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Abstract

What is the relation between infrequent price adjustment and the dynamic response of the

aggregate price level to monetary shocks? Caplin and Spulber (1987) provide a stark example

where the answer is “none.” It is well known that by relaxing their limit assumptions some price

stickiness is regained but, to our knowledge, there are no general results on this issue. In this paper

we study the relation between the frequency of microeconomic adjustment and aggregate price

flexibility in a generalized Ss setup. We show that for a wide class of Ss models, the aggregate price

level is approximately three times as flexible as the frequency of microeconomic price adjustment.

This rule of thumb carries over to the cyclical variation in aggregate flexibility: The degree of

price flexibility varies three times as much as the frequency of microeconomic adjustment over the

business cycle. We also show that in generalized Ss models, strategic complementarities reduce

aggregate price flexibility for any given frequency of microeconomic price adjustment, but less so

than in Calvo-type models.
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1 Introduction

Understanding the response of the aggregate price level to monetary shocks is among the

central questions in monetary economics. Since the origin of almost any aggregate nominal

rigidity is a microeconomic rigidity, there have been many studies documenting microeco-

nomic pricing behavior, in particular the frequency of microeconomic price adjustment. The

most recent and impressive effort is the set of country studies sponsored by the ECB’s In-

flation Persistence Network, summarized in Dhyne et al. (2006). Their main finding is that

the average duration of price spells in the euro area ranges from four to five quarters, which

is similar to the average duration found in the U.S. by Nakamura and Steinsson (2006).2

But what is the mapping from infrequent price adjustment to aggregate price stickiness?

We already know that the answer to this question can be surprising. Caplin and Spulber

(1987) construct an insightful example where there is no relation between both concepts.

They combine a one-sided Ss model of microeconomic price adjustment with a specific form

of asynchronous adjustment of individual prices (the assumption of a uniform cross-section),

and obtain an aggregate price level that responds one-for-one to monetary shocks. Thus there

is no aggregate price stickiness in their model—the impulse response is one upon impact and

zero thereafter—despite the fact that the frequency of microeconomic price adjustments

can take any value. Caballero and Engel (1991) extend this result to show that monetary

neutrality holds, on average, even if the cross section distribution of firms is not of the specific

form assumed by Caplin and Spulber. Again, there is no relation between the the frequency

of microeconomic price adjustments and the impulse response function.

In a related recent result, Golosov and Lucas (2006) show that the sluggishness of the ag-

gregate price response to monetary shocks is overestimated when approximating a menu-cost

model with a Calvo model, where adjustment is infrequent but uncorrelated with the size of

price imbalances. That is, the frequency of microeconomic price adjustments underestimates

the flexibility of the aggregate price level in Ss models. Similarly, Bils and Klenow (2004)

report that the flexibility of aggregated price series in U.S. retail data is significantly higher

than suggested by the frequency of price adjustments observed in microeconomic data: they

estimate a median monthly frequency of price adjustments of 0.21, while one minus the

first-order autocorrelation of the aggregate inflation series—a natural measure of aggregate

2Bils and Klenow (2004) find that average price spells in the U.S. are only half as long as in the euro area.
Henceforth we use the estimates in Nakamura and Steinsson (2006) as our reference case, since these estimates
are consistent with most of the existing empirical evidence documenting the frequency of microeconomic price
adjustments in the U.S. (see, e.g., Kashyap (1995)) and their correction for sales is more precise than the
one in Bils and Klenow (2004).
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price flexibility which in their Calvo setting should equal the adjustment frequency—is 0.80.

Aside from these illustrative examples, is there anything more general that can be said

about the connection between the frequency of microeconomic adjustment and the degree of

flexibility of the aggregate price level? We argue in this paper that the answer is yes, and

that there is a surprising (at least to us) “universal constant” relating these two concepts.

For a wide class of generalized Ss models, the aggregate price level is three times as flexible

as the frequency of microeconomic price adjustments.

The core of the paper derives this result and the intermediate steps to obtain it. We show

why, except for the Calvo model, the frequency of microeconomic adjustment is a downward

biased estimator of the degree of price flexibility. More precisely, we characterize price

flexibility in state dependent models and explain why it is larger than the flexibility of a Calvo

model with the same adjustment frequency. We also show that while Calvo overestimates

the degree of price stickiness for a given adjustment frequency, using Ss models with abrupt

adjustment thresholds overestimates the degree of price flexibility relative to empirically more

sound models with smoother adjustment. Away from these largely theoretical limits, the

relation between the adjustment frequency and the response of aggregate prices to monetary

shocks becomes more robust, yielding the rule of thumb described earlier.

We also show that our rule of thumb extends to the time-variation in the degree of

aggregate price flexibility. That is, given information about the time path of the frequency

of microeconomics adjustment, one can obtain an accurate approximation of the path of price

flexibility, without having to model the complex dynamics of cross section distributions in

state dependent models. In particular, the degree of price flexibility is approximately three

times as volatile as the frequency of microeconomic adjustments.

Finally, we show that adding strategic complementarities reduces aggregate price flexi-

bility for any given frequency of price adjustments, and that this effect is stronger in Calvo

type models than in generalized Ss models.

Section 2 revisits the Caplin and Spulber model and motivates, in a particularly simple

setting, the themes we cover later in the paper. Section 3 begins our study of the relation

of aggregate price flexibility and the frequency of microeconomic adjustment, considering

a simple extension of the Caplin and Spulber model that includes the Calvo model as a

limiting case. Section 4 is the core of the paper and describes the key results in the context

of a generalized Ss model. Section 5 characterizes the time variation in aggregate price

flexibility, with an application to U.S. prices. Section 6 adds strategic complementarities,

and Section 7 concludes.
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2 Caplin and Spulber Revisited

In this section we recreate the Caplin and Spulber (henceforth CS) result and use it to

motivate many of the topics we cover in later sections.

2.1 The Model

Let us focus on the aspects of the model which are relevant to our concerns, skipping the

derivation of the underlying microeconomic rules or a discussion of general equilibrium as-

pects, which are largely orthogonal to the issues we address (see, e.g., Stokey (2002) and

Dotsey, King and Wolman (1999) for useful references on the steps we skip).

Let pit and p∗it denote the (log of the) actual and target price, respectively, both for firm

i at time t.3 There exists a continuum of firms indexed by i ∈ [0, 1]. In CS there are no

idiosyncratic shocks and, leaving aside inessential constants:

p∗it = mt (1)

where mt denotes the (log of the) money stock. The sample paths of mt are continuous and

increasing.

Aggregate (log of) output, yt, is proportional to (the log of) real balances:

yt = mt − pt,

with the aggregate (log of the) price level, pt, defined as

pt ≡
∫

pitdi.

If there are no frictions in microeconomic price adjustment, pit = p∗it = mt, so that pt = mt

and money is neutral. Suppose instead that there is a fixed cost of adjusting individual prices

and hence firms adopt Ss rules in setting their prices. As usual, it is convenient to define a

state variable:

xit ≡ pit − p∗it.

The adjustment rule is such that when xit reaches s − S, the firm increases the price by

S−s. This large adjustment catches up with the accumulated monetary expansion since the

3In a model with stochastic adjustment costs, p∗it is defined formally as the price the agent would choose,
conditional on the current state of the economy, if its current adjustment cost draw is equal to zero.
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previous adjustment and anticipates some of the expansion that will take place before the

next adjustment (recall that p∗it is equal to mt plus some constants, which we have dropped

for expositional convenience; also, following the convention used in generalized Ss models,

we have x = 0 immediately after firms adjust their prices).

Firms’ adjustments are not perfectly synchronized in CS, because the initial cross-section

distribution of actual prices is non-degenerate. In particular, CS assume that the initial dis-

tribution of x is uniform over the entire (s − S, 0] interval. It turns out that under the

monotonicity and continuity assumptions for the sample paths of money, this uniform distri-

bution is invariant: While the position of individual firms in state space changes over time,

the cross-section distribution remains unchanged and uniform over (s − S, 0] (see Figure 1,

taken from CS, that illustrates the variation over time of r = x + S, for an agent i; note

that in the absence of idiosyncratic shocks, the distance between agents on the circle remains

unchanged).

Figure 1: The Caplin and Spulber Model

2.2 Main Result

The main result in CS is that in this context a small monetary expansion has no effect on

aggregate output, despite the fact that at any given instant most microeconomic units do

not adjust their prices. To see this result, note that a monetary expansion of ∆m triggers

the adjustment of ∆m/(S − s) firms, and each of these firms increases its price by (S − s).
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The change in the aggregate price level is simply the product of these two terms:

∆p =
∆m

S − s
(S − s) = ∆m (2)

and hence

∆y = 0.

The standard interpretation of this result is that aggregation erases the impact of microeco-

nomic stickiness. Our first point is that this interpretation depends crucially on the concept

of price stickiness we have in mind. If, at the micro level, this concept is defined in terms

of the frequency of price adjustments, then the statement is correct, since money is neutral

at the aggregate level despite the fact that most firms do not adjust their prices at the

micro level. Yet if we have in mind a more standard definition of stickiness, in terms of the

impulse response to monetary shocks, then the usual interpretation of Caplin and Spulber’s

money neutrality result changes dramatically, as now it reflects the absence of microeconomic

stickiness.

We support this claim in two steps. Consider first the price-response ∆pi(∆m,x) of a

representative firm i with state variable x to a small monetary shock of size ∆m. A shift of

x by ∆m leads to no adjustment if the firm is at a distance larger than ∆m from the trigger

barrier. Only if x is close enough to s − S does the firm adjust, from approximately s − S

to 0.4

Therefore:

∆pi(∆m, x) =


0, if x > s− S + ∆m,

S − s, otherwise,

and it follows that:

∆pi(∆m, x)

∆m
=


0, if x > s− S + ∆m,

(S − s)/∆m, otherwise.

To obtain a measure of microeconomic flexibility in terms of the impulse response func-

tion, we average this expression over all possible values of x. The obvious candidate to weigh

4Strictly speaking, the adjustment is from x − ∆m to 0, but s − S − x + ∆m is sufficiently small for
adjusting firms that s − S is a good approximation and simplifies the expressions. Of course, the limit as
∆m → 0 does not depend on this approximation.
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the different values of x is the average time-distribution (ergodic distribution) of the state

variable x for a given firm. Denoting this density by hE(x) we have:

∆pi

∆m
≡

∫ 0

s−S

∆pi(∆m, x)

∆m
hE(x)dx, (3)

It is intuitively obvious (for a proof see Section 3) that in CS the ergodic density for a given

firm is uniform on (s− S, 0], so that hE(x) is constant and equal to 1/(S − s).

The impulse response of Ss (and Calvo) type models typically decreases monotonically

and adds up to one because of long run neutrality. Thus, much of the persistence of the

IRF to monetary shocks is summarized by the initial response to such a shock. We therefore

define our main measure of microeconomic price flexibility as:

Fmicro ≡ ∆pi

∆m
.

It follows that:

Fmicro =

∫ s−S+∆m

s−S

S − s

∆m
× 1

S − s
dx = 1.

That is, if we keep track of a firm over time and draw the histogram of its marginal

responses to a monetary shock, ∆pit/∆m, most of the observations pile up at zero. Yet

a small fraction of observations pile up at (S − s)/∆m, corresponding to times where the

response to a monetary shock is much larger than one-for-one. The average value over time

of ∆pit/∆m is equal to one.

Property 1 (The IRF in Caplin-Spulber has no microeconomic price-stickiness)

There is no price stickiness at the microeconomic level in Caplin and Spulber. That is,

Fmicro = 1 in this case.

It is easy to extend the above result to the complete impulse response function (IRF),

beyond its first element. Denote by IRFmicro
k the average price response of a firm at time k

to a small monetary shock ∆m in period zero, normalized by the size of the shock. We then

have:

IRFCS,micro
k =


1, for k = 0,

0, for k ≥ 1.
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Thus, not only Fmicro, but any reasonable definition of price-flexibility based on the entire

IRF, assigns no microeconomic stickiness in the CS context.

The second step in our study of the IRF in Caplin and Spulber connects microeconomic

and aggregate price stickiness. It follows from our derivation of Caplin and Spulber’s result—

see equation (2)—that the aggregate response of the price level to monetary shocks is also

one-for-one upon impact and zero thereafter. This is the well known CS result. Our point,

however, is that the actual cross-section distribution has little to do with this result. Once

the model has no microeconomic stickiness, the macro result follows regardless of what the

cross-section distributions look like. We turn to this issue next.

2.3 Relation between Micro and Macro Stickiness

The result that micro and macro stickiness are the same is quite general and follows from

the Ergodic Theorem (see, e.g., Walters (1982)). We sketch the proof of this result next.

Given a cross-section f(x) for the state variable, we have that the aggregate price response

to a monetary shock ∆m is equal to (the superscript f indexes the cross-section distribution):

∆pf

∆m
≡

∫
∆pi(∆m, x)

∆m
f(x)dx. (4)

To obtain an aggregate measure of price flexibility, we need to average the above expression

over all possible cross-sections f(x): f1(x), f2(x), ..., fn(x).5

∆p

∆m
=

n∑
k=1

wk

[∫
∆pi(x, ∆m)

∆m
fk(x)dx

]
=

∫
∆pi(x, ∆m)

∆m

[
n∑

k=1

wkfk(x)

]
dx, (5)

where wk denotes the weight of the k-th cross section, with wk > 0 and
∑n

k=1 wk = 1.

Denoting the weighted average of all cross-sections by fA(x), we have:

∆p

∆m
=

∫
∆pi(∆m, x)

∆m
fA(x)dx. (6)

The measure of aggregate price flexibility analogous to Fmicro is defined as:

Fmacro ≡
∫

∆pi(∆m, x)

∆m
fA(x)dx. (7)

5The actual number of cross-sections is infinite and not countable, thus measure theory is required for a
formal statement and proof. We assume a finite number for illustrative purposes.
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Of course, no averaging is needed in the case of CS, since all cross sections in (5) are

the same in this case (and uniform on (s− S, 0]). More generally, however, such an average

exists under rather weak conditions and, by the Ergodic Theorem, is equal to the individual

firm’s ergodic density, hE(x), considered in (3). Since fA(x) = hE(x), comparing (3) and (6)

yields the following property:

Property 2 (Macro and micro price flexibility are always the same)

Macro– and microeconomic price flexibility, as measured by Fmacro and Fmicro, are the

same in any (stationary) macroeconomic model:

Fmacro = Fmicro.

Furthermore, a straightforward extension of the derivation of this result shows that, at all

lags, the macro impulse response function (averaged over all possible cross sections) is equal

to the micro impulse response function (averaged over all individual time-series) to a mon-

etary shock.

Our interpretation claim now follows from Properties 1 and 2:

Property 3 (The source of aggregate price flexibility in Caplin and Spulber)

When price stickiness is defined in terms of the impulse response function, the source of

aggregate price flexibility in Caplin and Spulber is the absence of stickiness at the microeco-

nomic level.

2.4 The Role of the Cross-Section

It is apparent from the previous property that the uniform cross-section distribution in CS

has nothing to do with the absence of aggregate price stickiness in their model. So what

is the role played by this assumption? The answer is that by choosing a distribution that

does not vary over time, CS ensured that the response of the economy to aggregate shocks

is the same at all moments in time. For most Ss-type models this is not the case, since

the cross-section varies endogenously over time, and so does any reasonable measure of price

flexibility (for example, the one defined in (4)). To illustrate this point, let us develop a

simple generalization of CS (see Caballero and Engel (1991) for more details).
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Consider the CS setting, except for the initial distribution of firms’ state variable, which

now covers only half the inaction range: the Ss bands are normalized to S − s = 2 and the

initial distribution is uniform on [−3/2,−1/2].

Figure 2: p and m in an extension of Caplin-Spulber
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The continuous line in Figure 2 depicts the evolution of the price level under the additional

assumption that m grows linearly over time. Initially, there is a period where no firm adjusts

its price and the aggregate price level does not change. Eventually, firms reach the trigger

level s − S and the aggregate price level rises twice as fast as money. After the last firm

adjusts, a new period without price adjustment begins, and so on.

We first note that the ergodic density for a single firm continues to be uniform on the

entire inaction range, (−2, 0]. Thus our measure of micro price-flexibility, Fmicro, is equal to

one as in the standard version of Caplin and Spulber, which from Property 2 implies that

Fmacro = 1 as well.

To evaluate macro price-flexibility conditional on a given cross-section distribution, we

first define a conditional flexibility index for a cross-section f(x) as:

Ff ≡
∫

∆pi(∆m, x)

∆m
f(x)dx.

Since in this case f varies over time, so does the conditional price-flexibility measure. In this
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example it only takes two values, each one of them half the time:

Ff =


0 when no firm is adjusting (f(−2+) = 0),

2 when some firms are adjusting (f(−2+) = 1).

2.5 Strategic Complementarities

The derivation above can be extended to the case with strategic complementarities. Equa-

tion (1) becomes:

p∗it = (1− a)mt + apt, (8)

where the parameter a ∈ [0, 1/2) captures the extent to which firms wish to coordinate their

prices. The larger a, the larger the incentives for firms to keep their prices in line with those

of other firms.

The aggregate change in prices during a small time unit ∆t is given by:

∆p = ∆p∗(S − s)f(s− S)∆t, (9)

where ∆p∗f(s− S)∆t is the fraction of firms that adjust and S − s the size of their adjust-

ments. Equation (9) extends (2) to this more general setting.

Substituting (8) in (9) and solving for ∆p leads to:

∆p =


0 when no firm is adjusting (f(−2+) = 0),

(2− 2a)µ∆t/(1− 2a) when some firm are adjusting (f(−2+) = 1).

Hence:

Ff =


0 when no firm is adjusting (f(−2+) = 0),

(2− 2a)/(1− 2a) when some firms are adjusting (f(−2+) = 1).

(10)

The dash-dotted line in Figure 2 depicts the evolution of the price level when a = 0.4.

Compared with the case without strategic complementarities (a = 0, continuous line), the

aggregate price level remains constant during longer periods of time. The flip side is that

when the aggregate price level increases, it does so at a faster rate, since a larger fraction

of firms adjust their price in any given time period. The longer periods of inaction and the
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shorter but brisker periods with price adjustments cancel each other out so that, on average,

the flexibility index F continues being equal to one.

Thus, what is special about CS within the class of one-sided Ss models is not that there is

no aggregate price stickiness. It follows from the Average Neutrality Result in Caballero and

Engel (1993a) that this is the case for a broad family of models of this type. Instead, what

is special about CS’s cross-section distribution is that it is invariant and hence the response

of the aggregate price level to monetary shocks does not vary over time. This observation

and the above extension leads to a claim we develop in Section 5: In most Ss models the

cross-section distribution is not invariant, and hence the degree of aggregate price flexibility

fluctuates over time. The robustness of our main conclusions (which are derived for the

a = 0 case) to strategic complementarities is considered in Section 6.

3 From Caplin-Spulber to Calvo

What relation should we expect between the price adjustment frequency and aggregate

price flexibility in menu-cost models? The one-sided Ss models described in the preceding

section are at one extreme, with total price flexibility at the aggregate level regardless of

the adjustment frequency. We argue next that the other extreme is the Calvo (1983) model,

where both concepts coincide and aggregate flexibility is equal to the adjustment frequency.

More generally, however, the answer is in between these two extremes.

In the CS model, the fraction of firms that adjust in one time period, henceforth the

frequency of adjustment index, is equal to

ACS =

∫ s−S+µ

s−S

1

S − s
dx =

µ

S − s
,

where µ denotes the money growth rate (assumed constant) and (s−S, 0] the inaction range.

The expression above assumes that the choice of units in which time is measured is such

that there are always firms that do not adjust within a given period (i.e., µ < S − s). By

contrast, as derived in Section 2, the price flexibility index FCS is one, to imply:

FCS > ACS.

Let us modify this model and assume that in addition to the trigger threshold s− S, there

is a strictly positive hazard λ that a firm adjusts at any point in time, regardless of its price
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imbalance x. Thus, we have a model that nests both Calvo and one-sided Ss models: As s

tends to minus infinity we obtain the Calvo model, while if we take λ = 0 we are back to

CS.

If f(x, t) denotes the cross-section density at time t, then

f(x, t + ∆t) = (1− λ∆t)f(x + µ∆t, t), s− S < x ≤ 0.

This follows from the fact that a necessary condition for a firm to have a price imbalance x

at time t + ∆t is to have a price imbalance x + µ∆t at time t and that the fraction of firms

at x + µ∆t at time t that reaches x at time t + ∆t is 1 − λ∆t—the remaining firms adjust

because of a Calvo-type adjustment shock. From the derivation of Property 2 we know that

the time-average of all possible cross-sections, fA(x), is equal to the ergodic distribution of

an individual price setter. Let us calculate this average, as it is the concept we need to

compute A and F .

Setting f(·, t + ∆t) = f(·, t) ≡ hE(·) = fA(·) in the expression above, using a first-order

Taylor expansion and letting ∆t → 0 leads to:

f ′A(x) = αfA(x),

with α = λ/µ. Imposing that the integral of fA over the inaction range is one, then yields:

fA(x) =
αeα(x+S−s)

eα(S−s) − 1
, s− S ≤ x ≤ 0. (11)

Choosing the unit with which we measure time small enough so that the probability of

two Poisson-shocks for the same firm in a given time-period is negligible, we have that the

fraction of firms that adjust in one time period is:

Fraction of adjusters = λ + (1− λ)FA(s− S + µ) (12)

where FA denotes the c.d.f. for fA. The first term on the right hand side is the fraction of

firms that adjust because of a Poisson shock. The second term considers, among those that

did not receive such a shock, the fraction that adjusted because their state variable reached

the trigger s− S. It follows that:

Fraction of adjusters ∼= λ + (1− λ)fA(s− S)µ, (13)
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and from (11) we have that:

Aλ = λ

(
1 +

1− λ

eα(S−s) − 1

)
. (14)

Hence, since the fraction of agents that adjust before reaching the CS-trigger s − S grows

with λ, the frequency of adjustment index Aλ increases monotonically with λ.

Once this Poisson term is introduced, when calculating the price-flexibility index F it

becomes useful to turn to discrete time as well. We then have (as the impulse ∆m tends to

zero):
∆pλ

∆m
∼= λ + (1− λ)fA(s− S)(S − s).

The first term on the right hand side is the marginal price increase because of the monetary

shock, for those firms with a Poisson-induced adjustment. The second term is the additional

contribution to inflation from firms that adjust because they reach the trigger barrier s−S.

It follows that:

Fλ ≡ ∆pλ

∆m
= λ + (1− λ)

α(S − s)

eα(S−s) − 1
. (15)

Since both terms on the right hand side are strictly positive when 0 < λ < 1, we have that

Fλ < 1 = FCS, 0 < λ < 1.

Furthermore, Fλ does not vary monotonically with λ. It is one for λ = 0 (the CS case) and

again one for λ = 1 (no micro frictions). It is decreasing for small values of λ and increasing

for larger values (see Figure 3).

This stark example illustrates the complex connection between aggregate flexibility and

the price adjustment frequency. Whether a decrease in the frequency of price adjustments

generates more price stickiness depends a great deal on where the decline in adjustments is

coming from. Or, using the Golosov and Lucas (2006) terminology, on the strength of the

selection effect. In the stark extreme of the CS model, where only the firms with largest

deviations adjust and only do so upwards, the selection effect is large enough to fully undo

any price stickiness that might have emerged as the frequency of price adjustments decreases.

Once we incorporate Poisson shocks into the CS environment, we have that, as expected,

the flexibility and frequency of price adjustment indices move in the same direction for large

values of λ: more firms adjusting means that the aggregate price level responds more to

shocks. Yet, as shown in Figure 3, which plots Fλ and Aλ as a function of λ for a given
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Figure 3: F and A for a Caplin-Spulber model with Poisson Shocks
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(s − S, 0] interval, for small values of λ both indices move in opposite directions. The

Poisson shocks weaken the selection effect, since now some of the firms that adjust are not

among those who benefit the most, but instead are chosen at random. For small values of λ

the weakening of the selection effect dominates over the standard positive relation between

adjustment frequency and flexibility.

This example also helps motivate a point we develop in a more general context in the

following section: The frequency of adjustment index is a lower bound for flexibility in Ss

models, and this lower bound is achieved only by the Calvo model.6 To see this, compare (14)

and (15), and recall that our choice of time period ensures that µ < (S − s) (also recall that

α = λ/µ). It follows that, for λ < 1,

Fλ > Aλ.

This example illustrates that one of the determinants of the difference between Aλ and Fλ

is the extent to which the selection effect applies. The larger the selection effect, the larger

the difference. As mentioned above, the Calvo model is obtained by taking the limit as s

6Recall that the Calvo model can be viewed as a particular case of a (generalized) Ss model (see the
following subsection), where the distribution of adjustment costs has mass λ at zero and 1− λ at infinity.
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goes to minus infinity, which yields (for all λ):

lim
s−→−∞

Aλ = lim
s−→−∞

Fλ = λ.

4 Generalized Ss Models

Let us generalize the model of the previous sections to consider a broader set of shocks and

adjustment rules. These extensions are more easily implemented in discrete time. Shocks

to the growth rate of money are i.i.d. with mean µ and variance σ2
A, and firms experience

idiosyncratic (productivity and demand) shocks vit which are i.i.d. with zero mean and

variance σ2
I . These shocks are independent across agents and from the aggregate shock.7

With these assumptions, the target price follows the process:

∆p∗it = ∆mt + vit.

With no further changes, and preserving the fixed cost of adjusting prices at the microe-

conomic level, this model typically yields a two-sided Ss policy (see, e.g., Barro (1972)).

We generalize it further and assume that there are i.i.d. idiosyncratic shocks to adjustment

costs as well, drawn from a distribution G(ω). Integrating over all possible realizations of

these adjustment costs, we obtain an adjustment hazard, Λ(x), defined as the probability of

adjusting—prior to knowing the current adjustment cost draw—by a firm that would adjust

by x if its adjustment cost draw were zero.8 Of course,

0 ≤ Λ(x) ≤ 1, ∀x.

It follows that for non-degenerate distributions G(ω), Λ(x) is decreasing for x < 0 and

increasing for x > 0: the cost of deviating from the target price is increasing with respect to

the distance from this price and therefore adjustment is more likely when |x| is larger. This

is the increasing hazard property.

Denoting by f(x, t) a cross section immediately before adjustments take place at time t,

7When simulating the model we assume that the distribution of aggregate and idiosyncratic shocks are
normal, but we could use some other distribution as well, as in Midrigan (2006).

8See Caballero and Engel (1999) for a detailed discussion of such a model, Dotsey, King and Wolman
(1999) for an application to prices in a dynamic general equilibrium context, and Caballero and Engel (1993b)
for an estimation of a generalized hazard model for prices.
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we have:

∆pt = −
∫

xΛ(x)f(x, t)dx.

The smoothness properties of this adjustment hazard, which is not present for conventional

Ss models, is quite useful in our derivations below.

Let hE(x) denote the ergodic distribution of x for an individual firm; then the frequency

of adjustment index is:

A =

∫
Λ(x)hE(x)dx.

In what follows we study the relation between the adjustment frequency and flexibility as

we vary the underlying parameters (µ, σA, σI and G(ω)) and therefore the shape of the

adjustment hazard and the ergodic density.

4.1 A Basic Inequality

Let ∆p0(∆md) denote the average (over all possible cross-section distributions) inflation

response to a monetary deviation of ∆md from its average growth rate. It follows that the

first element of the impulse response function with respect to this shock is our flexibility

index:

F ≡ ∆p′0(∆md = 0).

To obtain a useful expression for F we note that:

∆p0(∆md) = −
∫

xΛ(x)fA(x + ∆md)dx = −
∫

(x−∆md)Λ(x−∆md)fA(x)dx. (16)

Differentiating this expression with respect to ∆md and evaluating at ∆md = 0 yields:9

F =

∫
Λ(x)fA(x)dx +

∫
xΛ′(x)fA(x)dx (17)

and therefore (recall that fA(x) = hE(x))

F = A+

∫
xΛ′(x)fA(x)dx. (18)

It follows that:

9Differentiating under the integral requires that xΛ(x)f(x) be continuous, see the Appendix for details.
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Property 4 (Flexibility and adjustment frequency are the same in the Calvo model)

In the Calvo model, where Λ′(x) = 0, we have

FCalvo = ACalvo.

More importantly, it also follows that:

Property 5 (The adjustment frequency is a lower bound for flexibility)

In any increasing hazard model:

F > A.

Proof The increasing hazard property states that Λ′(x) > 0 for x < 0 and Λ′(x) < 0 for

x > 0.10 It follows that xΛ′(x) > 0 for all x, and therefore
∫

xΛ′(x)f(x)dx > 0 and F > A.

Figure 4: F and A and the steepness of Λ(x)
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The term
∫

xΛ′(x)fA(x)dx quantifies the importance of the selection effect. It depends

on how increasing the hazard is (captured by the term xΛ′(x)), and on how much weight

the cross section gives to the larger values of |x| (captured by fA(x)).

10This result also holds if we work with the weaker concept of “increasing hazard property”, according to
which Λ(x) satisfies this property if Λ′(x) ≤ 0 for x ≤ 0 and Λ′(x) ≥ 0 for x ≥ 0, with strict inequality on a
set with positive measure (under the model’s ergodic density).
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Figure 4 shows how A and F vary when the steepness λ2 of a quadratic hazard, Λ(x) =

λ2x
2, increases.11 Larger values of λ2 imply that firms are more likely to adjust for a given

imbalance x, and therefore the frequency of adjustment index increases as λ2 grows. Figure 5

illustrates the impact of increasing the standard deviation of shocks while keeping the hazard

fixed.12 As σ ≡
√

σ2
A + σ2

I increases, the fraction of firms adjusting increases as well, since

firms move faster to regions with higher values of Λ(x); this explains why A increases with

σ.

Figure 5: F and A as function of the volatility of shocks
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In addition to the specific patterns of these figures, there is a common feature worth

highlighting: Not only does flexibility F increase together with A, it also grows much faster

than A. In fact, in the next section we show that there is a sort of “universal constant” that

relates F and A.

11Parameter values correspond to Model 1 estimated in Section 4.3.
12Parameter values are those from Model 3 estimated in Section 4.3. Also note that in our setting it does

not matter whether we vary the idiosyncratic or aggregate variance of innovations. The relevant measure is
σ ≡

√
σ2

A + σ2
I . This follows from Property 2, since σ is the relevant measure of volatility when calculating

the individual firm’s ergodic density.
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4.2 A Rule of Thumb

Knowing that for all Ss models F > A is of limited use without an estimate of the difference,

that is, without a way to gauge the importance of the selection effect. Furthermore, a priori

it would seem that this difference could depend on intricate properties of the particular Ss

model under consideration, making a robust estimation of the difference between both indices

rather difficult. Contrary to our priors, we find a simple rule-of-thumb that works well in

a wide variety of realistic scenarios. This rule can be used to gauge price flexibility based

on little more than an estimate for the frequency of price adjustments. This is good news,

since recent work has provided estimates for the latter based on detailed microeconomic

information.13

To motivate our rule of thumb, we note that from (17) we have:

F =

∫
Λ(x)

[
1 +

xΛ′(x)

Λ(x)

]
fA(x)dx =

∫
Λ(x) [1 + η(x)] fA(x)dx, (19)

where

η(x) =
xΛ′(x)

Λ(x)

denotes the elasticity of the adjustment hazard with respect to price imbalances as sum-

marized by x. This elasticity determines how the fraction of adjusters varies with x. Large

absolute values indicate that a firm’s adjustment probability responds strongly to a marginal

increase in its price imbalance. By contrast, a value of η(x) close to zero suggest a Calvo-type

behavior, where the probability of adjusting does not depend on x.

When comparing (19) with:

A =

∫
Λ(x)fA(x)dx

it becomes apparent that for a hazard with constant elasticity η we have

F = (1 + η)A.

The main idea behind our rule of thumb is that η = 2 provides a good approximation

for a broad class of Ss models. To see why, note that almost any Ss type model can be

13For the U.S. see Bils and Klenow (2004), Klenow and Kryvtsov (2005), Midrigan (2006) and Nakamura
and Steinsson (2006); for Europe see Dhyne et al. (2006) and Fabiani et al. (2006).
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approximated with the following hazard:

Λ(x) =



1, x ≤ x1,

λp
2(x− x2)

2, x1 < x < x2,

0, x2 ≤ x ≤ x3,

λn
2 (x− x3)

2, x3 < x < x4,

1, x ≥ x4,

(20)

where x1 ≤ x2 ≤ x3 ≤ x4. Also, λp
2 and λn

2 are such that Λ(x) is non-increasing for x < 0

and non-decreasing for x > 0 and 0 ≤ Λ(x) ≤ 1. It turns out that:

F ∼= 3A (21)

is a good approximation for most hazards within this broad class (see the appendix for

a formal proposition and proof). In fact, no approximation is involved when the hazard is

Figure 6: Examples of adjustment hazards Λ(x)
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line in Figure 6):

Λ(x) =


λp

2x
2, x ≤ 0,

λn
2x

2, x ≥ 0.

In this case η(x) ≡ 2 and F = 3A.

There are two reasons why (21) might not be a good approximation within the class of

hazard described by (20). First, when a significant number of firms adjusts from values of x

where the adjustment probability is one, since η(x) is equal to zero in this range, not to 2.

Second, when xΛ(x)f(x) has jumps, as in the Caplin and Spulber model or any other stark Ss

model with abrupt thresholds. The derivation of (17) assumes no such jumps, since otherwise

we cannot exchange differentiation and integration (see the Appendix for details). However,

these sharp scenarios are theoretical abstractions rather than accurate representations of

reality, since in practice there is much more heterogeneity in agents’ adjustment costs, or

some other parameter, than assumed by strict Ss models. These additional sources of “noise”

lead to smooth adjustment hazard, where no jumps are present and firms are likely to adjust

long before they reach the region where adjustment probabilities approach one.

A more substantive reason for why (21) may not hold is that the hazard (20) rules out

the possibility that Λ(0) > 0, as is the case for some Ss models with multiple-goods, such as

Midrigan (2006), see Figure 7. It turns out that adding this extension still yields a simple

rule of thumb.

Defining

Λ̃(x) = Λ(x)− Λ(0)

we have that (19) becomes

F = Λ(0) +

∫
Λ̃(x)fA(x)dx +

∫
xΛ̃′(x)fA(x)dx,

and the earlier derivations carry through with Λ̃(x) in the place of Λ(x), leading to:

F ∼= 3A− 2Λ(0). (22)

As shown in the Appendix, (22) also is a good approximation when the adjustment hazard

is constant in a region around zero and quadratic to the left and right (see, for example, the

dashed hazard in Figure 6 and the hazard from Midrigan’s model, depicted in Figure 7).

Again, the approximation is good if a negligible fraction of agents adjusts from the region
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Figure 7: Adjustment hazard Λ(x) and Ergodic Density fA(x) from Midrigan (2006)
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where the hazard is equal to one.

Of course, (22) can be rewritten as:

F = A+ 2[A− Λ(0)]. (23)

If there is no selection effect, as in the Calvo model, the probability of adjusting does not

depend on the extent to which the agent benefits from adjusting, that is, on x. In this case

A = Λ(0) and F = A. The term 2[A − Λ(0)] therefore captures the importance of the

selection effect. Large values of this measure mean that the average probability that a firm

adjusts, A, is much larger than the probability of adjusting when a firm does not benefit at

all from adjusting, Λ(0).

Let us take stock:

Property 6 (A Useful Rule-of-Thumb)

In generalized Ss models, the following expression provides a good approximation:

F ∼= A + 2[A− Λ(0)]. (24)
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In particular, if Λ(0) = 0, as often is the case, we have:

F ∼= 3A. (25)

An interesting implication of the rule of thumb, already hinted by Figures 4 and 5,

is that whatever factor increases the frequency of price adjustments, such as an increase

in idiosyncratic uncertainty or a narrowing or shift of the adjustment hazard, increases

flexibility three times faster than it increases the fraction of firms adjusting.

Table 1 evaluates the tightness of our rule-of-thumb in two important cases. The first

row considers the model in Dotsey, King and Wolman (1999).14 In this case Λ(0) = 0 and

applying our approximation does not require information beyond the average fraction of

firms adjusting. The second row in Table 1 considers the model in Midrigan (2006), where

multiproduct firms face economies of scale when adjusting their prices.15 This weakens the

selection effect, since some prices are adjusted when they are close to their target level

more often than in Dotsey, King and Wolman (1999) (a larger Λ(0) for any given level of

A), thereby leading to less price flexibility. Indeed, the selection effect, as measured by

2[A − Λ(0)], is equal to 0.394 under Dotsey, King and Wolman (1999), while in Midrigan

(2006) it is only 0.218.

Table 1: Evaluating the Rule-of-Thumb

Model Λ(0) A F Rule-of-thumb F
Dotsey-King-Wolman (1999): 0 0.197 0.590 0.591
Midrigan (2006): 0.106 0.215 0.444 0.432

Even though Dotsey, King and Wolman (1999) and Midrigan (2006) develop considerably

richer models than our stripped down version, in both cases the rule-of-thumb is as good as

one could hope for.

Finally, note that the rule of thumb is conditional on the cross section of price imbalances:

it says that by just knowing how much adjustment this cross-sections generate (plus one

14We read off the value of F from Figure IV.B, the value for A is mentioned in the main text.
15Virgiliu Midrigan provided us with data for p and p∗ for 1000 firms, each producing 2 products, over

100 periods. Based on this data we estimated Λ(x) and f(x) using 101 bins of equal size, with their centers
ranging from −0.4 to 0.4 (almost all price imbalances are in this range: see Figure 7, which shows the hazard
and ergodic density for this model). Next we estimated Λ′(xi) by (Λ(xi+1) − Λ(xi−1))/2h, where the xi

denote the center of the bins and h their width. Next we calculated
∫

Λ(x)f(x)dx and
∫

xΛ′(x)f(x)dx based
on our estimates for Λ(x), Λ′(x) and f(x), obtaining in this way the “true” values of A and F . To calculate
our approximation, we estimated Λ(0) by averaging Λ(xi) over values of xi between −0.04 and 0.04.
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parameter in the case of Midrigan’s model), one can obtain a fairly accurate estimate of the

degree of aggregate price flexibility.

4.3 An Application to US Consumer Prices

In this section we use some moments from Nakamura and Steinsson (2006) to estimate an

adjustment hazard for US consumer prices. We then use the model to determine its implied

aggregate stickiness.

Our goodness-of-fit criterion considers the square root of the average absolute log devia-

tion (henceforth, RMS) of the following four statistics calculated in Nakamura and Steinsson

(2006) based on the BLS data that underlie the CPI. The first two statistics are the median

frequency of upward and downward price changes (6.1% and 2.6%). The third and fourth

statistics are the median size of upward and downward price adjustments (7.3% and 10.5%).

All statistics exclude sales and cover monthly data over the 1998-2005 period.

Table 2: Estimation of Hazard Models

NS Data Sym. haz. Asym. haz. Asym. haz.
1998-2005 model 1 model 2 model 3

Frac. pos. adj.: 0.061 0.0504 0.0650 0.0631
Frac. neg. adj.: 0.026 0.0296 0.0254 0.0255
E[|∆p||∆p > 0]: 0.073 0.0895 0.0778 0.0757
E[|∆p||∆p < 0]: 0.105 0.0811 0.1017 0.1031
RMS-log-deviation: — 0.2010 0.0491 0.0280
λ0: — 0 0.039 0
λp

2: — 28.8 51.2 61.0
λn

2 : — 28.8 0.00 12.4
σtot: — 0.0260 0.0368 0.0282
A: 0.087 0.0800 0.0903 0.0886
F : — 0.2392 0.1821 0.2583
F/A: — 2.99 2.02 2.92
(F + 2Λ(0))/A: — 2.99 2.88 2.92

We generate the ergodic densities of adjustment hazard models as in Caballero and

Engel (1993b) and compute the four statistics mentioned earlier. We assume that the mean

of monetary shocks is that reported in Nakamura and Steinsson (2006) for average monthly

inflation (0.21%) and that idiosyncratic shocks are normal.
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Table 2 summarizes our results. Model 1 reports the symmetric (λp
2 = λn

2 ) quadratic haz-

ard model that best fits the Nakamura-Steinsson statistics. We estimate three parameters:

λ0, λ2 and σ ≡
√

σ2
A + σ2

I , but the best non-negative estimate of λ0 is zero. The RMS of our

best model is relatively large, at around 20%. The main reason for the large RMS is that a

symmetric hazard, combined with a positive average monetary growth rate, cannot generate

downward adjustments that are larger than upward adjustments, as is required by the data.

Model 2 considers the downward rigidity found in Caballero and Engel (1993a), where

the hazard is increasing for price imbalances that lead to price increases and constant (yet

different from zero) for price imbalances that lead to price reductions. The fit improves

significantly, to an RMS of 4.9%. Finally, the fit improves further if we consider asymmetric

(and increasing) hazards, as in Model 3: the RMS for our best model now is only 2.8%.

Figure 8: Adjustment hazard Λ(x) and Ergodic Density fA(x) for Model 3
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Figure 8 shows the hazard function Λ(x) and the ergodic density fA(x) for our preferred

Model 3. The asymmetry in the hazard is evident: for a price imbalance of magnitude |x|,
firms are less likely to adjust when their price is too high (x < 0) than when it is too low

(x > 0). This may reflect the fact that the option value of waiting when x < 0 is higher

than when x > 0, since a positive underlying inflationary process implies that future shocks

are more likely to undo the current price imbalance when x is positive.

The last two rows of Table 2 test the precision of the rule of thumb for the estimated
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model. The simple rule (25) does a good job for Models 1 and 3. Recall that if it worked

exactly, the ratio reported in the next to last row should be 3. However, when Λ(0) > 0 as

in Model 2, we need to resort to the modified rule of thumb in (24). The last row of the

table reports (F + 2Λ(0))/A, which is equal to 3 if the modified rule holds exactly.

We see that all the estimated models have similar frequency of (monthly) price adjust-

ments, around 10%. Flexibility, on the other hand, varies across these models and is about

26% in our preferred model. That is, while the estimated price adjustment frequency suggests

that on average microeconomic prices are adjusted every 11 months, the implied aggregate

flexibility is closer to 4 months. An implication of this finding is that if a researcher were

to use a Calvo model as an approximation for a more realistic but complex Ss model, she

should use 4 rather 11 months in calibrating the frequency of price adjustments.

5 Time Variation in the Aggregate IRF

As we showed in Section 2, time variation in the cross-section distribution leads to price-

flexibility indices that vary over time. In this section we characterize this time variation for

the generalized Ss model.

5.1 Conditional price flexibility

In generalized Ss models, the cross section distribution of price imbalances is influenced by

the sequence of monetary shocks hitting the economy. To quantify the extent to which the

IRF fluctuates over time, we note that our rule-of-thumb applies as well to time-varying

measures of price-adjustments and price-flexibility.

Denote by At the fraction of firms adjusting their price in period t and by Ft the first

element of period t’s impulse response function. We then have that:

Ft
∼= 3At − 2Λ(0), (26)

with (almost) equality for hazards that belong to the family of piecewise quadratic hazards

considered in Section 4. This leads to the following useful approximation:

Property 7 (A Rule-of-Thumb for the Volatility of Flexibility) The volatility of the

flexibility index F is approximately three times the volatility of the fraction of firms adjusting.

Let us now turn to a concrete application.
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5.2 An application to US prices

First, note that combining the previous property with the time series for yearly averages of

monthly frequencies of price changes reported by Nakamura and Steinsson (2006, Figure 4),

suggests that during the 1988-2005 period annual averages of Ft varied between a minimum

of 25.6 percent in 1999 and a maximum of 40.2 percent in 2005; with a standard deviation of

4.7 percent.16 We also “tested” the rule of thumb with Midrigan’s (2006) model, following

1000 multiproduct firms over 100 periods. The volatility of the flexibility index Ft, as

measured by its standard deviation, was 0.111, compared with 0.114 obtained from our

approximation (26). The corresponding means were 0.425 and 0.438 while the correlation

between both series was 0.979.17 Although there are small differences, which are probably

due to time variation in Λ(0), the rule-of-thumb seems to perform reasonably well for second

moments as well.

Table 3: Estimation of Hazard Models: σA and σI

NS Data Model 3
IQR yearly fraction adjusters: 0.88% 0.88%
IQR yearly fraction positive adjusters: 1.51% 1.44%
IQR yearly fraction negative adjusters: 0.71% 0.68%
σA: — 0.00692
σI : — 0.02734

Going beyond this rule of thumb, we also estimate the dynamics corresponding to Model

3 in Section 4. The first step in this estimation is to decompose σ into its aggregate and

idiosyncratic components by matching the interquartile range in yearly averages of monthly

adjustment frequencies reported by Nakamura and Steinsson (2006) for the 1998-2005 period

(0.88%). Table 3 reports our parameter estimates. It also shows that our stylized model fits

well the interquartile range for data on frequency of upward and downward price adjustments

separately, even though we only used the interquartile range of all price adjustments—upward

and downward—to decompose σ into its aggregate and idiosyncratic components.

In the second step, we simulated an economy based on the above model for 10,000 time

periods, and calculated the flexibility index Ft at each point in time. Figure 9 shows the

16The above percentages assume Λ(0) = 0, the fractions reported above decreases by 2Λ(0) otherwise.
17We calculated the “true” flexibility index and our approximation using, in each period, the methodology

described in footnote 15. Since we had fewer observations in each period, we considered wider bins (0.02
instead of 0.008).
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Figure 9: Histogram of Ft for a time-series with with 10,000 observations
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histogram of the flexibility index. It is apparent that while the bulk of the observations

are around 25 percent, there are also episodes when the degree of flexibility grows sharply,

even to levels above 40 percent. Which events trigger these sharp drops in stickiness? The

following two figures illustrate the answer.

The left panel in Figure 10 shows the path of monthly inflation rates (percentages) for

a cumulative aggregate shock, in deviation from its trend, equal to 4σA, distributed evenly

over 2, 4 and 6 months, respectively. The economy begins at the ergodic density in period

6 in all cases. The right panel shows the corresponding paths with shocks that, in deviation

from their trend, are the same but of opposite sign. The difference between both panels is

evident. Inflation responds much more to a sequence of positive shocks that it does to a

sequence of negative shocks. This asymmetric pattern is even more prominent when we look

at the evolution of the flexibility index, as shown in Figure 11. The aggregate price level

(and inflation) responds much more to monetary shocks that are above average, than to

shocks that are below average, since firms themselves are more responsive to positive shocks.

This leads to an economy where price flexibility increases considerably after a sequence of

positive shocks, but decreases only slightly after an equivalent sequence of negative shocks,

explaining the highly skewed histogram shown in Figure 9. Not surprisingly, the skewness for

the fraction of price adjustments (yearly averages of monthly frequencies) over the 1988-2005

period reported in Nakamura and Steinsson has a significantly positive skewness of 0.80.18

18In 10,000 bootstrap simulations of their series, skewness was positive 98.4% of the time.
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Figure 10: Monthly inflation and the time-distribution of an aggregate shock
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Figure 11: The F index and the time-distribution of an aggregate shock
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6 Strategic Complementarities

It is well known that strategic complementarities have the potential to slowdown significantly

the adjustment of prices to monetary shocks (see, e.g., Ball and Romer (1990)). How do

these affect our conclusions? In a nutshell, complementarities further widen the gap between

price flexibility inferred under the Ss and Calvo model assumptions, for an observed price

adjustment frequency.

The presence of strategic complementarities affect both the hazard and the dynamics of

target prices. Let us isolate the latter effect and describe a firm’s target price process as:

∆p∗it = (1− a)∆mt + a∆pt + vit.

If a = 0, we recover the previous model, while when a > 0, there are strategic complemen-

tarities; that is, the target price for firm i depends on the aggregate price level. We assume

that strategic complementarities, while present, are not strong enough to generate multiple

equilibria.

Let ∆m be the actual monetary shock (at time t) and v the marginal monetary shock

(we will let v → 0) also at time t. Denoting Φ(x) ≡ xΛ(x), we can write:

∆p(∆m + v) =

∫
Φ(x + (1− a)∆m + (1− a)v + a∆p(∆m + v))f(x, t)dx.

Differentiating both sides with respect to v and evaluating at v = 0 leads to:

IRF0 = [(1− a) + aIRF0]J,

where J plays the role of the integral we have been focussing on throughout the paper—that

is, the sum of both terms on the r.h.s. of (17)—which in this case takes the form:.

J ≡
∫

Φ′(x + (1− a)∆m + a∆p(∆m))f(x, t)dx.

It follows that:

F =
(1− a)J

1− aJ
.

If, for a given fraction of adjusters, A, we fit a Calvo model, we have that J = A and

therefore:

FCalvo =
(1− a)A
1− aA

,
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which implies that flexibility decreases as strategic complementarities rise (a rises). This is

the result typically highlighted in the literature. Our main point, however, is that while the

effect of strategic complementarities on aggregate price inertia is still present in Ss models,

it is somewhat diluted relative to the strength of this mechanism in a Calvo model.

Using the rule of thumb to substitute 3A for J , in an increasing hazard model (with

Λ(0) = 0) we have:

FSs ∼=
3(1− a)A
1− 3aA

.

It is now easy to see that for a > 0, we have FSs/FCalvo > 3. In fact, if aA << 1:

FSs

FCalvo
∼= 3 + 6aA.

Figure 12: FSs and FCalvo/FSs as a function of a for Model 3
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As strategic complementarities rise, both Calvo and Ss models become more sticky, but

proportionally less in Ss than in Calvo. The reason is that complementarities depend on F
rather than on A and, for a given fraction of firms adjusting, FSs > FCalvo.

The left panel in Figure 12 shows how FSs varies with a for Model 3 estimated in Section

4. As expected, aggregate price flexibility decreases when strategic complementarities are
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more important. However, the right panel in Figure 12 reports the ratio FSs/FCalvo as a

function of a, clearly showing that strategic complementarities induce more flexibility in a

Calvo setting than in an Ss setting. Nonetheless, the ratio between both flexibility indices

remains close to 3, as in the case without strategic complementarities.

Let us take stock:

Property 8 (Strategic complementarities and relative flexibility) For an observed fre-

quency of price adjustments, strategic complementarities decrease price flexibility, more so

in the Calvo than in the Ss model.

7 Final Remarks

The recent work of Golosov-Lucas (2006), Burstein (2002), Klenow and Krystow (2005),

Midrigan (2006), Gertler and Leahy (2006), and others has rekindled the interest on menu

cost type models. As with many microeconomic variables, the prices of goods and services are

seldom adjusted continuously. However, the implications of microeconomic inaction for the

stickiness of the aggregate price level is only gradually being understood, usually restricted

to important but specific examples. In this article we have tried to take a step further in

understanding the conceptual issues involved in the connection between the frequency of

price adjustments and aggregate price flexibility, extracting the basic aggregate properties

of generalized Ss models. Throughout the paper we listed several properties, the most

important of which is that, away from largely theoretical stark Ss models, there is a simple

rule of thumb mapping the frequency of price adjustments, A, to aggregate price flexibility,

F , for a broad class of Ss models:

Ft
∼= 3At − 2Λ(0),

where Λ(0) denotes the probability of price adjustments for agents that benefit the least

from changing their price, and is equal to zero in many instances.

Of course, there is nothing specific to prices in our results. These are properties about

contexts where lumpy microeconomic adjustment is prevalent, of which prices is just one, and

probably not the best, application. At the microeconomic level, investment decisions, durable

purchases, hiring and firing decisions, inventory accumulation, and many other important

economic variables are lumpy in nature and hence fit the essentials of the model in this

paper.
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Finally, for realistic parameter values, time variation in the impulse response function of

aggregate prices does not seem to be as important as in other applications, such as investment

(see, e.g., Bachmann et al 2006). Given this observation, in price applications that do not

focus on extreme events, a sensible strategy may well be to continue using the simpler Calvo

model. However, in such a case it is important to recalibrate the adjustment probability

parameter λ to match F rather than A. The parameter F can be obtained from our rule of

thumb combined with microeconomic evidence on A from studies such as Bils and Klenow

(2004), Fabiani et al (2006), Nakamura and Steinsson (2006), and Midrigan (2006). For

example, Nakamura and Steinsson (2006) find that prices are adjusted approximately every

11 months, which from our rule of thumb implies that the Calvo-equivalent model should be

calibrated to firms adjusting their prices on average every 4 months.
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A Rule of Thumb: Formal Proof

The following proposition provides an expression for the size of the selection effect for a rich

family of hazards.

Proposition 1 Consider the following family of adjustment hazards:

Λ(x) =



1, x ≤ x1,

λ0 + λp
2(x− x2)

2, x1 < x < x2,

λ0, x2 ≤ x ≤ x3,

λ0 + λn
2 (x− x3)

2, x3 < x < x4,

1, x ≥ x4,

(27)

where x1 ≤ x2 ≤ x3 ≤ x4. Also, λ0, λ
p
2 and λn

2 are such that Λ(x) is non-increasing for x < 0

and non-decreasing for x > 0 and 0 ≤ Λ(x) ≤ 1,∀x.

Denote by π1 the probability assigned by the cross section density f(x) to values of x with

Λ(x) = 1 and by Dp and Dn the absolute value of the discontinuity of xΛ(x)f(x) at x1 and

x4, respectively. We then have:

F = A+ (Dp −Dn) + 2[(1− π1)(1− Λ(0)) + I] + C, (28)

with

C = 2λp
2x2

∫ x2

x1

(x− x2)f(x)dx + 2λn
2x3

∫ x4

x3

(x− x3)f(x)dx.

Proof Denote Ai = (xi−1, xi), i = 1, 2, 3, 4, 5; with x0 = −∞ and x5 = ∞. Defining ∆p0(v)

as in (16), with v in place of ∆md,

∆p0(v) = −
∫

(x− v)Λ(x− v)f(x)dx = −
5∑

i=1

∫ xi+v

xi−1+v

(x− v)Λ(x− v)f(x)dx. (29)

A basic result from calculus (Leibniz’s formula) states that if a(v), b(v) and g(x, v) are

differentiable and

G(v) ≡
∫ b(v)

a(v)

g(x, v)dx,

then

G′(v) = g(b(v), v)b′(v)− g(a(v), v)a′(v) +

∫ b(v)

a(v)

∂g

∂v
(x, v)dx.
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Applying this result to calculate the five integrals in the sum on the r.h.s. of (29), differ-

entiating w.r.t. v and evaluating at v = 0:

F = −
5∑

i=1

{
xiΛ(x−i )f(x−i )− xi−1Λ(x+

i−1)f(x+
i−1)

}
+

5∑
i=1

∫ xi

xi−1

[Λ(x) + xΛ′(x)]f(x)dx, (30)

where f(x+
i ) and f(x−i ) denote the limit of f(x) when x approaches xi from the right (larger

values than xi) and left, respectively.

The first sum on the r.h.s. of (30) corresponds to the discontinuities of xΛ(x)f(x)—in

our setting jumps may occur only at x1 and x4. Since we are working with densities f(x)

with finite expectations, we have that limx→±∞ xf(x) = 0, which combined with (30) implies

−
5∑

i=1

{
xiΛi(xi)f(x−i )− xi−1Λi(xi−1)f(x+

i−1)
}

= Dp −Dn. (31)

Since in A1 and A5 we have Λ(x) = 1 and Λ′(x) = 0, it follows that∫
A1

[Λ(x) + xΛ′(x)]f(x)dx +

∫
A5

[Λ(x) + xΛ′(x)]f(x)dx =

∫
A1∪A5

f(x)dx = π1. (32)

We also have:∫
A2

[Λ1(x)− λ0 + xΛ′1(x)]f(x)dx = 3λp
2

∫ x2

x1

(x− x2)2f(x)dx + 2λp
2x2

∫ x2

x1

(x− x2)f(x)dx,∫
A4

[Λ1(x)− λ0 + xΛ′1(x)]f(x)dx = 3λn
2

∫ x4

x3

(x− x3)2f(x)dx + 2λn
2x3

∫ x4

x3

(x− x3)f(x)dx,∫
A2∪A3∪A4

λ0f(x)dx = λ0(1− π1).

The sum of the three integrals above and the integral in (32) is equal to the second sum on

the r.h.s. of (30). Substituting this sum and (31) in (30):

F = (Dp −Dm) + π1 + λ0(1− π1) + 3B2 + 3B4 + C, (33)
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with

B2 = λp
2

∫ x2

x1

(x− x2)
2f(x)dx,

B4 = λn
2

∫ x4

x3

(x− x3)
2f(x)dx,

C = 2λn
2x3

∫ x4

x3

(x− x3)f(x)dx + 2λp
2x2

∫ x2

x1

(x− x2)f(x)dx,

A straightforward calculation shows that the fraction of firms adjusting is:

A ≡
∫

Λ(x)f(x)dx =
5∑

i=1

∫
Λ(x)f(x)dx = π1 + λ0(1− π1) + B2 + B4.

Using the above expression to get rid of B2 + B4 in (33) yields the desired result:

F = A+ 2[A− π1 − Λ(0)(1− π1)] + (Dp −DN) + C. (34)

As mentioned in the main text, many of the terms in (28) are relevant only in limit

cases such as strict Ss models. For example, consider the Caplin and Spulber setup. To

obtain a discrete-time approximation, we consider f(x) uniform on (s − S − µ,−µ], since

the relevant cross-section is the one after the aggregate shock (of size µ), immediately before

adjustments take place. We also assume Λ(x) = 0 if x ∈ (s− S, 0) and Λ(x) = 1 otherwise.

To match the assumptions in the above proposition, we let x1 = x2 = s − S, x3 = x4 = 0,

and λp
2 = λn

2 = λ0 = 0. A few steps of algebra show that the terms on the r.h.s. of (28) take

the following values: A = µ/(S − s), Dp = 1, Dn = 0, (1 − π1)(1 − Λ(0)) = 1 − µ/(S − s)

and C = 0. It follows that:

FCS = 1 +
µ

S − s
. (35)

Of course, a uniform distribution on the inaction range is only an approximation to the

ergodic density in discrete time. This explains why we obtain even more flexibility than in

the continuous time case.

If we adapt (15) to discrete time, we have:

Fλ = λ + (1− λ)
α(S − s + µ)

eα(S−s) − 1
.

and we obtain (35) letting λ → 0.
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