related to the sequence {θt}∞t=t0
through a likelihood function which is known and common knowledge but, as
19Note that with no overconfidence (λ = λ̄) the ratio is always smaller that unity even in the

case of strategic substitutes (ζ > 1). This is clear if we note that k̂ = δ/(δ + λ) and that the
ratio is less than unity when Q (δ) = λδ2 − 2λδ − λ2 < 0, which holds for the permissible δ, i.e.
such that |1− δ| < 1.
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before, does not necessarily coincide with the correct likelihood function. As in

the previous model, incomplete information is modelled by assuming that each

firm knows only its own realization of the signals and not those of the others, as

well as not the price index and the individual prices. Each firm has the option to

acquire information on the states of nature — in the abstract sense as it applies to

the dynamic extension of the previous model. This can be done by paying a cost

c̃j which is known. Once the cost is paid the firm remains in the ‘informed’ state

forever, otherwise it continues to observe only its private signal and each period

decides whether to acquire or not information.

We assume that firms choose prices to maximize the expected discounted value

of profits given by

Ejt0

∞X
t=t0

βt−t0π(Pt(j), Pt, θt),

where β is such that 0 < β < 1.20 Ejt0 is the appropriate expectation operator

conditional on the information at time t0. Prices are set freely in each period. An

‘informed’ firm sets its price as

P †t (j) = P
1−η
t P ∗ηt

for each period t after having paid the information cost. An ‘uninformed’ firm

instead sets its price as

P̃t(j) =
Ejt {P †t (j)Zt}
Ejt {Zt}

,

where Zt has the same definition as before and the expectation operator is condi-

tional on the type tjt that a firm j has at time t.

To characterize the decision for a generic firm j to acquire or not information,

we guess an equilibrium and then verify that prices and information decisions

are consistent with that equilibrium. The analysis is simplified by noting that the

fraction of firms that remain uninformed each period cannot increase over time, i.e.

{µt}+∞t=t0 is a non-increasing sequence. Of the many equilibria that can exist, we are
interested in ones in which µt = µ for each t ≥ t0. In particular, in these stationary
equilibria, whichever firm decides to be informed does it in the first period. For

this to be optimal, the strategy of getting information in the first period should
20We can generalize the analysis that follows by assuming a stochastic discount factor to

evaluate real profits across contingencies and time.
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give higher expected discounted profits than the strategy of waiting until a generic

time T , given the equilibrium strategies of all other firms. In particular at time t0
the expected profits to acquire immediately information and pay the cost should

be higher than the strategy of remaining with the subjective information until a

generic period T and pay the cost in that period. For a generic firm j to become

informed at time t0, the following inequality should hold for each T > t0

Ejt0

T−1X
t=t0

βt−t0π(P̃t(j), Pt, θt)− βT c̃j ≤ Ejt0
T−1X
t=t0

βt−t0π(P †t (j), Pt, θt)− c̃j,

which can be rewritten

Ejt0

T−1X
t=t0

βt−t0
n
Ejt [π(P

†
t (j), Pt, θt)− π(P̃t(j), Pt, θt)]

o
≥ c̃j(1− βT ). (5.31)

We take a second-order approximation of the above problem around a station-

ary point with unitary relative prices to obtain

Ejt0

T−1X
t=t0

βt−t0varjt{p†t} ≥ cj(1− βT ).

We guess, and verify later, that in the equilibrium varjt{p†t} is a constant that does
not depend on j and is also independent of t in a stationary filtering problem. The

above condition then simplifies to

varjt{p†t} ≥ cj(1− β), (5.32)

which is also independent of T. It is then also easy to check that the condition

(5.32) with the reverse inequality is all that is needed to verify, in a second-order

approximation, that for a generic firm j it is always optimal to remain uninformed.

Then (5.32) for each firm j determines the equilibrium fraction of firms that remain

uninformed in equilibrium. We verify now that vart{p†t} is constant and that µ is
also a constant and known within the information set of each type of firm at time

t0. As before, we just need to characterize the equilibrium values of prices in a

log-linear approximation to the equilibrium.

It is still true that the set of equations (3.13), one for each firm that remains

uninformed, together with (3.16) and (3.17) determine the equilibrium prices of
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informed and uninformed firms in a first-order approximation to the equilibrium

conditions. We continue to assume that each firm receives a private signal sjt that

is related linearly to p∗t as

sjt = p
∗
t + ξjt , (5.33)

where ξjt is an idiosyncratic Gaussian noise with mean zero and variance σ2ξ for

each j. We assume that ξjt , for each j, is statistically independent of the sequence

{p∗t} as well as of the sequence {ξit} for each i 6= j. All this information is common
knowledge, but the realization of the private signal sjt is private information. As

before, we assume that the variance of the noises σ̄2ξ does not correspond to the

true variance σ2ξ. We allow now {p∗t} to be a first-order autoregressive stochastic
process of the form

p∗t = p̄
∗ + ρp∗t−1 + ut (5.34)

with |ρ| ≤ 1 where ut is Gaussian noise with mean zero and variance σ2u. The

assumption of persistence of the unobservable shock can in principle be a source of

complication in the solution of the model, for an infinite dimensional state might

be necessary to keep track of all the beliefs and higher-order beliefs of other firms.

Woodford (2002) has shown that the dimension of the hidden-state space is finite

in the same model as the one presented here but with all firms assumed to be

uninformed and no endogenous decision of acquiring information. Details of the

solution can be found in the appendix.

In this solution, the general price index evolves according to

pt = p̄
∗ + ρ(1− k̂)pt−1 + ρk̂p∗t−1 + [δ (1− µ) (1− k̂) + k̂]ut,

where k̂ is a parameter explained in the appendix.21 We obtain that the price of

informed firms follows

p†t = p̄
∗ + ρ(1− k̂)p†t−1 + ρk̂p∗t−1 + [δ(1− k̂) + k̂]ut, (5.35)

while the price of uninformed firms follows

p̃t(j) = p̄
∗ + ρ(1− k̂)p̃t−1(j) + ρk̂p∗t−1 + k̂(ut + ξjt). (5.36)

21The k̂ in the dynamic model is a different function of other parameters than the k̂ in the
static model. We use the same notation, since when ρ = 0 the two expressions coincide.
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As in the static model, p̃t(j) = E
j
t p
†
t so that subtracting (5.36) from (5.35) we can

obtain the evolution of the contemporaneous forecast error

p†t −Ejt p†t = ρ(1− k̂)(p†t−1 − Ejt−1p†t−1) + δ(1− k̂)ut − k̂ξjt
from which it follows that the contemporaneous variance of p†t in a stationary

solution is given by

varjt{p†t} =
1 + λ̄[1− ρ2(1− k̂)]2

[1− ρ2(1− k̂)2]
λ̄k̂2σ2u, (5.37)

where the static model is nested under the assumption that ρ = 0. We can now

evaluate (5.32). It follows that equilibrium fraction of uninformed firms is implicitly

defined by the same condition as (3.27) where now instead c∗ is given by

c∗ ≡ 1 + λ̄[1− ρ2(1− k̂)]2

[1− ρ2(1− k̂)2]
λ̄k̂2σ2u
(1− β)

. (5.38)

The main qualitative results of the static model hold in this extension with some

qualifications. Indeed it is still the case that overconfidence is needed for the

volatility of prices of uninformed to be higher than that of informed. Indeed

we show in the appendix that the ratio of the unconditional variances between

informed and uninformed firms is higher than the unitary value, i.e.

var{p̃t(i)}
var{p†t}

> 1 (5.39)

if and only if

λ > 2λ̄+ λ̄
2
[1− ρ2(1− k̂)2],

which nests the previous result. In this dynamic model, it does not only matter

the difference between the ‘true’ and the subjective degree of confidence, but also

other parameters. Indeed since k̂ < 1, the discrepancy between λ and λ̄ that is

needed in order to have excessive volatility of the uninformed prices is smaller

than in the static case. The reason is that the persistence of the shock process

makes past estimates useful to forecast the future evolution of the state. But this

leads to a larger reliance on their subjective perception (signals) and therefore,

comparatively to the static case, agents are driven more by their perceptions. As

a consequence, the amount of overconfidence needed to have excess volatility is

less. This is also the case if the mass of uninformed agents (µ) increases since k̂

becomes smaller and if the degree of strategic complementarity increases, i.e. η

becomes smaller.
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6 How much overconfidence is needed to match

the absolute size of individual price changes?

In this section, we aim at evaluating the empirical performance of the above model.

The objective is to be able to explain in a reasonable way the large absolute

price changes that KK found in the data. With reasonable we mean that our

model should be also consistent with some other moments of the data reported

in their study and at the same time require information costs which are in line

with other empirical studies. Moreover, we want to show that our explanation can

be consistent with a model that allows for a persistent response of output to a

nominal spending disturbance.22

Considered all together, these objectives are quite ambitious for a model that

has only one fundamental shock and does not make any use of fundamental idio-

syncratic disturbances. The only source of heterogeneity are the private signals of

the firms. In our model the only possibilities for increasing the size of the absolute

price changes are to increase either the degree of overconfidence in the signals or

the variance of the fundamental disturbance. By including other types of idio-

syncratic shocks we can in principle relax the amount of overconfidence needed

to explain the data and then be more successful, but at the cost of obscuring the

message of the previous model.

Moreover, there can be several other possible mechanisms through which prices

change that we have not analyzed in the previous model — again for the sake of

simplicity and tractability. Most important is the fact that indeed Bils and Klenow

(2004) found that prices are sticky with a median duration of 4.3 months. But in

our model firms change their price in each period, even if they have incomplete

information. Because of this negligence, we decide to measure the time period of

our model in quarters, during which we might reasonably assume that all the firms

had the time to adjust their prices. It is reasonable to think that the large absolute

price changes that KK document on a monthly basis can be smaller at quarterly

frequencies. This again would be an argument in our favor, since it is going to

require a lower degree of overconfidence.

The parameters of the model are (ρ, p̄∗,σ2u, λ̄,
λ
λ̄
, η, ε, F ), where F indicates the

22For calibration purposes we are going to treat the shock in the full infomation price as a
nominal spending shock.
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parameters that characterize the distribution of the costs. We calibrate ρ = 1 in a

way that our model can be consistent with a unit root in the general price index,

which is in general not rejected by the data.23 Under this assumption equilibrium

output in deviation from the steady state (i.e. yt ≡ lnYt/Ȳ ) follows the process

yt = (1− k̂)yt−1 + (1− c)ut,

where c = (δµ+1− δ)k̂+ δ(1−µ) and δ = η/(η+(1− η)µ). From this process we

can deduce that the half-life of the response of output to a nominal spending shock

is given by τ = − ln 2/ ln(1− k̂). Since we want our model to display a persistent
response of output and at the same time be consistent with all the other facts,

we assume that τ is equal to 4 quarters as it is suggested by the VAR literature

and which is a reasonable value according to the discussion of Woodford (2003, ch.

3). This assumption implies that k̂ = 0.159. Under the assumption of ρ = 1, the

process of the inflation rate is given by24

πt = k̂p̄
∗ + (1− k̂)πt−1 + cut − (c− k̂)ut−1. (6.40)

In their sample, KK find an average monthly percentage price change (excluding

sales) among firms that change prices of 1.11 % with a standard deviation of 1.14%.

This corresponds to a calibration of p̄∗ = 1.11 for the mean price change among

all firms in our model. Furthermore, their data on the variance of the inflation

provide an additional moment condition to match for the variance of the model

inflation rate, σ2π, which according to (6.40) is just a function of the form

σ2π = f(µ, k̂, η,σ
2
u) (6.41)

pinning down a relation between η, σ2u and µ for given k̂, σ
2
π.

Recent studies on the costs of price adjustment like Zbaracki et al. (2003) have

shown that managerial and customer costs of price adjustment constitute a large

fraction of firms profits. In fact, managerial costs (which refer to information gath-

ering, decision-making and communicating-to-sales-team costs) are 4.61% of the
23We have experimented with data on the non-shelter CPI for the sample period of KK

(1988:1-2003:4) and found that a null of a unit root in the price level cannot be rejected.
24Note that since the idiosyncratic noise washes out in the aggregate, the amount of overcon-

fidence doesn’t affect the aggregate dynamics of inflation and the relevant mean and standard
deviation.
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profits. We use this evidence to measure the costs of acquiring information in our

model. We parameterize parsimoniously the distribution of costs per period as a

fraction of steady state profits by assuming a uniform distribution with a minimum

cost of zero and a mean cost of 4.61%.25 Furthermore, we assume an elasticity of

substitution between the differentiated products ε = 6, which corresponds to a

markup under full information of 20%. Given these assumptions, and noting that

λ̄ = δ(1− k̂)/k̂2 equations (3.27) and (5.38) imply the following relation

g(µ, k̂, η,σ2u) = 0 (6.42)

which is then another implicit relation between η, σ2u and µ for given k̂.

The parameter η is critical for determining whether pricing decisions are strate-

gic complements or substitutes and plays a crucial role in determining the persis-

tence of the response of output to a monetary shock, as discussed in Woodford

(2003, ch. 3). Indeed, Woodford (2003, ch. 3) has shown that when a sufficient

degree of strategic complementarity is assumed, i.e. a low value of η around 0.15,

then a sticky-price model can account for a prolonged response of output. On

the opposite case, Chari et al. (2000) assume a value of η equal to 2.25, leading

to pricing decisions that are strategic complements and then have argued that a

sticky-price model is not able to generate enough persistence. In this work, we take

an agnostic view on η and experiment how our results may differ for a range of

values for this parameter. In particular, we report results for a range of η that goes

from the low number assumed in Woodford (2003, ch. 3) to the high number used

in Chari et al. (2000). Having fixed η, then equations (6.41) and (6.42) determine

µ and σ2u. We can determine δ and, bearing in mind that λ̄ = δ(1− k̂)/k̂2, we can
also determine the degree of confidence compatible with our calibration strategy.

Table 1 presents the results of the calibration and in particular how the para-

meters and the equilibrium fraction µ are influenced by the chosen value of η. We

observe that lower values of η require higher variance of the fundamental shock σ2u
to match the variance of price changes in the data and at the same time have the

model consistent with a half-life of 4 quarters and reasonable information costs.

However, the degree of confidence on the signals, which is λ̄, that measures how

good the signals are as a proxy of the fundamental shock, is low for low values of η.

This perhaps indicates that the model is more reasonable when η is in this range
25See details in the appendix.
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and a sufficient degree of price complementarity is assumed. Using η = 0.15 we

obtain that 83% of firms maintain a subjective information set when setting their

prices. This value decreases as η increases and reaches 57% when η = 2.25.

Table 1: Calibration and Equilibrium Fraction µ

η =0.15 η =0.5 η =0.9 η =1.1 η =1.5 η =1.9 η =2.25

p̄∗ 1.11 1.11 1.11 1.11 1.11 1.11 1.11

σu 4.234 2.97 2.310 2.131 1.903 1.764 1.678

λ̄ 5.81 20.6 31.20 35.05 41.07 45.53 48.62

µ 0.831 0.611 0.580 0.577 0.573 0.571 0.570

We then proceed to simulate the model in order to characterize the pricing

behavior of 20000 firms over the sample 1988:1-2003:4 as in KK. Over this sample,

we compute the same statistics that they report and in particular we focus on the

average over the sample and across firms of the absolute of the changes in the

individual prices for two subsequent observations. This statistic corresponds to

the statistic |dp| for regular prices of all items in their Table 1. By construction,
our simulations are in line with the statistics that they report on the mean and

variance of the price changes.26

Our results on the variable |dp| depend on the degree of overconfidence assumed.
We have defined overconfidence as the ratio λ/λ̄ which is equivalent to σ2ξ/σ̄

2
ξ, the

ratio of the true variance of the noise with respect to the perceived variance. We

choose as an index of overconfidence the parameter γ = σξ/σ̄ξ which then gives a

measure on how much the true standard deviation of the noise exceeds the believed

one. We repeat our simulations for the chosen values of η by letting γ varies from

1 to 8. In particular γ = 1 corresponds to the rational signal extraction problem.

The results are presented in Table 2.
26We have repeated the described simulation 1000 times to smooth out any influence of the

small sample on the results and we average the statistics across these repeated simulations.
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Table 2: Average absolute value of price changes (%) and overconfidence

η =0.15 η =0.5 η =0.9 η =1.1 η =1.5 η =1.9 η =2.25

γ = 1 1.83 2.012 1.99 1.97 1.95 1.94 1.93

γ = 2 2.75 3.02 2.89 2.86 2.8 2.76 2.73

γ = 3 3.80 4.05 3.86 3.79 3.69 3.63 3.59

γ = 4 4.88 5.13 4.83 4.73 4.6 4.51 4.46

γ = 5 5.98 6.21 5.81 5.68 5.52 5.40 5.33

γ = 6 7.07 7.28 6.79 6.65 6.43 6.30 6.21

γ = 7 8.18 8.37 7.77 7.60 7.36 7.19 7.08

γ = 8 9.30 9.45 8.76 8.56 8.28 8.08 7.96

Table 2 shows for each pair γ and η the average absolute value of price changes

(|dp|) implied by this model. The reference value is the 8.5% of KK. In a rational

signal extraction problem (γ = 1) we obtain a value close to 2%. But to match

their reported value we need a degree of overconfidence close to 7 or 8, which

can be considered as a large number. Indeed, experimental studies, like Soll and

Klayman (2004), have shown that on a series of questions where individuals are

asked to form an 80% confidence interval the actual hit rate is around 40%, which

can be translated in γ being approximately equal to 2.5.27 In more complicated

tasks, as forecasting the level of the exchange rate with a confidence interval of

90% (see Oberlechner and Osler, 2004), the hit rate ranges from 5% to 70% with

an average of 40%, rationalizing values of γ higher than 3. In general values from

2 to 4 can be considered as reasonable.

If we set our target less ambitiously and ask what is the implied |dp| for a degree
of overconfidence close to experimental evidence, we find that this can range from

3% to 5%, doubling the value under a fully rational model and being close to

explain more than the 50− 60% of the value found in the data.28 We think that

these results can be suggestive of the fact that the mechanism we underline can
27This value can be obtained by rough computation on confidence intervals for normal distri-

butions.
28As Table 1 shows, this result does not depend on the value of η assumed.
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be important to explain the excess volatility of prices —although we acknowledge

that there can be other important mechanisms from which we have abstracted in

this analysis.

7 Detecting overconfidence

One important objection against the above structure is that it is unrealistic to

think that firms can only observe their own signals. In reality, firms can gather

detailed information on the various components of their profits through which

they might be able to infer the structure of the economy and uncover the process

of the fundamentals. This objection misunderstands the essence of a model of

inattention as described in Sims (2003), since in his theory it does not really

matter the amount of information available but how this information is processed

by the decisionmakers. In reality, price setters are not even aware about the

structure of the model and in any case are in general unsure about the properties

and the characteristics of the processes that drive the economy. We interpret the

assumption that firms can only observe their own signals as a simple representation

of a more complicated world in which there are several dimensions of uncertainty.

The gap between the subjective signal and the fundamental shock is a measure of

the limitations that firms face in understanding completely the model economy.

Overconfidence means that decisionmakers in general over-estimate their ability to

understand the correct model.

In our model, decisionmakers are stubborn in their beliefs. Indeed, they do

not question at all the structure of the model and treat the parameters as fixed

and known. However, they are given a possibility to learn, but a fraction of them

optimally decide to remain subjectively informed, given their beliefs. In practice,

one reason for why people are overconfident is that there is confirmatory bias (see

Soll and Klayman, 2004) — the tendency to interpret the evidence in a way to

corroborate their own beliefs. If in our model firms were putting some uncertainty

on some parameters of the model or having multiple priors on them, their decision

process would have changed substantially from the one detailed in the previous

sections and there will be learning from the signal observation. These analyses,

although interesting, go beyond the scope of this work and will be subject of further

research.
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In this section that goes beyond the framework presented in the previous sec-

tions, we are interested to know how quickly an agent outside the model, that treats

the parameters of the stochastic process of the signals as fixed but unknown, would

detect that firms are overconfident. So think of having one classical statistician

per firm that collects period after period the realized signals and that tries to test

the beliefs of the firm. In particular, we assume that each statistician is sure that

(5.33) and (5.34) are correct and that ρ = 1 from which it follows

∆sjt ≡ sjt − sjt−1 = p̄∗ + ut + ξjt − ξjt−1

for each firm j. Given the vector of unknown parameters φ ≡ (p̄∗, σ2u, λ)
0 and

observations {∆sjt}Tt=1 for a sample of size T , each statistician can compute the
following log-likelihood

LL(φ | {∆sjt}Tt=1) = −T
2
(ln 2π + lnσ2u)−

T

2
ln(1/2 + λ+ 1/2

√
1 + 4λ)

− 1

2σ2u

1

(1/2 + λ+ 1/2
√
1 + 4λ)

TX
t=1

(∆sjt − p̄∗ + ξjt−1|t−1),

where the current forecast of ξjt , defined as ξ
j
t|t, can be obtained by the following

recursive relation

ξjt|t =
λ

(1/2 + λ+ 1/2
√
1 + 4λ)

(∆sjt − p̄+ ξjt−1|t−1),

for a given initial condition ξj0|0.

It is then possible to write the following likelihood ratio to test separately each

parameter

LR1 = 2[max
φ
LL(φ | {∆sjt}Tt=1)−max

p̄∗,σ2u
LL(p̄∗,σ2u,λ = λ̄ | {∆sjt}Tt=1)]

LR2 = 2[max
φ
LL(φ | {∆sjt}Tt=1)−max

p̄∗,λ
LL(p̄∗,σ2u = σ2u0 ,λ | {∆s

j
t}Tt=1)]

LR3 = 2[max
φ
LL(φ | {∆sjt}Tt=1)−max

λ,σ2u

LL(p̄∗ = p̄∗0,σ2u,λ | {∆sjt}Tt=1)]

where λ̄, σ2u0 , and p̄
∗
0 correspond to the values under the respective null. Each of

the above test statistics is distributed asymptotically as a χ2 distribution with 1
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degree of freedom. In particular LR1 tests whether the belief on λ, which is equal

to λ̄, is statistically significant; LR2 and LR3 test σ2u0 and p̄
∗
0, respectively. In the

above model, we assumed that the only element of irrationality is the degree of

confidence, so λ̄ does not correspond to the true λ while σ2u0 and p̄
∗
0 coincides with

the true parameter values.
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Figure 1: Rejection rate (%) for the null λ = 5.81 with significance level of 1%

(solid line) and 5% (dashed line).

Figure 1 (for LR1), 2 (for LR2) and 3 (for LR3) report the share of statisticians

that are rejecting the null hypothesis of each test respectively for T that goes from

1 to 61 quarters, as in the KK sample. We run the test for the parameter values

that correspond to the calibration when η = 0.15 (first column of Table 1) and for

a reasonable degree of overconfidence. In particular p̄∗0 = 1.11%, σu0 = 4.234%.

and λ̄ = 5.81, while the true λ is 16 times λ̄. In practice, with the first test we are
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Figure 2: Rejection rate (%) for the null σu0 = 4.234 with significance level of 1%
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testing when an index of overconfidence equal to 4 (the γ of the previous section)

becomes statistically detectable. In each figure, we present results for 1% and 5%

significance levels.29

As expected, the share of statisticians that rejects the null hypothesis in the

σ2u-test and p̄
∗-test is fairly low, since the null corresponds to the truth in these

cases. This is shown in Figures 2 and 3 respectively, where the share of rejections

is always below 10% for the σ2u−test and below 7% for the p̄∗−test.
Interestingly enough, it takes a considerable amount of time for the statisticians

to detect that the firms are overconfident. We observe in Figure 1 that for a 1%

significance level they start to reject only after the 25th quarter and the share rises
29We simulated the test 100 times. In each simulation we have 50 firms and the share reported

is the average fraction that rejects the null among simulations.
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Figure 3: Rejection rate (%) for the null p̄∗ = 1.11 with significance level of 1%

(solid line) and 5% (dashed line).

only up to 40% in the 61st quarter, whereas in the case of the larger critical region

which corresponds to a 5% significance level the share is just 25% in the 20th

quarter and rises to 65% in the 61st quarter. So despite the considerable amount

of overconfidence, the share of statisticians that would detect overconfidence is

practically very low.

8 Conclusion

In this paper, we have studied the behavior of individual and aggregate prices in

a model with monopolistic-competitive firms in an economy that is driven by a

hidden state process which is observed with noise. The subjective observation of

each firm is not common knowledge to all firms. Moreover, we have assumed that
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this subjective observation is not rational since firms are overconfident and believe

that their perceptions are a better representation of the hidden state than they are

in reality.

This model can rationalize a persistent response of output to a perturbation to

the aggregate hidden state and be consistent at the same time with excess volatility

of individual prices since firms pay a lot of attention to their subjective percep-

tions which include the underestimated noisy component. In our model, firms

can in principle choose to discover reality, but their overconfidence prevents them

from doing so. This irrational inattention model has then be used to match recent

empirical evidence on the behavior of disaggregated prices in the US economy with-

out necessarily assuming high volatility of fundamental aggregate or idiosyncratic

shocks.

There are several important assumptions in our stylized framework. Among

these is the fact that decisionmakers know (but do not observe) the true structure

of the model. What will happen when they doubt which model is going to be

unveiled once the noise disappears is the question we leave open for future research.

References

[1] Allen, Franklin, Stephen Morris and Hyun Song Shin (2005), “Beauty Con-

tests and Iterated Expectations,” Review of Financial Studies, forthcoming.

[2] Amato, Jeffery and Hyun Song Shin (2003), “Public and Private Information

in Monetary Policy Models,” BIS Working Papers No. 138.

[3] Amato, Jeffery and Hyun Song Shin (2006), “Imperfect Common Knowledge

and the Information Value of Prices,” Economic Theory, 27: 213-241.

[4] Ball, Laurence and David Romer (1989), “Are Prices too Sticky?” The Quar-

terly Journal of Economics, Vol. 104 No. 3, pp. 507-524.

[5] Ball, Laurence and David Romer (1991), “Sticky Prices as Coordination Fail-

ure,” American Economic Review, Vol. 81, pp. 539-552.

[6] Battigalli, Pierpaolo (2003), “Game Theory: Games with Asymmetric and

Incomplete Information”, lecture notes, mimeo, Bocconi University.

33



[7] Bils, Mark and Peter J. Klenow (2004), “Some Evidence on the Importance

of Sticky Prices,” Journal of Political Economy, Vol. 112, pp. 947-985.

[8] Blanchard, Olivier and Nobuhiro Kiyotaki (1987), “Monopolistic Competition

and the Effects of Aggregate Demand,” The American Economic Review, Vol.

77, No. 4., pp. 647-666.

[9] Compte, Olivier and Andrew Postlewaite (2004), “Confidence-Enhanced Per-

formance,” The American Economic Review 94: 1536-1557.

[10] Chari, V. V. and Patrick J. Kehoe , Ellen R. Mcgrattan (2000), “Sticky Price

Models of the Business Cycle: Can the Contract Multiplier Solve the Persis-

tence Problem?” Econometrica, Volume: 68, Issue: 5, pp. 1151 - 1179.

[11] Daniel, Kent, David Hirshleifer and Avanidhar Subrahmanyam (2001), “Over-

confidence, Arbitrage, and Equilibrium Asset Pricing,” The Journal of Fi-

nance, Vol. LXI, pp. 921-65.

[12] Daniel, Kent, David Hirshleifer and Siew Hong Teoh (2002), “Investor Psy-

chology in Capital Markets: Evidence and Policy Implications,” Journal of

Monetary Economics 49: 139-209.

[13] Gertler, Mark and John Leahy (2005), “A Phillips Curve with an Ss Founda-

tion,” mimeo, New York University.

[14] Gilboa, Itzhak, and David Schmeidler (1989), “Maximin Expected Utility

with Nonunique Prior,” Journal of Mathematical Economics 18: 141-153.

[15] Golosov, Mikhail and Robert E. Lucas Jr. (2005), “Menu Costs and Phillips

Curves,” mimeo, MIT.

[16] Guthrie, C., J.Rachlinski and A. Wistrich (2001), “Inside the Judicial Mind:

Heuristics and Biases,” Cornell Law Review, Vol.86, pp. 777-830.

[17] Klenow, Peter J. and Oleksiy Kryvtsov (2005), “State-Dependent or Time-

Dependent Pricing: Does it Matter for Recent U.S Inflation?” mimeo, Stan-

ford University.

34



[18] Lucas, Robert E., Jr., (1972), “Expectations and the Neutrality of Money,”

Journal of Economic Theory 4: 103-124.
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Appendix

Derivation of condition (3.12) from (2.11).

We first note that by using condition (1.7) we can rewrite marginal costs in

terms of the complete information price and by using also condition (2.10) we

can express the expected profits as functions of P †(j) and P̃ (j) and the variable

Z ≡MP ε−2 as it follows

Ej{π(P †(j), P, θ)} = 1

ε
Ej{

¡
P †(j)

¢1−ε
Z}, (A.1)

Ej{π(P̃ (j), P, θ)} = 1

ε
P̃ 1−ε(j)EjZ. (A.2)

We take a second order approximation of expected profits around a determin-

istic steady state where θ = θ̄ and as a result P = P † = P̃ ≡ P̄ . Let lowercase
variables denote log-deviations from the steady state and let kpk and kzk denote a
bound on the size of fluctuations for the price of each differentiated good and for

the variable Z respectively. We can obtain by approximating equation (A.1) that

Ej
©
π(P †(j), P, θ)

ª
=

1

ε
P̄ 1−εZ̄

∙
1 + (1− ε)Ejp† +

1

2
(1− ε)2Ej

¡
p†
¢2
+

+Ejz +
1

2
Ejz2 + (1− ε)Ejp†z

¸
+O(kp, zk3). (A.3)

Similarly by approximating equation (A.2) we obtain that

Ej{π(P̃ (j), P, θ)} =
1

ε
P̄ 1−εZ̄

∙
1 + (1− ε) p̃ (j) +

1

2
(1− ε)2 p̃ (j)2

+Ejz +
1

2
Ejz2 + (1− ε) p̃ (j)Ejz

¸
+O(kp, zk3).(A.4)

Note that P̄ 1−εZ̄ = M̄
P̄
= Ȳ and let

W (j) ≡ π(P †(j), P, θ)− π(P̃ (j), P, θ)

denote the difference in profits. Then using (A.3) and (A.4) we have

Ej{W (j)} =
ε− 1
ε
Ȳ

½
p̃ (j)−Ejp† + 1

2
(ε− 1)

h
Ej
¡
p†
¢2 − (p̃ (j))2i

−Ej[
¡
p† − p̃ (j)

¢
z]
ª
+O(kp, zk3). (A.5)
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Note that the price of the uninformed agents (1.1) in a first order approximation

is

p̃ (j) = Ejp† +O(kp, zk2). (A.6)

Furthermore, if we take a second-order approximation of it we obtain

p̃ (j)−Ejp† = 1

2
V arj

¡
p†
¢
+Ej

£
p† −Ejp†

¤
z +O(kp, zk3), (A.7)

where V arj(p†) ≡ Ej(p†)2− (Ejp†)2. Using (A.6) and (A.7) into (A.5) we observe
that the terms involving z cancel out and that Ej(p†2 − p̃(j))2 = V arj(p†), so

ignoring third order terms we obtain

Ej{W (j)} =
1

2

ε− 1
ε
Ȳ {V arj(p†) + (ε− 1)V arj(p†)}

=
Ȳ

2
(ε− 1)V arj(p†).

Thus firms acquire information if and only if

V arj
¡
p†
¢
≥ cj

where cj ≡ 2
Ȳ (ε−1) c̃

j which is expression (3.12) in the text. In the text, we also
denote with lower-case letters the logs of the respective variable.

Note that exactly the same calculations apply in the dynamic case, where each

variable is indexed with t. In this case the expected difference of profits at time t,

in (5.31), is equal to

Ejt {π(P †t (j), Pt, θt)− π(P̃t(j), Pt, θt)} =
Ȳ

2
(ε− 1)V arjt (p†t)

in a second-order approximation, where the expectation operator is conditional on

the private history of signals including time t. So V arjt (p
†
t) corresponds to the

subjective contemporaneous variance of p†t .

Derivations of (5.35) and (5.36).

We proceed using the method developed in Woodford (2002). We claim that

the relevant hidden state is

Xt =

"
p∗t
pt

#
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and guess that it evolves according to a linear law of motion

Xt = f +MXt−1 +mut, (A.8)

where

f ≡
"
p̄∗

p̄

#
, M ≡

"
ρ 0

a b

#
, m ≡

"
1

c

#
,

are vectors and matrices to be determined. Note that our variables of interest are

the prices of the informed firms which can be written as p† = η̄0Xt and that of the

uninformed which can be written as p̃t (i) = η̄0EitXt, where η̄
0 = (η, 1− η).

Let e1 = (1, 0)
0. We can write the following system

Xt = f +MXt−1 +mut

sit = e01Xt + ξjt

where the second line corresponds to the observational equation. We proceed

assuming a stationary filtering problem. The filtering equation of a generic unin-

formed firm j is given by

EjtXt = E
j
t−1Xt +K(s

j
t −Ejt−1p∗t ), (A.9)

where K is the vector of Kalman gains pre-multiplied with M−1. Using (A.8) we

obtain that Ejt−1Xt = f +ME
j
t−1Xt−1 and E

j
t−1p

∗
t = p̄

∗ + ρEjt−1p
∗
t−1; we can then

write (A.9) as

EjtXt = f +ME
j
t−1Xt−1 +K(s

j
t − p̄∗ − ρEjt−1p

∗
t−1).

Aggregating among all agents j that are uninformed and guessing that in equilib-

rium µ will be non-random (as in the static case) we obtain

ĒtXt = f +MĒt−1Xt−1 +K
¡
p∗t − p̄∗ − ρĒt−1p

∗
t−1
¢
,

= f +MĒt−1Xt−1 + ρK
¡
p∗t−1 − Ēt−1p∗t−1

¢
+Kut, (A.10)

which is the law of motion of the average estimate, where we have used the law of

large numbers.

Our target is to express the price level pt in terms of Xt−1. The general price

index can be expressed as a function of the full information price and average
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expectations as

pt = δ
£
(1− µ) p∗t + µĒtp∗t

¤
+ (1− δ) Ētpt

= (δµ, 1− δ) ĒtXt + δ (1− µ) p∗t
= (δµ, 1− δ) ĒtXt + δ (1− µ)

¡
p̄∗ + ρp∗t−1 + ut

¢
.

Using the law of motion (A.10) to substitute for ĒtXt and collecting terms we have

pt = [(δµ, 1− δ) f + δ (1− µ) p̄∗] + ρ
£
δ (1− µ) + K̄

¤
p∗t−1 + (δµ, 1− δ)MĒt−1Xt−1

−ρK̄Ēt−1p∗t−1 +
£
δ (1− µ) + K̄

¤
ut,

where K̄ ≡ (δµ, 1− δ)K. Finally, using the definition of M and Ēt−1Xt−1 and

noting that

(δµ, 1− δ) f + δ (1− µ) p̄∗ = δp̄∗ + (1− δ) p̄

we obtain that

pt = δp̄∗ + (1− δ) p̄+ ρ
£
δ (1− µ) + K̄

¤
p∗t−1 +

£
δµρ+ (1− δ) a− ρK̄

¤
Ēt−1p

∗
t−1

+(1− δ) bĒt−1pt−1 +
£
δ (1− µ) + K̄

¤
ut. (A.11)

Since

pt−1 = δµĒt−1p
∗
t−1 + (1− δ) Ēt−1pt−1 + δ (1− µ) p∗t−1,

we can use this expression to substitute for Ēt−1pt−1 in (A.11) and arrive at

pt = δp̄∗ + (1− δ) p̄+
£
δ (1− µ) (ρ− b) + ρK̄

¤
p∗t−1

+
£
δµ (ρ− b) + (1− δ) a− ρK̄

¤
Ēt−1p

∗
t−1

+bpt−1 +
£
δ (1− µ) + K̄

¤
ut. (A.12)

We note that (A.8) implies

pt = p̄+ ap
∗
t−1 + bpt−1 + cut. (A.13)

We can then match the coefficients between (A.12) and (A.13) and obtain

δp̄∗ + (1− δ) p̄ = p̄

δ (1− µ) (ρ− b) + ρK̄ = a

δµ (ρ− b) + (1− δ) a− ρK̄ = 0

δ (1− µ) + K̄ = c.
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Solving this system and using the definition of K̄ = (δµ, 1− δ)K, we get

p̄ = p̄∗

a =
ρ

δµ+ 1− δ
K̄ = ρη̄0K = ρk̂

since η = δµ/(δµ+ 1− δ) and k̂ ≡ η̄0K. Moreover

b = ρ− a = ρ
³
1− k̂

´
and

c = (δµ+ 1− δ) k̂ + δ (1− µ) .

The vector of (pre-multiplied) Kalman gains satisfies the equation

K = Σe1
¡
e01Σe1 + σ̄2ξ

¢−1
, (A.14)

where Σ is the variance of the one step ahead forecast error which satisfies the

following stationary version of the Riccatti equation

Σ =MΣM 0 +mm0σ2u −
¡
e01Σe1 + σ̄2ξ

¢−1
MΣe1e

0
1ΣM

0. (A.15)

Thus in our guess-and-verify approach we expressed M and m as a function of k̂

which depends on the vector of Kalman gains K which in turn depends on Σ. But

Σ depends on M and m by (A.15). So it remains to solve for this fixed point. Let

Σ =

"
σ11 σ12

σ12 σ22

#
.

Solving the upper left block of the Riccatti equation (A.15) we find that σ11 satisfies

the quadratic

σ211 +
£¡
1− ρ2

¢
σ̄2ξ − σ2u

¤
σ11 − σ̄2ξσ

2
u = 0.

The positive root (since σ11 is a variance) of this quadratic is

σ11 =
1

2
σ2u

½
1−

¡
1− ρ2

¢
λ̄+

q¡
1− (1− ρ2) λ̄

¢2
+ 4λ̄

¾
where λ̄ ≡ σ̄2ξ

σ2u
. From the lower left block of the Riccatti we derive

σ12 =
ρ2k̂σ11σ̄

2
ξ + (σ11 + σ̄2ξ)

h
(δµ+ 1− δ) k̂σ2u + δ (1− µ)σ2u

i
h
1− ρ2(1− k̂)

i
σ̄2ξ + σ11
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and -using (A.14)- we obtain

k̂ = η̄0K = η
σ11

σ11 + σ̄2ξ
+ (1− η)

σ12
σ11 + σ̄2ξ

.

This is a system of two equations in the two unknowns (σ12, k̂). Solving the system

and using our solution for σ11 we finally arrive at the quadratic expression for k̂

Q(k̂) = ρ2λ̄k̂2 +
£
λ̄
¡
1− ρ2

¢
+ δ
¤
k̂ − δ = 0. (A.16)

The discriminant of (A.16) is positive, so there are two real roots. Furthermore,

since Q (0) < 0 and Q (1) = λ̄ > 0, one is negative and the other positive and less

than unity. Note that subtracting pt from p∗t we get an expression for the output

deviation

yt = ρ(1− k̂)yt−1 + (1− c)ut,

since p∗t + ln Ȳ = lnMt = pt + lnYt. In order to have a stationary solution for

output we need
¯̄̄
1− k̂

¯̄̄
< |ρ|−1. It follows that k̂ should satisfy the restriction

1 − ρ−1 < k̂ < 1 + ρ−1. Since Q (1− ρ−1) = −ρ−1
¡
(ρ− 1)2 λ+ δ

¢
< 0, only the

positive root of the quadratic satisfies the restriction. Thus

k̂ =
1

2ρ2

⎧⎨⎩ρ2 − 1− δ

λ̄
+

s∙
(1− ρ2) +

δ

λ̄

¸2
+ 4ρ2

δ

λ̄

⎫⎬⎭ .
Having solved for the laws of motion of Xt and E

j
tXt, we can derive the laws

of motion of the prices of interest p† = η̄0Xt and p̃t (j) = η̄0EjtXt and obtain

expressions (5.35) and (5.36) in the main text, respectively.

Derivations of (5.37).

Defining qjt ≡ p†t − p̃t (j) = p†t −Ejt p†t we obtain

qjt = ρ(1− k̂)qjt−1 + δ(1− k̂)ut − k̂ξjt . (A.17)

At first notice that Ejt q
j
t = Ejt (p

†
t − p̃t(j)) = 0 and Ejt−1q

j
t = Ejt−1(p

†
t − p̃t(j)) =

Ejt−1p
†
t − Ejt−1Ejt p†t = 0. Calculating variances conditional on the private history

until last period we get

V arjt−1(q
j
t ) = ρ2(1− k̂)2V arjt−1(qjt−1) + δ2(1− k̂)2σ2u + k̂2σ̄2ξ .

42



Note that V arjt−1(q
j
t−1) = E

j
t−1(q

j
t−1)

2 = V arjt−1(p
†
t−1). Moreover, V ar

j
t−1(q

j
t ) =

Ejt−1(q
j
t )
2 = Ejt−1{Ejt (qjt )2} = Ejt−1V arjt (p†t) = V arjt (p†t), where the last step follows

from the non-randomness of the variances of the filter. The expression in the text

for the contemporaneous variance follows by using the stationarity of the filter and

the fact that (A.16) implies δ(1− k̂) = λ̄k̂[1− ρ2(1− k̂)].

Derivations of (5.39).

We will now proceed to derive the condition for excess volatility of the prices

of the uninformed firms. Taking unconditional variances in (A.17) we obtain that

var(qjt ) =
1

1− ρ2(1− k̂)2
[δ2(1− k̂)2σ2u + k̂2σ2ξ ].

Furthermore note that, since

var(qjt ) = var(p
†
t) + var(p̃t(j))− 2cov(p†t , p̃t(j))

and

cov(p†t , p̃t(j)) = cov(q
j
t , p̃t(j)) + var(p̃t (j)),

we have

var(p†t) = var(q
j
t ) + 2cov(q

j
t ,p̃t(j)) + var(p̃t(j)).

Dividing over var(p†t) we obtain

var(p̃t(j))

var(p†t)
= 1− var(q

j
t ) + 2cov(q

j
t , p̃t (j))

var(p†t)
.

So the ratio can exceed unity only if I ≡ var(qjt ) + 2cov(qjt , p̃t (j)) < 0. Note that

cov(qjt , p̃t (j)) =
1

1− ρ2(1− k̂)2
[ρ2(1− k̂)k̂ · cov(p∗t−1, qjt−1) + δ(1− k̂)k̂σ2u − k̂2σ2ξ ].

Using the law of motion for the full information price and qjt we derive that

cov(p∗t , q
j
t ) =

δ(1− k̂)σ2u
1− ρ2(1− k̂)

and plugging it in the previous expression we finally obtain

cov(qjt , p̃t(j)) =
1

1− ρ2(1− k̂)2

"
δ(1− k̂)k̂

1− ρ2(1− k̂)
σ2u − k̂2σ2ξ

#
.
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Therefore

I =
k̂2

1− ρ2(1− k̂)2

"
δ(1− k̂)
k̂

Ã
δ(1− k̂)
k̂

+
2

1− ρ2(1− k̂)

!
− λ

#
σ2u.

In order to have I < 0, we need

δ(1− k̂)
k̂

"
δ(1− k̂)
k̂

+
2

1− ρ2(1− k̂)

#
− λ < 0.

Using as before the fact that δ(1− k̂) = λ̄k̂[1− ρ2(1− k̂)] we derive the condition
(5.39).

Calibration of the information costs.

We convert the lifetime costs to costs per period by multiplying it by the factor

(1− β). The steady state real profits are π̄ = Ȳ /ε. Recall that

cj =
2

(ε− 1)
c̃j

Ȳ
.

Then the equilibrium fraction of uninformed agents is given by

µ = 1− Fr(cj ≤ c∗),

where Fr(cj ≤ c∗) measures the frequency (or the mass) of costs below c∗. In

particular

Fr(cj ≤ c∗) = Fr(cj (1− β) ≤ c∗ (1− β) = V arjt (p
†
t))

and

Fr

µ
c̃j (1− β)

Ȳ
≤ (ε− 1)

2
V arjt (p

†
t)

¶
= Fr

µ
c̃j (1− β)

π̄
≤ ε (ε− 1)

2
V arjt (p

†
t)

¶
.

Given our assumption of a uniform distribution for the costs as a fraction of steady

state real profits with minimum zero and mean 4.61%, it follows that

µ = 1− U
µ
ε (ε− 1)

2
V arjt (p

†
t)

¶
,

where U(·) is the corresponding c.d.f. This equation gives the implicit equation
(6.42).
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