Bank Failures and the Cost of Systemic Risk:
Evidence from 1900-1930

Paul Kupiec
and
Carlos Ramirez

July 2008

Keywords: bank failures; systemic risk; vector autoregressions; Panic of 1907;
commercial failures

JEL Classification Codes: N11, N21, E44, E32

* The views and opinions expressed here are those of the authors and do not necessarily reflect those of the Federal Deposit Insurance Corporation. We are grateful to Lee Davidson for helpful discussions and Vivian Hwa for comments. Ramirez acknowledges financial support from the FDIC’s Center for Financial Research.

a Carlos Ramirez is Associate Professor, Department of Economics, George Mason University, and Visiting Fellow, Center for Financial Research, FDIC. Email: cramire2@gmu.edu. Paul Kupiec is Associate Director in the Division of Insurance and Research, FDIC. Email: pkupiec@fdic.gov.
Bank Failures and the Cost of Systemic Risk: Evidence from 1900-1930

Abstract:
This paper investigates the effect of bank failures on economic growth using data from 1900 to 1930, a period that predates active government stabilization policies and includes periods of banking system distress that are not coincident with recessions. Using both VAR and a difference-in-difference methodology that exploits the reactions of the New York and Connecticut economies to the Panic of 1907, we estimate the impact of bank failures on economic activity. The results indicate that bank failures reduce subsequent economic growth. Over this period, a 0.12 percent (1 standard deviation) increase in the liabilities of the failed depository institutions results in a reduction of 17 percentage points in the growth rate of industrial production and a 4 percentage point decline in real GNP growth. The reductions occur within three quarters of the initial bank failure shock and can be interpreted as a measure of the costs of systemic risk in the banking sector.

Keywords: bank failures; systemic risk; vector autoregressions; Panic of 1907; commercial failures.

JEL Classification Codes: N11, N21, E44, E32
I. Introduction

Do bank failures create negative externalities that reduce economic growth? These externalities, should they exist, are a manifestation of financial sector systemic risk. Banks are a source of systemic risk if the social cost of a bank failure exceeds the direct losses to the claim holders of the failing bank. One potentially important component of this social cost is the subsequent loss in output associated with a bank failure.¹

But how important are the negative externalities associated with bank failures? What is the cost of systemic risk in the banking sector? While scholars have studied the issue for more than 100 years and central banks increasingly are focused on the identification and reduction of financial sector systemic risks, surprisingly, there are no published measures of the cost of systemic risk and no academic consensus on the magnitude of the effect that bank failures have on subsequent economic growth.

The modern literature on bank failures and economic activity is focused on two periods: the Great Depression (1930–1933) and the U.S. savings and loan and banking crises of the late 1980s and early 1990s (S&L crisis). There is consensus that a breakdown in the banking system intensified the Great Depression in the U.S., but Depression-era evidence from other countries as well as evidence from the S&L crisis is ambiguous. For example, the Canadian experience during the Great Depression does not suggest that there are large negative externalities associated with bank failures (Haubrich, 1990; White, 1984). Analysis of data from the S&L crisis has also produced conflicting

¹ Recent papers on bank systemic risk focus on the strength of correlation among bank defaults and mechanisms that can propagate shocks among banks or other financial institutions. Kaufman and Scott (2003) and Schwartz (2008) provide overviews of the literature. A common feature of all discussions of systemic risk is the existence of a mechanism whereby losses to one institution create losses for many other institutions. Few if any of these models directly discuss the real economic effects of systemic risk.
results (see, *inter alia*, Ashcraft, 2005; Alton, Gilbert, and Kochin, 1989; or Clair and O’Driscoll, 1994).

This paper investigates the effect of bank failures on economic activity using data from 1900 to 1930. Prior to the enactment of federal deposit insurance legislation in 1933, the United States experienced repeated banking panics, many of which occurred when economic conditions were quiescent. While many banks failed or temporarily suspended redemptions during banking panics, many of these banking panics were not caused by deteriorating macro-economic conditions.\(^2\) Another important feature of this era is that there were no federal government institutions or policies to counteract the effects of bank failures and exert a stabilizing influence on economic growth.

In the analysis that follows, we use vector auto regression analysis (VAR) to estimate the effect of bank failures on the volatility of industrial production and aggregate output growth. Bank failures are measured using newly constructed data on the share of banking system liabilities (predominantly deposits) in failed banks and trusts including both state- and nationally-chartered institutions. We argue that the data are consistent with the hypothesis that bank failures create negative externalities if: (i) bank failures on average reduce subsequent economic growth; and, (ii) on average, poor economic growth is not followed by a higher incidence of bank failure. We use Granger causality tests to establish that an increase in the liabilities of failed banks, other things equal, will reduce industrial production and economic growth, but a reduction in economic growth

\(^2\) Calomiris and Mason (1997) provide evidence against the hypothesis that asymmetric information in banking panics is a separate source of bank failure. They study banks that failed during the 1932 banking panic and conclude that failed banks were financially weak and would likely have failed under non-panic conditions as well. Carlson (2008) takes issue with these conclusions and instead finds that there is a high probability that many of the banks that failed in 1932 would have been acquired, merged or recapitalized in a non-panic period.
(industrial production) need not lead to an increase in failed-bank liabilities. Our estimates suggest that, over the period 1900–1930, the variation in failed-bank liabilities explains about 8 percent of the volatility in output growth. Other things constant, a one standard deviation shock to the share of liabilities in failed banks (an increase of about 12 basis points) results in a cumulative 17 percent decline in industrial production and a cumulative 4 percent decline in GNP over the following three quarters. These results provide an estimate of the cost of systemic risk in the banking sector during a period when there were no operative government safety nets to attenuate the externalities associated with bank failures.

We provide additional evidence on the link between bank failures and economic growth by comparing the economic performance of New York and Connecticut following the Panic of 1907. Economic performance is measured by time series data on the liabilities of commercial failures in each state. The panic caused bank failures and a severe recession in New York, but it did not result in a single bank failure in Connecticut. These states’ historical experiences can be used to identify the economic consequences of bank failures using a differences-in-differences technique to measure the impact of bank failures on the severity of the New York State business cycle.

The difference-in-difference analysis supports the hypothesis that bank failures depress economic growth. A year prior to the panic, business conditions in New York and Connecticut were similar to business conditions in the rest of the country and neither state had problems in their banking sectors. The 1907 banking panic resulted in important financial institution failures in New York, but none in Connecticut. At the height of the banking panic, economic conditions deteriorated substantially in New York and
continued to deteriorate for another quarter as commercial failures mounted. In contrast, business conditions in Connecticut remained stable throughout the period.

Taken together, our findings suggest that bank failures create negative externalities that reduce economic growth. The loss in output is a direct measure of the cost of systemic risk in the banking sector. Our results support the case for well-designed government policies aimed at mitigating the negative economic effects of bank failures—policies such as prudential bank supervision, the provision of bank deposit insurance, and efficient bank resolution policies.³

This paper is only one of many that investigate the extent to which bank failures amplify economic distress. Section II reviews the contributions of several earlier studies. Subsequent sections discuss the importance of the sample period (Section III); the macroeconomic data, the VAR model, and the empirical results (Section IV); and the difference-in-difference analysis of New York and Connecticut during the Panic of 1907 (Section V). Section VI concludes the paper.

II. Research on Bank Failures and Economic Activity: A Brief Overview⁴

Scholars have been studying the link between bank failures and subsequent declines in economic activity for well over a century. Jevons (1884) speculated that sunspots provide a link between banking crises and commercial failures. He argued that sunspots influence climate which creates volatility in the agricultural sector and commodity prices which in turn affect the banks and the economy. Jevons’s theory does not emphasize the importance of banks in the economic growth process and, as far as we know, it has never been empirically tested.

³ Poorly designed policies may create additional social costs. See for example, Demirguc-Kunt and Kane (2002) and Kaufman and Scott (2003).
⁴ The literature on this issue is large and our selected review highlights only the key issues in the literature.
In the aftermath of the Panic of 1907, a number of studies investigated aspects of banking sector stability as a prelude to new legislation and banking system reforms. Sprague (1910) studies bank failures and banking panics in the United States and finds that international gold outflows cause, simultaneously, bank failures and a decline in economic activity. Kemmerer (1910) finds that seasonal changes in the demand for money, stemming from changes in agricultural sector borrowing, explain the joint variation of stock prices, commercial failures, and banking panics between 1890 and 1908.

Friedman and Schwartz (1963) (FS) study the U.S. Great Depression and find that bank failures triggered a loss of public confidence in the banking system leading consumers to hold more currency and fewer bank deposits which reduced the money multiplier and the money supply. Because the decline in the money supply was not offset by monetary policy, nominal economic activity declined.5

Bernanke (1983) extends the FS analysis to incorporate the effect of bank failures on investment spending. In Bernanke’s bank-centered model of business finance, firms depend on bank lending for investment and working capital funding. Firms typically have a long-term relationship with a single bank and when the bank fails, relationships are dissolved and the information and trust gained through the relationship are lost. When bank-dependent firms seek funding from new bankers, they face increased costs until they can establish new banking relationships. Thus, for some period after a bank failure,

5 FS argue that the banking failures of the Great Depression era could have been avoided, or at least mitigated, if the Federal Reserve System had been more generous in providing discount window lending to troubled banks, which would have given solvent banks access to liquidity without changing their need to hold currency reserves thereby stabilizing the money supply.
investments by bank-dependent firms are discouraged by increased funding costs and investments may be limited by the availability of internal funds.

Bank failures can also have secondary effects on the lending behavior of surviving banks. Faced with heightened uncertainty regarding deposit redemptions, to preserve their own solvency, surviving banks increase their reserves by reducing loans to bank-dependent businesses. In contrast to FS’s focus on the money supply, Bernanke focuses on the ramification of this change for business investment. Unable to tap external capital markets, businesses are forced to reduce investment spending which directly reduces GDP. The initial investment shock associated with a bank failure is magnified through the Keynes (1936) investment multiplier.

Other researchers have confirmed the importance of the bank-dependent borrower channel. Calomiris and Mason (2003) estimate a loan supply function for local banking markets and find that a significant portion of the decline in economic activity from 1930 to 1932 is explained by reduced bank loan supply which reduced investment spending. Anari, Kolari, and Mason (2005) use vector autoregression methods to investigate the relationship between the liquidation of failed banks and the depth and duration of the Great Depression. They find that bank failures have a long-lasting adverse effect on economic activity partly because bank failures restrict access to the deposits in failed institutions. During this period, depositors at failed banks were precluded from accessing their funds for an extended time, and when their accounts became liquid, depositors

6 For more evidence on how bank affiliations facilitated access to capital markets in the pre-Depression era, see Ramirez (1999) and Calomiris and Hubbard (1995).
generally faced sizable losses.7 The loss in depositors’ liquidity resulted in reduced consumption and investment spending.

In contrast to the U.S. experience, evidence from the Great Depression era in other countries fails to find strong bank failure externalities on economic growth. Haubrich (1990) studies the Great Depression in Canada using Bernanke’s methodology. During the depression, Canada also experienced monetary contraction and a decline in output almost as dramatic as the one in the United States. Unlike the U.S., Canada did not experience a single bank failure during its Great Depression era notwithstanding the fact that there was no central bank in Canada until 1935.8 While there were no Canadian bank failures, Haubrich finds that the number of bank branches in Canada declined by about 10 percent. While it is possible that this decline caused disintermediation and reduced businesses funding, Haubrich rejects this hypothesis and finds that branch closures had no measurable effect on Canadian GDP.

Many countries in Central and Eastern Europe also experienced banking crisis during the Great Depression era.9 Similar to Canada, the United Kingdom, Czechoslovakia, Denmark, Lithuania, the Netherlands and Sweden experienced

7 The depositor recovery rate was not very high. For example, Goldenweiser et al. (1932) estimate that between 1921 and 1930 the deposit recovery rate was 55.7 percent (table 25, page 195). Although this figure does not cover the Depression period, it illustrates the gravity of the situation before the establishment of federal deposit insurance.

8 The source of the Canadian system’s resilience remains in dispute but some scholars have attributed it to the diversification benefits from branch banking (FS 1963; Bordo, 1986; Ely, 1988; O’Driscoll, 1988); the effective lender of last resort function provided by the Canadian Bankers Association (CBA) (Bordo, 1986); and the existence of a 100 percent implicit government guarantee on deposits (Kryazanowski and Roberts, 1993). These explanations are, however, not beyond dispute. For example, Carr, Matherson and Quigley (1995) argue that the CBA did not arrange mergers for insolvent institutions nor were depositors protected by a government guarantee (or perception thereof) as some faced losses when banks were suspended.

9 Grossman (1994) identifies a banking crisis if any one of the following occurs: (1) a large proportion of a country’s bank’s fail; (2) a large important bank fails; or (3) extraordinary government intervention prevents (1) or (2) from occurring. Using this definition, the Great Depression was associated with banking crisis in Switzerland, Yugoslavia, France, Belgium, Latvia, Hungary, Poland, Estonia, Romania, Germany, Italy and Norway in addition to the United States.
depression conditions without breakdowns in their banking systems (Grossman, 1994). The literature has studied factors that may have provided stability to these national banking systems during the Great Depression, but to our knowledge, existing studies have not analyzed whether banking system distress magnified real sector weakness.\footnote{This gap in the literature likely reflects the fact that few countries have high quality measures of aggregate economic activity available for this historical period.}

Banking scholars also reach conflicting conclusions when studying data from the U.S. S&L crisis period. For example, Ashcraft (2005) investigates FDIC-induced closures of 38 subsidiaries of First Republic Bank Corporation in 1988 and 18 subsidiaries of First City Bank Corporation in 1992 and concludes that, as a result of the closures, real income declined by about 3 percent in areas served by these banks. In contrast, Alton, Gilbert and Kochin (1989), using county-level data from Kansas, Nebraska, and Oklahoma over the period 1981–1986, do not find any significant relationship between bank failures and measures of local economic activity. Clair and O'Driscoll (1994) use Gilbert and Kochin's methodology to study the impact of bank failures on local economic activity in several Texas counties between 1981 and 1991. Like Gilbert and Kochin, they do not find any significant relationship.\footnote{See also Dell’Ariccia, Detragiache and Rajan (2005) and the references therein.}

The results of studies based on data from the S&L crisis period are not directly comparable to the results derived from Great Depression era data. During the S&L crisis period, both the Federal Reserve and banking regulators took actions to attenuate the economic impacts of banking system distress. Bank failures were delayed (relative to what would have happened in the Great Depression) as weak institutions continued funding themselves with insured deposits which reduced the risk of a bank run. While legislative inaction ensured that resource constraints slowed the supervisory resolution
process, undercapitalized depository institutions continued to fund lending activity. Deposit insurance quelled the public’s demand for precautionary currency holdings while the Federal Reserve discount window was available to provide liquidity to solvent banks which mitigated their need to call in loans. The Federal Reserve also pursued a monetary policy designed to offset problems in depository institutions. All of these factors likely worked to offset any negative effects of bank failures on economic growth.

Among existing studies, Grossman (1993) is the most closely related to our study. Using data on the fraction of national banks that failed during the National Banking Era (1863–1914), Grossman (1993) estimates a structural IS-LM model that includes the effects of bank failures. His estimates suggest that a “small” shock in bank failures can erase 8 percentage points of GDP growth, whereas a “large” shock in bank failures can reduce the GNP growth rate by 26 percentage points. Grossman notes that these estimated magnitudes are large, but he argues that they are reasonable when compared to the historical record.

Grossman analyzes the effects of the number of national bank failures. Over the period he examined (1863-1914), roughly a third of banking system assets were held by state-chartered institutions and in many years, state-chartered banks outnumbered national banks (White 1983, pp.12-13). Importantly, in some periods, banking distress was concentrated in the state-chartered institutions that are excluded from Grossman’s study. The Grossman study, moreover, does not account for the size of failed

13 See for example Clouse (1994), or Mussa (1994).
14 An important example is the Banking Panic of 1907. Measured by the failure rate among national banks, the 1907 Banking Panic was a mild event as the crisis was concentrated in state-chartered depository institutions. Calomiris and Gorton (1991, p. 150) identify only six national bank failures during this episode while Wicker (2000, p. 87) reports that 17 state-chartered trusts and 18 state-chartered banks either
institutions. The importance of the negative externality generated by a bank failure should be related to size of a bank as institution size is a proxy for the number (and size of) valuable relationships a bank shares with its borrowers.15 Large banks also are more likely to have important correspondent banking relationships which are particularly important during this era. The failure of a key correspondent bank can have wide-ranging affects on the reserves and lending capacity of many smaller state-chartered institutions (White pp. 68-9).

III. The Importance of the Sample Period

During the period 1900-1930, the United States experienced three major banking crises: one in May of 1901, another one in October of 1907, and one during the early 1920s. In addition, it endured eight minor crises.16 During this period, no federal government policies were used to stimulate the economy, counteract recessions, or offset the negative economic impacts of banking crisis.

\textit{Fiscal Policy}

From 1900 to 1916, federal government fiscal policy had little impact on U.S. aggregate demand. Over this period, federal expenditures varied between 1.5-2.5 percent of GDP (Romer, 1999) and budget surplus or deficits were of negligible size (DeLong, 1998). With the onset of World War I, federal government expenditures increased dramatically, to 20 percent of GDP by 1918, before declining throughout the 1920s (Romer, 1999).

15 Wicker (2000, p. 85) also notes the number of failed institutions is unlikely to be an accurate measure of banking system distress and the size of failed institutions must matter as well. Wicker, however, does not systematically exploit this observation.

Prior to the federal programs created under the New Deal, there is little evidence that federal expenditure policies were intentionally designed to counteract weak aggregate demand and indeed even New Deal programs do not appear to have been motivated by Keynesian economic ideas. Romer (1999) argues that the Employment Act of 1946 was the first law enacted that explicitly embraced the idea of using fiscal policy to regulate aggregate demand. More importantly, no fiscal stimulus policies were designed or implemented to counteract the economic impacts of any of the banking panics of this era.

Monetary Policy

The Federal Reserve System was created in 1913, but did not begin functioning until 1914. The Federal Reserve was established to smooth regional credit cycles associated primarily with agricultural borrowing demands.\(^{17}\) Miron (1986) argues that Federal Reserve policies were successful in dampening the seasonal variation of nominal interest rates which reduced the frequency of banking panics. Notwithstanding its impact on the seasonal agricultural cycle, early Federal Reserve policies did not include an explicit counter-cyclical (business cycle) role for monetary policy (White, 1983, p.115 ff).

In practice, the earliest coordinated Federal Reserve policies were dictated by the U.S. Treasury’s desire to finance World War I on favorable terms. Under pressure from Treasury, the Federal Reserve abandoned the “real bills” doctrine and allowed member banks to discount Treasury certificates issued to finance the war at rates below those on the Treasury certificates (Meltzer, 2003, pp. 84-90). This discounting policy created

\(^{17}\) Throughout the early years, Federal Reserve officials believed that monetary policy should follow a “real bills” doctrine focused on discounting commercial paper at penalty rates and providing lender of last resort facilities when needed
monetary expansion and inflation. In late 1919, Federal Reserve System banks were finally permitted to raise discount rates and penalize excessive borrowing. The recession that followed was severe, with widespread unemployment, declines in industrial production and substantial deflation.18 The wholesale price index fell from just over 100 in 1920 to 62.8 in 1923.

Federal Reserve operating policies were modified following the 1920-22 recession, but as late as 1924, few officials in the Federal Reserve System believed that open market operations should be used to attenuate recessions (White, 1983, p.122). Throughout the remainder of the 1920s, Meltzer reports that the Federal Reserve policies were guided by three perceived goals: (1) to establish the gold standard as the international system of exchange; (2) to maintain price stability and avoid repeating the events of 1920-22; and, (3) to curb the growth of speculative credit (i.e., credit used to purchase securities). The Federal Reserve did not embrace countercyclical monetary policies and indeed the system could not effectively coordinate monetary policy until after the 1935 Banking Act established the Federal Open Market Committee to coordinate operations among the reserve banks (Meltzer, 2003, p.5).

\textbf{IV. Granger Causality Evidence}

\textbf{Data}

A vector autoregressive model (VAR) is used to estimate the importance of bank failures in determining subsequent economic growth. The VAR model includes the share of liabilities in failed banks, a measure of aggregate economic activity, and two additional economic series that are used to control for non-bank failure related shocks to

18 The severity of this recession has been in part attributed to a failure of Federal Reserve policy (Meltzer, 2003, p. 120-ff).
aggregate economic activity: an estimate of the inflation rate, and an estimate of the prevailing risk premium in credit markets. The data and sources for the variables used in the VAR analysis are listed in Table A of the appendix. We discuss the characteristics of each data series in the remainder of this section.

We use two measures of banking system distress. Our primary measure is an estimate of the share of banking system liabilities in failed banks. This series is constructed from data on the liabilities (primarily deposits) of failed depository institutions as reported in issues of *Dun’s Review*. These data include nearly 6,000 quarterly observations for the 48 states from the first quarter of 1900 through the second quarter of 1931. State figures are aggregated to produce national data for each quarter. The data include failed national banks as well as failed state-chartered banks and trust companies. The failed depository liability series is normalized by total deposits as reported in Flood (1998).

We also construct an estimate of the time series of the failure rate of depository institutions. The bank failure rate series is constructed from data on bank depository institution suspensions as reported in *Dun’s Review* and the quarterly estimates of the

19 *Dun’s Review* reports failure data beginning in 1895, but there are periods in the 1800s when the data are unreported. From 1900, the data are reported regularly for each quarter *Dun’s Review* stopped reporting these data after the second quarter of 1931. The original data are corrected for typographical errors.

20 *Dun’s Review* does not clarify whether bank suspensions are included in bank failures. Compared to the aggregate number of U.S. bank failures reported by Goldenweiser (1933, table 1), our numbers are marginally higher than Goldenweiser’s before 1921 but smaller thereafter. Because the Goldenweiser data specifically excludes national bank suspensions before 1921 (and includes them thereafter), the comparison suggests that our data may include a few suspensions, but not all suspensions. This feature of the data is unlikely have any significant effect on our results since the largest proportion of bank suspensions occurred after 1931 (Calomiris and Mason, 2003).

21 The primary source for the data reported in Flood is *All Bank Statistics*. Quarterly data were interpolated from annual figures.
number of banking institutions from data reported in *Historical Statistics of the United States* (1975).22

Figure 1: Depository Institution Failure Rate and Liabilities of Failed Institutions Relative to Total Deposits, 1900–1930

![Graph showing depository institution failure rate and liabilities of failed institutions relative to total deposits, 1900–1930.](image)

Shaded bars represent the timing of Romer (1999) recessions.

Figure 1 shows the depository institution failure-rate series and the series that measures the liabilities of failed depository institutions as a share of banking system liabilities. Both series in the figure are annualized to visualize more clearly trends and cycles. The bank failure-rate series measures the proportion of depository institutions that were closed, either temporarily or permanently, between 1900 and 1930. Figure 1 also includes estimates of the recessionary periods (shaded bars) as identified by Romer (1999).

22 Quarterly data are linearly interpolated from annual figures.
The two deposit institution failure series suggest a significantly different record of banking system distress. The depository institution failure rate series is strongly procyclical. The failure rate increases in the recessions of 1900, 1903, 1907, 1910, 1920, 1924, and 1929. In contrast, the share of banking system liabilities in failed depository institutions declines during the recessions of 1900, 1903, 1907, 1910, 1915, and 1927. The latter series also has local peaks immediately prior to or early into the recessions of 1900, 1907, 1910 and 1923. Figure 1 shows that the series diverge in the early 1900s when failures were dominated by larger institutions as well as in the 1920s when smaller institutions failed at a relatively higher rate.

The simple failure rate series suggests that banking system conditions were comparable during the 1903–1904 and 1907-1908 recessions, whereas the data on the share of liabilities in failed institutions clearly identifies the severity of the banking panic of 1907. The panic involved the failure or temporary suspension of only a few large money-center institutions, but these failures accounted for about 1.5 percent of all system deposits. This level of banking system distress was not exceeded until the Great Depression. In contrast, during 1922–1929, although a large number of banks failed, the failed institutions were on average only modest in size.

It is well-known that measures of aggregate economic activity over the period 1990-1930 are imperfect (e.g., Romer, 1999) and alternative measures of aggregate output differ as to their historical volatility characteristics. We focus on two measures of aggregate economic activity, the Miron and Romer (1990) industrial production series and the Balke-Gordon (1986) estimates of real GNP.

23 The institutions included Knickerbocker Trust, Hamilton Bank, International Trust Company, and United Exchange Bank.
The Federal Reserve did not publish a series on aggregate industrial production until 1919, and real GNP estimates were not reported by the U.S. Commerce Department until 1929. Among available measures of industrial production for the period 1900–1930, the Miron and Romer (1990)’s series is arguably the most comprehensive, as it is derived from production indices on at least 13 sectors of the economy. We use the Balke-Gordon GNP series because it is (to our knowledge) the only series that estimates quarterly GNP for the period 1900-1930.

Figure 2: Alternative Measures of the Change in Aggregate Economic Activity

![Figure 2: Alternative Measures of the Change in Aggregate Economic Activity](image)

Source: Gordon (1986, p.781), Miron and Romer (1990, pp. 336-7), and the authors’ calculations

Figure 2 shows estimates of the quarterly changes in each of our aggregate activity measures. Within this era, industrial production is a much more volatile measure of aggregate economic output compared to GNP. The relative volatility among these series is well known and in part may be explained by a tendency for asynchronous changes in the data on outputs of the services, transportation and other non-commodity sectors (Romer, 1999).
We use data on the spread between the New York call rate and the London open interest rate as a proxy for the risk premium in financial markets. Bank lending and economic activity are likely to decline in reaction to an increase in the risk premium in credit markets. If, for example, investors became more risk averse when there is a significant gold outflow or a general deterioration in economic activity, the risk premium will have output effects independent of banking failures. The volatility of the spread variable is pronounced during the 1907 panic when the U.S. was experience heavy outflows of gold and again around the second quarter of 1914—a tumultuous year that saw the collapse of the classical gold standard the beginning of World War I.

We use the NBER inflation rate series as a measure of the ease of monetary conditions. We expect tight monetary conditions to lead to deflation and a decline in industrial production irrespective of the degree of distress in the banking sector. The inflation rate is remarkably stable before 1914 as a consequence of the gold standard. After the United States suspended the gold standard in 1914 and World War I began, prices increased and became much more volatile. Prices declined sharply during the first quarter of 1921, a decline due to the worldwide collapse in the price of agricultural commodities after the end of World War I.

VAR Analysis

We estimate two VAR models. One model includes: (1) the growth rate in Miron-Romer’s index of industrial production (IP growth); (2) the spread between the New York call money rate and the London open market rate (Spread); (3) the inflation rate

24 Both rates are available from the National Bureau of Economic Research Historical Series Database.
(Inflation); and, (4) the share of system liabilities in failed banks (SLFI).25 The second VAR model substitutes the growth rate in the Balke-Gordon GNP series for the IP growth series. Both VAR models are estimated using five quarterly lags.26

The VAR estimates identify the temporal relationships among the model’s variables.27 In the context of this study, we are interested in whether increases in the share of liabilities in failed institutions leads to subsequent declines in the growth rate of economic activity (IP growth and real GNP growth)--holding other important economic conditions unchanged. The SLFI series Granger-causes changes in IP growth (GNP growth) if lagged values of SLFI are helpful in explaining changes in output growth, but lagged values of IP growth (GNP growth) do not have a statistically significant influence on subsequent values of SLFI.

Table 1 reports the Granger causality Chi-squared test statistics and the corresponding level of statistical significance (p-values) for the hypothesis that all coefficients of the individual lagged explanatory variable in the equation are jointly zero. For example, in equation 1, IP growth is the dependent variable; spread, inflation, and SLFI are the independent variables. The effect of SLFI on output growth is summarized by the Chi-squared statistic of 14.65 (p-value of 0.01) which indicates that the lagged values of share of system deposits in failed banks are jointly statistically significant in explaining output growth (at the 1 percent level).

25 The VAR system runs short of degrees-of-freedom if more than four variables are included in the model. The VAR system was also estimated using money growth instead of inflation, and the results did not change significantly.

26 Standard VAR model selection criterion favored 5 lags; with five lags there is no evidence of serial correlation among the error estimates.

27 The existence of temporal relationships need not imply economic causality, but causal relationships are expected to generate temporal relationships that can be identified in the data.
Table 1: Granger causality when economic activity is measured by IP growth and banking system distress is measured by the share of liabilities in failed institutions

<table>
<thead>
<tr>
<th>Left-hand-side variable</th>
<th>Right-hand-side (lagged) variable</th>
<th>Chi-squared</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equation 1: IP growth</td>
<td>Spread</td>
<td>13.50</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>Inflation</td>
<td>36.78</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>SLFI</td>
<td>14.65</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>All Variables</td>
<td>63.66</td>
<td>0.00</td>
</tr>
<tr>
<td>Equation 2: Spread</td>
<td>IP growth</td>
<td>3.52</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td>Inflation</td>
<td>2.52</td>
<td>0.77</td>
</tr>
<tr>
<td></td>
<td>SLFI</td>
<td>4.72</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>All Variables</td>
<td>10.59</td>
<td>0.78</td>
</tr>
<tr>
<td>Equation 3: Inflation</td>
<td>IP growth</td>
<td>4.32</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td>Spread</td>
<td>9.97</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>SLFI</td>
<td>0.70</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td>All Variables</td>
<td>5.93</td>
<td>0.39</td>
</tr>
<tr>
<td>Equation 4: SLFI</td>
<td>IP growth</td>
<td>4.35</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Spread</td>
<td>14.37</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Inflation</td>
<td>3.23</td>
<td>0.66</td>
</tr>
<tr>
<td></td>
<td>All Variables</td>
<td>21.30</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Equation 4 tests the reverse causality, where the dependent variable is SLFI and the independent variables are IP growth, spread, and inflation. The Chi-squared statistic on lags of output growth is 4.35 (p-value of 0.50) and so the lagged values of IP growth are not statistically significant in explaining SLFI. Thus, it is possible to conclude that share of liabilities in failed institutions Granger-cause variation in IP growth, even after one has controlled for shocks to interest rates and the inflation rate, both of which are also statistically significant predictors of output growth.28

Table 2 reports the results of the Granger causality tests when economic activity is measured by the growth rate in the Balke-Gordon estimate of GNP. From equation 1, it is clear that the lagged values of SLFI are significant explanatory factors for explaining the variation in GNP growth holding the lagged values of inflation and the credit spread.

28 The Chi-square test results in Table 1 show interest rates and inflation also Granger-cause movements in IP growth.
constant (Chi-squared statistic 10.97, p-value 0.05). From equation 4 it is clear that the reverse causality does not hold; lagged valued of GNP growth do not help to explain the variation in SLFI (Chi-squared statistic 6.29, p-value 0.28). Thus, the share of liabilities in failed institutions Granger-causes variation in GNP growth, even after one has controlled for shocks to interest rates and the inflation rate.

Table 2: Granger causality when economic activity is measured by GNP growth and banking system distress is measured by the share of liabilities in failed institutions

<table>
<thead>
<tr>
<th>Left-hand-side variable</th>
<th>Right-hand-side (lagged) variable</th>
<th>Chi-squared</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equation 1: GNP growth</td>
<td>Spread</td>
<td>12.31</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>Inflation</td>
<td>4.73</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>SLFI</td>
<td>10.97</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>All Variables</td>
<td>24.95</td>
<td>0.05</td>
</tr>
<tr>
<td>Equation 2: Spread</td>
<td>GNP growth</td>
<td>5.00</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td>Inflation</td>
<td>3.56</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td>SLFI</td>
<td>5.50</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>All Variables</td>
<td>12.16</td>
<td>0.67</td>
</tr>
<tr>
<td>Equation 3: Inflation</td>
<td>GNP growth</td>
<td>2.59</td>
<td>0.76</td>
</tr>
<tr>
<td></td>
<td>Spread</td>
<td>10.51</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>SLFI</td>
<td>1.16</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>All Variables</td>
<td>14.03</td>
<td>0.52</td>
</tr>
<tr>
<td>Equation 4: SLFI</td>
<td>GNP growth</td>
<td>6.29</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>Spread</td>
<td>15.43</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Inflation</td>
<td>5.29</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>All Variables</td>
<td>23.51</td>
<td>0.07</td>
</tr>
</tbody>
</table>

The quantitative effect of a bank-failure shock can be illustrated by estimating cumulative impulse response functions. Cumulative impulse response functions trace out the change that occurs over time to the value of one variable in the system as another variable in the system is shocked.\(^{29}\) Figure 3 plots the cumulative impulse response function estimates that trace the IP growth rate effects of a one-standard deviation (.0012) shock to SLFI along with 90 percent confidence intervals around the cumulative impulse

\(^{29}\) To obtain a structural model with orthogonal innovations we employ the Cholesky decomposition.
response estimates. The cumulative impulse response estimates suggest that a one-standard deviation shock to the bank distress measure (SLFI), has a statistically significant depressing effect on industrial production, causing a cumulative decline of about 15 percentage points after three quarters.

Figure 3: Cumulative Impulse Response of IP Growth to a 1-Standard Deviation Shock in SLFI

![Cumulative Impulse Response of IP Growth to a 1-Standard Deviation Shock in SLFI](image)

Figure 4 plots the cumulative impulse response function estimates for GNP growth along with 90 percent confidence bands. The cumulative impulse response estimates suggest that a one-standard deviation shock SLFI has a statistically significant depressing effect on GNP growth, causing a cumulative decline of about 4 percentage points after two quarters.

Figure 3 and 4 suggest that bank failures have a short-term but pronounced effect on output growth. Following a shock to the share of liabilities in failed institutions, GNP growth depressed for two quarters before the economy begins to recover. Industrial production is more sensitive to bank failures. Following a sizable shock to the banking system, the growth rate in industrial production is depressed for three quarters before the effect diminishes. By the fourth quarter following a banking system shock, within the
bounds of statistical precision available in these data, VAR estimates suggest that economy activity has returned to its pre-shock growth path. These results suggest that bank failures have important negative effects on output growth, but this effect is temporary.

Figure 4: Cumulative Impulse Response of IP Growth to a 1-Standard Deviation Shock in SLFI

One way to measure the importance of bank-failure shocks for explaining variations in industrial production and GNP growth is the forecast error variance decomposition (FEVD). The FEVD measures the contribution that the innovations in a particular variable in the VAR system makes for generating time-variation in a particular VAR dependent variable over a selected time horizon. Figure 5 plots the FEVD for SLFI on IP growth (left panel) and GNP growth (right panel). The model estimates suggest that time variation in the share of system liabilities of failed banks is responsible for generating about 7.8 percent of the volatility of the IP growth rate over an eight-quarter horizon and about 6.9 percent of the volatility in GNP growth over a two-year interval.
As we discussed in Section III, Grossman’s (1993) study examined the effect of national bank failures over period 1863-1914 and found strong negative effects of bank failures on aggregate output using an alternative measure of bank failures—the number of failed national banks relative to the total number of national banks. For purposes of comparison, Table 3 presents Granger causality test results when the bank failure rate is used in place of SLFI, our preferred measure of bank distress.

The results in Table 2 show that when banking system distress is measured by the simple failure rate, bank failures no longer Granger-cause reductions in IP growth as the Chi-square value in equation 1 (7.33) is not longer statistically significant at conventional levels.30 Moreover, the estimates in equation 4 suggest that lagged values of IP growth are statistically significant in explaining the bank failure rate. The Chi-square statistic of 42.32 is statistically significant. The results highlight the importance of the proxy variable used to measure banking system distress. When banking system distress is measured by depository institution failure rate instead of the share of system liabilities in

30 The causality results for GNP growth are similar, so they are omitted in the interest of parsimony.
failed depository institutions, bank system distress appears to be caused by real-side
economic disruptions whereas IP growth seems to be unaffected by bank failure rates.

**Table 3: Granger causality when economic activity is measured by industrial
production growth and banking system distress is measured by the bank failure rate**

<table>
<thead>
<tr>
<th>Left-hand-side variable</th>
<th>Right-hand-side variables (lagged)</th>
<th>Chi-Squared</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equation 1: IP growth</td>
<td>Spread</td>
<td>11.82</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>Inflation</td>
<td>27.49</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bank Failure Rate</td>
<td>7.33</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>All Variables</td>
<td>47.52</td>
<td>0.00</td>
</tr>
<tr>
<td>Equation 2: Spread</td>
<td>IP growth</td>
<td>5.50</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>Inflation</td>
<td>4.54</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td>Bank Failure Rate</td>
<td>12.73</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>All Variables</td>
<td>20.88</td>
<td>0.29</td>
</tr>
<tr>
<td>Equation 3: Inflation</td>
<td>IP growth</td>
<td>4.51</td>
<td>0.61</td>
</tr>
<tr>
<td></td>
<td>Spread</td>
<td>11.81</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>Bank Failure Rate</td>
<td>5.33</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>All Variables</td>
<td>22.30</td>
<td>0.22</td>
</tr>
<tr>
<td>Equation 4: Bank Failure Rate</td>
<td>IP growth</td>
<td>42.32</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Spread</td>
<td>5.44</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>Inflation</td>
<td>8.06</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>All Variables</td>
<td>55.79</td>
<td>0.00</td>
</tr>
</tbody>
</table>

V. New York, Connecticut and the Panic of 1907

The Panic of 1907 began in New York in October after an unsuccessful scheme to
corner the stock of the United Copper Company caused the failure of two brokerage
houses. In the days following the attempt, a number of banks and trusts with direct and
indirect links to the cornering scheme experienced depositor runs. Ultimately, 42
depository institution failures have been linked to the 1907 Panic (Wicker, 2000, p.87)
including 13 depository institution suspensions in New York in October 1907 (*ibid.*
p.86). In contrast to the New York experience, there were no suspensions of depository
institutions in Connecticut.
The financial panic of 1907 occurred against the backdrop of a steep recession. Industrial production fell by 11 percent between May 1907 and June 1908; commodity prices fell 21 percent; the dollar volume of bankruptcies increased by almost 50 percent in November 1907; and unemployment increased from 2.8 percent to 8 percent. While no official GNP estimates are available for this period, estimates constructed by Romer (1989) suggest that GNP declined by about 4.2 percent while alternative estimates constructed by Balke-Gordon (1989) put the decline at 5.5 percent.

Table 4: Selected statistics for New York, Connecticut and the rest of the country

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>NEW YORK</th>
<th>CONNECTICUT</th>
<th>REST OF COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income per capita, 1900</td>
<td>$490</td>
<td>$540</td>
<td>$407</td>
</tr>
<tr>
<td>Illiteracy rate, 1900</td>
<td>1.6%</td>
<td>1.0%</td>
<td>2.8%</td>
</tr>
<tr>
<td>Manufacturing Capital/State Income, 1900</td>
<td>1604</td>
<td>2216</td>
<td>750</td>
</tr>
<tr>
<td>Bank Asset per capita, 1896</td>
<td>$1,249</td>
<td>$1,062</td>
<td>$187</td>
</tr>
<tr>
<td>Deposits per capita, 1896</td>
<td>$1,000</td>
<td>$827</td>
<td>$111</td>
</tr>
<tr>
<td>Bank capital-Asset Ratio, 1896</td>
<td>7.3%</td>
<td>10%</td>
<td>22.2%</td>
</tr>
<tr>
<td>1900 Branching dummy</td>
<td>1</td>
<td>0</td>
<td>0.35</td>
</tr>
<tr>
<td>Min Capital Requirement ($1,000)</td>
<td>25</td>
<td>na</td>
<td>18</td>
</tr>
<tr>
<td>Num Bank per 10,000 pop, 1896</td>
<td>1.35</td>
<td>2.4</td>
<td>1.7</td>
</tr>
<tr>
<td>Double Liability dummy</td>
<td>1</td>
<td>0</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Sources: Income per capita in 1900—Easterlin (1960), figures are in 1967 dollars; Illiteracy rate in 1900—defined as the number of illiterate persons over 21 years of age in 1900 divided by population in 1900, U.S. Bureau of the Census (1900); Manufacturing capital—U.S. Bureau of the Census (1900); Bank Assets (all banks)—Flood (1998), figures are in 1967 dollars; Bank Deposits (all banks)—Flood (1998), figures are in 1967 dollars; Capital Asset ratio—defined as total equity divided by total assets, equity figures are from Flood (1998); 1900 branching dummy—Dehejia and Lleras-Muney (2007); Minimum capital requirements—White (1983); Number of banks per 10,000 habitants—number figures are from Flood (1998); 1910 Double liability dummy—Welldon (1910), Table A.

31 These data are quoted from Bruner and Carr (2007), pp. 141-142 from primary sources.
Banking and economic conditions were largely similar in New York and Connecticut in the years leading up to the panic of 1907. Table 4 presents statistics that can be used compare economic and banking conditions between New York and Connecticut. At the turn of century, income per capita estimates suggest that New York was slightly poorer than Connecticut, but both states enjoyed income levels and literacy rates that were well above the rest of the country. Both states were heavily involved in the manufacturing sector: New York’s capital-to-output ratio was more than twice as high as the national average whereas Connecticut’s was nearly three times as large. In addition, both states enjoyed high levels of financial depth—bank assets per capita and deposits per capita were 6 to 7 times larger than the levels for the rest of the country. These figures, along with the number of banks per 10 thousand inhabitants suggest that banks in New York and Connecticut were, on average, larger institutions than those in the rest of the country; New York institutions, moreover, were larger than those in Connecticut.

There are no statistics that can be used to directly assess the *ex ante* relative risk of banks in New York compared to those in Connecticut. New York institutions were larger than those in Connecticut which, holding constant other things, should make them safer institutions. Although the capital-asset ratio was slightly lower in New York, banks in that state were allowed to open branches at the time and the literature supports the hypothesis that branching reduced the probability of failure. Double liability laws have also been shown to discourage bank risk-taking (Grossman, 2001), and the shareholders of failing banks in New York were subject to double liability. On balance, there is no strong reason to believe that bank risk exposures differed significantly across these states.
Overall, the data suggests that conditions in New York and Connecticut are sufficiently similar enough prior to 1907 to justify using a difference-in-difference methodology to estimate the effect of the Panic of 1907 on economic conditions at the state level.

Table 5 presents summary statistics for the data used to isolate the effect of the Panic on 1907 on commercial failures in New York and Connecticut. In 1906, the liabilities of failed banks in New York amounted to $0.28 per capita. This figure increased to an average of $10.15 for 1907, and $8.18 for 1908, before returning to approximately normal (1906) levels in 1909. During this period, Connecticut saw no failures at all while the remainder of the country experienced bank failures, but at an intensity level far below those experienced in New York.

Table 5: Bank failures and commercial failures between 1906 and 1909 in New York, Connecticut, and the rest of the country

<table>
<thead>
<tr>
<th>Year</th>
<th>New York Bank Failures Per Capita</th>
<th>Connecticut Bank Failures Per Capita</th>
<th>Rest of Country Bank Failures Per Capita</th>
<th>New York Commercial Failures Per Capita</th>
<th>Connecticut Commercial Failures Per Capita</th>
<th>Rest of Country Commercial Failures Per Capita</th>
</tr>
</thead>
<tbody>
<tr>
<td>1906</td>
<td>$0.88</td>
<td>$0.00</td>
<td>$0.44</td>
<td>$5.94</td>
<td>$3.47</td>
<td>$2.72</td>
</tr>
<tr>
<td>1907</td>
<td>$30.21</td>
<td>$0.00</td>
<td>$2.92</td>
<td>$20.12</td>
<td>$7.89</td>
<td>$2.98</td>
</tr>
<tr>
<td>1908</td>
<td>$25.25</td>
<td>$0.00</td>
<td>$0.59</td>
<td>$15.99</td>
<td>$3.49</td>
<td>$4.44</td>
</tr>
<tr>
<td>1909</td>
<td>$1.06</td>
<td>$0.00</td>
<td>$0.52</td>
<td>$9.68</td>
<td>$4.18</td>
<td>$2.89</td>
</tr>
</tbody>
</table>

We use the liabilities of commercial failures per capita to measure the effect of bank failure on economic activity.\(^{32}\) Table 5 also reports these figures for New York, Connecticut, and the rest of the country. Commercial failures per capita are roughly comparable across the three geographic regions in 1906, but they increase sharply in New York in 1907 and remain elevated in 1908. While the commercial failure series more

\(^{32}\) Liabilities of bank failures are from *Dun’s Review*, year-end figures. Liabilities of commercial failures are also from *Dun’s Review*, year-end figures, and are defined as the sum of the classified failures for manufacturing, trading, and other commercial entities.
than doubles in Connecticut in 1907, the relative increase is minor compared to New York and, the Connecticut series reverts to its 1906 level by 1908.

Difference-in-Difference Test

A “difference-in-difference” approach is used to estimate the effect of bank failures on these two states economies. The approach uses a control group to eliminate the effect of confounding factors. The variables used in the test are defined in Table 6.

Table 6: Variable definitions for differences-in-differences analysis

c_{it}	$\log\left(1 + \frac{\text{liabilities of commercial failures in state } i}{\text{population in state } i}\right)$
State$_i$	An indicator variable for each of the 48 states
Quarter$_j$	An indicator variable that identifies the quarter for which we are estimating the economic impact of bank failures
NY	An indicator variable equal to 1 if the state is New York
Conn	An indicator variable equal to 1 if the state is Connecticut
NY*Quarter$_j$	Interaction term for quarter and New York State
Conn*Quarter$_j$	Interaction term for quarter and Connecticut

The difference-in-difference methodology isolates the commercial failure rate in a specific quarter and estimates the difference in the incidence of commercial failures for New York and then separately for Connecticut relative to the rest of the country in that specific quarter. The econometric specification is,

$$c_{it} = \sum_{i=1}^{48} \mu_i \text{State}_i + \alpha_1 (\text{Quarter}_j) + \alpha_2 (NY \ast \text{Quarter}_j) + \epsilon_{it} \quad (1)$$

\[c_{it} = \sum_{i=1}^{48} \mu_i \text{State}_i + \alpha_1 \text{Quarter}_j + \alpha_3 \text{Conn} \times \text{Quarter}_j + e_{2t} \]

(2)

\(c_i \) is a measure of commercial distress in state \(i \) on date \(t \). Following Card and Krueger (1994), the coefficient estimates \(\hat{\alpha}_2 \) and \(\hat{\alpha}_3 \), are used to construct the difference-in-difference estimate of the effect of bank failures on commercial failures in Connecticut and New York. Because of the functional form, estimated coefficient are elasticities.

Table 7: Difference-in-difference regression results: New York vs. Connecticut

<table>
<thead>
<tr>
<th>Effect in Quarter</th>
<th>1906 Q4</th>
<th>1906 Q4</th>
<th>1907 Q4</th>
<th>1907 Q4</th>
<th>1908 Q1</th>
<th>1908 Q1</th>
<th>1908 Q2</th>
<th>1908 Q2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{\alpha}_1) (average quarter effect)</td>
<td>-0.066</td>
<td>-0.066</td>
<td>0.136</td>
<td>0.158</td>
<td>0.251</td>
<td>0.258</td>
<td>0.063</td>
<td>0.067</td>
</tr>
<tr>
<td></td>
<td>(0.040)</td>
<td>(0.040)</td>
<td>(0.047)</td>
<td>(0.049)</td>
<td>(0.042)</td>
<td>(0.043)</td>
<td>(0.036)</td>
<td>(0.036)</td>
</tr>
<tr>
<td></td>
<td>[0.098]</td>
<td>[0.095]</td>
<td>[0.004]</td>
<td>[0.001]</td>
<td>[0.000]</td>
<td>[0.000]</td>
<td>[0.085]</td>
<td>[0.063]</td>
</tr>
<tr>
<td>(\hat{\alpha}_2) (NY effect)</td>
<td>-0.073</td>
<td>0.757</td>
<td>0.233</td>
<td>0.078</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.144)</td>
<td>(0.122)</td>
<td>(0.139)</td>
<td>(0.143)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.613]</td>
<td>[0.000]</td>
<td>[0.094]</td>
<td>[0.587]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\hat{\alpha}_3) (Conn. effect)</td>
<td>-0.042</td>
<td>-0.314</td>
<td>-0.069</td>
<td>-0.155</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.114)</td>
<td>(0.118)</td>
<td>(0.114)</td>
<td>(0.113)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.712]</td>
<td>[0.008]</td>
<td>[0.548]</td>
<td>[0.171]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(R^2 \)-within 0.006 0.006 0.044 0.032 0.085 0.084 0.005 0.006
\(R^2 \)-between 0.261 0.012 0.261 0.012 0.264 0.012 0.261 0.012
\(R^2 \)-overall 0.002 0.003 0.047 0.018 0.057 0.05 0.005 0.003

Notes: The dependent variable is Log (1+(liabilities of commercial failures/population)). Each regression is estimated with 576 observations. “NY effect” is the interaction term for New York and the specific quarter indicated in the column heading. “Conn. effect” is the interaction term for Connecticut and the specific quarter indicated in the column heading. Fixed effects for each state are estimated but the estimates are not reported. White (1980) robust standard errors are presented in parenthesis under each estimated coefficient. P-values are presented in brackets.

The sample includes 576 quarterly estimates of the commercial distress variable, one for each quarter over the period 1906 Q1-1908 Q4 for each of the 48 contiguous
states. We estimate treatment effects separately for four individual quarters: 1906 Q4 (exactly a year before the panic), 1907 Q4 (panic quarter), 1908 Q1 (first quarter after the panic), and 1908 Q2 (second quarter after the panic).

Table 7 presents the regression results for the different quarters, starting with 1906 Q4, continuing with 1907 Q4, and 1908 Q1 and 1908 Q2. The first column of Table 7 reports the treatment effect when the “state” is equal to New York, and the quarter of interest is 1906 Q4. This regression tells us that the change in the rate of commercial failures in New York during the last quarter of 1906 was not statistically different from the change in the commercial failure rate experienced in all other states. The coefficient estimate, -0.073, is not statistically significantly different from zero.

The second column of Table 7 estimates the treatment effect for Connecticut in 1906 Q4. For Connecticut, the treatment effect, -0.042 is also not significantly different from zero indicating that the change in commercial failures during this quarter in Connecticut was close to the change experienced by all other states in this quarter. Thus, exactly one year before the panic took place, business conditions as measured by the log of business failure liabilities per capital were normal in both New York and Connecticut.

The remaining columns in Table 7 show the effects of the banking failures associated with the Panic of 1907. Beginning in 1907 Q4, the quarter of the banking panic, the commercial failure experiences of New York and Connecticut diverge markedly. Column 3 in Table 7 shows that New York experienced a tremendous increase in commercial distress ($\hat{\alpha}_2 = .757$), while column 4 shows that Connecticut experienced a decline in commercial failures ($\hat{\alpha}_3 = -.314$). A t-test of the difference of these two
coefficients confirms that commercial failures in New York in 1907 Q4 are elevated relative to those in Connecticut. \(^{33}\) Thus, during the panic, it is evident that New York suffered disproportionately more than the other states in terms of commercial distress, while Connecticut, if anything, experienced more benign economic conditions.

The regression results reveal that the effects of the banking panic on commercial distress in New York continued for at least another quarter. The treatment estimate for 1908 Q1 (\(\hat{\alpha}_2 = .233\)) is also positive and statistically significant. It is also statistically different from the 1908 Q1 estimate for Connecticut (\(\hat{\alpha}_1 = -.069\)). The estimates indicate that economic distress associated with the 1907 banking panic continued in New York while Connecticut remained unaffected by the crisis. It is not until the second quarter of 1908 that the New York treatment coefficient (\(\hat{\alpha}_2 = .078\)), indicates that business conditions in New York were on par with those in the rest of the country. It should be noted, however, that this does not necessarily indicate that business conditions everywhere return to normal levels during the second quarter of 1908. If commercial distress had spread to the rest of the nation by this date, the situation in New York will not look to be out of the ordinary compared to the rest of the country but economic conditions could be more challenging than average in all states.

VI. Concluding Remarks

Using data from 1900 to 1930, a period that predates active government stabilization policies, we have shown that bank failures have a statistically and economically important negative effect on economic activity. Our results suggest that a

\(^{33}\) The t-test of the difference of these two coefficients is 6.31, which is statistically significant at the less than 1 percent level. The t-test of the difference of these two coefficients at t+1 is 1.68, which is statistically significant at the 5 percent level by a one-tailed test. The coefficients are not statistically different from each other in the other two quarters (t-4 and t+2, where t is the panic quarter).
0.12 percent (1 standard deviation) increase in the share of liabilities in failed depository institutions will reduce the growth rate of industrial production by 17 percentage points and result in a 4 percentage point decline in the real GNP growth rate. These impacts on economic growth occur within three quarters of the shock to the banking sector.

Our estimates demonstrate that bank failures have negative externalities that reduce economic growth and verify the existence of banking sector systemic risk. The costs of systemic risk in the banking sector support the case for government policy to reduce the social costs associated with bank failures. Given the magnitude of our estimates, it is perhaps not surprising that banking policy was an active source of political debate during this era.34

Our estimates of the costs of banking sector systemic risk in the early 1900s are unlikely to be a reliable guide for the cost of systemic risk in more modern times. There have been many important structural changes in the banking sector including industry consolidation, the development of bank holding companies, the removal of prohibitions against interstate branching, and the growth of international and non-interest sources of bank income. Moreover, the banking sector is now subject to many government policies and regulations—bank deposit insurance, efficient bank resolution policies, and prudential bank supervision—that likely help mitigate the cost of bank systemic risk. In addition, the 2008 federal income tax rebate and the March 2008 subsidized purchase of

34 Public debate on banking policies began well before the period studied in this paper. State deposit insurance began in 1829 (White, 1983, p. 190) with the founding of the New York Safety Fund. The first national debate on the merits of deposit insurance likely occurred in 1893 when William Jennings Bryan introduced a bill that would establish a national deposit insurance fund (ibid.). Following the Panic of 1907, there was an important national debate focused on banking system reforms designed to enhance bank stability that led ultimately to the creation of the Federal Reserve System in 1913.
Bear Sterns highlight the fact that fiscal and monetary policies are now actively employed to offset losses that may be generated by banking sector distress.

While government policies may help to mitigate the impact of bank failures on economic growth, some argue (ourselves included) that these government policies also encourage additional bank risk-taking. The additional risk may create social costs by distorting resource allocation and partly offset the attenuating effect of government policies the on probability of banking sector distress. On balance, it remains unclear whether modern government banking sector policies should be expected to reduce the costs of systemic risk in the banking sector relative to those that prevailed in the early twentieth century.

Appendix

<table>
<thead>
<tr>
<th>Data Series</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Num of Bank Failures</td>
<td>Banking and Monetary Statistics, 1943, p. 283</td>
</tr>
<tr>
<td>Total Number of Banks, All banks</td>
<td>HSUS, Series X580</td>
</tr>
<tr>
<td>Deposits at Failed or Suspended Banks</td>
<td>Dun's Review, various years</td>
</tr>
<tr>
<td>Total Deposits, All Banks</td>
<td>HSUS, Series X585</td>
</tr>
</tbody>
</table>
References

- 40 -