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Abstract

An active area of research in macroeconomics is to take DSGE models to the data. Much of the
focus has been on estimation and testing of models solved under specific assumptions about how the
exogenous variables grow over time. In this paper, we first show that if the trends assumed for the
model are incompatible with the observed data, or that the detrended data used in estimation are
inconsistent with the stationarity concepts of the model, the estimates can be severely biased even
in large samples. Estimates of parameters governing transmission mechanisms can be dramatically
distorted. We then consider the QD (quasi-differenced), the unconstrained first difference (∆ DT),
and the HP-HP estimators. All three are robust to whether shocks in the model are assumed to be
permanent or transitory. Root-T consistent and asymptotically normal estimates can be obtained.
The estimators do not require the researcher to take a stand on the dynamic properties of the data,
but simulations show that they work as well as when the stationarity property of the shock process
is correctly imposed. Importantly, it is far more accurate than standard estimators when the model
parameter is near the unit circle. These properties hold even when there are multiple persistent
shocks.
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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models are now accepted as the primary framework

for macroeconomic analysis. Until recently, counterfactual experiments were conducted by assigning

the parameters of the models with values that are loosely calibrated to the data. More recently, serious

efforts have been made to estimate the model parameters using classical and Bayesian methods. This

permits researchers to assess how well the models fit the data both in and out of samples. Formal

estimation also permits errors arising from sampling or model uncertainty to be explicitly accounted

for in counterfactual policy simulations. Arguably, DSGE models are now taken more seriously as a

tool for policy analysis because of such serious econometric investigations.

As is well known, economic data are highly persistent and possibly non-stationary. It is common

practice to allow shocks in DSGE models to have persistent effects. When one or more forcing processes

in a DSGE model are non-stationary, the model variables in level form have to be first normalized

by appropriate trending variables. The variables in the log-linearized model are then interpreted as

deviations from the steady state or balanced growth path. In order to take the model to the data, a

researcher must construct data analogs of the model concepts, and in doing so, must choose a method

for detrending the data. This paper points out two potential problems specific to the estimation of

DSGE models when either the data and/or the model variables are persistent or non-stationary. The

first problem arises when the method of detrending does not agree with the definition of the trends in

the model. The second problem arises when the data are detrended to match the model concepts but

that the empirically detrended data remain non-stationary or are over-differenced. Both issues can

pose problems for estimation and inference. Hereafter, we refer to these issues as Data Detrending

(DD) and Model Trend Specification (MTS) problems. A concise overview of the issues associated

with estimating DSGE models is as follows:

Step 1 Step 2 Step 3
Model Specification → Data Detrending → Estimation

Problems: MTS DD

Problem (DD) is concerned with how the observed data are filtered. The filtered data can be

stationary and yet the trends associated with the stationary component of the data can be inconsistent

with how the trends are defined in the model. Problem (DD) would most likely arise when a researcher

detrends the data to ensure that the deviation from a trend component is stationary, but is unaware

that the trends that accomplish this task are inconsistent with the trends specified in the model.
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For example, the model may specify the trend as a random walk, but the data may be detrended

by a two-sided symmetric filter. Whereas the stationary component in the model is white noise, the

filtered series can be serially correlated. In this case, the error term associated with the empirical

Euler equations can be serially correlated. The moment conditions used to estimate the parameters

will not be zero even in the population.

Problem (MTS) is concerned with whether the assumption about the trend in the model is con-

sistent with the trend in the data. Problem (MTS) is often related to whether the detrended data are

stationary. This issue can arise if, for example, the model assumes that technology is trend station-

ary and thus the data are linearly detrended accordingly. However, the detrended data will still be

non-stationary if in fact the data contain stochastic trends. As is well known, classical inference pro-

cedures can be misleading when the regressors are non-stationary or highly persistent, and estimation

of a spurious regression cannot be ruled out. An additional issue that confronts researchers is that in

finite samples, it is very difficult to ascertain whether the data are stationary or not. Yet, existing

estimators of DSGE models require that the researcher takes a stand on the stationarity property of

the data.

An error in either model trend specification or data detrending can seriously distort the results in

the estimation step. This problem is highly important because, as Cogley (2001) observes, ”The RBC

methodology is motivated by a desire to formulate estimators and tests that are not too distorted by

trend misspecification.” However, it is generally impossible to separate a cycle from an exogenous trend

using atheoretical filters because such procedures do not incorporate information about the economic

model.1 As a result, there can be large discrepancies between the properties of the cyclical component

in the model and in the data and hence estimates of the structural parameters can be badly biased.

On the other hand, explicit specification of the trend involves (MTS) and (DD) problems.

Table 1 is a non-exhaustive listing of how trends are treated in some notable papers. While there

are exceptions, the majority of the analysis assumes that non-stationarity in the models is due to a

deterministic trend. The empirical analysis then proceeds to estimate the models on linearly detrended

data. Stochastic trends are assumed in some studies and the first differenced data are then used in

estimation. But since the seminal work of Nelson and Plosser (1982), there has been ongoing debate

whether the trend or difference stationary is a better characterization of macroeconomic variables.

While much is known about estimation and inference of linear models with non-stationary data, little

is known about how the treatment of trends affects estimation of DSGE models. This paper sheds

some light on this issue.
1Obviously, the separation of trend and cycle may be even more problematic for general equilibrium models with

endogenous growth and models without balanced growth path.
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This paper is intimately related to previous literature investigating properties of the filtered data.

From this literature we know that improper filtering can alter the persistence and the volatility of

the series (e.g., Cogley and Nason (1995)), induce spurious correlations in the filtered data (e.g.,

Harvey and Jaeger (1993)), change error structure (e.g., Singleton (1988)), distort inference (e.g.,

Christiano and den Haan (1996)) or even yield non-stationary series (e.g., Nelson and Kang (1981)).

However, much of this literature is focused on univariate analysis and relatively little is known about

the effects of filtering on the estimates of the structural parameters in DSGE models. The systems

approach provides a complete characterization of the model and thus the estimates are more efficient

if the model is correctly specified. But misspecification in one equation can affect estimates in other

equations. In an early contribution, King and Rebelo (1993) simulate an RBC model and show that

HP (Hodrick-Prescott) filtered data are qualitatively different from the raw data. Although these

authors do not estimate the model on filtered data, they hint that the estimates of the structural

parameters can be adversely affected by filtering. Fukac and Pagan (2006) also consider how the

treatment of trends might affect estimation of DSGE models but the analysis is also confined to a

univariate framework.

In a similar vein, analysis of Problem (MTS) has been generally conducted within the univariate

framework. In a study closely related to ours, Cogley (2001) investigates formally how Problem

(MTS) can affect the estimates of structural parameters. He shows that inappropriate choice of trend

(i.e., trend stationary versus difference stationarity forcing variables) can lead to strong biases in

the parameter estimates. He considers several possibilities to circumvent Problem (MTS) and finds

that using cointegration relationships in unconditional Euler equations works the best since in this

formulation, moments used in GMM estimation remain stationary irrespective of whether the data are

trend or difference stationary. Our approach based on estimating covariance structures is different from

and complementary to Cogley’s approach.2 Instead of comparing estimators, we study the properties

of the covariance structure estimator alone to focus on the sensitivity of the estimates to the model

underlying the covariance structure as well as to the choice of sample analogues of the model variables.3

As we will see, our method is also more general.

Specifically, we propose a robust strategy to handle uncertainty as to whether the data are trend

or difference stationary. The proposed approach applies the same transformation (filter) to both data

and model series such that transformed series are stationary. We illustrate this approach with three
2Combination of these two approaches is straightforward and, although we do not investigate the benefits on combining

cointegration and, for example, quasi-differencing formally, one may expect that such a combination can be quite fruitful
in sharpening the estimates.

3Gregory and Smith (1996) investigate this problem from another perspective. Using a calibrated business cycle
model, they try to find a trend component that can produce a cyclical component in the data similar to the cyclical
component in the model.
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transformations: quasi-differencing, first differencing, and HP filter. The approach is shown to be

effective even when there are multiple shocks, a subset of which may be permanent. Although our

analysis is motivated as classical estimator, it can be adapted into a Bayesian framework.

We use a basic stochastic growth model to illustrate the problems under consideration. When the

trends assumed for the model agree with the trends present in the data and the same filter is applied

to model and data series, the estimated parameters are mean and median unbiased. Otherwise,

the estimates can deviate significantly from the true values. Estimates of parameters governing the

propagation and amplification mechanisms in the model can be greatly distorted or poorly identified.

The structure of the paper is as follows. In the next section, we lay out a standard neoclassical

growth model. We linearize the model and show how one can solve it under different assumptions

about trends in the forcing variables. We present the estimation procedure and illustrate Problems

(DD) and (MTS) with a few specific examples. In Section 3, we report simulation results. In particular,

we demonstrate a superior performance of our robust approach and distortions in popular estimators

due to Problems (DD) and (MTS). We consider several extensions of the baseline growth model to

highlight the issues associated with estimation of endogenous propagation/amplification mechanisms

and estimation of models with multiple structural shocks. We also briefly contrast statistical properties

of our approach and popular alternatives. In Section 4, we develop a general framework for using quasi-

differencing to estimate structural parameters in linearized DSGE models. We conclude in Section

5.

2 An Example: Neoclassical Growth Model

2.1 The General Setup

We use the stochastic growth model to highlight the problems under investigation. The problem facing

the central planner is:

max Et

∞∑
t=0

βt

(
lnCt − θ(Lt/Qt)

)
subject to

Yt = Ct + It = Kα
t−1(ZtLt)(1−α)

Kt = (1− δ)Kt−1 + It

Zt = exp(ḡt) exp(uz
t ), uz

t = ρzu
z
t−1 + ez

t , |ρz| ≤ 1

Qt = exp(uq
t ), uq

t = ρqu
q
t−1 + eq

t , |ρq| ≤ 1.

where Yt is output, Ct is consumption, Kt is capital, Lt is labor input, Zt is the level of technology,

and Qt is a labor supply shock. We allow ρq and ρz to be on the unit circle. The first order conditions
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are:

θCt = (1− α)Kα
t−1Z

(1−α)
t L−α

t Qt

EtCt+1 = βCt

(
αKα−1

t (Zt+1Lt+1)(1−α) + (1− δ)
)

Kα
t−1(ZtLt)(1−α) = Ct + Kt − (1− δ)Kt−1

If ḡ = 0 and |ρz|, |ρq| < 1, then under regularity conditions, a solution for model log-linearized around

the steady state values exists. But once technology is allowed to grow over time, the model solution

as well as the estimation approach depends on the properties of Zt and Qt.

Let lower case letters denote the natural logarithm of the variables, e.g. ct = log Ct. Let c∗t , be

such that ct−c∗t is stationary; k∗t and z∗t are similarly defined. Note that c∗t and k∗t are model concepts.

Hereafter, we will use DT and ST to refer to the case when |ρz| < 1 and |ρz| = 1, respectively. The

assumption on |ρq| will vary depending on the context. Where appropriate, we will drop Qt to simplify

the analysis.

2.2 Solving the One Shock Model

To fix ideas, suppose for now that technology is the only shock in the system. Hence, Qt is suppressed.

We consider separately when |ρz| < 1 and when |ρz| = 1.

When |ρz| < 1, c∗t = k∗t = ḡt. The detrended variables in the model are then defined as ĉt = ct−c∗t ,

k̂t = kt − k∗t and l̂t = lt.4 The log-linearized model in terms of ĉt, k̂t, l̂t is

DT Model

Et

0 0 0
1 0 A0

0 0 0

ĉt+1

k̂t+1

l̂t+1

 =

−1 0 −α
1 A0 0

A1 A2 α− 1

ĉt

k̂t

l̂t

 +

0 α 0
0 0 0
0 A4 0

ĉt−1

k̂t−1

l̂t−1


+

 0
−A0

0

uz
t+1 +

1− α
0

α− 1

uz
t (1)

where we suppress constant terms and define entries of the matrices in (1) as follows

A∗
0 = 1− β

1− δ

1 + ḡ
, A0 = (α− 1)A∗

0, A4 = −α− (1− δ)A3,

A3 =
αβ

(1 + ḡ)A∗
0

, A2 = (1 + ḡ)A3, 1 = A1 + A2 − (1− δ)A3.

4Note that labor Lt is stationary for all |ρz| ≤ 1 and thus we do not need to scale it.
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We will refer to (1) as the trend stationary (DT) representation of the model. Let m̂t = (ĉt, k̂t, l̂t)′.

Since a shock to technology has temporary effects, m̂t is stationary. We can compactly write (1) as

EtΓD
2 m̂t+1 = ΓD

0 m̂t + ΓD
1 m̂t−1 + ΨD

1 uz
t+1 + ΨD

0 uz
t .

The QZ decomposition or similar methods can be used to solve the system of expectation equations

for the reduced form. Denote this solution by(
m̂t

uz
t

)
= ΠDT

(
mt−1

uz
t−1

)
+ BDT ez

t .

ST Model When |ρz| = 1, the log-linearized model is expressed in c̃t, k̃t, and l̃t, where

c̃t = ct − zt, k̃t = kt − zt, l̃t = lt.

The model is now represented by the following system of expectational equations:

Et

0 0 0
1 0 A0

0 0 0

c̃t+1

k̃t+1

l̃t+1

 =

−1 0 −α
1 A0 0

A1 A2 α− 1

c̃t

k̃t

l̃t

 +

0 α 0
0 0 0
0 A4 0

c̃t−1

k̃t−1

l̃t−1

 +

 0
−A0

0

 ez
t+1 +

 1− α
0

α− 1

 ez
t (2)

We will refer to (2) as the stochastic trend (ST) representation of the model. Let m̃t = (c̃t, k̃t, l̃t)′ and

compactly write the system as

EtΓS
2 m̃t+1 = ΓS

0 m̃t + ΓS
1 m̃t−1 + ΨS

1 ez
t+1 + ΨS

0 ez
t .

The solution to the model is

m̃t = ΠST m̃t−1 + BST ez
t .

Now m̃t and m̂t are related as follows:

c̃t = ĉt − uz
t , k̃t = k̂t − uz

t , l̃t = l̂t.

Effectively, subtracting uz
t from appropriate variables as in the ST model changes the object of interest

in the model from m̂t (which would not be stationary under ST) to m̃t (which is stationary under

ST).
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∆1DT Model An alternative to solving the ST model when |ρz| = 1 is to consider the first-

differenced representation of the DT model.

Et

0 0 0
1 0 A0

0 0 0

∆1ĉt+1

∆1k̂t+1

∆1 l̂t+1

 =

−1 0 −α
1 A0 0

A1 A2 α− 1

∆1ĉt

∆1k̂t

∆1 l̂t

 +

0 α 0
0 0 0
0 A4 0

∆1ĉt−1

∆1k̂t−1

∆1 l̂t−1


+

 0
−A0

0

 ez
t+1 +

 1− α
0

α− 1

 ez
t (3)

Here the superscript ”1” in ∆1 emphasizes that ρz is constrained to be equal to one. The solution

is given by

∆1mt = Π∆1∆1mt−1 + B∆1ez
t .

Clearly, first differencing removes the permanent shock in m̂t, while m̃t subtracts the permanent shock

from m̂t. Not surprisingly, (2) and (3) both yield stationary solutions to the ST model.5

The system of equations (1), (2) and (3) both correspond to the same stochastic growth model. As

one would expect, the rational expectations solution for variables in levels is the same irrespective of

which model we solve. The models are distinguished only in what variables we analyze, i.e., m̂t for DT,

∆m̂t for ∆1DT, and m̃t for ST. However, it is these normalized variables that are typically compared

to the filtered data. The distinction between m̃t, ∆m̂t, and m̂t is important because the former two

are stationary when ρz = 1 while m̂t is not. Although one can arrive at the ST system by solving the

DT model and re-defining variables if ρz = 1, one should not use data analogue of m̂t in estimation

because m̂t is a vector of non-stationary model variables with ρz = 1. Recall that classical estimation

assumes that the data are stationary and, thus, estimation requires stationary data analogues of the

model concepts. On the other hand, m̃t and ∆m̂t are stationary when ρz = 1 and thus are model

concepts suitable for estimation.

2.3 Filtering the Data

To take the model to the data, one needs stationary data analogue of the model concepts. Suppose

we observe the data for dt = (ct, kt, lt). Let dc
t = (cc

t , k
c
t , l

c
t ) = (ct− cτ

t , kt− kτ
t , lt− lτt ) denote the data

filtered to become stationary. We consider three possibilities.
5One may also exploit cointegration relationships to construct stationary linear combinations of the non-stationary

variables. For example, ct − yt is stationary for all |ρz| ≤ 1. That is, the cointegration vector (-1, 1) nullifies the
deterministic and stochastic trends in ct and yt, if they exist. Although in our basic model using this vector in estimation
does not bring in new information since ct − yt ∝ lt, cointegration vectors (e.g., yt − kt) can enrich the model and make
it more robust to problems that can arise when ρz approaches one. This approach is exploited in Cogley (2001) when he
estimates Euler equations for cointegrated variables and variables in growth rates.
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• Linear Trend (LT):

cc
t = ct − ḡt, kc

t = kt − ḡt, lct = lt. (4)

• HP Trend (HP):

cc
t = HP (L)ct, kc

t = HP (L)kt, lct = lt. (5)

• First Difference (FD):6

cc
t = ∆ct − ḡ, kc

t = ∆kt − ḡ, lct = ∆lt. (6)

Typically, linearly detrended data would replace the unobserved model variable m̂t when |ρz| < 1,

while the HP filtered and first differenced data would stand in for m̃t and ∆m̂t when ρz = 1. HP filter

can be and often is used in conjunction with m̂t when |ρz| < 1 because HP removes time trends as

well. It is well known that the HP filter can alter the gain and phase of the cyclical components of the

data (see e.g. Cogley and Nason (1995)) and change the error structure (see e.g. Singleton (1988)) in

the univariate or single-equation framework. We examine formally how HP filter affects estimation in

the DSGE context.

2.4 Estimation Procedure

Various non-Bayesian methods have been used to estimate the model as a system of equations. Two-

step minimum distance approach (e.g., Sbordone (2006)), GMM/covariance structure (e.g., Christiano

and den Haan (1996), Christiano and Eichenbaum (1992)), as well as simulation estimation (e.g., Altig

et al. (2004)) can all be used. Ruge-Murcia (2005) provides a review of these methods. We use a

method of moments estimator that minimizes the distance between data moments and model-implied

moments. Our estimation procedure can be summarized as follows:

1: Compute Ω̂d(0) = cov(dc
t), the covariance matrix of the filtered series. Likewise, compute Ω̂d(1),

the first order sample auto-covariance.

2: Solve the rational expectations model (1), (2), or (3) for a guess of Θ, where Θ is the vector of

structural parameters. Use the solution to analytically compute Ωm(0) and Ωm(1), the model

implied covariance and autocovariance matrix for the model variables (which would be m̂t, m̃t,

or ∆m̂t).
6Even though the model predicts that labor is stationary, we first difference all series in the data because we solve

the ∆1DT model in first differences for all variables.
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3: Let ω̂d = (vech(Ωd(0))′ vec(Ωd(1))′)′ and let ωm(Θ) = (vech(Ωm(0))′ vec(Ωm(1))′)′. Estimate

the structural parameters as Θ̂ = argminΘ

∥∥ω̂d − ωm(Θ)
∥∥.7,8

Before estimation, a researcher needs to take a stand on two issues. First, he/she must decide

whether the model is solved in terms of m̂t, which is stationary under DT but not ST, or m̃t, which

is stationary under ST. In doing so, the researcher is also making an assumption whether the shocks

in the model are permanent or transitory. Second, the researcher needs to map the model variables

(which are stationary) to the observed data and must decide how to filter the data. Problem (DD)

arises when the two steps are not mutually consistent. Problem (MTS) arises when the data analogue

of the model variables are not stationary or are over-differenced; that is, the assumed trend in the

model is different from the trend in the data.

To illustrate the problems, consider the following combinations of model variables and data filtering

techniques:

True Model Assumed Model and Variables Filtering Problems
1. DT DT, m̂t LT -
2. DT DT, m̂t HP (DD)
3. ST ST, ∆1m̂t FD -
4. ST ST, m̃t HP (DD)
5. DT ST, m̃t HP (DD),(MTS)
6. ST DT, m̂t LT (MTS)

Of the six configurations, (1) and (3) are correctly specified and the data are appropriately filtered.

In both cases, the assumed trend is identical to the trend in the data and, thus, there is no Problem

(MTS). Because the researcher applies the same filter to the model variables and the data series,

Problem (DD) is not an issue. In case (2), the assumed trend in the model is consistent with the

actual trend in the data (both are deterministic time trends) and there is no Problem (MTS). However,

the HP filter applied to the data series has different properties than the filter in the model, which is

the linear time trend. Since these two filters do not agree in general, the researcher faces Problem

(DD). A similar problem arises in case (4). In case (6), the assumed trend and the choice of detrending

technique are consistent; that is, the researcher applies an appropriate filter given his or her assumption

about the trend. Hence, Problem (DD) does not apply for this case. On the other hand, because the

researcher has to choose either DT or ST before estimation, his or her choice of DT is not consistent

with the true data generating process (ST) and, consequently, Problem (MTS) applies to this case.
7One can use the values of the ratios or means contained in the constant terms as additional moments in estimation.

However, since estimation of DSGE model is typically based on the second moments of the cyclical component of the
data, we do not consider these additional moments in our analysis.

8We assume that shocks are homoscedastic. If shocks are heteroscedastic, one can consider additional higher moments
to capture sources of heteroscedasticity.
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Likewise, in case (5), the choice of the trend in the model (DT) does not agree with the trend in

the data (ST). In addition, the choice of the filtering technique in the data is not consistent with the

assumed trend in the model. It follows that Problem (MTS) is further complicated by Problem (DD).

Two observations can be made. First, Problem (DD) involves only inconsistency between the

model and the data trend. One can always circumvent the problem by applying the same filtering

technique to the model variables and the data series. For example, the researcher can generate m̂t,

apply HP filter to the generated m̂t and match the moments of filtered m̂t to the moments of HP

filtered data. Although this procedure does not have Problem (DD), it is much slower and less efficient

than alternative methods we describe below.

Second, Problem (MTS) arises only when the assumption about the trend in the model is different

from the actual trend in the data, and this assumption has to be made before estimation. A solution

to Problem (MTS) is a flexible framework that nests DT and ST so that the researcher does not have

to take a stand on whether ρz < 1 or ρz = 1. These two observations suggest that to address Problems

(DD) and (MTS), the researcher needs an approach that i) transforms the data and model variables

in the same way and ii) yields stationary series for all |ρz| ≤ 1.

3 Three Robust Approaches

In this section, we consider three approaches that are robust to whether shocks are permanent or tran-

sitory. The key to robustness is to filter both the model variables and the observed data consistently

so that filtered series are stationary and have the same properties.

3.1 The Quasi-Differenced DT Model

The first method solves an alternative representation of the same model. To begin, recall that the DT

model solves the following system of equations:

EtΓD
2 m̂t+1 = ΓD

0 m̂t + ΓD
1 m̂t−1 + ΨD

2 uz
t+1 + ΨD

0 uz
t

where the Γ and Ψ matrices are defined in (1). Let ∆ρz = 1− ρzL be the quasi-differencing operator.

Then for a given ρz, a quasi-differenced representation of the DT model can be obtained by multiplying

both sides of each equation in (1) by ∆ρz :
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Et

0 0 0
1 0 A0

0 0 0

∆ρĉt+1

∆ρk̂t+1

∆ρ l̂t+1

 =

−1 0 −α
1 A0 0

A1 A2 α− 1

∆ρĉt

∆ρk̂t

∆ρ l̂t

 +

0 α 0
0 0 0
0 A4 0

∆ρĉt−1

∆ρk̂t−1

∆ρ l̂t−1


+

 0
−A0

0

∆ρuz
t+1 +

 1− α
0

α− 1

∆ρuz
t . (7)

Since uz
t = ρzu

z
t−1 + ez

t , we have

EtΓD
2 ∆ρzm̂t+1 = ΓD

0 ∆ρzm̂t + ΓD
1 ∆ρzm̂t−1 + ΨD

1 ez
t+1 + ΨD

0 ez
t

where ∆ρzm̂t = (∆ρzct,∆ρzkt,∆ρz lt). Note that the error term in (7) is an i.i.d. innovation and

therefore ∆ρzm̂t is stationary for all |ρz| ≤ 1. The appeal of the quasi-differenced representation is

that it is valid for all ρz less than or equal to one; (7) is just a special case of (2) at ρz = 1. Partition

Θ = (Θ−, ρz). The deep parameters can be estimated as follows:

The QD Estimator: Initialize ρz.

1: Quasi-difference the observed data with ρz to obtain

cc
t = ∆ρz(ct − ḡt), kc

t = ∆ρz(kt − ḡt), lct = ∆ρz lt, (8)

and let ∆ρzdc
t = (cc

t , k
c
t , l

c
t ).

9

2: Compute Ω̂d
∆ρz (0) = cov(∆ρzdc

t), the covariance matrix of ∆ρzdc
t , and the autocovariance matrix

Ω̂d
∆ρz

(1). Define ω̂d
∆ρz = (vech(Ωd

∆ρz (0))′ vec(Ωd
∆ρz (1))′)′;

3: For a given ρz and Θ−, solve (7) to yield

∆ρm̂t = Π∆ρ∆ρm̂t−1 + B∆ρ∆ρus
t .

Using this equation, compute Ωm
∆ρz (0) and Ωm

∆ρz (1), the model implied covariance and autoco-

variance matrices. Define ω̂m
∆ρz = (vech(Ωm

∆ρz (0))′ vec(Ωm
∆ρz (1))′)′;

4: Find the structural parameters Θ̂ = arg minΘ

∥∥ω̂d
∆ρz − ωm

∆ρz (Θ)
∥∥.

9Since projecting series on linear trend yields super-consistent estimates of the coefficient on the time trend, one
can ignore the error induced by removing the linear time trend when he or she applies standard asymptotic inference.
Likewise, one can introduce structural breaks in a trend directly at this step.
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Note that ρz and Θ− are estimated simultaneously. The quasi-differenced estimator differs from the

covariance estimator of the previous section in one important respect. The parameter ρz now affects

both the moments of the model and the data since the latter are computed for the quasi-transformed

data. Conceptually, the crucial feature is that the quasi-transformed data are stationary irrespective

of ρz. Thus, the QD estimator resolves Problem (DD) by applying the same transformation (filter)

to the data and model and tackles Problem (MTS) by using a transformation that yields stationary

series for any |ρz| ≤ 1. Because ∆ρzmt is stationary, the estimation problem can be studied under the

assumptions of extremum estimation. Under regularity conditions, standard
√

T asymptotic normality

results hold (see Section 3.4).

At this point it is useful to relate our approach with other methods considered in the literature.

Fukac and Pagan (2006) propose using Beveridge-Nelson decomposition to estimate and remove per-

manent component in the data series. Apart from the fact that the permanent component in the

Beveridge-Nelson decomposition may be different from actual trend and is subject to stringent as-

sumptions, the clear advantage of our approach is that it is a one-step procedure that can handle

multiple I(1) shocks.

Our method is similar to Cogley’s (2001) in that neither requires the researcher to take a stand

on the properties of the trend dynamics before estimation, but there are important differences. First,

quasi-differencing can easily handle multiple I(1) or highly persistent shocks. In contrast, using coin-

tegration relationships works only for certain types of shocks. For example, if the shock to disutility

of labor supply is an I(1) process, there is no cointegration vector to nullify a trend in hours. Second,

cointegration often involves estimating identities and therefore the researcher has to add an error term

(typically measurement error) to avoid singularity. Our approach does not estimate specific equations

and hence does not need to augment the model with additional, atheoretical shocks. Finally, using

unconditional cointegration vectors may make estimation of some structural parameters impossible.

For instance, the parameters governing short-run dynamics such as adjustment costs may be not es-

timated in this setting because the term due to adjustment costs is zero on average by construction

(i.e., adjustment cost is typically zero in steady state). In contrast, our approach utilizes short-run

dynamics in estimation and thus can estimate the parameters affecting short-run dynamics of the

variables. Overall, our approach can be used in a broader array of situations and we exploit different

properties of the model in estimation.

3.2 The ∆DT Model

Naturally, if elements of ∆ρzm̂t are stationary concepts when |ρz| ≤ 1, they are also stationary when

the data are quasi-differenced at ρz = 1. This suggests that solving the first difference representation
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of the DT model will also yield robust estimates. The corresponding system of equations is

Et

0 0 0
1 0 A0

0 0 0

∆ĉt+1

∆k̂t+1

∆l̂t+1

 =

−1 0 −α
1 A0 0

A1 A2 α− 1

∆ĉt

∆k̂t

∆l̂t

 +

0 α 0
0 0 0
0 A4 0

∆ĉt−1

∆k̂t−1

∆l̂t−1


+

 0
−A0

0

∆uz
t+1 +

1− α
0

α− 1

∆uz
t . (9)

Observe that when ∆uz
t = (ρz−1)uz

t−1+ez
t , and ρz < 1, ρz remains a parameter of the model (3) unless

it is constrained to be one. To stress that ρz is a free parameter and contrast it with the constrained

specification, we do not put a superscript on the first difference operator. The difference between the

constrained ∆1DT and unconstrained ∆DT models is that the unconstrained model is valid whether

or not ρz = 1, while the constrained model is an alternative representation of the ST model and is thus

valid only when ρz = 1. Note that the QD estimator and ∆DT estimator are equivalent when ρz = 1.

While the moments of ∆DT model are robust to whether ρz is on the unit circle, this approach is less

efficient relative to quasi-differencing since the data will be over-differenced when the data are already

stationary. The estimation procedure for the unconstrained ∆DT estimator is as follows:

The ∆DT Estimator:

1: First difference the observed data to obtain

cc
t = ∆ct − ḡ, kc

t = ∆kt − ḡ, lct = ∆lt. (10)

and let ∆dc
t = (cc

t , k
c
t , l

c
t ).

2: Compute Ω̂d
∆(0) = cov(∆dc

t), the covariance matrix of ∆dc
t , and the autocovariance matrix

Ω̂d
∆(1). Define ω̂d

∆ = (vech(Ωd
∆(0))′ vec(Ωd

∆(1))′)′;

3: For a given Θ, solve (9) and compute Ωm
∆(0) and Ω̃m

∆(1), the model implied covariance and

autocovariance matrices. Define ω̂m
∆ = (vech(Ωm

∆(0))′ vec(Ωm
∆(1))′)′;

4: Find the structural parameters Θ̂ = arg minΘ

∥∥ω̂d
∆ − ωm

∆ (Θ)
∥∥.

3.3 The HP-HP Model

The final robust method is based on the HP filter. A desirable feature of the HP filter is that it can

remove deterministic as well as stochastic trends. As discussed in King and Rebelo (1993), the data
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can be rendered stationary without the user deciding a priori the specific type of non-stationarity that

is to be handled. The HP filter is heavily used in empirical analysis, but as seen earlier, the common

practice of estimating either the DT or the ST model using HP filtered the data can lead to substantial

bias in the parameter estimates. The reason is that the HP filter changes the autocovariance structure

of the data. It follows that if we were to filter the data, we would also need to simultaneously HP

filter the model variables.10

For the case with stationary variables, define a HP filtered series as y̆t = H(L)yt, where H(L) is a

polynomial in the lag operator. Let Ωm(0) and Ωm(1) be the variance and first order autocovariance of

the untransformed model variables. Collect their unique elements of interest into a vector ωm. Then

the autocovariance of the filtered data can be computed as

ω̆m
HP,s(k) =

∞∑
i=−∞

∞∑
j=∞

HiHjω
m
s (k + i− j).

We can compute only Hj , j = 1, . . . T . Furthermore, the Hj computed from T observations are different

at the beginning/end of the sample and the middle of the sample. This problem, also discussed in

Christiano and den Haan (1996), has no perfect solution. One possibility is to use the weights in the

middle of the sample throughout. An alternative is to simulate the theoretical moments as implied by

the model. Both will yield approximation to the analytical covariances.

If yt is not stationary because of deterministic or stochastic trends, which is the case of interest,

one encounters the additional problem that the population autocovariances of model variables are not

well defined, even though sample autocovariances for non-stationary processes can be mechanically

calculated. Since analytic calculation of the moments of HP filtered series is burdensome even in

simple univariate cases, we use simulations to approximate the moments of the HP filtered model and

to estimate structural parameters as follows:

The HP-HP Estimator: Initialize ρz.

1: Let d̆c
t be the HP filtered data. Compute Ωd

HP (0) and Ωd
HP (1), the variance and autocovariance

matrix of d̆c
t . Define ωd

HP = (vech(Ωd
HP (0))′ vec(Ωd

HP (1))′)′;

2: For a given guess of Θ, solve the DT model for m̂t, let mt = m̂t + ḡt, draw shocks {ez
t }S

t=1 and

simulate data {mt}S
t=1, where S is sufficiently large to make sampling error in Step 3 small;

3: Apply HP filter to {mt}S
t=1 and get cyclical component m̆t. Compute Ωm

HP (0) and Ωm
HP (1), the

variance and autocovariance matrix of m̆t, and define ωm
HP = (vech(Ωm

HP (0))′ vec(Ωm
HP (1))′)′;

10Although we focus on HP filter, alternative filters that remove I(1) component in the series can be used in estimation
as long as the same filter is applied to model and data series. One may use band-pass filter described in, for example, ?.
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4: Find the structural parameters Θ̂ = arg minΘ

∥∥ωd
HP − ωm

HP (Θ)
∥∥.11

By construction of the HP filter, both d̆t and m̆t are stationary for all |ρz| ≤ 1. Under the DT

model, ρz is a free parameter. Thus, adding deterministic terms back to the DT model yields a model

that can potentially have both deterministic and stochastic trends. At each iteration of Θ, one has

to simulate and filter model series, which makes the procedure quite slow relative to other robust

approaches (about 3-5 times slower if compared to QD).

The three robust methods can be summarized as follows:

True Model Assumed Model/ Variables Data Estimator

ST, DT QD, ∆ρzm̂t ∆ρzdc
t QD

ST, DT ∆DT, ∆m̂t ∆dc
t ∆DT.

ST, DT HP, m̆t d̆c
t HP-HP

All three methods do not require the researcher to take a stand on whether ρz < 1 or ρz = 1 before

estimation. The ST and DT are nested within QD, ∆DT and HP-HP framework.

4 Simulations

4.1 Setup and Calibration

We generate the data as either DT (deterministic trends) or ST (stochastic trends) using the model

equations for the stationary (i.e., normalized) variables. The model variables are then rescaled back

to non-stationary form and treated as observed data dt = (ct, kt, yt, lt) that the researcher takes as

given. The researcher then decides (i) whether to use the model equations implied by DT or ST for

estimation, and (ii) how to detrend the data.

We estimate Θ = (α, ρ, σ) and treat parameters (β, δ, θ, ḡ) as known. We calibrate the model as

follows: capital intensity α = 0.33; disutility of labor θ = 1; discount factor β = 0.99; depreciation

rate δ = 0.1; gross growth rate in technology ḡ = γ̄ = 1.005. We restrict the admissible range of

the estimates of α to [0.01,0.99]. We vary the persistence of shocks to technology uz
t . The parameter

ρz takes values (0.5, 0.95, 0.99, 1). The admissible range for ρ̂z in the DT model is [-0.999,0.999].

Since for now we have only one shock in the model, we set the standard deviation of ez
t to σ = 0.1

without loss of generality. We perform 1,000 replications for each choice of parameter values. For

each replication, we create series with T=300 observations which is a typical sample size in applied

macroeconometric analysis.
11We experimented with an alternative procedure. For each Θ, we simulated the model to generate j = 1, ..., N samples

of size T . For each j we computed moments. Then we averaged moments over j and used this average for ωm
HP . This

procedure is much slower and the results are very similar to the procedure we present in the text.
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In the simulations, we use a covariance structure estimator that minimizes the distance between

the observed unconditional autocovariances of the data and those implied by the model. We described

the estimator in the previous sections. To minimize distortions associated with poor estimation of the

optimal weighting matrix, we use an identity weighting matrix in our method of moments estimator.12

In all simulations and for all estimators, we set starting values in optimization routines equal to the

true parameter values.

4.2 Results for the Baseline Model

We report simulation results for the baseline one-shock model in Table 2 and present the kernel density

estimates for parameter estimates in Figure 1. We use the following notation to label different cases.

In case (XX,YY), XX stands for the method used to filter the data, while YY stands for the assumed

model. Thus, (LT,m̂t) means that the data used in estimation are residuals from projection on a time

trend, and the assumed model is expressed in terms of m̂t with |ρz| < 1. The DGP is given in the first

column.

Our simulations suggest that combinations (QD,∆ρzm̂t), (FD,∆m̂t) and (HP, m̆t), which are re-

ported in columns (4), (6) and (7) and correspond to the QD, unconstrained ∆DT, and HP-HP

estimators respectively, yield estimates generally centered at the true values. The distribution of the

estimates is bell-shaped and well-behaved uniformly for all values of ρz. That is, the performance of

QD, ∆DT and HP-HP estimators does not change materially as ρz approaches one. This pattern is

recurrent in all simulations. In contrast, other estimators exhibit significant biases and larger disper-

sion of estimates especially when ρz is close to a unit circle. Below we document their properties and

explain why these estimators tend to underperform.

Consider first the (LT,m̂t) combination when the researcher uses series after linear detrending as the

data concept and m̂t as the model concept of the observed variables (column (1), Table 2). For small to

moderate values of ρz, this combination performs well: the distribution of the parameter estimates is

centered at true values. However, as ρz increases the performance of the (LT,m̂t) combination quickly

deteriorates. There is a significant upward bias in the estimates of the capital share α. Furthermore,

this bias increases with ρz so much that at ρz = 1, the mean of α̂ is close to one. The bias in σ̂ also

worsens rapidly as ρz approaches one and the dispersion of the estimates is large as seen from the flat

density of σ̂ in Figure 1. The estimates of ρz tend to be relatively close to true values up to ρz = 0.95.

As ρz approaches one, however, there is a strong downward bias in ρ̂z. For example at ρz = 1, the

mean of ρ̂z is approximately 0.7.

Note that the (LT,m̂t) case can not only significantly bias the estimates but can also yield multi-
12Using optimal weighting matrix introduces a small bias in the estimates. The bias vanishes when T →∞.
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modal distribution of the estimates. For example, the case with ρz = 0.99 has two peaks in the

distribution of α̂, σ̂ and ρ̂z, i.e., the objective function of the covariance structure estimator has two

or more local optima. This observation is particularly troubling for users of standard optimization

routines as these routines can fail to escape from local optima. Importantly, estimates based on

different local optima can lead to drastic changes in the economic interpretation of the estimates.

The case of ρz = 1 (last row of the (LT,m̂t) column) is particularly interesting because linear

detrending is commonly used in estimation of DSGE models, as seen from Table 1. Projecting a

series with a unit root on time trend is known to lead to spurious cycles in univariate analysis (e.g.

Nelson and Kang (1981)). Our results suggest that in systems estimation such as the one considered

here, linear detrending leads to extremely strong biases in the estimates of the structural parameters.

Since technology shocks appear to be highly persistent and well approximated with unit root (Problem

MTS), researchers should be very cautious with using linearly detrended data for estimation of DSGE

models in applied work.

Turning to the (HP,m̂t) combination in column (2), the estimates of ρz have a strong downward

bias. On the other hand, there is a strong upward bias in α̂ and σ̂.13 These estimates suggest larger

but less persistent shocks to technology as well as a significant role of capital as a mechanism for

propagating shocks in the model. To understand this pattern, recall that HP filter removes not only the

linear trend but also low frequency variation in the series. When ρz is large, HP filter can significantly

alter the properties of the series. More specifically, HP filter changes not only the persistence of the

series (recall Cogley and Nason (1995)) but also the relative volatility and serial correlation of the

series (see e.g. King and Rebelo (1993) and Harvey and Jaeger (1993)). This translates into biased

estimates of all parameters because the estimator is forced to match the properties of the altered data

which is different from the model concept of observed variables.

Under (HP,m̃t), ρz is fixed at 1 and the model variables are m̃t. As seen from column (3), the

estimates of α and σ remain unsatisfactory. The estimates of α’s are lumped at the boundary of the

admissible range [0.01, 0.99] and the estimates of σ tend to be very close to zero. In other words,

the estimated model suggests that shocks to technology are very small but the propagation through

capital accumulation is strong. Why does this happen? Note that in the ST model defined in terms

of m̃t, the dynamics of the variables tend to have weak serial correlation because deviations from ut

are transitory and dissipate quickly as variables such as consumption adjust to almost full strength

in response to permanent shocks to technology. On the other hand, HP filter leaves out sizable serial

correlation in the filtered data. Thus, the fitted model is forced to produce parameter values that have
13Note that we do not HP-filter labor series as labor is stationary irrespective of whether ρz < 1 or ρz = 1. Results do

not change qualitatively when we estimate the model using HP-filter labor series.
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strong propagation mechanism to generate relatively strong serial correlation in deviations from the

stochastic trend.

To understand the strong downward bias in σ̂, note that var(ỹt) < var(c̃t) and var(k̃t) > var(c̃t)

in the model, while var(yc
t ) < var(cc

t) and var(kc
t ) < var(cc

t) in the HP-filter series. As α approaches

one, var(ỹt) and var(k̃t) become approximately equal to var(c̃t) and thus the gap in the relative

volatility between output, capital and consumption resembles the relative volatility in the data. At

the same time, larger values of α increase the volatility of the series and the estimator decreases the

size of the shocks to match the level of volatility in the data. Hence, there is a strong downward

bias in σ̂. Overall, results for combinations (HP,m̂t) and (HP,m̃t) suggest that Problems (DD) and

(MTS) can significantly affect estimates of structural parameters and can lead to erroneous economic

interpretations.

To get a sense of how much difference filtering can make, consider the combination (FD,∆1mt),

reported in column 5, Table 2. It performs reasonably well when ρz ≈ 1, that is, ST is the correct

assumption and first differencing is correctly applied to data and model variables. As ρz departs from

one, Problem (MTS) manifests in an increasing upward bias in both α̂ and especially σ̂. Note that

despite the fact that the estimates based on (FD,∆1mt) exhibit sizable biases when ρz moves away

from one, (FD,∆1mt) dominates (HP,m̃t) by a large margin. This pattern is typical in our simulations.

4.3 Estimation of the Propagation Mechanisms

Clearly, the absurdly large estimates of α or similar problems with the estimates of deep parameters

can alert the researcher that the model is likely misspecified and he or she must make adjustments

to the model. One possible and popular modification is to introduce serial correlation in the growth

rates of structural shocks such as technology. Interestingly, when we introduce such correlation in

the growth rates of technology (not reported) and estimate the model using (HP,m̃t) combination,

the estimates of α take more plausible values in the range of 0.4-0.5. However, this modification in

the model is ad hoc and more importantly it indicates that improper choice of filtering techniques

and model concepts can induce the researcher to augment correctly specified models with spurious

mechanisms of propagation and amplification to match the moments of the data.14

To highlight this point, we augment the basic model with internal habit in consumption. This

modification is a popular way to introduce greater persistence and amplification in business cycle

models. Specifically, consider an alternative utility function:

max
∑

βt

[
ln(Ct − φCt−1)− Lt

]
14For example, Doorn (2006) shows in simulations that HP filtering can significantly alter the parameter estimates

governing dynamic properties in his inventory model.
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where φ ∈ [−0.999, 0.999] measures the degree of habit in consumption. In this model, the researcher

estimates (α, φ, ρ, σ). We set φ = 0.8 to investigate how the treatment of the trends affect estimates

of internal propagation mechanisms as well as estimates of other structural parameters. We report

results in Table 3 and Figure 2. To save space, we do not consider the case of ρz = 0.5 and present

kernel densities of the estimates for only the case of ρz = 0.95 in Figure 2.

Similar to the results in the previous section, QD, ∆DT and HP-HP perform well. The bias in the

estimates is generally negligible and the distribution of the estimates is well-behaved. Overall, QD,

∆DT and HP-HP strongly dominate alternative estimators whose performance we examine below.

The combination (LT,m̂t) has a relatively small upward bias in φ̂ when ρz = 0.95 but the perfor-

mance of (LT,m̂t) quickly deteriorates as ρz approaches one, see column (1) of Table 3. Specifically,

at ρz = 0.99 the mean value of φ̂ is close to the the true value of φ but the dispersion of φ̂ rapidly

increases indicating that the distribution of φ̂ is quite flat. When ρz = 1, the mean of φ̂ sharply

drops and the dispersion of φ̂ increases further. In fact, the kernel density of φ̂ is practically flat

(not reported) so that researcher using (LT,m̂t) may end up with effectively any estimate of φ. Note

that introducing habit formation changes the pattern of biases in the estimates of other parameters

when compared to the baseline model without habit formation. In particular, although α̂ is upwardly

biased in the model with and without habit formation, there is a downward bias in ρ̂z and σ̂ for the

model with habit formation which is different from the results for the baseline model without habit

formation. Note that it is very hard to predict the sign of the bias in general. Small modifications in

a model can lead to distortionary effects reinforcing or attenuating each other so that estimates can

over- or understate the magnitudes of structural parameters. The direction of the bias is highly model

specific and a priori ambiguous.

Under the (HP,m̂t) combination, when the researcher uses HP filter to remove the trend, there

are larger distortions to φ̂. The estimate of φ has a clear upward bias when ρz = 0.95. However,

the mean value of φ̂ understates the degree of the bias as the distribution of φ̂ has a thick left tail.

As ρz approaches one, the dispersion of φ̂ increases dramatically, which is a manifestation of the

flat distribution of φ̂. This finding suggests that identification of φ from the filtered data may be

poor. Indeed, identification of φ comes from low frequency variation in the data but this frequency

is removed or greatly attenuated by the HP filter. Other estimates are also biased. In particular, α̂

has a stronger upward bias than in the case without habit formation. The bias in σ̂ decreases with ρz

while it increases with ρz in the model without habit formation. Also note that the extent of the bias

in ρ̂z is smaller in this model than in the model without habit formation.

The (HP,m̃t) combination which imposes ρz = 1 tends to produce results similar to the previous

case but with more acute identification problems for φ as the density of φ̂ is fairly flat even for
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ρz = 0.95. In addition, the mean of α̂ is away from the boundary of the admissible space for estimates

of α because a part of the upward bias in α̂ is absorbed by changes in the estimates of φ. Interestingly,

as φ increases towards one, the bias in α̂ turns from upward to downward. Again, note that using an

alternative combination (FD,∆1mt) can greatly improve the estimates when ρz ≈ 1, which is similar

to the baseline case without habit formation.

4.4 Statistical Properties

The above simulations indicate that our quasi-differenced estimates are close to the true value and the

difference between the estimates and the true value is by and large symmetrically distributed. Note

that our quasi-differenced estimator is nothing but a non-linear GMM estimator using an identity

as weighting matrix and stationary (after quasi-differencing) data. One may wonder whether the t-

statistic for estimates based (QD,∆ρzm̂t) (or (FD,∆m̂t), or (HP,m̆t)) are well approximated by the

normal distribution for large T and our estimator is
√

T consistent and asymptotically normal. In this

subsection, we assess this conjecture.

Let vc
t = (dc

t , d
c
t−1, . . . , d

c
t−s) be the vector of stacked data so that ωd = vech(cov(vc

t )). Likewise,

define vm
t , the vector of stacked model variables, and ωm = vech(cov(vm

t )). Define

1
T

T∑
t=1

gt = ḡ = ωd − ωm.

By assumption, gt is continuous in Θ, which is compact and gt(Θ0) is stationary ergodic when evaluated

at the true parameter vector, Θ0 = (Θ−
0 , ρ0). Let G be the matrix of derivatives of g with respect to

Θ. Then if Θ̂ = argminΘ J = ḡ′ḡ,

√
T (Θ̂−Θ0)

d−→A(ρ0)N(0, S)

where A(ρ0) = (G′G)−1G′ is non-stochastic when the data are stationary and has a random limit when

ρ0 = 1. Although Θ̂ is mixed normal, the t statistic is asymptotically normal. In large samples, the

simulated density for t-statistic should be close to the p.d.f. of the standard normal random variable.

We focus on four combinations (QD,∆ρzm̂t), (FD,∆m̂t), (HP,m̆t) and (LT,m̂t) and report the kernel

density of t-statistic for T=300 and T=2,000 in Figures 3 and 4. We employ Newey-West estimator

of S and compute t-statistic for the parameters of the baseline one-shock model.

The figures show that the distribution based on the QD estimator for α and σ is generally close to

the N(0,1) density. Likewise, apart from the case when ρz = 1, the distribution of the t-statistic for

ρ̂z is also closely approximated by the standard normal distribution.15 The distribution of t-statistic
15Note that the model does not have a unique rational expectations equilibrium if ρz > 1. Since we consider only
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based on ∆DT is somewhat less impressive but nonetheless it is a much better approximation to N(0,1)

than the approximation provided by the more commonly used (LT,m̂t) combination. HP-HP and QD

have similar performance.

While normality of α̂ and σ̂ may not seem surprising, approximate normality of ρ̂z when ρz is close

to one may be unexpected. This is because the literature on integrated regressors suggest a convergence

rate of T , but that the asymptotic distribution is highly skewed. This surprising and curious result

was investigated in more detail in Gorodnichenko and Ng (2007) in simpler linear regression models.

In a nutshell, our sample moments are stationary when evaluated at the true parameter vector to

permit application of central limit theory, ie.
√

T ḡ(Θ0)
d−→N(0, S). The effect of non-stationarity

is then confined to the Jacobian matrix with the consequence that Θ̂ − Θ0 ≈ A(ρ0)N(0, S), where

A(ρ0) is non-random if the data are stationary but is a function of Brownian motions if the data are

strongly persistent and possibly non-stationary. However, the t statistics are approximately normal,

which greatly facilitates inference. The cost, which seems warranted, is that the estimator looses its

super-consistent property, though it continues to be
√

T consistent.

5 The General Formulation

Our Monte Carlo experiments suggest that the (QD,∆ρzm̂t), (FD,∆m̂t) and (HP,m̆t) estimators out-

perform popular alternatives in terms of providing less dispersed and biased estimates of structural

parameters. Combinations (QD,∆ρzm̂t), (FD,∆m̂t) and (HP,m̆t) are similar in terms of having little

or no bias. However, (QD,∆ρzm̂t) and (HP,m̆t) tend to have smaller dispersion and better behaved

distribution of the estimates than (FD,∆m̂t) when at least one of the shocks is persistent.

The key to robustness is that these estimators do not depend on whether the data are persistent

and that they apply basic transformations to both possibly persistent data and model variables so that

there is a coherent mapping between the model and data. Effectively, Problems (DD) and (MTS) are

addressed simultaneously because i) the researcher does not have to take a stand on the properties of

the forcing variables (e.g., technology has a permanent or transitory shocks) as the transformed data

and model variables are stationary for all parameter values describing persistence of forcing variables;

and ii) the researcher applies the same transformation (filter) to the model and the data to make the

variables stationary so that filtered variables in the model and data have the same connotation. In

other words, (QD,∆ρzm̂t), (FD,∆m̂t), and (HP,m̆t) preserve consistency between the data and model

concepts irrespective of whether variables are stationary or not.

parameter values consistent with the existence of a unique rational expectations equilibrium, the estimate for ρz becomes
distorted as ρ̂z cannot exceed unity. However, in the linear single-equation case considered in Gorodnichenko and Ng
(2007), the distribution of ρ̂z is well behaved and close to the standard normal since ρ̂z is allowed to exceed one.
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Our QD framework straightforwardly extends to more general cases. Suppose there are J shock

processes ujt, j = 1, . . . J , and

(1− ρjL)ujt = ejt, j = 1, . . . J

and some of the ρj may be on the unit circle. Let mt be a vector of (predetermined, non-predetermined,

plus exogenous) variables of the model and let m̂t be the vector of zero-mean variables that are

deviations of mt from the steady state values. Normalization like m̃t = m̂t− ut or transformation like

∆m̂t is necessary to make model variables stationary when some shocks are permanent. As seen from

Table 1, most studies assume that shocks are transitory and solve

ΓD
0 m̂t = ΓD

1 Etm̂t+1 + ΓD
2 m̂t−1 + ΨD

1 ut+1 + ΨD
0 ut

A smaller number of studies assume stochastic trends and solve

ΓS
0 ∆m̂t = ΓS

1 Et∆m̂t+1 + ΓS
2 ∆m̂t−1 + ΨS

1 et+1 + ΨS
0 et.

As illustrated in Section 2, the estimation approach depends on what is the assumed model, and

how the observed data are filtered to become stationary. Let dt be a vector of r observed variables.

The general solution in state space representation is

dt = δ0 + δ1t + B m̂t (11)

The measurement equation (??) links dt to the q model variables m̂t through the matrix B (r × q).16

The parameters δ0 and δ1 are r × 1 vectors of restricted constants to be estimated along with the

other parameters. This ensures that the data are detrended using model consistent parameters. An

alternative, used in Ireland (2004a) and many others, is to linearly detrend the data prior to estimation.

This amounts to not imposing constraints on δ0 and δ1 to take values implied by the model. If the

model is correctly specified for the data, both methods of detrending are asymptotically equivalent.

Without loss of generality, simply let dc
t = dt−δ0−δ1t be the detrended data so that the measurement

equation becomes

dc
t = dt − δ0 − δ1t = B m̂t. (12)

There are alternative measurement equations. For example, the measurement equation for first-

differenced data is dc
t = ∆dt−δ1 = B ∆m̂t. Likewise, the measurement equation for HP-HP estimator

simply applies HP filter to both sides of equation (??).
16A vector of r measurement errors ηt can be added to the measurement equation as in Edge et al. (2005).
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The quasi-differencing approach can be extended to the case of multiple shocks by defining

∆ρ(L) =
J∏

j=1

(1− ρjL).

Now the quasi-differencing operator is the product of the J polynomials in lag operator that describes

the dynamics of the J shocks. Then the J-shock quasi-differenced model is defined as

EtΓD
2 ∆ρm̂t+1 = ΓD

0 ∆ρm̂t + ΓD
1 ∆ρm̂t−1 + ΨD

1 ∆ρut+1 + ΨD
0 ∆ρut, (13)

The link between the data and the model is given by

∆ρ(dt − δ0 − δ1t) = B ∆ρm̂t.

This link is valid whether the true model is DT or ST. Note that one does not have to work with

the product of (1−ρL) operators for each shock. Following the insight from the comparison of the QD

and unconstrained ∆DT estimators, one can use quasi-differencing only for shocks that are expected

to be persistent and do not transform the data further to accommodate other, known-to-be stationary

shocks. For example, if one knows that shocks to tastes dissipate quickly while technology shocks zt

are highly persistent, the researcher can use only (1− ρzL) in the ∆ρ operator.

5.1 A Two Shock Example

To illustrate the multiple shock case, we re-introduce shocks to hours in the model so that the system

is given by

Et

0 0 0
1 0 A0

0 0 0

ĉt+1

k̂t+1

l̂t+1

 =

−1 0 −α
1 A0 0

A1 A2 α− 1

ĉt

k̂t

l̂t

 +

0 α 0
0 0 0
0 A4 0

ĉt−1

k̂t−1

l̂t−1


+

 0 0
−A0 0

0 0

[
uz

t+1

uq
t+1

]
+

1− α 1
0 0

α− 1 0

[
uz

t

uq
t

]
(14)

Following the procedures we describe above, it is straightforward to write this model in terms of

stationary variables m̃t or ∆mt when shocks to technology or hours contain a unit root.
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Let ∆ρ = (1− ρzL)(1− ρqL). The quasi-differenced representation of the two-shock model (15) is:

Et

0 0 0
1 0 A0

0 0 0

∆ρĉt+1

∆ρk̂t+1

∆ρ l̂t+1

 =

−1 0 −α
1 A0 0

A1 A2 α− 1

∆ρĉt

∆ρk̂t

∆ρ l̂t

 +

0 α 0
0 0 0
0 A4 0

∆ρĉt−1

∆ρk̂t−1

∆ρ l̂t−1


+

 0 0
−A0 1

0 0

[
ez
t+1

eq
t+1

]
+

1− α 1
ρqA0 0
α− 1 0

[
ez
t

ez
t

]

+

−ρq(1− α) −ρz

0 0
ρq(α− 1) 0

[
ez
t−1

eq
t−1

]
.

This representation is valid when none, one or both shocks are non-stationary. It is easy to see

that when none or one shock is permanent, the transformation recovers the correct representation.

When both shocks are permanent, the representation is the first difference of (15). Instead of solving

for a model that is possibly non-stationary, we solve for a model that is possibly over-differenced.

In this model, we estimate (α, ρz, σz, ρq, σq). The relative persistence and variability of shocks is

important for the estimates. We fix σz = 0.1 and let σq take values (0.025,0.05,0.15). The persistence

of the shocks to technology and hours is described by the vectors (0.95,0.99,1) and (0.5,0.8,0.9,0.975)

respectively so that in our exercise technology shocks are generally more persistent than shocks to

hours. To preserve space, we report only selected results in Table 4 and Figures 5 through 7 (ρq =

0.8,ρz = 0.95) and provide only a concise summary of the results. Additional results are available

upon request.

In short, combinations (QD,∆ρzm̂t), (FD,∆m̂t), and (HP,m̆t) perform well while other estimators

have significantly worse performance. Using HP filter to remove the trend as in (HP,m̂t) or (HP,m̃t)

continues to induce very strong biases in all estimates because the notion of trend is different in the

model and in the data. The combination (FD,∆1mt) performs well when technology shocks have a

unit root but its performance quickly deteriorates as ρz moves away from one. Linear detrending in

(LT,m̂t) can perform relatively well when shocks to stationary hours are large relative to technology

shocks. That is, as shocks to hours explain a larger fraction of variation in variables, identification of

structural parameters improves as one can rely on variation in the stationary, non-persistent structural

shocks. For example, in the case of ρz = 0.95, as σq increases from 0.025 to 0.15 the mean estimate of

α falls from 0.4520 to 0.3813 so that the bias decreases from 0.1220 to 0.0513. The reduction in the

bias is even more dramatic when ρz is closer to one. The bias in other estimates exhibits a similar

pattern. However, the biases become pronounced again when shocks to hours become more persistent,

i.e., ρq increases towards one. The pair (FD,∆1mt) dominates (HP,m̂t) or (HP,m̃t), either of which

continues to exhibit strong biases in the estimates. In some cases (e.g., (HP,m̃t)) the relative size of
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the shocks is reversed in the estimates—that is, σ̂q > σ̂z while σq < σz—so that the researcher may be

tempted to conclude that shocks to hours have larger volatility than shocks to technology while the

opposite is true.

6 Concluding Remarks

This paper has several substantive findings. First, the paper identifies Problems (DD) and (MTS) and

shows that the consequences of these two problems can be devastating for the estimates of structural

parameters in DSGE models. Specifically, the paper demonstrates that Problems (DD) and (MTS)

can lead to distorted estimates, spurious estimates of propagation/amplification mechanisms (both

external and internal), poor identification of structural parameters (especially parameters identified

from low frequency variation). Importantly, both Problem (DD) and Problem (MTS) are empirically

relevant and often arise in applied work.

Second, the paper proposes a robust approach to address Problems (DD) and (MTS) simultane-

ously. The key to robustness is to tackle both problems by applying the same transformation to the

data and model variables and using the fact that this transformation yields stationary series for all

parameters values that can describe persistence of forcing variables in the model. We illustrate the

performance of this approach using three transformations: quasi-differencing, first-differencing and

Hodrick-Prescott (HP) filter. Other popular filters such as band-pass filter can yield consistent es-

timates when the researcher applies the same filter to data and model series. At the same time we

demonstrate that using HP or other filters to remove the trend in the data and employing different

filters for the model variables result in strongly biased estimates of structural parameters. Simulations

show that our approach outperforms popular alternatives not only in terms of having smaller bias

and smaller dispersion of the estimates but also in terms of providing
√

T consistent inference even

for parameters governing persistence of exogenous shocks. Although the paper illustrates the working

of our approach on specific simple examples, the paper also shows that the framework can be easily

generalized to more complex settings.
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Table 1. Summary of selected works.  

Paper Technology process 

System  
vs.  

single 
equation 

Filter Estimation 
method 

Ireland (2001) Stationary AR system Linear trend MLE 

Del Negro, Schorfheide, Smets, 
and Wouters (2004) 

Unit root with serial 
correlation in growth 

rates 
system First difference Bayesian 

Bouakez, Cardia, and J. Ruge-
Murcia (2005) Stationary AR system Linear trend MLE 

Faia (2007) Stationary AR system HP calibration 

Clarida, Gali, and Gertler (2000) Stationary AR equation HP and deviation from CBO 
measure of potential output GMM 

Christiano, Eihenbaum, and Evans 
(2005) Not specified system VAR GMM 

Dib (2003) Stationary AR system Linear trend MLE 

Smets and Wouters (2007) Stationary AR system First difference Bayesian 

Smets and Wouters (2003) Stationary AR system HP Bayesian 

Kim (2000) Stationary AR system Linear trend MLE 

McGrattan, Rogerson, and Wright 
(1997) Stationary AR system Linear trend and HP MLE 

Altug (1989) Unit root system First differences  
MLE in 

frequency 
domain 

Fuhrer and Rudebusch (2004) Not specified equation 
HP, one-sided BP, CBO, 
linear trend with breaks, 

quadratic deterministic trend 
MLE, GMM 

Fuhrer (1997) Not specified equation HP, linear trend, quadratic 
trend GMM 

Kydland and Prescott (1982) Permanent and 
transitory components system HP calibration 

Altig, Christiano, 
Eichenbaum, and Linde (2004) 

Unit root with serial 
correlation in growth 

rates 
system First difference GMM 

Ireland (2004) Unit root system 
Stationary variables and 

growth rates of 
nonstationary variables 

MLE 

Christiano and Eichenbaum (1992) Unit root  system HP GMM 

Burnside and Eichenbaum (1996) Stationary AR system HP GMM 

Burnside, Eichenbaum and Rebelo 
(1993) Stationary AR system HP GMM 

 



Table 2. Basic one-shock model. 

DGP ρz  ˆ(LT, )tm  ˆ(HP, )tm  (HP, )tm  ˆ(QD, )tmρΔ 1 ˆ(FD, )tmΔ  ˆ(FD, )tmΔ (HP, )tm  

   (1) (2) (3) (4) (5) (6) (7) 
          

α̂ : capital intensity, 0.33α =   

DT 0.50 mean 0.3467 0.4201 0.9900 0.3435 0.3880 0.3330 0.3318
  sd 0.0264 0.0066 0.0000 0.0265 0.0162 0.0171 0.0203
  median 0.3462 0.4207 0.9900 0.3438 0.3866 0.3293 0.3312

DT 0.95 mean 0.4554 0.6245 0.9900 0.3260 0.4227 0.3552 0.3401
  sd 0.0996 0.0090 0.0000 0.0414 0.0596 0.0819 0.0446
  median 0.4500 0.6250 0.9900 0.3246 0.4136 0.3309 0.3372

DT 0.99 mean 0.7998 0.7430 0.9900 0.3241 0.3829 0.3607 0.3418
  sd 0.1931 0.0133 0.0000 0.0407 0.0850 0.0935 0.0508
  median 0.8835 0.7434 0.9900 0.3228 0.3591 0.3307 0.3373
      

ST 1.00 mean 0.9525 0.7804 0.9900 0.3178 0.3545 0.3499 0.3416
  sd 0.1370 0.0135 0.0000 0.0362 0.0886 0.0883 0.0515
  median 0.9747 0.7804 0.9900 0.3210 0.3284 0.3285 0.3375
      

σ̂ : st.dev. of shocks to technology, 0.1σ =   

DT 0.50 mean 0.1048 0.1237 0.0037 0.1033 0.1840 0.1009 0.1005
  sd 0.0091 0.0064 0.0003 0.0086 0.0087 0.0101 0.0084
  median 0.1039 0.1226 0.0037 0.1024 0.1836 0.0990 0.1002

DT 0.95 mean 0.1076 0.1757 0.0047 0.0985 0.1380 0.1095 0.1002
  sd 0.0178 0.0121 0.0005 0.0124 0.0209 0.0309 0.0087
  median 0.1039 0.1753 0.0047 0.0977 0.1338 0.1004 0.0999

DT 0.99 mean 0.3377 0.2413 0.0043 0.0990 0.1175 0.1101 0.1006
  sd 0.1660 0.0211 0.0005 0.0106 0.0259 0.0286 0.0092
  median 0.3429 0.2409 0.0043 0.0980 0.1094 0.1002 0.1002

ST 1.00 mean 3.3506 0.2749 0.0041 0.0976 0.1077 0.1062 0.1005
  sd 1.7781 0.0255 0.0004 0.0088 0.0239 0.0237 0.0091
  median 2.8516 0.2738 0.0041 0.0970 0.0991 0.0986 0.1000

      
ˆ zρ : persistence of shocks to technology  

DT 0.50 mean 0.4611 0.2441 1.0000 0.4809 1.0000 0.4942 0.4809
  sd 0.0651 0.0411 0.0549 0.0810 0.0546
  median 0.4650 0.2455 0.4860 0.4947 0.4838

DT 0.95 mean 0.9270 0.5319 1.0000 0.9449 1.0000 0.9508 0.9501
  sd 0.0266 0.0329 0.0140 0.0127 0.0012
  median 0.9350 0.5329 0.9464 0.9498 0.9501

DT 0.99 mean 0.9120 0.5049 1.0000 0.9899 1.0000 0.9897 0.9903
  sd 0.0621 0.0281 0.0045 0.0055 0.0009
  median 0.9218 0.5070 0.9906 0.9896 0.9901

ST 1 mean 0.6932 0.4871 1.0000 0.9993 1.0000 0.9981 0.9999
  sd 0.0910 0.0257 0.0020 0.0026 0.0002
  median 0.6724 0.4890 1.0000 0.9991 1.0000

Note: This table presents summary statistics for estimates of 0.33α = , 0.1σ = , and ρz (0.5, 0.95, 0.99,1)= . The number of 
simulations is 1000. Sample size is T=300. In the top-row label (XX,YY), XX denotes the method of detrending and YY 
indicates the model concept of the observed variables. LT is linear detrending, HP is Hodrick-Prescott filter, FD is first 
differencing, QD is quasi-differencing. Δ1 denotes the restriction ρz = 1 when the model is solved in first differences. Δρ = 
1 – ρzL denotes quasi-differencing.  



Table 3. Basic one-shock model with habit formation in consumption. 

DGP ρz  ˆ(LT, )tm  ˆ(HP, )tm  (HP, )tm  ˆ(QD, )tmρΔ 1 ˆ(FD, )tmΔ  ˆ(FD, )tmΔ (HP, )tm  

   (1) (2) (3) (4) (5) (6) (7) 

α̂ : capital intensity, 0.33α =  

DT 0.95 mean 0.3991 0.7916 0.9647 0.3280 0.4399 0.3336 0.3389
  sd 0.0599 0.0441 0.0202 0.0248 0.0196 0.0260 0.0355
  median 0.3923 0.7980 0.9687 0.3262 0.4380 0.3336 0.3370

DT 0.99 mean 0.6067 0.8224 0.9836 0.3356 0.3582 0.3394 0.3389
  sd 0.1988 0.1216 0.0090 0.0252 0.0291 0.0295 0.0355
  median 0.6159 0.8630 0.9879 0.3366 0.3633 0.3386 0.3370

ST 1.00 mean 0.8061 0.8357 0.9864 0.3387 0.3386 0.3406 0.3399
  sd 0.1831 0.1705 0.0079 0.0282 0.0362 0.0288 0.0410
  median 0.8876 0.9008 0.9896 0.3365 0.3422 0.3358 0.3373

σ̂ : st.dev. of shocks to technology, 0.1σ =  

DT 0.95 mean 0.0881 0.1758 0.0066 0.0972 0.1171 0.1009 0.9499
  sd 0.0132 0.0268 0.0023 0.0083 0.0095 0.0051 0.0009
  median 0.0868 0.1808 0.0062 0.0967 0.1164 0.1008 0.9498

DT 0.99 mean 0.0630 0.1271 0.0042 0.0984 0.1028 0.1011 0.9499
  sd 0.0179 0.1266 0.0011 0.0055 0.0052 0.0048 0.0009
  median 0.0608 0.0852 0.0038 0.0986 0.1024 0.1009 0.9498

ST 1.00 mean 0.0640 0.0452 0.0038 0.0997 0.1003 0.1013 0.9999
  sd 0.0330 0.0617 0.0010 0.0048 0.0046 0.0045 0.0001
  median 0.0622 0.0368 0.0035 0.0996 0.1004 0.1010 1.0000

ˆ zρ : persistence of shocks to technology 

DT 0.95 mean 0.9434 0.6450 1.0000 0.9453 1.0000 0.9485 0.0993
  sd 0.0070 0.0670 0.0103 0.0088 0.0079
  median 0.9449 0.6431 0.9460 0.9496 0.0992

DT 0.99 mean 0.9870 0.8058 1.0000 0.9875 1.0000 0.9879 0.0993
  sd 0.0040 0.1809 0.0055 0.0071 0.0079
  median 0.9881 0.8565 0.9886 0.9891 0.0992

ST 1 mean 0.9908 0.9439 1.0000 0.9980 1.0000 0.9962 0.0995
  sd 0.0077 0.0705 0.0033 0.0052 0.0079
  median 0.9926 0.9601 0.9996 0.9983 0.0994

φ̂ : habit formation in consumption, 0.8φ =  

DT 0.95 mean 0.8280 0.9262 0.8255 0.7981 0.7536 0.8032 0.8033
  sd 0.0218 0.0757 0.2003 0.0091 0.0219 0.0216 0.0181
  median 0.8275 0.9336 0.8952 0.7979 0.7545 0.8033 0.8036

DT 0.99 mean 0.8386 0.7749 0.8518 0.8025 0.7960 0.8074 0.8033
  sd 0.1763 0.4104 0.1799 0.0150 0.0148 0.0241 0.0181
  median 0.8906 0.9362 0.9082 0.8047 0.7986 0.8059 0.8036

ST 1 mean 0.2864 0.7555 0.8221 0.8042 0.8033 0.8115 0.8037
  sd 0.3918 0.3366 0.2081 0.0140 0.0205 0.0219 0.0232
  median 0.2892 0.9515 0.8899 0.8032 0.8070 0.8060 0.8041

Note: This table presents summary statistics for estimates of 0.33α = , 0.1σ = , and ρz (0.95, 0.99,1)= . The number of simulations is 
1000. Sample size is T=300. In the top-row label (XX,YY), XX denotes the method of detrending and YY indicates the model concept 
of the observed variables. LT is linear detrending, HP is Hodrick-Prescott filter, FD is first differencing, QD is quasi-differencing. Δ1 
denotes the restriction ρz = 1 when the model is solved in first differences. Δρ = 1 – ρzL denotes quasi-differencing.  



Table 4. Two-shock model, estimate of α . 

DGP ρz  ˆ(LT, )tm  ˆ(HP, )tm  (HP, )tm  ˆ(QD, )tmρΔ 1 ˆ(FD, )tmΔ  ˆ(FD, )tmΔ (HP, )tm  

   (1) (2) (3) (4) (5) (6) (7) 

σq = 0.025 

DT 0.95 mean 0.4520 0.6516 0.4487 0.3385 0.2911 0.3573 0.3328 
  sd 0.1054 0.0278 0.1392 0.0285 0.0453 0.0766 0.0398 
  median 0.4394 0.6510 0.4043 0.3310 0.2789 0.3326 0.3301 

DT 0.99 mean 0.7798 0.7384 0.8887 0.3444 0.3499 0.3667 0.3320 
  sd 0.1964 0.0323 0.1863 0.0356 0.0816 0.0891 0.0433 
  median 0.8552 0.7394 0.9840 0.3326 0.3217 0.3360 0.3291 

ST 1.00 mean 0.9197 0.7619 0.9497 0.3448 0.3622 0.3644 0.3350 
  sd 0.1207 0.0326 0.1208 0.0359 0.0863 0.0865 0.0436 
  median 0.9473 0.7626 0.9859 0.3330 0.3292 0.3312 0.3322 
          

σq = 0.05 

DT 0.95 mean 0.4442 0.6323 0.4031 0.3354 0.2900 0.3491 0.3244 
  sd 0.1018 0.0393 0.0361 0.0194 0.0225 0.0556 0.0290 
  median 0.4315 0.6279 0.3974 0.3316 0.2856 0.3334 0.3234 

DT 0.99 mean 0.7489 0.6914 0.4546 0.3376 0.3269 0.3507 0.3231 
  sd 0.2020 0.0425 0.0512 0.0207 0.0356 0.0594 0.0258 
  median 0.8362 0.6896 0.4450 0.3332 0.3178 0.3322 0.3232 

ST 1.00 mean 0.8794 0.7065 0.4725 0.3422 0.3432 0.3561 0.3265 
  sd 0.1463 0.0436 0.0606 0.0246 0.0407 0.0578 0.0250 
  median 0.9292 0.7047 0.4602 0.3374 0.3340 0.3377 0.3263 
          

σq = 0.15 

DT 0.95 mean 0.3813 0.5722 0.5378 0.3354 0.3225 0.3417 0.3232 
  sd 0.0581 0.0471 0.0434 0.0123 0.0115 0.0310 0.0201 
  median 0.3735 0.5679 0.5362 0.3331 0.3208 0.3311 0.3228 

DT 0.99 mean 0.4182 0.5878 0.5481 0.3383 0.3316 0.3455 0.3263 
  sd 0.1270 0.0446 0.0435 0.0125 0.0120 0.0298 0.0182 
  median 0.3761 0.5846 0.5453 0.3363 0.3302 0.3351 0.3268 

ST 1.00 mean 0.4433 0.5900 0.5512 0.3399 0.3344 0.3469 0.3276 
  sd 0.1640 0.0445 0.0431 0.0127 0.0120 0.0291 0.0180 
  median 0.3759 0.5866 0.5483 0.3380 0.3329 0.3371 0.3281 

 
Note: Other parameters are fixed at 0.33, 0.8, 0.1q zα ρ σ= = = . The number of simulations is 1000. 
Sample size is T=300. In the top-row label (XX,YY), XX denotes the method of detrending and YY 
indicates the model concept of the observed variables. LT is linear detrending, HP is Hodrick-Prescott filter, 
FD is first differencing, QD is quasi differencing. Δ1 denotes the restriction ρz = 1 when the model is solved 
in first differences.  Δρ = 1 – ρzL denotes quasi-differencing. 



Figure 1. Kernel density of estimates, baseline model.  
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Note: This figure plots kernel density of ˆ ˆ ˆ( , , )α ρ σ  generated in 1000 simulations. Bandwidth is 0.01. For the 
case presented in this figure the true values are 0.33, 0.1α σ= = . True value of zρ  is indicated on the left of the 
figure. In the legend (XX,YY), XX denotes the method of detrending and YY indicates the model concept of 
the observed variables.  

 



Figure 2. Kernel density of estimates for the model with habit formation, 0.95zρ = . 
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Note: This figure plots kernel density of ˆˆ ˆ ˆ( , , , )α ρ σ φ  generated in 1000 simulations. Bandwidth is 0.01. For the 
case presented in this figure the true values are 0.33, 0.95, 0.8, 0.1zα ρ φ σ= = = = . In the legend (XX,YY), XX 
denotes the method of detrending and YY indicates the model concept of the observed variables.  
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Figure 3. Kernel density for t-statistic, baseline model, T=300.  
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Note: This figure plots kernel density of t-statistic for ˆ ˆ ˆ( , , )α ρ σ  generated in 1000 simulations. Bandwidth is 
0.01. In the legend (XX,YY), XX denotes the method of detrending and YY indicates the model concept of the 
observed variables.  
 



Figure 4. Kernel density for t-statistic, baseline model, T=2000.  
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Note: This figure plots kernel density of t-statistic for ˆ ˆ ˆ( , , )α ρ σ  generated in 1000 simulations. Bandwidth is 
0.01. In the legend (XX,YY), XX denotes the method of detrending and YY indicates the model concept of the 
observed variables.  
 



Figure 5. Kernel density of estimates for the model with shocks to hours and technology, 0.95zρ = , 0.025qσ = . 
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Note: This figure plots kernel density of ˆ ˆ ˆˆ ˆ( , , , , )z z q qα ρ σ ρ σ  generated in 1000 simulations. Bandwidth is 0.01. For the 
case presented in this figure the true values are 0.33, 0.95, 0.1, 0.8, 0.025z z q zα ρ σ ρ σ= = = = = . In the legend 
(XX,YY), XX denotes the method of detrending and YY indicates the model concept of the observed variables. 
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Figure 6. Kernel density of estimates for the model with shocks to hours and technology, 0.95zρ = , 0.05qσ = . 
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Note: This figure plots kernel density of ˆ ˆ ˆˆ ˆ( , , , , )z z q qα ρ σ ρ σ  generated in 1000 simulations. Bandwidth is 0.01. For the 
case presented in this figure the true values are 0.33, 0.95, 0.1, 0.8, 0.05z z q zα ρ σ ρ σ= = = = = . In the legend 
(XX,YY), XX denotes the method of detrending and YY indicates the model concept of the observed variables. 
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Figure 7. Kernel density of estimates for the model with shocks to hours and technology, 0.95zρ = , 0.15qσ = . 

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

estimates of ρ
z

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

5

10

15

20

25

30

35

40

45

estimates of σ
z

 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

estimates of ρ
q

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

5

10

15

20

25

30

35

40

estimates of σ
q

 

 0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30
estimates of α

 
Note: This figure plots kernel density of ˆ ˆ ˆˆ ˆ( , , , , )z z q qα ρ σ ρ σ  generated in 1000 simulations. Bandwidth is 0.01. For the 
case presented in this figure the true values are 0.33, 0.95, 0.1, 0.8, 0.15z z q zα ρ σ ρ σ= = = = = . In the legend 
(XX,YY), XX denotes the method of detrending and YY indicates the model concept of the observed variables. 
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