Accounting for Incomplete Pass-Through

Emi Nakamura NY Fed and Columbia University

December 7, 2007

Theoretical Explanations for Incomplete Pass-Through:

- Oligopolistic mark-up adjustment
 - Dornbusch (1987), Knetter (1989), Bergin and Feenstra (2001)
- Local Costs
 - Sanyal and Jones (1982), Burnstein et al. (2003), Corsetti and Dedola (2004), Goldberg and Campa (2006)
- Dynamic Factors Barriers to price adjustment such as menu costs, pre-determined prices etc.
 - Kasa (1992), Ghosh and Wolf (1994), Devereux and Yetman (2003)

Pass-through in the Coffee Market

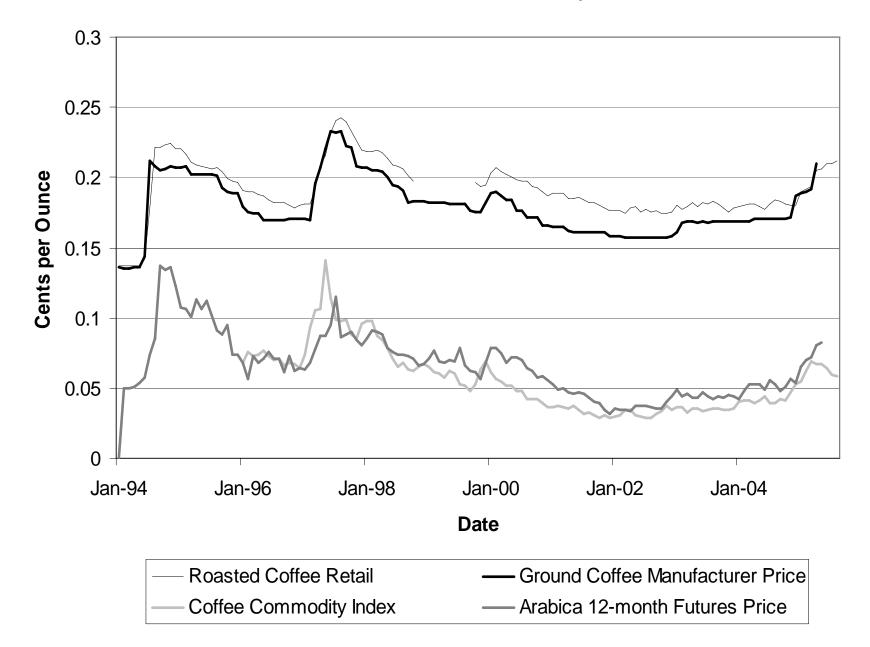
- Coffee is world's second most traded commodity (after oil)
- Coffee commodity costs are highly volatile: lost almost 2/3 of value over 2000 – 2002

- Volatility driven by weather, planting cycles, new entrants

 Industry estimates suggest that green bean coffee (imported input) accounts for more than half of marginal costs

Outline

- Document facts about pass-through
- Develop structural pricing model
- Can the model "account" for the observed degree of incomplete pass-through?
- How important are mark-up adjustment, local costs, menu costs?


Terminology

Retail Price: Supermarket price

Wholesale Price: Manufacturer Price (i.e. Folgers, Maxwell House etc.)

Coffee Commodity Price: Index of green bean coffee on New York physicals market

Retail, Wholesale and Commodity Prices

Data on Coffee

- Retail price data: AC Nielsen monthly average prices and sales by UPC for ground (supermarket) coffee in 50 major US markets
- Wholesale price data: Promodata weekly UPC-level prices in up to 30 US markets (varied time periods)
 - Data collected from largest wholesaler in a given market
- Other data: Advertising data (AdDollars Database), Weather

1. Cost Pass-Through Regressions

$$\Delta \log p_{jmt} = a + \sum_{k=1}^{6} b_k \Delta \log C_{t-k} + \sum_{k=1}^{4} d_k q_k + \epsilon,$$

$$\Delta p_{jmt} = a + \sum_{k=1}^{6} b_k \Delta C_{t-k} + \sum_{k=1}^{4} d_k q_k + \epsilon,$$

 p_{jmt} : Price per ounce of ground coffee

 C_t : Commodity cost per ounce of ground coffee

Define long run pass-through as $\sum_{k=1}^{6} b_k$

Specification motivated by the fact that a unit root cannot be rejected for commodity costs (Goldberg and Campa, 2006) Cost Pass-Through Regressions

- 1% increase in coffee commodity index yields long-run 0.3% increase in wholesale and retail prices
- Approximately cent-for-cent pass-through in levels
- More than half of pass-through occurs in the quarters after a change in cost

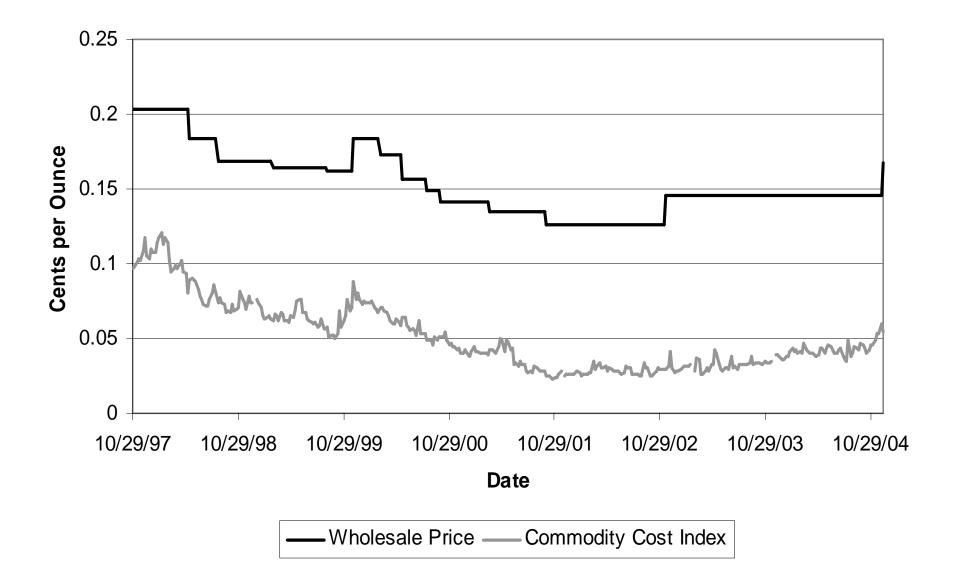
2. Retail versus Wholesale Pass-through

$$\Delta p_{jmt}^r = \alpha^r + \sum_{k=0}^2 \beta_k^r \Delta p_{jmt-k}^w + \sum_{k=1}^4 \gamma_k^r q_k + \epsilon,$$

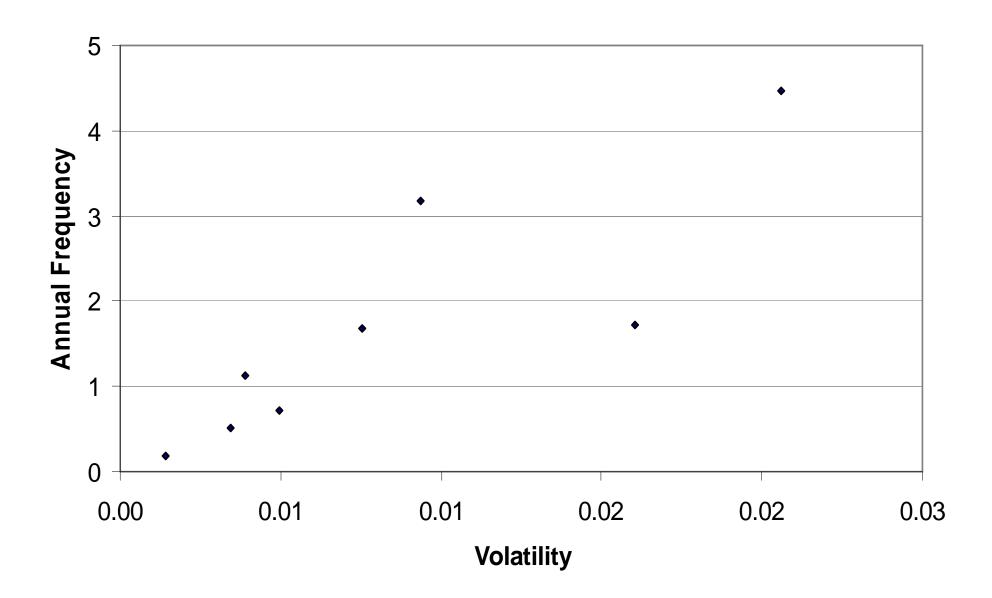
- IV Regression: commodity costs as instruments (motivated by measurement error in wholesale prices)
- Find that retail prices adjust rapidly and approximately cent-forcent to changes in wholesale prices
- Delayed pass-through occurs almost entirely at the wholesale level

3. Price Rigidity

Annual frequency of price change in all markets (1997-2005):


Wholesale prices: 1.3 times per year

Retail Prices (without sales): 1.5 times per year


Retail prices (with sales): 3.1 times per year

Similar pattern in price rigidity to what we observe in aggregate US micro-data (Nakamura and Steinsson, 2007)

A Typical Wholesale Price Series

Price Change Frequency vs. Commodity Cost Volatility

Summary:

- Long-run pass-through is about 0.3
- More than half of pass-through occurs in the quarters after the cost shock
- Delayed pass-through occurs almost entirely at the wholesale rather than the retail level
- Wholesale prices adjust infrequently; more frequent adjustment when commodity costs are volatile

Potential empirical issues:

1. Do rigid wholesale prices actually determine retail prices?

Since manufacturers and retailers interact repeatedly, wholesale prices may not be "allocative" (Barro, 1977)

- No evidence that retail prices adjust to commodity costs above and beyond adjustments in wholesale prices
- 2. Do commodity costs reflect marginal costs?

What if manufacturers enter hedging contracts or long-term purchasing contracts?

• Hedging contracts etc. affect the average cost, but not the marginal cost of coffee beans

Overview of Structural Model

Demand

- Random coefficients discrete choice model (BLP, 1995)
- Estimate using data on prices, market shares
- Identify consumer heterogeneity using market shares for particular demographic groups

Supply

- Oligopoly menu cost model
- Multi-product asymmetric firms: model matches observed industry structure
- Important Related Work: Goldberg and Verboven (2001), Hellerstein (2006), Goldberg and Hellerstein (2007)

Demand Estimation

- 1. Simultaneity problem
 - Include brand-region dummies in x_j to flexibly account for constant differences in product quality (Nevo, 2001)
 - Instrument for prices using weather in Brazil and Colombia (major coffee producing countries)
 - Instruments explain about 1/3 of the variation in commodity prices
- 2. Heterogeneity

Allow for heterogeneity in price elasticities across consumers

Demand Estimates

		Logit				
	OLS1	OLS2	IV1	IV2	IV3	IV
Brand x Region dummies	NO	YES	YES	YES	YES	YES
Instrument			Hausman	Commodity Cost	Weather	Weather
Median Price Elasticity	0.54	1.96	3.02	2.69	3.20	3.46 [2.59 4.48]

Oligopoly Menu Cost Model

Demand Side

Estimated random coefficients demand model

Supply Side

Focus on representative market (Syracuse)

Market structure: Folgers, Maxwell House, Hills Bros.

Firm j seeks to maximize the discounted expected sum of future profits

$$E_0 \sum_{t=0}^{\infty} \beta^t \left[\pi_{jt}(p_t^r, C_t) - \gamma_{jt} \mathbf{1}(\Delta p_{jt}^w \neq 0) \right],$$

Menu Costs: Assume that firms face a random menu cost γ_{jt} of adjusting their prices

Asymmetric information: Firms do not know competitors' menu costs when choosing prices (helps smooth policy functions)

Model Solution

In equilibrium every firm chooses prices optimally:

$$p_t = \begin{cases} p_{t-1} & \text{if } \Delta W < \gamma_t \\ p^* & \text{otherwise} \end{cases}$$
(1)

where $\Delta W = W_{ch} - W_{nch}$ and:

$$p^* = \arg\max_p E_t \left[\pi(p, C) + \beta V_j(p, C, \gamma) \right].$$
(2)

Model Solution cont'd

Markov Perfect Equilibrium

- Assume strategies depend only on payoff-relevant variables

Solve using numerical methods (Pakes and Mcguire, 1994)

- Search for fixed point of policy functions across firms
- No guarantee of convergence, uniqueness

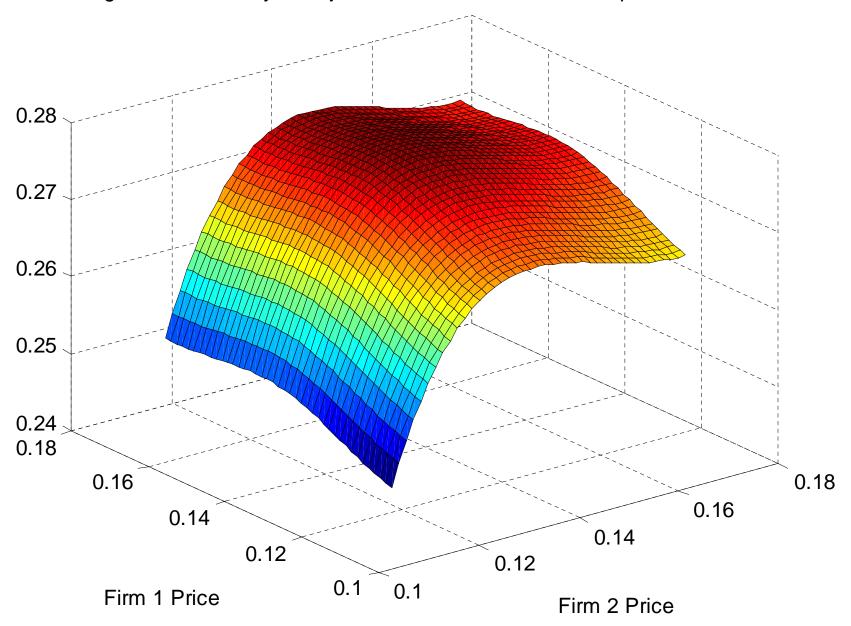


Figure 6: Probability of Adjustment as a Function of Competitors' Prices

Parameterization:

Use estimated demand system, local costs etc.

Estimate mean of menu cost distribution using simulated method of moments:

$$\hat{\sigma} = \min_{\sigma} (f - \hat{f})^2$$

f: Empirical frequency of wholesale price change

 \widehat{f} : Frequency of price change implied by the model given actual cost series

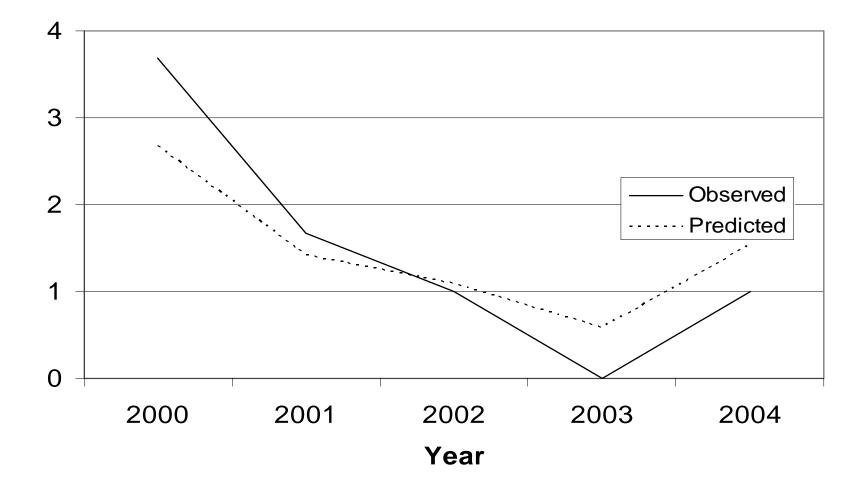
Commodity costs: random walk

Production function: partially known

<u>Results</u>

- 1. Markups
 - Median percentage markup: 58.3%
 - Similar to Foster et al. (2005) for ground coffee
 - Median fraction of local (non-coffee bean) costs: 52%
 - Similar to estimates on average fraction of non-coffee variable costs from the Survey of Manufacturers

Not clear that static estimates will equal dynamic estimates \rightarrow Also consider alternative dynamic procedure


2. Menu Cost Estimates

Mean of menu cost: $\sigma = 0.22\%$ of average annual revenue

Smaller than existing estimates of average menu costs for supermarkets (Zbaracki et al., 2004)

Robustness check: estimate menu cost simultaneously with common component in costs as part of the dynamic estimation procedure: very similar results

Predicted vs. Observed Frequency of Price Change for Dynamic Model

- 3. Implications for Price Rigidity: Model vs. Data
 - Model captures basic pattern in timing of price adjustments
 - Somewhat less variation in frequency of price change implied by model vs. data

- 4. Implications for Pass-through: Model vs. Data
 - Long-run pass-through is 0.269 in the model; 0.247 in the data
 - Less than half of pass-through occurs in the first quarter

Accounting for Incomplete Pass-through:

Dixit-Stiglitz model

Dixit-Stiglitz model with local costs

Static random coefficients discrete choice model with local costs, mark-up adjustment

Oligopoly menu cost model with local costs, mark-up adjustment, menu costs

Pass-through Regressions for Simulated Data

Variable	Dixit-Stiglitz (no local costs)	Dixit-Stiglitz (local costs)	Static Discrete Choice	Dynamic Discrete Choice
Long-run Pass-through	1	0.426	0.284	0.269
Factors:		Local Costs	Local Costs, Markup Adj.	Local Costs Markup Adj. Menu Costs
Percent:		78%	20%	2%

Robustness:

Determinants of Pass-Through

- Persistence of marginal costs: Higher persistence \uparrow PT
- Timing of price adjustments (menu cost vs. Calvo): Calvo \downarrow PT
- Heterogeneity in price elasticities: Higher het. ↑ PT

Determinants of Price rigidity

- Persistence and volatility of marginal costs
- Forward-looking behavior

Conclusions

- Menu cost model provides quantitatively realistic account for pass-through, timing of price adjustments
- Dynamic model crucial for evaluating magnitude of menu costs, implications for pass-through
- Delays in pass-through occur almost entirely at the wholesale level
- Local costs and mark-up adjustment account for 78% and 20% of pass-through; while menu costs account for only 2%