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Abstract

We study the dynamics of liquidity provision by dealers during an asset market crash,

described as a temporary negative shock to investors’ aggregate asset demand. We consider a

class of dynamic market settings where dealers can trade continuously with each other, while

trading between dealers and investors is subject to delays and involves bargaining. We derive

conditions on fundamentals, such as preferences, market structure and the characteristics

of the market crash (e.g., severity, persistence) under which dealers provide liquidity to

investors following the crash. We also characterize the conditions under which dealers’

incentives to provide liquidity are consistent with market efficiency.
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1 Introduction

Liquidity in financial markets is often provided by dealers who trade assets from their own

inventories. Even in markets where liquidity provision by dealers may be inconspicuous in

normal times, it becomes critical during times of large financial imbalances. During market

crashes, for instance, it can take a long time for an investor to find a counterpart for trade,

either because of the technological limitations of order-handling systems or, as is the case

in over-the-counter markets, due to the decentralized nature of the trading process.1 These

situations appear to be very costly to investors, who concede striking price discounts to unwind

their positions (e.g., the 23% price drop of the Dow Jones Industrial Average on October 19,

1987). Some have argued that the social cost could be even larger because of the risk that

the financial crisis propagates to the macroeconomy (see, e.g., Borio (2004)). It is commonly

believed that liquidity provision by dealers plays a crucial role in mitigating these costs.

In this paper we study the equilibrium and the socially optimal inventory policies of dealers

during a market crash, which we model as a temporary negative shock to investors’ willingness

to hold the asset. We derive conditions under which dealers will find it in their interest to

provide liquidity in the aftermath of a crash, as well as conditions under which their incentives

to provide liquidity are consistent with market efficiency. We also study how liquidity provision

by dealers depends on the market structure, e.g., dealers’ degree of market power or the extent

of the trading frictions, and the characteristics of the crash, e.g., severity and persistence of the

shock to investors’ demands.

Our work is related to a recent literature that studies trading frictions in asset markets.2

In particular, the market setting we consider is similar to that of Duffie et al. (2005) (DGP

hereafter). Investors rebalance their asset holdings periodically in response to random changes

in their utility from holding assets, and they must engage in a time-consuming process to contact

dealers and bargain over the terms of trade. Dealers get no direct utility from holding assets,

and they can trade continuously in a perfectly competitive interdealer market. DGP focused

on steady states, so their analysis is silent about liquidity provision by dealers.

1For a description of the various trading problems that arose during the market crashes of October 1987 and
October 1997, see the report of The Presidential Task Force on Market Mechanisms (1988) and the US Securities
and Exchange Commission Staff Legal Bulletin No. 8 (September 9, 1998).

2Examples include, Gârleanu (2006), Longstaff (2005), and Vayanos and Weill (2007). Conceptually, our
analysis is also related to the inventory models of Stoll (1978) and Ho and Stoll (1983) (see Chapter 2 in O’Hara
(1997) for a review of this earlier market-microstructure literature).
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Weill (2007) studies the timing of liquidity provision by dealers in a dynamic version of

DGP. He asks under which conditions dealers will, and ought to, lean against the wind in the

immediate aftermath of the crash. Weill (2007) and the literature spurred by DGP, however,

keep the framework tractable by imposing a stark restriction on asset holdings, namely, that

investors can only hold either 0 or 1 unit of the asset. Lagos and Rocheteau (2007) study a

version of DGP where investors can hold unrestricted asset positions and find that, as result of

this restriction on asset holdings, existing search-based theories of financial liquidity neglect a

critical aspect of investor behavior in illiquid markets, namely the fact that market participants

can mitigate trading frictions by adjusting their asset positions so as to reduce their trading

needs. This effect of trading frictions on the demand for liquidity has been pointed out in a

different context by Constantinides (1986).

In this paper, we go beyond previous studies by allowing both dealers and investors to hold

unrestricted asset positions. This turns out to generate new implications for both the demand

and the supply of liquidity. Absent extraneous upper bounds on asset holdings, in times of

crisis, investors with high utility for the asset may absorb the selling pressure coming from

investors with low utility by holding positions that are large relative to what they would hold

during normal times. In other words, by removing the typical restrictions on investors’ asset

holdings, we find that investors may provide liquidity to other investors in times of crisis, much

like dealers do. These new effects on the supply and demand of liquidity imply that, in contrast

to Weill (2007), dealers may sometimes not find it in their interest to provide liquidity during

a crash. Also, it may sometimes be efficient for them not to lean against the wind. Whether or

not dealers will provide liquidity, and whether or not they ought to, depends on fundamentals,

including the details of market structure and the characteristics of the crash.

Our stylized description of a market crash consists of an aggregate negative preference shock

to investors’ asset demands, followed by a (possibly stochastic) recovery path.3 We find that

the amount of liquidity provided by dealers following the crash varies nonmonotonically with

the magnitude of trading frictions. When frictions are small, investors choose to take more

3This scenario could represent, for instance, an international shock such as the 1997 Asian crisis or the 1998
Russian sovereign default, domestic turbulence such as that triggered by the September 11 terrorist attack, or
even some company-specific shock, such as the collapse of Enron. Our “crash” follows the spirit of Grossman
and Miller’s (1988) crash dynamics. In Grossman and Miller, dealers provide liquidity in order to share risk
with outside investors. In our model, dealers have no such utility motive for holding assets; instead, they allow
investors to trade faster. In related work, Bernardo and Welch (2004) use the feature of nonsequential access of
investors to market makers to describe a market crash as a financial run.
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extreme positions because they know that they can rebalance their asset holdings very quickly.

Specifically, investors with higher-than-average utility for assets become more willing to hold

larger-than-average positions and absorb more of the selling pressure coming from investors

whose demands for the asset are lower than normal. In some cases, the former end up supplying

so much liquidity to other investors, that dealers don’t find it profitable to step in. If, on the

contrary, trading frictions are large enough, dealers do not accumulate inventories either, but

for a different reason: Trading frictions reduce investors’ demand for liquidity. Indeed, in order

to reduce their exposure to the trading frictions, investors choose to take less extreme asset

positions. In fact, it is possible that they demand so little liquidity that dealers don’t find it

profitable to accumulate inventories following a crash. Thus, if one considers a spectrum of asset

markets ranging from those with very small frictions, such as the New York Stock Exchange

(NYSE), to those with large trading frictions, such as the corporate bond market, one would

expect to see dealers accumulate more asset inventories during a crash in markets which are in

the intermediate range of the spectrum.

We also find that, from the standpoint of investors, an increase in dealers’ bargaining

strength is equivalent to an increase in trading frictions. Hence, just as with trading frictions,

dealers are less likely to accumulate inventories if their bargaining strength is either very small

or very large. This finding contrasts with the commonly held view that the market power of

dealers (e.g., NYSE specialists) is what gives them incentives to provide liquidity. In our model,

an increase in the dealers’ bargaining strength may reduce the aggregate amount of inventory

they accumulate, because investors endogenously take less extreme positions and demand less

liquidity. Similarly, a market reform that reduces dealers’ market power, as observed in equity

markets in the 90’s, can raise dealers’ incentives to provide liquidity during a market crash.

Our model can rationalize why dealers intervene in some crises and withdraw in others. In

line with Hendershott and Seasholes’s (2006) empirical evidence on the inventory strategies of

NYSE specialists, in our model, dealers’ incentives to provide liquidity are driven by anticipated

capital gains. Therefore, dealers are more likely to accumulate inventories when the crisis is

severe and expected to be short-lived: A large price drop and the expectation of a quick rebound

make it more profitable for dealers to buy low early in the crash and sell high later, as demand for

the asset recovers. From a normative standpoint, we find that the equilibrium asset allocation

across investors and the dealers’ inventory policies are socially efficient if and only if dealers’

bargaining strength is equal to zero. Given the nonmonotonic equilibrium relationship between
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dealers’ asset inventories and their bargaining strength, this means that dealers may fail to

build up inventories in situations where it would be socially efficient to do so, and vice-versa.

The rest of the paper is organized as follows. Section 2 lays down the environment. Sec-

tion 3 characterizes investors’ and dealers’ behavior and Section 4 defines equilibrium. Section

5 characterizes the socially optimal allocation. Sections 6 and 7 provide two alternative de-

scriptions of a market crash and determine the conditions under which dealers act as providers

of liquidity. Section 8 concludes. Appendix A contains all proofs and Appendix B contains

supplementary material.

2 The environment

Time is continuous and the horizon infinite. There are two types of infinitely-lived agents: a

unit measure of investors and a unit measure of dealers. There is one asset and one perishable

good, which we use as a numéraire. The asset is durable, perfectly divisible and in fixed supply,

A ∈ R+. The numéraire good is produced and consumed by all agents. The instantaneous
utility function of an investor is ui(a)+c, where a ∈ R+ represents the investor’s asset holdings,
c ∈ R is the net consumption of the numéraire good (c < 0 if the investor produces more than
he consumes), and i ∈ {1, ..., I} indexes a preference shock. The utility function ui(a) is

strictly increasing, concave, continuously differentiable and satisfies the Inada condition that

u0i(0) = ∞. We also assume that it is either bounded below or above. Investors receive

idiosyncratic preference shocks that occur with Poisson arrival rate δ. Conditional on the

preference shock, the investor draws preference type i with probability πi, and
PI

i=1 πi = 1.

These preference shocks capture the notion that investors value the services provided by the

asset differently over time, and will generate a need for investors to periodically change their

asset holdings.4 The instantaneous utility of a dealer is υ(a) + c, where υ(a) is increasing,

4Our specification associates a certain utility to the investor as a function of his asset holdings. This is a
feature that we have borrowed from DGP. The utility the investor gets from holding a given asset position could
be simply the value from enjoying the asset itself, as would be the case for real assets such as cars or houses.
Alternatively, we can also think of the asset as being physical capital. Then, if each investor has linear utility
over a single consumption good (as is the case in most search models), we can interpret ui (·) as a production
technology that allows the agent to use physical capital to produce the consumption good. The idiosyncratic
component “i” can then be interpreted as a productivity shock that induces agents with low productivity to sell
their capital to agents with high productivity in an OTC market. As yet another possibility, one could adopt
the preferred interpretation of DGP, namely that ui(a) is in fact a reduced-form utility function that stands
in for the various reasons why investors may want to hold different quantities of the asset, such as differences
in liquidity needs, financing or financial-distress costs, correlation of asset returns with endowments (hedging
needs), or relative tax disadvantages (as in Michaely and Vila (1996)). By now, several papers that build on
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concave and continuously differentiable. All agents discount at the same rate r > 0.
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Figure 1: Trading arrangement

There is a competitive market for the asset. Dealers can continuously buy and sell in this

market at price p (t), while investors can only access the market periodically and indirectly,

through a dealer. Specifically, we assume that investors contact a randomly chosen dealer

according to a Poisson process with arrival rate α. Once the investor and the dealer have made

contact, they negotiate the quantity of assets that the dealer will acquire (or sell) in the market

on behalf of the investor and the intermediation fee that the investor will pay the dealer for his

services. After completing the transaction, the dealer and the investor part ways.5 The trading

arrangement is illustrated in Figure 1.

3 Dealers, investors, and bargaining

In this section we describe the decision problems faced by investors and dealers, and the deter-

mination of the terms of trade in bilateral meetings between them. Investors readjust their asset

the work of DGP have formalized the “hedging needs” interpretation. Examples include Duffie, Gârleanu and
Pedersen (2006), Gârleanu (2006) and Vayanos and Weill (2007). (See also Lo, Mamaysky and Lang (2004).)
Notice that investors in DGP, and therefore the investors in our paper, are akin to the liquidity traders which
are commonplace in the large body of the finance microstructure literature that uses asymmetric information
instead of search frictions to rationalize bid-ask spreads, such as Glosten and Milgrom (1985) and Easley and
O’Hara (1987).

5 In actual financial markets, there are position traders who hold asset inventories in the hope of making capital
gains. There are also pure spread traders who don’t hold inventories but instead profit exclusively from “buying
low and selling high.” Stoll (1978), for example, calls the former dealers and the latter brokers. In our model,
the agents that we refer to as dealers engage in both of these activities. The analysis would remain unchanged
if we were to assume that these activities are carried out by two different types of agents with continuous direct
access to the asset market.
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holdings infrequently, at the random times when they meet dealers. In between those times, an

investor enjoys the utility flow associated with his current asset position. A dealer’s problem

consists of continuously managing his own asset position by trading in the asset market. At

random times, the dealer contacts an investor who wishes to buy or sell some quantity of assets.

At these times, the dealer executes the desired purchase or sale in the asset market on behalf

of the investor and receives a fee for his services.6

We begin with the determination of the terms of trade in bilateral trades between dealers

and investors. Consider a meeting at time t between a dealer who is holding inventory ad and an

investor of type i who is holding inventory a. Let a0 denote the investor’s post-trade asset holding

and φ be the intermediation fee.7 The pair (a0, φ) is taken to be the outcome corresponding

to the Nash solution to a bargaining problem where the dealer has bargaining power η ∈ [0, 1].
Let Vi (a, t) denote the expected discounted utility of an investor with preference type i who is

holding a quantity of asset a at time t. Then, the utility of the investor is Vi(a0, t)−p (t) (a0−a)−φ
if an agreement (a0, φ) is reached, and Vi(a, t) in case of disagreement. Therefore, the investor’s

gain from trade is Vi(a0, t) − Vi(a, t) − p (t) (a0 − a) − φ. Analogously, let W (ad, t) denote the

maximum attainable expected discounted utility of a dealer who is holding inventory ad at time

t. Then, the utility of the dealer is W (ad, t)+φ if an agreement (a0, φ) is reached and W (ad, t)

in case of disagreement, so the dealer’s gain from trade is equal to the fee, φ.8 The outcome of

the bargaining is given by

[ai(t), φi(a, t)] = arg max
(a0,φ)

[Vi(a
0, t)− Vi(a, t)− p (t) (a0 − a)− φ]1−ηφη.

Hence, the investor’s new asset holding solves

ai (t) = argmax
a0

£
Vi(a

0, t)− p(t)a0
¤
, (1)

6 In principle, the dealer may fill the investor’s order partially or in full by trading out of, or for his own
inventory of the asset. For example, if at some time t the dealer contacts an investor who wishes to buy some
quantity a0 and the dealer’s inventory is ad (t) > a0, then in that instant, the dealer may fill the buy order by
giving the investor a0 from his inventory and charging him p (t) a0 plus the fee, and instantaneously buying back
ad (t)−a0 for his own account in the asset market. Alternatively, the dealer may instead choose not to trade out
of his inventory and simply buy a0 in the market on behalf of the investor at cost p (t) a0 (and charge him this
cost plus the intermediation fee). Clearly, the dealer is indifferent between these modes of execution because he
has continuous access to the asset market and all the transactions he is involved in are instantaneous.

7 In our formulation we assume that the investor pays the dealer a fee. However, the bargaining problem can
be readily reinterpreted as one in which the dealer pays the investor a bid price which is lower than the market
price if the investor wants to sell, and charges an ask price which is higher than the market price if the investor
wants to buy. See Lagos and Rocheteau (2007) for details.

8The outcome of the bilateral trade does not affect the dealer’s continuation payoff because he has continuous
access to the asset market and his trades are executed instantaneously (see footnote 6).
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and that the intermediation fee is

φi (a, t) = η {Vi [ai (t) , t]− Vi(a, t)− p(t) [ai (t)− a]} . (2)

According to (1), the investor’s post-trade asset holding is the one he would have chosen if

he were trading in the asset market himself, rather than through a dealer. According to (2),

the intermediation fee is set so as to give the dealer a share η of the gains associated with

readjusting the investor’s asset holdings.9

The value function corresponding to a dealer who is holding asset position at at time t

satisfies

W (at, t) = sup
q(s),ad(s)

E
½Z T

t
e−r(s−t) {υ[ad(s)]− p(s)q(s)} ds+ e−r(T−t)[φ̄ (T ) +W (ad(T ), T )]

¾
,

subject to the law of motion ȧd (s) = q (s), the short-selling constraint ad (s) ≥ 0, and the

initial condition ad (t) = at. Here, ad(s) represents the stock of assets that the dealer is holding

and q (s) is the quantity that he trades for his own account at time s. The expectations

operator, E, is taken with respect to T , which denotes the next random time at which the

dealer meets an investor, where T − t is exponentially distributed with a mean of 1/α. Since

the intermediation fee determined in a bilateral meeting depends on the investor’s preference

type and asset holdings, and given that the investor is a random draw from the population of

investors, at time T the dealer expects to extract the average fee φ̄ (T ) =
R
φj(ai, T )dHT (j, ai),

where HT denotes the distribution of investors across preference types and asset holdings at

time T . The dealer enjoys flow utility υ[ad(s)] from carrying inventory ad (s), and gets utility

p (s) q (s) from changing this inventory.

Since intermediation fees are independent of the dealer’s asset holdings, we can write

W (at, t) = max
q(s)

½Z ∞

t
e−r(s−t) {υ[ad(s)]− p(s)q(s)} ds

¾
+Φ (t) , (3)

subject to ȧd (s) = q (s), ad (s) ≥ 0 and ad (t) = at. The function Φ (t) is the expected

present discounted value of future intermediation fees from time t onward and satisfies Φ (t) =

E{e−r(T−t)[φ̄ (T )+Φ (T )]}, where the expectation is with respect to T . This formulation makes
it clear that dealers trade assets in two ways: continuously, in the competitive market, or at ran-

dom times, in bilateral negotiations with investors. Since dealers have quasi-linear preferences
9Our choice of notation for the bargaining solution in (1) and (2) emphasizes the fact that the terms of

trade depend on the investor’s preference type but are independent of the dealer’s inventories. In addition, the
investor’s post-trade asset holding is independent of his pre-trade holding, while the intermediation fee is not.
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and they can trade instantaneously and continuously in the competitive asset market, their op-

timal choice of asset holdings is independent from what happens in bilateral negotiations with

investors. The following lemma describes the solution dealer’s inventory accumulation problem

which is in the first term on the right-hand side of (3).

Lemma 1 Suppose that p(t) is a given, piecewise continuously differentiable price path. An

inventory path, ad (t), solves the dealer’s inventory accumulation problem if and only if

1. for all t such that p(t) is differentiable, ad (t) satisfies

υ0 [ad (t)] + ṗ (t) ≤ rp (t) with equality if ad(t) > 0; (4)

2. ad (t) = 0 for any t for which the price has a negative jump, i.e., if

p(t+)− p(t−) < 0, then ad(t) = 0; (5)

3. ad(t) satisfies the transversality condition

lim
t→∞

e−rtp(t)ad(t) = 0. (6)

There is no bounded inventory path, ad (t), that solves the dealer’s inventory accumulation

problem if p(t) has a positive jump, p(t+)− p(t−) > 0.

The last part of Lemma 1, states that if the asset price had a positive jump, a dealer could

improve his utility from any bounded inventory path by buying assets just before the jump and

re-selling just after.10 The opposite trading strategy implies that the short-selling constraint

must be binding whenever the price jumps down. According to (4), whenever the price path

is differentiable and a dealer finds it optimal to hold strictly positive inventory, the flow cost

of buying the asset, rp (t), must equal the direct utility flow from holding the asset, υ0 [ad (t)],

plus the capital gain, ṗ (t). As it is well known from Mangasarian’s results (see Theorem 13,

Chapter 3 of Seierstad and Sydsaeter (1987)), together with the other first-order conditions,

the transversality condition (6) is sufficient for optimality. Here, we show that it is necessary

as well.11

10Note that, because there is a finite measure of assets, and agents face short-selling constraints, dealers’ asset
holdings will have to be bounded in an equilibrium. This observation, together with the last part of the lemma
will imply that a price paths with upward jumps cannot be part of an equilibrium.

11The necessity of such transversality conditions for general formulations of infinite-horizon optimal con-
trol problems has been regarded as a delicate issue since Halkin’s (1974) counterexample. See Benveniste and
Scheinkman (1982) for fairly general results.
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We now proceed with an analysis of an investor’s problem. The value function corresponding

to an investor with preference type i who is holding a assets at time t, Vi (a, t), satisfies

Vi(a, t) = Ei
∙Z T

t
e−r(s−t)uk(s)(a)ds+

e−r(T−t){Vk(T )[ak(T )(T ), T ]− p(T )[ak(T )(T )− a]− φk(T )(a,T )}
¸
, (7)

where T denotes the next time the investor meets a dealer, and k(s) ∈ {1, ..., I} denotes the
investor’s preference type at time s. The expectations operator, Ei, is taken with respect to the
random variables T and k(s), and is indexed by i to indicate that the expectation is conditional

on k(t) = i. Over the interval of time [t, T ] the investor holds a assets and enjoys the discounted

sum of the utility flows associated with this holding a (the first term on the right-hand side

of (7)). The length of this interval of time, T − t, is an exponentially distributed random

variable with mean 1/α. The flow utility is indexed by the preference type of the investor,

k(s), which follows a compound Poisson process. At time T the investor contacts a random

dealer and readjusts his holdings from a to ak(T )(T ). In this event the dealer purchases a

quantity ak(T )(T ) − a of the asset in the market (or sells if this quantity is negative) at price

p(T ) on behalf of the investor. At this time the investor pays the dealer an intermediation fee,

φk(T )(a, T ). Both the fee and the asset price are expressed in terms of the numéraire good.

Substituting the terms of trade (1) and (2) into (7), we get

Vi(a, t) = Ei
∙Z T

t
e−r(s−t)uk(s)(a)ds+ (8)

e−r(T−t){(1− η)max
a0

£
Vk(T )(a

0, T )− p(T )(a0 − a)
¤
+ ηVk(T )(a, T )}

¸
.

From the last two terms on the right-hand side of (8), it is apparent that the investor’s payoff

is the one he would get in an economy in which he meets dealers according to a Poisson

process with arrival rate α, and instead of bargaining, he readjusts his asset holdings and

extracts the whole surplus with probability 1−η; whereas with probability η he cannot readjust
his holdings (and enjoys no gain from trade). Therefore, from the investor’s standpoint, the

stochastic trading process and the bargaining solution are payoff-equivalent to an alternative

trading mechanism in which the investor has all the bargaining power in bilateral negotiations

with dealers, but he only gets to meet dealers according to a Poisson process with arrival rate
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κ = α(1− η). Consequently, we can rewrite (8) as

Vi(a, t) = Ei
∙Z T̃

t
uk(s)(a) e

−r(s−t) ds+ e−r(T̃−t){p(T̃ )a+max
a0
[Vk(T̃ )(a

0, T̃ )− p(T̃ )a0]}
¸
, (9)

where the expectations operator, Ei, is now taken with respect to the random variables T̃ and

k(s), where T̃ − t is exponentially distributed with mean 1/κ. From (9), the problem of an

investor with preference shock i, who gains access to the market at time t, consists of choosing

a0 ∈ R+ in order to maximize

Ei
∙Z T̃

t
e−r(s−t)uk(s)(a

0) ds

¸
−
n
p(t)− Et

£
e−r(T̃−t)p(T̃ )

¤o
a0,

or equivalently,

Ei

"Z T̃

t
e−r(s−t)

©
uk(s)(a

0)− [rp(s)− ṗ(s)] a0
ª
ds

#
. (10)

If the investor had continuous access to the asset market, he would choose his asset holdings so

as to continuously maximize ui(a)−[rp(t)− ṗ(t)] a, his flow utility net of the flow cost of holding

the asset. But since the investor can only trade infrequently, his objective is to maximize (10)

instead. Intuitively, the investor chooses his asset holdings in order to maximize the present

value of his utility flow net of the present value of the cost of holding the asset from time t

until the next time T̃ when he can readjust his holdings. The following lemma offers a simpler,

equivalent formulation of the investor’s problem.

Lemma 2 Let

Ui(a) =
(r + κ)ui(a) + δ

PI
j=1 πjuj(a)

r + δ + κ
(11)

ξ(t) = (r + κ)

∙
p(t)− κ

Z ∞

0
e−(r+κ)sp(t+ s)ds

¸
, (12)

and assume that p(t)e−rt is decreasing. Then a bounded process a(t) solves the investor’s prob-

lem if and only if

1. a(t) = ai(t), when the investor contacts the market with current type i, with

U 0i [ai(t)] = ξ(t) (13)
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2. a(t) satisfies the transversality condition

lim
t→∞

E
h
p(θt)a(θt)e

−rθt
i
= 0, (14)

where θt denotes the investor’s last contact time with a dealer before t.

The assumption that p(t)e−rt is decreasing is without loss of generality, because it will be true

in an equilibrium (this follows from the dealer’s first-order conditions (4) and (5)). Intuitively,

Ui(a) is the flow expected utility the investor enjoys from holding a assets until his next oppor-

tunity to rebalance his holdings, and ξ (t) is the cost of buying the asset minus the expected

discounted resale value of the asset (expressed in flow terms). Notice that we do not need to

know the path for the price of the asset, p (t), to solve for the investor’s optimal asset holdings.

It is sufficient to know ξ(t). The following lemma establishes the relationship between ξ(t) and

p (t).

Lemma 3 Condition (12) implies

rp (t)− ṗ (t) = ξ (t)− ξ̇ (t)

r + κ
. (15)

Lemma 3 allows us to rewrite (4) as

υ0 [ad (t)] +
ξ̇ (t)

r + κ
≤ ξ (t) with an equality if ad(t) > 0. (16)

Equations (13) and (16) illustrate the main differences between dealers and investors in our

setup. Relative to investors, dealers get an extra return from holding the asset, captured by

ξ̇ (t) / (r + κ). This reflects a dealer’s ability to make capital gains by exploiting his continuous

access to the asset market. Another difference is the fact that the utility function for investors

on the left-hand side of (13) is a weighted-average of the marginal utility flows that the investor

enjoys until the next time he is able to readjust his asset holdings.

4 Equilibrium

In this section, we study the determination of the asset price, define equilibrium, and show

how to characterize it. Since each investor faces the same probability to access the market

irrespective of his asset holdings, and since these probabilities are independent across investors,

we appeal to the law of large numbers to assert that the flow supply of assets by investors
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is α [A−Ad(t)], where Ad (t) is the aggregate stock of assets held by dealers. (Note that

Ad (t) = ad (t), since there is a unit measure of identical dealers facing the same strictly concave

optimization problem). The measure of investors with preference shock i who are trading in

the market at time t is αni(t), where ni(t) is the measure of investors with preference type i

at time t. Therefore, the investors’ aggregate demand for the asset is α
PI

i=1 ni(t)ai(t), and

the net supply of assets by investors is α[A − Ad(t) −
PI

i=1 ni(t)ai(t)]. The net demand from

dealers is Ȧd (t), the change in their inventories. Therefore, market clearing requires

Ȧd (t) = α

"
A−Ad(t)−

IX
i=1

ni(t)ai(t)

#
. (17)

The measure ni (t) satisfies ṅi (t) = δπi − δni (t) for all i, and therefore,

ni(t) = e−δtni(0) + (1− e−δt)πi, for i = 1, .., I. (18)

If we use (13) to substitute ai (t) from (17), it becomes apparent that this market-clearing

condition determines ξ(t). The intermediation fees along the equilibrium path are given by (2).

Using (9), (11) and (12), (2) reduces to

φi (a, t) = η

∙
Ui [ai(t)]− Ui(a)− ξ(t) [ai(t)− a]

r + κ

¸
. (19)

Definition 1 An equilibrium is a collection of bounded asset holdings [{ai(t)}Ii=1 , Ad(t)], to-

gether with piecewise continuously differentiable trajectories for prices and intermediation fees,

[ξ(t), p (t) , φi (a, t)], that satisfy , (4)—(6), (12)—(14), (17) and (19).

We do not list the distribution of asset holdings across investors in the preceding definition

because it does not affect the dealer’s problem, the investor’s problem, nor any of the variables

which are relevant to our analysis. To characterize the equilibrium, we begin by establishing

two important properties of any equilibrium price path.

Lemma 4 In an equilibrium,

lim
t→∞

e−rtp(t) = 0, and (20)

p(t) =

Z ∞

t
e−r(s−t)

"
ξ(s)− ξ̇(s)

r + κ

#
ds. (21)
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The no-bubble condition (20) follows from adding up the transversality conditions (6) and

(14) across all agents, which after observing that agents’ holdings must add up to A > 0 imply

limt→∞ E
£
p(θt)e

−rθtA
¤
= 0. This, in turn, can be shown to imply (20). With (20), (21) follows

from (15).

If we combine (13), (16) and (17) and assume an interior solution for dealers’ inventories,

the model can be reduced to a system of two first-order differential equations

Ȧd (t) = α

(
A−Ad (t)−

IX
i=1

ni(t)U
0−1
i [ξ (t)]

)
, (22)

ξ̇ (t) = (r + κ)
©
ξ (t)− υ0 [Ad (t)]

ª
, (23)

with ni(t) given by (18). This system is nonlinear and nonautonomous. The steady-state

equilibrium is such that U 0i(ai) = υ0(ad) = ξ = rp, where ξ is the unique solution to

υ0−1(ξ) +
IX

i=1

πiU
0−1
i (ξ) = A. (24)

Consider the limit as the trading frictions vanish, i.e., as α approaches ∞. From (15),

ξ(t) = rp(t)− ṗ(t), so the investor’s cost of investing in the asset is the flow cost rp(t) minus the
capital gain ṗ(t), the same as the dealer’s. From (11), Ui(a) tends to ui(a), so (11) implies that

the investor’s optimal choice of assets satisfies u0i(ai) = rp(t)− ṗ(t). This is the asset demand

of an investor in a frictionless Walrasian market.

A very tractable special case of (22) and (23) obtains when ni = πi for all i, i.e., when

the distribution of preference types across investors is time-invariant, since the system is then

homogenous. (Note that this does not imply that the joint distribution of assets and preference

types across investors is constant, so the economy need not be in a steady state.) Linearizing

(22) and (23) in the neighborhood of the unique steady-state, (Ād, ξ̄), the steady state can

be verified to be a saddle-point. For some initial condition Ad (0) in the neighborhood of the

steady state there is a unique trajectory, the saddle-path, that brings the economy to its steady

state. This trajectory also satisfies (6), so it is an equilibrium. Lemma 5 establishes that for a

given initial condition, such a path is the unique equilibrium. Figure 2 depicts the dynamics of

the system with a phase diagram.

14
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Figure 2: Dealers and inventories: Phase diagram

Lemma 5 Suppose that ni(0) = πi for all i, and that the initial condition ad (0) = Ad (0) is

close to the steady-state value Ād. Then, there is a unique dynamic equilibrium, and it converges

to the steady state.

As dealers’ marginal utility for the asset decreases, the ξ−isocline shifts downward. As
υ0(ad) tends to 0, a case we will focus on in the following sections, the ξ−isocline approaches
the horizontal axis for all Ad > 0 and the vertical axis for Ad = 0. The steady state is then at

the intersection of the Ad−isocline and the vertical axis, and there is a saddle-path that brings
the economy to the steady state.

5 Efficiency

In this section we characterize the efficient allocation. We carry out an elementary variational

experiment to identify the social gains associated with liquidity provision by dealers, and provide

a more formal treatment of the social planner’s problem in Appendix A.

Use m(τ , t) to denote the marginal utility that an investor enjoys at time t, from the asset

15



position he acquired at time τ ≤ t. Let

M(τ , t) ≡ (r + α)Et
∙Z T

t
e−r(s−t)m(τ , s)ds

¸
,

i.e., M(τ , t) is the flow expected present value of an investor’s marginal utility for the assets

he acquired at time τ , from time t ≥ τ until his next contact time with dealers, T .12 Let ∆

represent the length of a small time interval, then M(τ , t) solves the recursion

M(τ , t) = (r + α)m(τ , t)∆+ (1− r∆− α∆)Et [M(τ , t+∆)] . (25)

At each point in time t > 0, a quantity Ad(t) of assets is held by dealers, and the remaining

A − Ad(t) is held by investors. Because there is a continuum of investors establishing contact

with dealers at Poisson intensity α, the law of large numbers implies that, during any small time

interval [t, t +∆], there is a quantity Ad(t) + α∆ [A−Ad(t)] of assets that can be reallocated

between those investors who are in contact with dealers, and between investors and dealers.

Holding Ad(t) fixed, an efficient allocation of the remaining α∆ [A−Ad(t)] assets must

equalize the marginal value M(t, t) of all investors who are currently contacting dealers and

holding assets. Otherwise, one could improve welfare by reallocating assets from investors with

low marginal valuations to investors with high marginal valuations. This means that,

M(t, t) = λ(t), (26)

for some λ(t) ≥ 0, which represents the shadow price that the planner assigns to assets in the
hands of dealers at time t (assuming investors hold some assets).

We now provide a necessary condition for dealers’ inventory holdings, Ad(t), to be part of

an efficient allocation. Start from an allocation such that (26) holds at each time, and perturb

it as follows: (i) keep the same allocation during [0, t), (ii) take a marginal asset from some

positive measure of “early” investors at time t and give them to dealers until time t+∆. (iii) If

an early investor recontacts the market at time t+∆, give the asset back to him. If he does not

recontact the market at time t+∆, give the asset to some other “late” investor who contacted

the market at time t +∆. (iv) Continue with the initial asset allocation after t +∆. (Since

12We introduce a different notation here so that the present calculations also apply to the environment
of Section 7, which features aggregate uncertainty. In the environment of the previous section, for instance,
m(τ, s) = u0k(s) ak(τ) , and with η = 0, M(τ, s) = U 0

k(s) ak(τ) , where ak(τ) is the asset position chosen by the
investor at time τ , and k(s) is the investor’s preference type at time s. Also, in this section we use Et to denote
the expectation operator conditional on the information available at time t.
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dealers’ asset holdings at t+∆ are the same as in the initial allocation, the quantity of assets

available in the market stays the same, and it is feasible to continue with the initial allocation

after t+∆.)

We can break up the net utility of this perturbation as follows. First, during [t, t+∆] assets

are held by dealers, with a marginal utility υ0(t), instead of the early investors, with a marginal

utility of m(t, t).13 This represents a net flow utility of (r+α) [υ0(t)−m(t, t)]∆. Second, there
is a fraction α∆ of early investors who re-establish contact with dealers at t +∆ and receive

their asset back, with a net utility of zero from t+∆ onwards. For the fraction 1−α∆ of early

investors who do not re-establish contact with dealers, there is an expected discounted cost of

Et
£
e−r∆M(t, t+∆)

¤
' (1− r∆)Et [M(t, t+∆)] . (27)

This represents the discounted marginal value that is lost because early investors hold one unit

less of assets until their next respective contact times with dealers. Lastly, since the asset is

transferred to some late investors at time t+∆, there is an expected gain of

(1− r∆)Et [M(t+∆, t+∆)] . (28)

As before, equation (28) is the discounted marginal value that is gained because late investors

hold one more unit of assets until their next respective contact time with dealers. This discussion

shows that the net utility of the perturbation is

(r + α)
£
υ0(t)−m(t, t)

¤
∆+ (1− α∆)(1− r∆)Et [M(t+∆, t+∆)−M(t, t+∆)] . (29)

The second term represents the gain from liquidity provision. The discounting factor, (1− r∆),
appears because the gain occurs later in time. The probability factor, (1 − α∆), appears

because the gain occurs only if the early investors do not manage to re-establish contact with

dealers. The last factor, Et [M(t+∆, t+∆)−M(t, t+∆)], is positive when the marginal utility
of the early investor, M(t, t +∆), is, on average, smaller than the marginal utility of the late

investor, M(t +∆, t +∆). This means that liquidity provision can raise welfare by improving

intertemporal matching, i.e., by creating a mutually beneficial match between two investors

who contact dealers at different points in time.

13Note that, since agents have quasi-linear preferences, one must give equal weights to all agents’ marginal
utilities for the assets.
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To a first-order approximation, equation (29) can be rearranged as follows14

(r + α)∆
£
υ0(t)− λ(t)

¤
+ (1− r∆− α∆) {Et [λ(t+∆)]− λ(t)} . (30)

Divide (30) through by ∆ and take ∆ to zero to find that increasing the amount of inventories

held by dealers does not improve welfare if

υ0(t) +
1

r + α
lim
∆→0

Et [λ(t+∆)− λ(t)]

∆
≤ λ(t). (31)

Considering the opposite perturbation of decreasing dealers’ inventories, we find that (31) holds

with equality whenever Ad(t) > 0. In the environment of the previous section, with no aggregate

uncertainty and where υ0(0) =∞, we can derive these first-order conditions formally using the
Maximum Principle.

Lemma 6 An efficient allocation
h
{ai(t)}Ii=1 , ad(t)

i
satisfies

(r + α)u0i [ai (t)] + δ
PI

j=1 πju
0
j [ai (t)]

r + α+ δ
= λ (t) , (32)

υ0 [ad(t)] +
λ̇(t)

r + α
= λ(t), (33)

the resource constraint (17), and the transversality condition

lim
t→∞

e−rtλ(t) = 0, (34)

for some λ(t) ≥ 0. In addition, if ad (t) satisfies

lim
t→∞

e−rtλ(t)ad (t) = 0, (35)

then
h
{ai(t)}Ii=1 , ad(t)

i
is an optimal path.

If we identify the equilibrium “price,” ξ (t), with the planner’s shadow price of assets, λ (t),

and compare (4) and (11) with (32) and (33), it becomes apparent that they would be identical

if κ = α, i.e., if η were equal to zero. The following proposition formalizes this observation.

Proposition 1 Equilibrium is efficient if and only if η = 0.

14Use (25) to rewrite (29) as (r + α)v0(t)∆ −M(t, t) + (1− r∆− α∆)Et [M(t+∆, t+∆)]. The expression
(30) then follows from (26).
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Whenever η > 0, an inefficiency arises from a holdup problem due to ex-post bargaining.

Whenever they trade, investors anticipate the fact that they will have to pay fees for rebalancing

their asset holdings in the future. These intermediation fees increase with the surplus that the

trade generates. As a consequence, investors will tend to avoid positions that could lead to

large rebalancing in the future.

6 Crash and deterministic recovery

In this section, we describe the dynamic adjustment of the asset price and the allocation of

assets between dealers and investors following a market crash. We think of a market crash as

a sudden rise in selling pressure, and model it as a one-time unexpected shock that modifies

the distribution of investors across preference types, {ni(t)}Ii=1 , in a way that causes the total
demand for the asset to fall unexpectedly.15 We suppose that the economy is in the steady state

at the time this shock hits, which we take to be t = 0. The total quantity of assets demanded

by investors is lowest at t = 0, and then gradually recovers over time as the initial distribution

of preference types, {ni (0)}Ii=1, reverts back to the invariant distribution, {πi}
I
i=1.

In order to highlight the intermediation role of dealers, we assume that they start off with

no inventory, ad(0) = 0, and that they get no utility from holding the asset, i.e., υ(a) = 0.

In this formulation, dealers will only buy assets for their own account in an attempt to make

capital gains over some holding period. Hence, Ad = 0 in the steady state, since dealers cannot

make capital gains if the asset price is constant. For investors, we adopt ui(a) = εia
1−σ/(1−σ),

which implies Ui (a) = ε̄ia
1−σ/(1− σ), with ε̄i =

(r+κ)εi+δε̄
r+κ+δ and ε̄ =

PI
k=1 πkεk. The following

lemma summarizes the key properties of the investor’s and the dealer’s optimization problems.

Lemma 7 (a) An investor with preference type i who gains access to the market at time t,

demands

ai(t) =

∙
ε̄i
ξ(t)

¸1/σ
. (36)

(b) A dealer’s asset holdings satisfy

[rp (t)− ṗ (t)] ad (t) = 0. (37)

15This is the same notion of market crash used by Weill (2006). We study a different notion of market crash
in the following section.
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The second part of Lemma 7 formalizes the notion that if dealers do not enjoy any direct

benefits from holding the asset, then they will only hold it to try to obtain capital gains.

Dealers hold no inventories over periods when the price is growing at a rate lower than the

rate of time preference. Conversely, they are willing to take long positions in the asset only if

ṗ (t) /p (t) = r. (Naturally, ṗ (t) /p (t) > r would be inconsistent with equilibrium.) We can use

(15) to express the dealer’s optimality condition as"
ξ (t)− ξ̇ (t)

r + κ

#
Ad (t) = 0, (38)

with ξ̇ (t) /ξ (t) ≤ r + κ, where Ad (t) ≥ 0 denotes dealers’ aggregate inventories. (Notice that
individual dealers need not hold the same inventories here.)

With (18) and (36), the market-clearing condition (22) can be written as

Ȧd (t) = α
n
A−Ad (t)− ξ(t)−1/σ

h
Ē − e−δt

¡
Ē −E0

¢io
, (39)

where Ē =
PI

i=1 πiε̄
1/σ
i and E0 =

PI
i=1 ni(0)ε̄

1/σ
i . Intuitively, ξ(t)−1/σ

£
Ē − e−δt

¡
Ē −E0

¢¤
is

the total quantity of assets demanded by investors at time t. This way of writing the investors’

aggregate demand reveals two sources of time variation. First, investors’ aggregate demand will

change in response to changes in the effective cost of purchasing the asset, ξ(t). The second

component,
£
Ē − e−δt

¡
Ē −E0

¢¤
, captures changes in aggregate demand due to composition

effects coming from variations in the distribution of investors over the various preference types.

The constant Ē is a measure of investors’ willingness to hold the asset in the steady state, i.e.,

when ni (t) = πi, while E0 reflects the investors’ willingness to hold the asset at time 0, when

the aggregate shock hits. Thus, E0/Ē is a measure of the magnitude of the composition shock

to aggregate demand for the asset. In line with our market crash interpretation, we maintain

E0/Ē < 1 throughout the analysis, i.e., lower preference types receive larger population weights

at time 0 relative to the steady state.

The dealers’ first-order condition, (38), and the market-clearing condition, (39), are a pair

of differential equations that can be solved for ξ (t) and Ad (t). If Ad (t) > 0 for all t in some

interval [t1, t2], then (38) implies ξ(t) = e(r+κ)(t−t2)ξ (t2), and given this path for ξ (t), (39) is

a first-order differential equation that can be readily solved for the path Ad (t). Similarly, if

Ad (t) = 0 over some interval, then (39) immediately implies a path for ξ (t). In order to fully

characterize the equilibrium path one needs to determine the time intervals over which dealers

20



accumulate inventories as well as the continuity of the trajectory. The following proposition

provides the salient features of the equilibrium path following a market crash.

Proposition 2 The unique equilibrium path, {ξ (t) , Ad (t)}, has the following features:

1. It converges to the steady state,
©
ξ̄, Ād

ª
= {

¡
Ē/A

¢σ
, 0}.

2. There exists a time T ∈ [0,∞) such that Ad (t) > 0 for all t ∈ (0, T ) and Ad (t) = 0 for

all t ≥ T .

3. Let p0(t) denote the equilibrium asset price that would obtain if dealers were constrained

to hold no inventories. Dealers intervene, i.e., T > 0, if and only if, at the time of the

crisis, t = 0, ṗ0(0)
p0(0)

> r, which is equivalent to

PI
i=1 ni(0) [(r + κ) εi + δε̄]1/σPI
i=1 πi [(r + κ) εi + δε̄]1/σ

<
δσ

r + κ+ δσ
. (40)

According to Proposition 2, the equilibrium path following a market crash is characterized

by a switching time T ∈ [0,∞) such that dealers hold the asset for all t ∈ (0, T ) and do not hold
it for t ≥ T . It is possible that T = 0, in which case dealers do not hold inventories at all. The

last part of the proposition establishes that dealers will intervene if and only if ṗ0(0)/p0(0) > r,

i.e., if and only if the rate of growth of the asset price that would result at the time of the crisis

if they did not intervene, exceeds the rate of time preference.

If dealers intervene, the time period during which they hold the asset is an interval, which

starts at the outset of the crisis, i.e., at t = 0. (See Figure 4 for an illustration.) Thus, dealers

never find it beneficial to delay the acquisition of the asset: If they will buy at all, they start

buying from the very beginning, when the investors’ selling pressure is strongest. The economic

reasoning behind this result is that since dealers get no direct utility from holding the asset,

they are only willing to take long positions if the capital gains associated with those positions

are large enough, i.e., if the growth rate of the asset price is greater than the discount rate. It is

possible to show that, in the absence of dealers’ intervention, the price of the asset, p0(t), grows

at a decreasing rate. Hence, if dealers don’t have incentives to hold inventories at t = 0, they

never will. In contrast, Weill (2006) finds that dealers do not necessarily start accumulating

inventories right after the crash, and that for some parameter values, delaying the intervention
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of dealers is socially optimal.16

Notice that the left side of (40) equals E0/Ē. Thus, the last part of Proposition 2 states

that the condition for dealers to participate, i.e., ṗ0(0)/p0(0) > r, can be expressed in terms of

the exogenous severity of the crash, as measured by 1−E0/Ē, i.e., the magnitude of the initial

drop in the investors’ willingness to hold the asset. If this drop is larger than the threshold

1− δσ
r+κ+δσ , then dealers will step in to take up the slack resulting from the reduction in investors’

demand. Conversely, dealers will not intervene if (40) is not satisfied. Condition (40) depends

on all the fundamentals of the economy, e.g., preferences (σ), the extent of trading frictions

and the market-power of dealers (κ), the change in the distribution of valuations that triggers

the crisis ({ni(0)}Ii=1) and the frequency of the preference shocks (δ). As shown in the next
corollary, there exist parametrizations for which condition (40) does not hold.

Corollary 1 The set of parameter values under which dealers do not accumulate inventories

(i.e., T = 0) is nonempty.

Corollary 1 contrasts with Theorem 1 in Weill (2006), which establishes that there is always a

period of time during which dealers lean against the wind before the investors’ selling pressure

subsides.17 A sufficient condition for condition (40) to fail is that (r + κ) /δ be sufficiently large.

Suppose that preference shocks are very persistent (δ very small). In this case the recovery is

slow, the growth rate of the asset price is small, and dealers find that the prospective capital

gains are smaller than the opportunity cost of holding the asset. It is also instructive to consider

the limiting case as α goes to infinity and the economy approaches the frictionless Walrasian

benchmark. In this case, dealers no longer have the advantage of trading continuously vis-à-vis

investors, and their ability to realize capital gains vanishes (recall our discussion of (16)). Put

16The key assumption in Weill (2006) that lies behind this result is that investors’ utility function is of the
Leontief form, u(a) = min{a, 1}, so they are effectively restricted to hold zero or one unit of the asset. In
contrast, here we allow investors to hold any nonnegative position. To reconcile our results with Weill’s, we can
nest Weill’s specification with ours by assuming an investor’s utility function is

u(a) =
σ + (1− σ)a

θ−1
θ

θ
θ−1

1− σ
,

for some (σ, θ) ∈ R+ × (0, 1). Our isoelastic utility function is obtained as θ → 1−, and Weill’s Leontief utility
function is obtained as θ → 0+. Numerical calculations (available upon request) suggest that, for θ close to zero,
we would recover Weill’s result that dealers do not necessarily start accumulating inventories at the time of the
crash.

17This difference in results is also due to the fact that investors’ asset holdings are unrestricted here but
subject to a unit upper bound in Weill (2006) (see footnote 16).
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differently, as frictions vanish, the market provides dealers no incentive to buy assets early in

the crisis, and they do not intervene regardless of the severity of the crisis.

Below, we will show that there are also parametrizations for which condition (40) is satisfied

and dealers buy assets at the beginning of the crisis, hold them for a while and sell them off as

the investors’ selling pressures subside. In these cases, dealers choose positive asset positions

(foregoing interest on their stock of the numéraire good) even though they get no utility from

holding these assets. The reason why dealers may be willing to carry assets is that they have

continuous access to the market while investors do not: This trading advantage allows dealers to

“time the market” continuously in order to capture capital gains that investors cannot realize.

Without dealers, or if dealers were unable to hold inventories, these capital gains would remain

unexploited. In equilibrium, competition among dealers ends up equalizing these capital gains

to the opportunity cost of holding assets, i.e., ṗ/p = r. This logic is consistent with the

frictionless limit we discussed above.

Next, we use numerical examples to illustrate and explain how the key parameters influence

the dealers’ incentives to hold inventories. In what we will consider to be the benchmark

example, we set σ = 1/2 and assume that the preference shock can either be ε1 = 0 or ε2 = 1,

with equal probability. This means that the invariant distribution has an equal measure of

investors with low and high valuations. We also set r = 0.05 and α = δ = 1, so that on average,

investors get one preference shock and one chance to trade per “period.” We also set η = 0 so

that the equilibrium allocation of the benchmark parametrization corresponds to the solution

to the planner’s problem. We consider an economy which is at its steady state, and at time 0

is subject to a shock that causes the fraction of investors with the low preference shock to rise

from π = 1/2 to n1 (0) = 0.95.

The shaded (green) regions in Figure 3 illustrate the combinations of parameter values for

which condition (40) is satisfied so that dealers hold inventories after the crash. In each panel,

we let the two parameters in the axes vary and keep the rest fixed at their benchmark values.

All panels have α–our index of the degree of the trading frictions–on the horizontal axis.

Markets with large α are very liquid markets where trades get executed very fast.
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Figure 3: Parametrizations for which dealers “lean against the wind”

Figure 3 allows us to address the following normative question: Could it be socially efficient

for dealers to accumulate inventories, even though they are pure speculators who don’t derive

any direct utility from holding assets? The answer is: yes. Recall (Proposition 1) that the

equilibrium allocations of an economy with η = 0 correspond to the Pareto-optimal allocations.

The third panel of Figure 3 shows that there are parameterizations involving η = 0 where

dealers indeed choose to intervene. As explained in Section 5, the planner allocates assets to

dealers in order to exploit an intertemporal trade-off between the marginal utility of investors

in the market at the current date and in the future. The average marginal valuation of the asset

across investors is low at the outset of the crisis and higher later on. The planner uses dealers’

inventories to smooth these marginal valuations over time. Specifically, the planner may choose

to put assets in the hands of dealers in the early stages of the crisis (when the opportunity cost

of not allocating them to investors is relatively low) to be able to transfer these assets without

delays to investors in the later stages of the crisis, when the marginal valuation of the average
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investor is high. Therefore, depending on fundamentals, it can be optimal to have dealers act

as a “buffer stock.” The opportunity cost of having dealers carry an asset they don’t value for

a while is the price the planner pays to provide immediacy to the future higher-than-average-

valuation “cohorts” of investors that will gain access to the asset market at later dates. Let

us now turn to the effects of fundamentals on dealers’ likelihood to intervene during the crisis.

In turn, we will consider the effects of the characteristics of the crisis, market structure and

investors’ preferences.

Characteristics of the crisis. The first panel in Figure 3 shows that for any given α, dealers

intervene if n1 (0) is large enough, i.e., if the crash is sufficiently severe. To explain this result

we resort to the connection to the planner’s problem (but there is an equivalent explanation

in terms of the dealers’ incentives in the equilibrium). In the early stages of the crisis, the

“cohorts” of investors that contact the marketplace involve a very large fraction of low-valuation

investors who have relatively low individual demands for the asset. If the planner chooses not

to use the dealers’ inventories, then in these early stages he will be reallocating more assets

to the few high-marginal-valuation investors. Such an allocation will imply a very low shadow

price of assets (denoted λ(t) in Section 5) in the early stages of the crisis. Conversely, the

shadow price of the asset will be relatively large at later dates, as the fraction of high-valuation

investors increases toward its steady-state level, since at that point there will be many more

high-valuation investors who are willing to hold relatively large quantities of the asset. To

larger values of n1(0) correspond larger discrepancies between the marginal utilities of earlier

and later cohorts of investors, among which the planner can reallocate assets (this discrepancy

is measured by the term λ(t +∆) − λ(t) of (30)). Dealers offer the planner a way to smooth

these differences in intertemporal marginal utilities across cohorts of investors, and are used as

a buffer stock for large values of n1(0), i.e., whenever the crash is severe.

The second panel in Figure 3 shows that, given α, dealers find it optimal to intervene if

the recovery is fast enough (i.e., if δ is large enough), so that they would not have to hold the

asset for very long. However, the figure also shows that dealers won’t intervene if δ is too large.

This is because δ not only measures the speed of the recovery but also the arrival intensity of

idiosyncratic preference shocks. With a very large δ, the average type of an investor over his

holding period, e.g., ε̄i, becomes very close to the mean, ε̄. In this case, the economy becomes

very similar to an economy without idiosyncratic preference shocks, so there is little need to
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reallocate assets across investors (see our discussion of Corollary 1).

Market structure. We identify the structure of the market with two parameters: α, the

extent of the trading frictions, and η, dealers’ bargaining strength. The first panel in Figure 3

shows that, for a given size of the aggregate shock, dealers provide liquidity if trading frictions

are neither too severe nor too small. For large α, investors face short delays to rebalance their

asset holdings, 1/α on average. This increases their willingness to take more extreme positions.

In particular, investors with higher-than-average utility become more willing to hold larger-

than-average positions and absorb more of the selling pressure. In some cases, when α is large

enough, they end up supplying so much liquidity to other investors that dealers don’t find it

profitable to step in. Conversely, if α is very small, then ε̄i becomes close to ε̄, and all investors

choose very similar asset holdings regardless of their preference type. In this case, the economy

becomes similar to an economy without idiosyncratic preference shocks, and dealers are not

needed to reallocate assets across investors.

The third panel in Figure 3 reveals that for any given α, dealers are more likely to hold

inventories if their bargaining power is neither too large nor too small. Since α and (1 − η)

enter the equilibrium conditions as a product, an economy with large η is, from an investor’s

standpoint, payoff equivalent to an economy where investors access the market very infrequently,

i.e., an economy with small α. Recall that if η = 0, the economy is constrained-efficient.

Therefore, the third panel shows that there are parametrizations for which dealers intervene in

equilibrium although the planner would not have them intervene, as well as parametrizations

for which the opposite is true.

Preferences. The fourth panel of Figure 3 illustrates the role that σ, the curvature of the

investor’s utility function, plays in the dealer’s decision to hold the asset. First, σ < 1 is a

necessary condition for dealers to intervene. In the case of the most severe crisis possible, i.e.,

n1 (0) = 1 (no investor values the asset at t = 0), one can show that dealers intervene if and

only if σ < 1 regardless of the value of α. If σ = 1, the trajectory of the price is

p(t) =
ε̄

rA
+

e−δt

(r + δ)A

IX
i=1

ni(0)(εi − ε̄),
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which is independent of α. In fact, in this case p(t) coincides with the price that would prevail

in a frictionless Walrasian market.18 But as we argued earlier, in a Walrasian market dealers

would hold no assets since arbitrage by investors would prevent the asset price from growing

faster than the discount rate. Therefore, dealers never hold inventories for σ = 1. For lower

values of n1(0), the dealers’ incentives to hold the asset are nonmonotonic in σ. In particular,

for a range of values of α they only hold it if σ is in some intermediate range, but not if it is

too big or too small. Suppose that σ is very big, so that marginal utility is very steep. One

could think that there is more room for dealers to smooth differences in intertemporal marginal

utilities across cohorts. However, if σ is very large, then the individual asset demand of an

investor with high valuation tends to be very close to the asset demand of an investor with low

valuation, and this reduces the benefit from transferring assets between them. In the extreme

case σ →∞, ai(t) = A for all i and all t. But of course this means that shocking the invariant

distribution from {πi}Ii=1 to {ni (0)}
I
i=1 has no effect on asset holdings. So effectively, there

is no shock and thus no gain from liquidity provision, even if {πi}Ii=1 first-order stochastically
dominates {ni (0)}Ii=1. Alternatively, one can interpret 1/σ as the elasticity of asset demand,
ai, with respect to the preference shock, εi. As σ →∞, asset demand becomes inelastic to the
preference shock. In this case, the planner’s shadow price (λ (t) in the notation of Proposition

6) is constant over time, so there is no need nor scope for him to reallocate assets over time.

It is also instructive to look at the opposite extreme of very low σ. For example, consider

what happens as σ → 0 so that investors’ preferences become linear. Suppose that ε1 < ε2 <

... < εI .19 From (11) it follows that ai → 0 for i ∈ {1, ..., I − 1}, i.e., only investors with the
highest marginal utility, εI , hold the asset. Furthermore, ξ(t) → ε̄I for all t and, from (21),

p(t)→ p = ε̄I/r for all t. Thus, the price of the asset is constant and equal to its steady-state

level. There is clearly no incentive for dealers to buy the asset, regardless of the initial shock to

the population weight of investors with high valuation. In this extreme case, investors’ desired

holdings change dramatically in response to preference shocks, but marginal utility is constant

at all times among those who demand the asset, so a planner would have no need to use dealers

to “store” the assets in order to smooth the marginal utilities of cohorts of investors at various

18With log preferences an investor’s demand is linear in ε̄i, so the aggregate demand for the asset only depends
on ε̄, i.e., it is independent of α, see Lagos and Rocheteau (2007). For a related result under a CARA utility
function, see Gârleanu (2006). Also, note that for σ = 1, condition (40) reduces to I

i=1 ni(0)εi < 0, indicating
that dealers never intervene.

19This utility specification is the same one used in Duffie et al. (2005) and Weill (2006), except that they
assume a unit upper bound on investors’ holdings.
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points in time.

We can summarize the discussion above as follows. Dealers provide liquidity by accumu-

lating asset inventories if: (i) the market crash is abrupt and the recovery is fast; (ii) trading

frictions are neither too severe nor too small; (iii) dealers’ market power is not too large; (iv)

idiosyncratic preference shocks are not too persistent and investors’ asset demand is not too

inelastic with respect to preference shocks.

Figure 4: Dealers’ asset holdings

While Figure 3 illustrates the conditions under which dealers accumulate inventories, it is not

informative about the extent of dealers’ intervention, e.g., what quantity of the asset do dealers

accumulate, and how long is the holding period? To answer these questions, Figure 4 plots the

trajectory for dealers’ inventories for the parameter values of our benchmark example.20 In both

panels one can clearly identify T , namely the switching time at which Ad (t) becomes zero after

a period over which dealers have held assets. The first panel illustrates the relationship between

market structure (κ) and dealers’ inventory policy. Trading frictions have a nonmonotonic effect

on T : the length of the holding period is increasing in κ for low values of κ (because investors

take more extreme positions, which increases the discrepancy between their marginal utility

at different dates), and decreasing for large values of κ (because investors need less liquidity

from dealers when trading frictions are mild). The second panel of Figure 4 describes dealers’

inventory behavior as a function of the severity of the crash. As n1(0) decreases, the holding

period shrinks and the quantity of assets held by dealers at any point in time becomes smaller.

So in a more severe crash, dealers provide more liquidity and for a longer period of time.
20Together with Proposition 2, Lemma 13, which is stated and proved in Appendix A, provides a full char-

acterization of the equilibrium path following a market crash, including closed-form expressions for the paths of
ξ (t) and Ad (t).
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The following proposition compares the trajectory for ξ(t), the equilibrium effective cost of

holding the asset, to the trajectory of ξ0(t), the effective cost of holding the asset that would

result if dealers were constrained to hold no inventories.

0 ^

0)( >tAd 0)( =tAd

T

Figure 5: Paths for ξ0 (t) and ξ(t)

Proposition 3 If condition (40) holds, then there exists t such that ξ(t) > ξ0(t) for all t ∈ [0, t)
and ξ(t) < ξ0(t) for all t ∈ (t, T ).

According to Proposition 3, the presence of dealers mitigates the effect of the market crash on

the effective cost of holding the asset. By accumulating inventories right after the crash, dealers

prevent ξ from falling too much: ξ(0) is higher than it would have been had dealers not stepped

in to buy assets. This is illustrated in Figure 5.

7 Crash and stochastic recovery

In the previous section, our operational definition of a “market crash” was a shock to the

distribution of investors across valuations which caused the investors’ total demand for the

asset to fall. The recovery path corresponded to the transitional dynamics leading to the

steady state, so it was deterministic and it started immediately after the shock. It may be
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argued that during actual market crashes, the investors’ behavior and the dealers’ decisions

about whether to intervene and when to intervene, may be affected by uncertainty about the

duration of the crisis. For this reason, in this section we study the dealers’ incentives to provide

liquidity in the aftermath of a crisis with an uncertain recovery.

We consider the following scenario. At time zero all investors receive an unanticipated

multiplicative shock that temporarily scales down their marginal utility from holding the asset.

This constitutes the crash. Subsequently, the economy awaits a “recovery shock” that follows a

Poisson process with arrival rate ρ which causes all investors to simultaneously revert back to

their pre-crisis willingness to hold the asset. Formally, we let Tρ be an exponentially distributed

random variable with mean 1/ρ, where Tρ denotes the time at which the economy reverts to

normal. An investor with preference type i gets utility ui(a) from holding a for all t < 0

and all t ≥ Tρ. For t ∈ [0, Tρ), the investor gets utility Rui (a), with R < 1. Thus, a small

R indicates that the crash is severe, and a small ρ that it is expected to be long-lived.21

We assume that the stochastic process that describes the recovery is independent of the one

that governs an investor’s transitions between preference types. Furthermore, in this section

we assume {ni(0)}Ii=1 = {πi}Ii=1, i.e., that the initial distribution of preference types is the
invariant distribution.

We discuss the equilibrium dynamics using Figure 6. (Appendix B provides an analytical

solution of the model.) We let Ac
d(t) be the dealers’ inventories at time t, conditional on t < Tρ,

i.e., given that the recovery has not occurred until time t. We denote ξc(t) the effective cost

of holding the asset before the recovery takes place. Similarly, we use the superscript “h” to

denote variables after the recovery has occurred. The isocline Ȧc
d = 0 is located to the right of

the isocline Ȧd = 0 implied by (22). This is because, for any given ξ, dealers need to hold more

of the asset in order to clear the market. The isocline ξ̇
c
= 0 is downward-sloping and located

underneath the saddle-path leading to the long-run steady state,
¡
ξ̄, 0
¢
. The equilibrium unfolds

as follows. The economy starts at Ac
d (0) = 0, and at the time of the crash, ξ jumps down to the

saddle-path leading to (ξ̄c, Āc
d). (This saddle-path is represented by a dotted line in the figure.)

The economy then evolves along this saddle-path until the random recovery shock occurs. In

the meantime, along this path, dealers’ inventories increase and ξc(t) decreases. At the random

time when the recovery occurs, say tρ, the system jumps to the saddle-path leading to
¡
ξ̄, 0
¢
.

21One virtue of this formulation is that it disentangles the speed of the recovery, ρ, and the frequency of the
idiosyncratic preference shocks, δ. In the previous section, both were captured by δ.
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This saddle-path, denoted ξ = ψ(Ad), is represented by a dashed line in the figure. At the time

the recovery shock occurs, the cost of holding the asset jumps from ξc to ξh, and dealers begin

selling their inventories gradually until they are completely depleted.

dA

>>>>

0=dA

0=ldA

0=lξ

dAψ

)( ρtAd
l
dA

lξ

Figure 6: Stochastic recovery: Phase diagram

The following proposition provides a condition under which Ac
d(t) > 0 for all t > 0 before the

recovery occurs, i.e., a condition for dealers to lean against the wind during a crisis of random

duration. It is convenient to define Ṽ c
i (a) as the expected sum of discounted utility flows from

holding asset position a for an investor of preference type i until the next time he contacts a

dealer, and U c
i (a) = (r + κ)Ṽ c

i (a).
22

Proposition 4 Let pc0 be the asset price during the crisis, and p
h
0 be the price after the stochastic

recovery, that would obtain if dealers were constrained to hold no inventories. Dealers hold

inventories during the crisis if and only if ρ(ph0−pc0)
pc0

> r, which is equivalent to

IX
i=1

πiU
c0−1
i

µ
ρξ̄

r + κ+ ρ

¶
< A. (41)

Proposition 4 provides a condition on fundamentals such that dealers find it beneficial to buy

assets during the crisis. Analogously to what we found for the case of a deterministic recovery,
22We report the expression for Uc

i (a) in the proof of Lemma 15 in Appendix B.
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dealers intervene if and only if ρ(ph0 − pc0)/p
c
0 > r, i.e., if and only if the expected capital gain

that they would obtain by buying the asset during the crash and re-selling it once the economy

recovers, in an economy where dealers do not intervene, exceeds the rate of time preference.

Condition (41) need not always hold, as the following two limiting cases show. Consider

first the frictionless limit α→∞. Then, U c
i (a)→ Rui (a), and the left side of (41) approaches

∞. If investors can access the market as frequently as dealers, there is no role for dealers to
provide liquidity by buying assets. Next, consider the case where ρ→ 0, i.e., the crisis becomes

permanent. Again, the left side of (41) can be shown to approach∞. If the shock is permanent,
dealers cannot expect to make capital gains, and therefore they do not invest in the asset. We

summarize these findings as follows.

Corollary 2 The set of parameter values under which dealers do not accumulate inventories

is nonempty.

Corollary 2 is the analogue of Corollary 1 for a crisis of random duration. Next, we show that

there exist parameterizations for which condition (41) is satisfied. To this end, let u (a) =

a1−σ/(1 − σ) and ui(a) = εiu (a). Then, during the crisis, an investor’s flow expected utility

U c
i (a) = ε̂iu(a), where ε̂i is given in the following corollary.

Corollary 3 Let ui(a) = εia
1−σ

1−σ . Dealers hold inventories during a crash if and only ifPI
i=1 πiε̂

1/σ
iPI

i=1 πiε̄
1/σ
i

<

µ
ρ

r + κ+ ρ

¶ 1
σ

, (42)

where

ε̂i =
r+κ

r+κ+ρ

∙
(r+κ+ρ)εi+δ

I
j=1 πjεj

r+κ+δ+ρ

¸
R+ ρ

r+κ+ρ

(r+κ+ρ)ε̄i+δ
I
j=1 πj ε̄j

r+κ+δ+ρ .

Condition (42) is a condition on fundamentals, including the degree of trading frictions, pref-

erences and the properties of the crash. The shaded (green) regions in Figure 7 illustrate the

combinations of parameter values for which condition (42) is satisfied so that dealers hold inven-

tories in times of crisis. The benchmark parametrization is: σ = 0.5, r = 0.05, π1 = π2 = 0.5,

α = δ = 1, ρ = 1, R = 0.02 and η = 0. In each panel, we let the two parameters in the axes

vary and keep the rest fixed at their benchmark values. All panels have α–our index of the

degree of the trading frictions–on the horizontal axis.
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Characteristics of the crisis. The first panel confirms one of our findings from Section 6:

dealers are more likely to accumulate asset inventories when the market crash is severe (R low).

If the crash is severe, dealers expect a larger capital gain when the economy recovers and hence

they have an incentive to buy assets during the crash. According to the second panel of Figure

7, for dealers to buy the asset, the crash must be anticipated to be short-lived (ρ must be

sufficiently large). From the planner’s standpoint, if ρ is small, the opportunity cost of having

dealers hold assets (i.e., the utility foregone by investors) is high. Thus, for ρ low enough, the

planner would not use dealers’ inventories to reallocate the asset across investors over time.

Market structure. As before, we identify the market structure with the parameters α and

η. The third panel of Figure 7 shows that dealers accumulate the asset if their bargaining

power is neither too large nor too small. If η is close to 1, investors only enjoy a small gain

from rebalancing their asset holdings. As a consequence, when in contact with a dealer they

put more weight on their average preferences in order to reduce their need to readjust their

asset holdings in the future. As discussed above, if idiosyncratic preference shocks become less

relevant, there is less scope for dealers to help reallocate the asset over time. To understand

why dealers have lower incentives to provide liquidity when η is small, recall that a reduction in

η is similar from the point of view of investors’ payoffs to an increase in α: If trading frictions

are reduced, there is less need for the buffer stock of assets provided by dealers.

Preferences. The fourth panel shows that the curvature of investors’ utility function must be

sufficiently small for dealers to accumulate asset inventories. As before, if σ is high, investors’

demand for the asset is relatively inelastic with respect to the idiosyncratic preference shock,

which reduces the usefulness of dealers.

To conclude, we study how the characteristics of the crash and the structure of the market

affect the amount of liquidity provided by dealers. For our baseline parameter values, in Figure

8 we plot the maximum quantity of assets that dealers are willing to accumulate during the

crash, namely, Āc
d = limt→∞Ac

d(t).
23 The first panel confirms the nonmonotonic relationship

between dealers’ provision of liquidity and the degree of frictions that prevail in the market.

The second panel shows that dealers’ willingness to provide liquidity increases with the severity

of the crisis. According to the third panel, the relationship between the maximum amount of

23 In Appendix B we report a closed-form expression for Āc
d.
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liquidity that dealers are willing to provide and the expected duration of the crisis (1/ρ) is

nonmonotonic. If the crash is very persistent (ρ small) dealers are not willing to accumulate

large positions since the expected discounted capital gain of these inventories is small. If the

crash is anticipated to be short-lived (ρ large), dealers will not accumulate too much inventories

because the crash reduces investors’ asset demand only by a small amount. The fourth panel

shows that dealers’ inventories decrease as investors’ intertemporal elasticity of substitution

(1/σ) gets smaller. In particular, as investors’ utility function becomes linear (σ → 0) dealers

are willing to accumulate the entire stock of assets in the economy (Āc
d → A).

Figure 7: Parametrizations for which dealers “lean against the wind”
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Figure 8: Dealers’ provision of liquidity

We can summarize the results in this section as follows. Dealers are more likely to provide

liquidity during a crash with stochastic recovery if: (i) the market crash is abrupt and expected

to be short-lived; (ii) dealers’ market power is above some minimum value but not too close

to one; (iii) trading delays are neither too long nor too short; (iv) investors’ asset demand is

sufficiently elastic with respect to idiosyncratic preference shocks. The amount of liquidity pro-

vided by dealers, as proxied by the maximum quantity of assets they are willing to accumulate,

increases with the severity of the crash but is nonmonotonic with respect to the duration of the

crisis and the extent of the trading frictions.

8 Conclusion

We have studied the equilibrium dynamics of an asset market in the presence of the types of

trading frictions that are characteristic of many financial markets during times of crisis and

of many other markets, e.g., over-the-counter markets, even in normal times. In particular,

we have analyzed the recovery path of the market in the aftermath of an aggregate shock to

investors’ preferences, which we interpret as a crash or could also be thought of as a “flight-

to-liquidity shock.” In principle, dealers can mitigate the effects of such aggregate shocks on

the asset price by providing liquidity during these times of market distress. However, there is

evidence that sometimes they do, and sometimes they don’t.

35



We have established conditions on fundamentals, such as the extent of the trading frictions,

the degree of market power of dealers, and the severity and expected duration of the crash, under

which dealers will find it profitable to step in to accumulate asset inventories during times when

investors’ demand collapses, thereby preventing the asset price from falling as much as it would

have had they not intervened. We have found that dealers are more likely to accumulate asset

inventories during a market crash if execution delays are neither too long nor too short. This

suggests that a regulation that increases the capacity of dealers to execute a large volume

of orders, thereby reducing trading delays, may in fact reduce dealers’ incentives to provide

liquidity during a market crash.24 Similarly, dealers are less likely to accumulate inventories

in times of crisis if they have high bargaining power. This suggests that a market reform

that reduces dealers’ rents can improve liquidity during times when selling pressures intensify.

Finally, since dealers’ incentives to accumulate inventories are based on their expected capital

gains, our theory predicts that dealers will provide liquidity when the crash is abrupt and

short-lived.

From a normative standpoint, we have established necessary and sufficient conditions for

liquidity provision by dealers to be efficient. We have found that there exist parametrizations

for which dealers accumulate asset inventories when it is socially inefficient for them to do so,

as well as parametrizations for which the opposite is true.

24The regulatory developments in the securities markets since the October 1987 crisis are reviewed in Lindsey
and Pecora (1998). According to Lindsey and Pecora (1998, p.290) “most exchanges now have excess capacity
of approximately three times that needed for an average trading session.”
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A Proofs

Proof of Lemma 1. Consider any feasible inventory path a(t). Let W t
0(a) denote the dealer’s

expected discounted utility from following a plan a from time 0 to t. Let t1 < t2 . . . be the

successive jumps of the price path, and let K be the last jump before some time t, we can write,

with the convention that t0 = 0,

W t
0(a) =

Z t

0
{υ [a(s)]− p(s)ȧ(s)} e−rs ds

=

Z t

0
υ [a(s)] e−rs ds−

KX
k=1

Z tk

tk−1

p(s)ȧ(s)e−rs ds+

Z t

tK

p(s)ȧ(s)e−rs ds

=

Z t

0
υ [a(s)] e−rs ds−

KX
k=1

Z tk

tk−1

a(s) [rp(s)− ṗ(s)] e−rs ds

−
Z t

tK

a(s) [rp(s)− ṗ(s)] e−rsds−
KX
k=1

£
e−rtkp(t−k )a(tk)− e−rtk−1p(t+k−1)a(tk−1)

¤
−
£
e−rtp(t)a(t)− e−rtKp(t+K)a(tK)

¤
=

Z t

0
{υ [a(s)]− a(s) [rp(s)− ṗ(s)]} e−rs ds

+
KX
k=1

a(tk)e
−rtk £p(t+k )− p(t−k )

¤
− e−rtp(t)a(t),

where the second equality follows from integration by part over each interval [tk−1, tk], and the

last equality by collecting time-tk terms.

We first establish the “only if” part of the lemma. Consider any bounded solution a(t) to

the dealer’s problem and suppose that the price has a positive jump up at some tk. Then,

for ε small enough, consider the perturbation a(t) + ∆(t) where ∆(t) = 0 for t < tk − ε,

∆(t) = 1 + (t− tk)/ε for t ∈ [tk − ε, tk], ∆(t) = 1− (t− tk)/ε for t ∈ [tk, tk + ε], and ∆(t) = 0

thereafter. Then, using the above, the net utility of this perturbation, W∞
0 (a)−W∞

0 (a+∆) isZ tk+ε

tk−ε

©
υ[a(s) +∆(s))]− υ[a(s)]e−rs −∆(s) [rp(s)− ṗ(s)]

ª
ds+ e−rtk

£
p(t+k )− p(t−k )

¤
.

Because a(s) and ∆(s) are bounded, the first term goes to zero as ε goes to zero, showing

that the net utility of the perturbation converges to e−rtk
£
p(t+k )− p(t−k )

¤
> 0, a contradiction

that proves that the price can only have a negative jump. If the price has a negative jump

p(t+k ) − p(t−k ) < 0 then, as long as a(tk) > 0 the reverse perturbation could improve the
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dealer’s utility. Therefore, if there is a negative jump, then a(tk) = 0. Now suppose that,

at some differentiability point s, υ0[a(s)] ≥ rp(s) − ṗ(s). Then, using the expression for W t
0,

one easily shows that a dealer could improve his utility by accumulating more inventories

around s. Therefore, υ0[a(s)] ≤ rp(s) − ṗ(s). If the inequality is strict and a(s) > 0, then

accumulating less inventory around s would improve the dealer’s utility. Therefore, if a(s) > 0,

then rp(s)− ṗ(s) = 0. In order to establish the necessity of the transversality condition (6), we

calculate the net-utility of scaling down an optimal path a(t) by 1 − ε, for some small ε > 0.

We find

W t
0(a)−W t

0 [(1− ε)a] =

Z t

0
{υ[a(s)]− υ[a(s)(1− ε)]− εa(s) [rp(s)− ṗ(s)]} e−rs ds−εa(t)p(t)e−rt.

Take limits as t→∞ on both sides, to find

W∞
0 (a)−W∞

0 (a(1− ε)) =

Z ∞

0
{υ[a(s)]− υ[a(s)(1− ε)]− εa(s) [rp(s)− ṗ(s)]} e−rs ds

−ε lim
t→∞

a(t)p(t)e−rt. (43)

Now divide by ε and let ε go to zero, to get

W∞
0 (a)−W∞

0 (a(1− ε)) =

Z ∞

0
εa(s)

©
υ0[a(s)]− [rp(s)− ṗ(s)]

ª
e−rs ds− lim

t→∞
e−rtp(t)a(t)

= − lim
t→∞

e−rtp(t)a(t), (44)

where we have used the first-order condition (4). (Precise arguments for taking these limits are

provided in the last paragraph of the proof.) Because, a(t) is an optimal path, the net utility

calculated above must be positive, meaning that the limit of e−rtp(t)a(t) must be non-positive.

Since a(t) is positive, e−rtp(t)a(t) must converge to zero, and we are done. The “if” part of the

Lemma follows from Theorem 13, Chapter 3, in in Seierstad and Sydaester (1987).

Lastly, we show that we can take limits in (43) and (44). The left-hand side of (43) converges

by definition of the inter-temporal utility. Because of concavity and because of the first-order

condition (4), the first term on the right-hand side is positive and increasing, and thus converges

to some limit. Now note that p(t)e−rt is positive and decreasing: indeed it can only jump down

and, by the first-order condition (4), its derivative is negative. Hence, p(t)e−rt is bounded.

Because a(t) is bounded, it follows that e−rtp(t)a(t) is also bounded. Taken together, this

implies that the first-term on the right-hand side of (43) has some finite limit, and so does the

second term. For (44), note that

υ[a(s)]− υ[a(s)(1− ε)]

ε
− a(s) [rp(s)− ṗ(s)]& 0,
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which allows us to apply the dominated convergence theorem.

Proof of Lemma 2. When evaluating an investor’s intertemporal utility we can ignore price

jumps: this is because the probability that an investor contact the market at a jump time is

equal to zero. We let the random flow utility of an investor at time t be u(a, t), where we use

the time argument “t” as a short-hand for the investor’s current preference shock.

Notation. Considering an individual investor, we let T1 < T2 < . . . be the sequence of his

contact times with dealers, with the convention that T0 = 0. Also, we let Nt be the number of

contact times during [0, t]. Then, for any asset plan, a, we calculate the intertemporal utility

V t
0 (a) ≡

Z t

0
u[a(s), s]e−rs ds−

NtX
n=1

p(Tn)e
−rTn [a(Tn)− a(Tn−1)] ,

between 0 and t, along a realization of the contact time and type processes. This utility can be

decomposed as

V t
0 = U t

0 −Bt
0 + p(T1)e

−rT1a(0)− p(θt)a(θt)e
−rθt ,

where

U t
0(a) =

Z t

0
u [a(s), s] e−rs ds,

Bt
0(a) =

Nt−1X
n=1

a(Tn)
£
p(Tn)e

−rTn − p(Tn+1)e
−rTn+1¤ .

We consider portfolio plans a that are bounded, and such that the intertemporal utility E [V∞0 (a)]
is well defined. We first establish:

Result 1. E
£
U t
0(a)

¤
, E
£
Bt
0(a)

¤
, and E

£
p(θt)e

−rθta(θt)
¤
converge to finite limits.

Let’s start with E
£
U t
0(a)

¤
. When the investor’s utility is bounded below, then the result

follows from the assumption that the portfolio plan, a, is bounded. When the investor’s utility

is unbounded below and bounded above, we can assume without loss of generality that it is

negative. Then E[U t
0] is decreasing and thus converges either to some finite or some infinite

limit. The limit, in turn, must be finite because

E[U t
0] = E[V t

0 ] + E[Bt
0]− E[p(T1)e−rT1a(0)] ≥ E[V t

0 ] + E[Bt
0]− E[p(T1)e−rT1a(0)]

≥ E[V t
0 ]− E[p(T1)e−rT1a(0)],
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where the inequality follows because p(t)e−rt is decreasing and Bt
0 is therefore positive. Because

E[V∞0 ] is well defined, the right-hand side of the inequality is bounded below, implying that
E[U t

0] has a finite limit. It then immediately follows that

E
h
Bt
0 + p(θt)e

−rθta(θt)
i
= E

£
V t
0

¤
− E

£
U t
0

¤
− E[p(T1)e−rT1a(0)],

also converges to some finite limit. Note that Bt
0 is increasing because a(t) ≥ 0 and p(t)e−rt is

decreasing, implying that E[Bt
0] has a limit. This limit must be finite because the above equality

implies that E[Bt
0] ≤ E[V t

0 ]− E[U t
0]− E[p(T1)e−rT1a(0)]. It then follows that E[p(θt)e−rθta(θt)]

also has a finite limit, which completes this part of the proof.

Result 2. An investor’s intertemporal utility is

E [V∞0 ] = (r+κ)−1E

" ∞X
n=1

e−rTn {U [a(Tn), Tn]− ξ(Tn)a(Tn)}
#
− lim

t→∞
E
h
p(θt)e

−rθta(θt)
i
, (45)

where

U [a(Tn), Tn] = (r + κ)E
∙Z Tn+1

Tn

u [a(s), s] e−r(s−Tn) ds

¯̄̄̄
Tn

¸
.

To show that result, write

E [B∞0 ] = E

"
E

" ∞X
n=1

a(Tn)
£
p(Tn)e

−rTn − p(Tn+1)e
−rTn+1¤ ¯̄̄̄Tn##

= (r + κ)−1E

" ∞X
n=1

a(Tn)ξ(Tn)e
−rTn

#
,

by definition of ξ(Tn). In addition note that, when u is bounded below, we can without loss of

generality assume that it is positive, and we have

u[a(s), s]e−rsI{s≤θt} ≤ u[a(s), s]e−rsI{s≤t} ≤ u[a(s), s],

and u[a(s), s]Is≤θt % u[a(s), s] as t goes to infinity. The same reasoning go through with

opposite inequalities when u is negative. Therefore, an application of the dominated convergence

theorem implies that

E [U∞0 ] = E
∙Z θt

0
u(a(s), s)e−rs ds

¸
= E

" ∞X
n=1

Z Tn+1

Tn

u(a(s), s)e−rs ds

#

= (r + κ)E

" ∞X
n=1

e−rTnU(a(Tn), Tn)

#
,
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where the last equality follows by taking expectations of each term in the sum with respect to Tn.

Result 3. The flow inter-contact time utility is U [a(Tn), Tn] = (r + κ)−1Ui(Tn) [a(Tn)], where

Ui(a) is defined in equation (11) of the lemma. To see why, denote,

Ṽi(a, t) = Ei

"Z T̃

0
e−rsuk(t+s)(a

0) ds

¯̄̄̄
k(t) = i

#
.

By the Markovian nature of the process k(t), Ṽi(a, t) only depends on t through the condition

k(t) = i which is already captured by the subscript i. Therefore, hereafter we will slightly

abuse notation and write Ṽi (a) for Ṽi (a, t). Denote T̂ the length of the period of time before

the investor receives a preference shock. By definition, T̂ is exponentially distributed with mean

1/δ. The value of an investor can then be written recursively as follows,

Ṽi(a) = E

"
I(T̃<T̂)

Z T̃

0
e−rsui(a)ds

#
+E

"
I(T̂<T̃)

Z T̂

0
e−rsui(a)ds+ I(T̂<T̃)e

−rT̂ Ṽk(T̂ )(a)

#
, (46)

where k(T̂ ) indicates the new realization of the preference shock at time T̂ . Using the fact that

T̃ and T̂ are independent random variables, one can rewrite the first term on the right-hand

side of (46) as

E

"
I(T̃<T̂)

Z T̃

0
e−rsui(a)ds

#
=

ZZ
I(t̃<t̂)κe

−κt̃δe−δt̂
Z t̃

0
e−rsui(a)dsdt̂dt̃

=

Z
κe−κt̃

Z ∞

t̃
δe−δt̂dt̂

Z t̃

0
e−rsui(a)dsdt̃

=
ui(a)

r

Z
κe−[κ+δ]t̃

³
1− e−rt̃

´
dt̃

=
κui(a)

(κ+ δ) (κ+ δ + r)
. (47)

Similarly, the second term on the right-hand side of (46) can be reexpressed as

E

"
I(T̂<T̃)

Z T̂

0
e−rsui(a)ds

#
=

ZZ
I(t̂<t̃)κe

−κt̃δe−δt̂
Z t̂

0
e−rsui(a)dsdt̂dt̃

=
δui(a)

(κ+ δ) (κ+ δ + r)
(48)

Since the realizations of the preference shocks are independent and identically distributed, the
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distribution of k(T̂ ) is given by {πi}Ii=1. Therefore,

E
h
I(T̂<T̃)e

−rT̂ Ṽk(T̂ )(a)
i
=

ZZ
I(t̂<t̃)κe

−κt̃δe−δt̂e−rt̂dt̂dt̃
IX

k=1

πkṼk(a)

=
δ

δ + r + κ

IX
k=1

πkṼk(a). (49)

Adding (47), (48) and (49), one finds

Ṽi(a) =
ui(a)

κ+ δ + r
+

δ

δ + r + κ

IX
k=1

πkṼk(a). (50)

After carrying out some calculations, (50) yields

Ṽi(a) =
Ui (a)

r + κ
, (51)

where Ui (a) is as in (11).

Result 4. The expected discounted price at the time the investor regains direct access to the

asset market is:

E[e−rT̃ p(t+ T̃ )] = κ

Z ∞

0
e−(r+κ)sp(t+ s)ds. (52)

Result 5. The “only if” part of the lemma. First, it is clear from (45) that an optimal portfolio

strategy should maximize each term U [a(Tn), Tn] − ξ(Tn)a(Tn), implying the investor’s first-

order condition. As for the necessity of the transversality condition, consider an optimal asset

holding plan and scale it down by (1− ε), for some small enough ε. Using (45), the net change

in intertemporal utility can be written

∆ε = (r + κ)−1
" ∞X
n=1

e−rTn {U [a(Tn), Tn]− U [a(Tn)(1− ε), Tn]− εξ(Tn)a(Tn)}
#
(53)

−ε lim
t→∞

E
h
a(θt)e

−rθtp(θt)
i
. (54)

Divide by ε and note that

1

ε

∙
U(a(Tn), Tn)− U(a(Tn)(1− ε), Tn)

¸
− ξ(Tn)a(Tn)&

µ
Ua(a(Tn), Tn)− ξ(Tn)

¶
a(Tn) = 0,
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because of the first-order condition in the lemma. Convergence is monotonic because of con-

cavity. This last property allows us to apply the dominated convergence theorem, and we find

that

E
∙ ∞X
n=1

1

ε

∙
U(a(Tn), Tn)− U(a(Tn)(1− ε), Tn)

¸
− ξ(Tn)a(Tn)

¸
→ 0,

and thus

lim
ε→0
∆ε

ε
= − lim

t→∞
E
h
a(θt)e

−rθtp(θt)
i
≥ 0. (55)

Since a(t) ≥ 0, it follows that limt→∞ E
£
a(θt)e

−rθtp(θt)
¤
= 0, and we are done.

Result 6. For the “if” part, we consider a plan a that satisfies the first-order conditions and

compare it to some other plan a0. We find

E[V∞0 (a)− V∞0 (a
0)]

= E

" ∞X
n=1

e−rTn
¡
U(a(Tn), Tn)− U(a0(Tn), Tn)− ξ(Tn)

¡
a(Tn)− a0(Tn)

¢¢#
+ lim

t→∞
E
h
p(θt)e

−rθta0(θt)
i

≥ E

" ∞X
n=1

e−rTn
µ
Ua(a(Tn), Tn)− ξ(Tn)

¶µ
a(Tn)− a0(Tn)

¶#
≥ 0,

where the first inequality follows because of concavity, and the second inequality follows because

of the first-order condition in the lemma and because a0(θt) ≥ 0.

Proof of Lemma 3. (a) To obtain (15), rewrite (12) as

ξ(t) = (r + κ) p(t)− κe(r+κ)t
Z ∞

t
(r + κ) e−(r+κ)sp(s)ds (56)

and differentiate with respect to t.

Proof of Lemma 4. First note that the dealer’s first-order conditions imply that the price can

only have negative jumps and that d/dt(e−rt) = ṗ(t)− rp(t) ≤ 0. Hence, p(t)e−rt is decreasing
and positive, and thus has a limit. Now we know that

E
h
p(θt)e

−rθta(θt)
i
→ 0,

where a(t) denotes the asset holding of some investor and θt the last contact time of that

investor before t. Note that the cdf of θt is

Pr(θt ≤ s) = Pr(Nt −Ns = 0) = e−κ(t−s).

46



So θt has an atom at zero, and its cdf is κe−κ(t−s). Another thing we know is that

p(t)e−rta(t)→ 0,

where a(t) denotes a dealer’s asset holdings. In particular, if one integrates p(t)e−rta(t) against

the cdf of θt, one finds that

E
h
p(θt)e

−rθta(θt)
i
→ 0,

as t goes to infinity, because θt goes to infinity almost surely. Now consider some time s. The

sum of asset holdings across investors and dealers must be equal to A, i.e.,Z
aj(s) dj = A,

where j indexes all agents in the economy. Now, we can also write

AE
h
p(θt)e

−rθt
i
= E

h
Ap(θt)e

−rθt
i
= E

∙Z
j
aj(θt) dj × p(θt)e

−rθt
¸

= E
∙Z

j
p(θt)e

−rθtaj(θt) dj

¸
=

Z
j
E
∙
p(θt)e

−rθtaj(θt)

¸
dj.

As shown above, the last expression goes to zero as t goes to infinity. Therefore, because A > 0,

E
h
p(θt)e

−rθt
i
→ 0, (57)

as t goes to infinity. Because we know that p(t)e−rt converges to some limit, it follows that

p(t)e−rt converges to zero. Indeed, suppose that the limit is strictly positive. Then there is

some ε > 0 and tε such that p(t)e−rt > ε for all t ≥ tε and

E
h
p(θt)e

−rθt
i
≥ E

h
p(θt)e

−rθtI{t≥tε}
i
≥ εPr(θt ≥ tε) = ε

³
1− e−κ(t−tε)

´
→ ε

as t goes to infinity, which is a contradiction. To arrive at (21), integrate (15) forward using

the transversality condition (6).

Proof of Lemma 5. The proof consists of showing that from any initial condition close

to the steady state, only the trajectory that follows the saddle path to the steady state is

consistent with individual maximization. Consider Figure 1 and focus on trajectories below the

saddle path. These trajectories eventually lead to ξ (t) ≤ 0 or to Ad (t) = 0. The former are

inconsistent with the investor’s optimization (note that (11) would be violated since U 0i > 0).
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The latter are inconsistent with the dealer’s maximization. To see this, integrate (4) forward

to obtain

p (t) = ert lim
s→∞

e−rsp (s) +

Z ∞

0
e−rsυ0 [Ad (s+ t)] ds. (58)

If we multiply through by e−rt, take limits as t → ∞, and use the transversality condition
(6), this expression implies limt→∞

R∞
0 e−r(s+t)υ0 [Ad (s+ t)] ds = 0, which is violated along

trajectories where Ad (t) equals zero in the limit, or in finite time. Trajectories above the

saddle path are also inconsistent with the dealer’s optimization. First, note that ξ (t) diverges

to +∞ along any such trajectory. From (11), this implies that ai (t) converges to zero for

each i. In turn, using (17), this implies that Ad (t) converges to A. Again, (6) and (58) imply

p (t) =
R∞
0 e−rsυ0 [Ad (s+ t)] ds, hence limt→∞ p (t) = υ0 (A) /r, a constant. But then (12)

implies limt→∞ ξ (t) = υ0 (A) < ∞, i.e., a contradiction that indicates that these paths violate
the first-order necessary conditions of the dealer’s problem. Thus, trajectories that lie above

the saddle path are not solutions to the dealer’s asset accumulation problem. Conversely, the

trajectory that follows the saddle path satisfies the equilibrium conditions (6), (11), (16) and

(17), as well as (6).

Proof of Lemma 6. We study the problem of a social planner who maximizes the sum of all

agents’ utilities, subject to the trading technology. As before, Ht(i, a) denotes the distribution

of investors across preference types and asset holdings at time t. Since at any point in time

all investors access the market according to independent stochastic processes with identical

distributions, the quantity of assets that the measure α of randomly-drawn investors make

available to the planner is α
R
adHt(a, i) = α [A−Ad (t)]. So the quantity of assets available to

be reallocated among agents who are in the market depends on the distribution Ht(i, a) only

through its mean, A − Ad (t). Consequently, Ht(i, a) is not a state variable for the planner’s

problem. Notwithstanding, in order to allocate assets across investors, the planner needs to

know ni(t) =
R
I{j=i}dHt(j, a), i.e., the measure of investors of preference type i at date t.

Let Ṽi(a) denote the expected discounted utility of an investor of type i who holds a stock
of assets a until the next time his portfolio can be changed, i.e.,

Ṽi(a) = Ei
∙Z t+T

t
uk(s)(a)e

−r(s−t)ds

¸
. (59)

The value function Ṽi(a) satisfies

Ṽi(a) =
(r + α)ui(a) + δ

PI
j=1 πjuj(a)

(r + α+ δ) (r + α)
. (60)
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(The calculations leading to (60) parallel the derivation of Ṽi (a) in the proof of Lemma 2.) Since

general goods enter linearly in the utility function of all agents, the utilities from production

and consumption of those goods net out to 0 and can therefore be ignored by the planner. Thus,

the planner only maximizes the direct utilities that dealers and investors enjoy from holding

assets. At each date the planner chooses q (t), the change in the quantity of assets held by

dealers and ai (t), the quantity of assets allocated to an investor of type i when he readjusts his

portfolio, in order to maximizeZ
Ṽi(a)dH0(a, i) +

Z ∞

0
e−rt

(
υ[ad(t)] + α

IX
i=1

ni(t)Ṽi[ai(t)]
)
dt (61)

s.t. q (t) = α

"
A− ad (t)−

IX
i=1

ni(t)ai(t)

#
, (62)

and subject to the law of motion ȧd (t) = q (t), (18), and the initial conditions ni (0) and ai (0)

for i = 1, ..., I . The first term in (61) captures the utility of all investors before the first time

their portfolios can be reallocated. It is a constant and can therefore be ignored in choosing

the optimal allocation. Hence, the planner’s current-value Hamiltonian reduces to

υ [ad (t)] + α
IX

i=1

ni(t)Ṽi [ai (t)] + μ (t) q (t) , (63)

where μ (t) is the co-state variable associated with the law of motion for ad (t). (The nonneg-

ativity constraints on ai(t) and ad (t) are slack at all times since u0i(0) = υ0(0) = ∞.) From
the Maximum Principle (e.g., Theorem 12 in Seierstad and Sydsæter, 1987), the necessary

conditions for an optimum are

αni(t)
n
Ṽ 0i [ai(t)]− μ(t)

o
= 0, (64)

which using (60) can be rewritten as

(r + α)u0i [ai (t)] + δ
PI

j=1 πju
0
j [ai (t)]

r + α+ δ
= (r + α)μ(t), (65)

and

υ0 [ad(t)] + μ̇(t) = (r + α)μ(t). (66)

Next, we show that the optimal path must also satisfy the transversality condition

lim
t→∞

e−rtμ (t) = 0. (67)
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We begin by noticing that for every path of the controls, the functional

U
h
q (·) , {ai (·)}Ii=1

i
=

Z ∞

0
e−rt

(
υ[ad(t)] + α

IX
i=1

ni(t)Ṽi[ai(t)]
)
dt+Z ∞

0
e−rt {μ (t) [q (t)− ȧd (t)]} dt (68)

with ad (t) = A − q (t) /α −
PI

i=1 ni(t)ai (t), yields the same value as the planner’s objective

function (61) (ignoring the constant term in (61)). Integration by parts implies thatZ ∞

0
e−rtμ (t) ȧd (t) dt = e−rtμ (t) ad (t)

¯̄t=∞
t=0
−
Z ∞

0
e−rt [μ̇ (t)− rμ (t)] ad (t) dt,

and substituting this expression into (68) yields

U
h
q (·) , {ai (·)}Ii=1

i
=

Z ∞

0
e−rt

(
υ[ad(t)] + [μ̇ (t)− rμ (t)] ad (t) + α

IX
i=1

ni(t)Ṽi[ai(t)]
)
dt+Z ∞

0
e−rtμ (t) q (t) dt− e−rtμ (t) ad (t)

¯̄t=∞
t=0

.

Suppose that q (t) and {ai (t)}Ii=1 are optimal paths for the controls, then along this optimal
trajectory, the implied path for the state variable ad (t) isA−q (t) /α−

PI
i=1 ni(t)ai (t). Consider

the admissible paths q̂ (t, ε) and {âi (t, ε)}Ii=1, where q̂ (t, ε) = q (t) + ε∆q (t) and âi (t, ε) =

ai (t) + ε∆i (t), for some arbitrary ε ∈ R. The implied path for the state is âd (t, ε) = ad (t) −
ε∆d (t), where ∆d (t) = ∆q (t) /α +

PI
i=1 ni(t)∆i (t). (An “admissible path” is a path which

is piece-wise continuously differentiable and satisfies (62), together with the initial conditions

âi (0, ε) = ai (0) and âd (0, ε) = ad (0).) Let J (ε) = U
h
q̂ (·, ε) , {âi (·, ε)}Ii=1

i
. Since the paths

q (t) and {ai (t)}Ii=1 are optimal, we must have
∂J(ε)
∂ε

¯̄̄
ε=0

= 0, or equivalently,

0 =

Z ∞

0
e−rt

(
−
©
υ0[ad (t)] + μ̇ (t)− rμ (t)

ª
∆d (t) + α

IX
i=1

ni(t)Ṽ 0i[ai (t)]∆i (t)

)
dt+Z ∞

0
e−rt {μ (t)∆q (t)} dt+ e−rtμ (t)∆d (t)

¯̄t=∞
t=0

.

If we substitute ∆q (t) = α∆d (t) − α
PI

i=1 ni(t)∆i (t) and notice that ∆d (0) = 0 (because

âd (t, ε) is admissible), we find that this last expression is equivalent to

0 = −
Z ∞

0
e−rt

©
υ0[ad (t)] + μ̇ (t)− (r + α)μ (t)

ª
∆d (t) dt+Z ∞

0
e−rt

"
IX

i=1

n
αni(t)

h
Ṽ 0i[ai (t)]− μ (t)

io
∆i (t)

#
dt+ lim

t→∞
e−rtμ (t)∆d (t) .

50



But then (64) and (66) imply that ∂J(ε)
∂ε

¯̄̄
ε=0

= 0 only if limt→∞ e−rtμ (t)∆d (t) = 0, and since

∆d (t) is arbitrary, (67) is a necessary condition for optimality. If we rescale the co-state by

defining λ (t) ≡ (r + α)μ(t), it becomes clear that (65), (66) and (67) correspond to (32),

(33) and (34), respectively. Finally, the Mangasarian condition (35) is sufficient because the

Hamiltonian is jointly concave (see Theorem 13 in Seierstad and Sydsæter, 1987).

Proof of Proposition 1. We wish to show that the planner’s optimality conditions and

the equilibrium conditions are identical when η = 0. First, note that the planner’s law of

motion (62) is always the same as the market-clearing condition (17). Then let λ (t) = ξ (t)

and note that the planner’s optimality conditions (32) and (33) are identical to the equilibrium

conditions (11) and (4) if and only if η = 0. To conclude, we must show that (34) is equivalent

to (6), but given λ (t) = ξ (t), it suffices to show that limt→∞ e−rtξ (t) = 0 if and only if

limt→∞ e−rtp (t) = 0. From (12),

lim
t→∞

e−rtξ (t) = lim
t→∞

e−rt (r + κ)

Z ∞

0
e−(r+κ)s {rp (t)− κ [p (t+ s)− p (t)]} ds

= (r + κ)

Z ∞

0
e−(r+κ)s

n
r lim
t→∞

e−rtp (t)− κ lim
t→∞

e−rt [p (t+ s)− p (t)]
o
ds

= r lim
t→∞

e−rtp (t) .

Proof of Lemma 7. For part (a), note that the investor’s asset demand (36) is immediate

from (11) given the functional form assumptions. The Hamiltonian corresponding to the dealer’s

problem is −p (t) q (t)+χ (t) q (t)+ς (t) ad (t), where χ (t) ≥ 0 is the costate variable and ς (t) ≥ 0
is the multiplier on the constraint ad (t) ≥ 0. The Maximum Principle (e.g., Theorem 12 in

Seierstad and Sydsæter, 1987) delivers χ (t) = p (t) and ς (t) = rp (t)− ṗ (t), together with the

complementary slackness condition ς (t) ad (t) = 0. This implies [rp (t)− ṗ (t)] ad (t) = 0, which

together with the fact that rp (t)− ṗ (t) ≥ 0 implies part (b).

Before proving Proposition 2, we establish several intermediate results (Lemmas 8—13) which

will aid us in the proofs.

We begin with a characterization of the equilibrium trajectories of Ad (t) and ξ (t) over arbitrary

time-intervals:
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Lemma 8 (i) Consider a time-interval [t1, t2] such that Ad(t) > 0 for all t ∈ (t1, t2). Then,

Ad (t) = α

½
A1−e−αt

α − Ē

[e−(r+κ)t2ξ(t2)]
1/σ

∙
1−e−(α−

r+κ
σ )t

α− r+κ
σ

¸
e−

r+κ
σ

t

+ Ē−E0
[e−(r+κ)t2ξ(t2)]

1/σ

∙
1−e−(α−

r+κ+δσ
σ )t

α− r+κ+δσ
σ

¸
e−

r+κ+δσ
σ

t

¾
(69)

and ξ (t) = ξ+ (t), where

ξ+(t) = e(r+κ)(t−t2)ξ+ (t2) (70)

for all t ∈ (t1, t2).
(ii) Consider a time-interval during which Ad(t) = 0. Then, ξ(t) = ξ0(t) for all t in such

interval, where

ξ0(t) =

∙
1− r + κ

r + κ+ δσ
e−δ(t−t̂)

¸σ
ξ̄, (71)

with t̂ = (1/δ) ln
h
r+κ+δσ
r+κ

¡
1− E0

Ē

¢i
.

Proof. (i) Consider an interval (t1, t2) such that Ad(t) > 0 for all t in that interval. From

(38), ξ̇ (t) /ξ (t) = r + κ which gives (70). Substituting this expression into (39), implies that

Ad(t) satisfies

Ȧd (t) + αAd (t) = αA− α
Ēe−(

r+κ
σ )t −

¡
Ē −E0

¢
e−(

r+κ+δσ
σ )t£

e−(r+κ)t2ξ(t2)
¤1/σ ,

and (69) is the solution to this first-order differential equation. In the case of resonance where
r+κ
σ = α, the solution becomes

Ad (t) = α

½
A1−e−αt

α − Ē

[e−(r+κ)t1ξ(t1)]
1/σ te

−αt − Ē−E0
δ[e−(r+κ)t1ξ(t1)]

1/σ

h
e−(α+δ)t − e−αt

i¾
.

There is a second nongeneric case of resonance where r+κ+δσ
σ = α. In this case, the solution

becomes

Ad (t) = α

½
A1−e−αt

α − Ē

δ[e−(r+κ)t1ξ(t1)]
1/σ

³
e−

r+κ
σ

t − e−αt
´
+ Ē−E0
[e−(r+κ)t1ξ(t1)]

1/σ te
−αt
¾
.

To avoid repetitive derivations, we restrict our analysis to the generic case, where α− r+κ
σ 6= 0

and α− r+κ+δσ
σ 6= 0.

(ii) Consider a time interval (t1, t2) such that Ad(t) = 0. From (39), Ad(t) = Ȧd(t) = 0

implies ξ(t) = ξ0(t) with ξ0 (t) given by (71).

The following lemma establishes a key continuity property of equilibrium prices and allocations.
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Lemma 9 In any equilibrium, Ad(t) and ξ(t) are continuous for all t.

Proof. To establish the continuity of Ad (t) we proceed in three steps. (i) From Lemma

8 it is immediate that Ad (t) and ξ (t) are both continuous on every open interval (t1, t2) over

which Ad (t) > 0 for all t ∈ (t1, t2) or Ad (t) = 0 for all t ∈ (t1, t2). (ii) We establish that if
Ad (t) > 0 for all t ∈ (t1, t2), and Ad (t) = 0 for all t ∈ (t2, t3), then Ad (t) must be continuous

at t2. Assume this is not the case, i.e., suppose that limt↑t2 Ad (t) > 0, but Ad (t2) = 0. If

dealers are reducing their asset holdings discretely at t2, by market clearing, it must be that

the investors who are in the market at t2 are increasing their holdings discretely. But since

their demands are continuous decreasing functions of ξ (t), this can only happen if ξ (t) has a

downward jump at t2. (Since there is only a measure 0 of investors in the market at any point

in time, investors’ demand would have to be infinite at t2 and ξ (t2) = 0.) Rearranging (56)

from the proof of Lemma 3, we get

p(t)− ξ(t)

r + κ
= κe(r+κ)t

Z ∞

t
e−(r+κ)sp(s)ds.

Thus, since the right-hand side is continuous in t, any pointwise downward jump in ξ (t) corre-

sponds a pointwise downward jump in p (t). Since limt↑t2 Ad (t) > 0, we have limt↑t2 ad (t) > 0

for at least some dealer(s). Focus on any such dealer’s problem as t2 approaches. In the pro-

posed equilibrium, p
¡
t−2
¢
− p (t2) > 0, and ad

¡
t−2
¢
− ad (t2) = ad

¡
t−2
¢
> 0, so in the interval

(t−2 , t2], the dealer’s utility from trading inventories is p (t2) ad
¡
t−2
¢
, the proceeds of his asset sale

at t2 (recall that, ṗ (t) /p (t) = r while ad (t) > 0, so he is getting zero utility from trading in-

ventories on (t1, t2)). But this dealer could have attained a payoff p
¡
t−2
¢
ad
¡
t−2
¢
> p (t2) ad

¡
t−2
¢

by selling off his inventory an instant before the price jumped downward. Thus, we conclude

that the equilibrium path Ad (t) cannot exhibit this type of discontinuity. In this part we have

considered the case where the discontinuity is from the left, i.e., limt↑t2 Ad (t) > Ad (t2) = 0.

The case where limt↑t2 Ad (t) = Ad (t2) > limt↓t2 Ad (t) = 0 is handled similarly. (iii) By an

argument analogous to the one in step (ii), one can show that if Ad (t) = 0 for all t ∈ (t1, t2),
and Ad (t) > 0 for all t ∈ (t2, t3), then Ad (t) must be continuous at t2. (The measure of assets

held by investors in the market is αdtA where dt→ 0 which prevents dealers’ inventories from

jumping upward.) Together, steps (i)—(iii) imply that any equilibrium path Ad (t) must be

continuous for all t. To conclude, we establish that ξ (t) must be continuous for all t. First, we

show that the continuity of Ad (t) implies that ξ (t) cannot have a downward jump at t2. The

continuity of Ad (t) means that Ad(t2) = 0, which together with the nonnegativity constraint
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Ad(t) ≥ 0 implies Ȧd(t
−
2 ) ≤ 0 ≤ Ȧd(t

+
2 ). Since Ad(t

+
2 ) = Ad(t

−
2 ) = 0, (39) yieldsh

Ē − e−δt
+
2
¡
Ē −E0

¢i 1

ξ(t+2 )
≤ A ≤

h
Ē − e−δt

−
2
¡
Ē −E0

¢i 1

ξ(t−2 )
,

and therefore, ξ(t−2 ) ≤ ξ(t+2 ). The fact that ξ (t) cannot have an upward jump, i.e., that

ξ(t−2 ) < ξ(t+2 ) cannot be part of an equilibrium, follows from a no-arbitrage argument like the

one in step (iii). Hence, ξ(t−2 ) = ξ(t+2 ).

The following lemma shows that there is no equilibrium in which dealers hold positive inventories

at all dates.

Lemma 10 There is no equilibrium with Ad (t) > 0 for all t <∞.

Proof. Otherwise, it follows from the dealer’s first-order condition that rp(t) = ṗ(t) and

therefore that p(t)e−rt = p(0). Since p(0) > 0, this violates the no-bubble condition (20) of

Lemma 4.

Lemma 11 shows that the t̂ defined in part (c) of the statement of Proposition 13 has the

property that dealers will hold inventories for all t < t̂.

Lemma 11 In any equilibrium,
©
t : t ≤ t̂

ª
⊆ {t : Ad(t) > 0}, where t̂ = ln

h
r+κ+δσ
r+κ

¡
1− E0

Ē

¢i1/δ
.

Proof. Suppose the contrary, i.e., that Ad (t) = 0 for all t ∈ (t0, t00), with t00 < t̂. Then

ξ (t) =
h
1− r+κ

r+κ+δσe
−δ(t−t̂)

iσ
ξ̄ for all t ∈ (t0, t00) (by part (ii) of Lemma 8). Thus,

ξ̇ (t)

ξ (t)
=

δσ (r + κ)

(r + κ+ δσ) e−δ(t̂−t) − (r + κ)

for all t ∈ (t0, t00). But note that ξ̇ (t) /ξ (t) > r+ κ for all t < t̂, so the proposed path for Ad (t)

violates the dealer’s first-order condition (38) on (t0, t00).

Lemma 12 establishes that the equilibrium asset holdings of dealers after a crash follow a very

precise pattern: if dealers hold positive inventories, they will do so from the outset of the crash,

over a connected interval of time of finite length t̄, and will hold no inventories thereafter.

Lemma 12 In any equilibrium, {t : Ad(t) > 0} = [0, T ) where 0 ≤ T <∞.
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Proof. We first show that if Ad (t
0) = 0, then Ad (t) = 0 for all t ≥ t0. (Note that this im-

mediately implies that {t : Ad(t) > 0} = [0, t̄), with t̄ ≥ 0 but possibly infinite.) We proceed by
contradiction. Suppose thatAd (t) is part of an equilibrium, withAd(t) = 0 for all t ∈ (t0−∆−, t0]
and Ad(t) > 0 for all t ∈ (t0, t0 +∆+), for some ∆−, ∆+ > 0. Then, from (71) (part (ii)

of Lemma 8), ξ (t) = ξ0 (t) for all t ∈ (t0 −∆−, t0), where ξ0(t) =
h
1− r+κ

r+κ+δσe
−δ(t−t̂)

iσ
ξ̄,

and from (70) (part (i) of Lemma 8), ξ(t) = ξ+(t) for all t ∈ (t0, t0 +∆+), where ξ+(t) =

e(r+κ)(t−t
0)ξ+ (t0). From Lemma 9 we know that ξ (t)must be continuous, so ξ+(t) = e(r+κ)(t−t

0)ξ0 (t
0)

on (t0, t0 +∆+). From Lemma 11 we know that for Ad (t) = 0 on t ∈ (t0 −∆−, t0) to be part of
an equilibrium, it must be that t0 > t0−∆− ≥ t̂, so ξ̇0 (t) /ξ0 (t) =

δσ(r+κ)

(r+κ+δσ)e−δ(t̂−t)−(r+κ)
≤ r+κ

for all t ≥ t0−∆− (with strict inequality for t > t0−∆−). But then the fact that ξ0 (t0) = ξ+(t0)

and ξ̇0 (t) /ξ0 (t) < r + κ = ξ̇
+
(t) /ξ+ (t) for all t > t0 implies that ξ+ (t) > ξ0 (t) for all t > t0.

Since ξ (t) must be continuous, this would imply an equilibrium with Ad (t) > 0 for all t > t0.

But this is a contradiction, since we know by Lemma 10 that such a path for Ad (t) is incon-

sistent with the dealer’s transversality condition. Thus, if dealers hold inventories at all in

equilibrium, they must do so from t = 0 and for an uninterrupted period of time, up to some

time T ≥ 0. Finally, the fact that T <∞ follows by appealing to Lemma 10 once again. Figure

5 illustrates the main idea of this proof.

Lemma 13 Following a market crash:

(a). If dealers do not intervene, the equilibrium is Ad (t) = 0 and ξ (t) = ξ0 (t) for all t,

with

ξ0 (t) =

∙
1− r + κ

r + κ+ δσ
e−δ(t−t̂)

¸σ
ξ̄

and t̂ = (1/δ) ln
h
r+κ+δσ
r+κ

¡
1− E0

Ē

¢i
.

(b). If dealers intervene, the equilibrium is

ξ (t) =

½
ξ+ (t) for t < T
ξ0 (t) for t ≥ T

Ad (t) =

½
A+d (t) for t < T
0 for t ≥ T,

where ξ+ (t) = e(r+κ)(t−T )ξ0 (T ),

A+d (t) = α

½
1−e−αt

α + e−
r+κ
σ (t−T )

1− r+κ
r+κ+δσ

e−δ(T−t̂)

∙
r+κ

r+κ+δσ
1−e−(α−

r+κ+δσ
σ )t

α− r+κ+δσ
σ

e−δ(t−t̂) − 1−e−(α−
r+κ
σ )t

α− r+κ
σ

¸¾
A,

and T ≥ t̂ is the unique positive root ofZ T

0
eαs

∙
1− e

r+κ
σ
(T−s) 1−

r+κ
r+κ+δσ

e−δ(s−t̂)

1− r+κ
r+κ+δσ

e−δ(T−t̂)

¸
ds = 0.
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Proof of Lemma 13 and Proposition 2. From Lemma 12, we know that an equilibrium must

have Ad (t) > 0 for all t ∈ [0, T ) and Ad (t) = 0 for t ≥ T , with 0 ≤ T <∞, so we construct such
an equilibrium to establish parts (a) and (b) of Lemma 13. For part (a), note that Ad (t) = 0

and ξ (t) = ξ0 (t) for t ≥ T by part (ii) of Lemma 8. Thus in particular, this is true if T = 0

(i.e., if dealers do not intervene). For part (b), note that again, Ad (t) = 0 and ξ (t) = ξ0 (t)

for t ≥ T . For t < T , we have Ad (t) and ξ (t) = ξ+ (t), given by (69) and (70), respectively,

in the proof of Lemma 8. Since ξ (t) must be continuous (Lemma 9), ξ+ (T ) = ξ0 (T ), so

ξ+ (t) = e(r+κ)(t−T )ξ0 (T ), which in the statement of Lemma 13 is denoted ξ+ (t). The expression

for Ad (t) for t < T , i.e., (69), reduces to A+d (t) in the statement of Lemma 13 after setting

t2 = T and ξ (T ) = ξ0 (T ) =
h
1− r+κ

r+κ+δσe
−δ(T−t̂)

iσ
ξ̄, using E0/Ē = 1 − r+κ

r+κ+δσe
δt̂, and

rearranging terms. So far we have described the full equilibrium for a given switching date T .

To determine T , we use the fact that Ad (t) must be continuous, which implies Ad (T ) = 0, a

condition to be solved for T . To derive this condition, we start with (39), which leads toZ t

0
eαs

h
Ȧd (s) + αAd (s)

i
ds = α

Z t

0
eαs

n
A− ξ(s)−1/σ

h
Ē − e−δs

¡
Ē −E0

¢io
ds

and in turn to

Ad (t) = α

Z t

0
e−α(t−s)

½
A− Ē

ξ(s)1/σ

∙
1− r + κ

r + κ+ δσ
e−δ(s−t̂)

¸¾
ds. (72)

For t ≤ T , ξ (s) = ξ+ (s) = e(r+κ)(s−T )ξ0 (T ) = e(r+κ)(s−T )
h
1− r+κ

r+κ+δσe
−δ(T−t̂)

iσ
ξ̄, and sub-

stituting this into (72) yields

Ad (t) = αA

Z t

0
e−α(t−s)

⎡⎣1− e
r+κ
σ
(T−s) 1−

r+κ
r+κ+δσe

−δ(s−t̂)

1− r+κ
r+κ+δσe

−δ(T−t̂)

⎤⎦ ds. (73)

Thus, Ad (T ) = 0 if and only if Γ (T ) = 0, where

Γ (T ) ≡
Z T

0
eαs

⎡⎣1− e
r+κ
σ
(T−s) 1−

r+κ
r+κ+δσe

−δ(s−t̂)

1− r+κ
r+κ+δσe

−δ(T−t̂)

⎤⎦ ds.
This is the same map we used to define T in the statement of Lemma 13, so the proof of part

(b) of the lemma is complete. Finding T reduces to finding the zeroes of the map Γ. Note

that Γ (0) = 0 and Γ (T ) → −∞ as T → ∞, so limT↓0 Γ0 (T ) > 0 is sufficient to guarantee the

existence of some T ∈ (0,∞) such that Γ (T ) = 0 (i.e., dealers intervene). If in addition, we can
show that Γ0 (T ) < 0 for T > 0, then this will guarantee that the root is unique. Conversely, if
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limT↓0 Γ0 (T ) ≤ 0, then Γ0 (T ) < 0 for T > 0 implies there exists no T > 0 such that Γ (T ) = 0

(i.e., dealers do not intervene). Differentiating, we find

Γ0 (T ) =
r + κ

ασ

∙
eδ(T−t̂) − r + κ

r + κ+ δσ

¸ ¡
eαT − 1

¢ h
1− eδ(T−t̂)

i
.

From Lemma 11 we know that T ≥ t̂, so for T > 0, Γ0 (T ) has the same sign as

−
h
1− e−δ(T−t̂)

i
,

which is negative. As T → 0, this expression is positive if and only if t̂ > 0, which amounts to

condition (40) in the statement of Proposition 2. Hence, a T > 0 such that Ad (T ) = 0 exists

(i.e., dealers intervene) if and only if (40) holds, and when such a T exists, it is unique. To link

this condition to ṗ0(t)/p0(t), recall that ṗ (t) /p (t) > r if and only if ξ̇ (t) /ξ (t) > r+κ (e.g., from

(15)). Then, from (39), if dealers do not intervene, ξ̇ (t) /ξ (t) = δσ(r+κ)

(r+κ+δσ)e−δ(t̂−t)−(r+κ)
, which is

decreasing in t and equal to r+ κ at t̂ = (1/δ) ln[ r+κ+δσr+κ (1−E0/Ē)]. Thus, limt↓0 ξ̇ (t) /ξ (t) =
δσ(r+κ)

(r+κ+δσ)e−δt̂−(r+κ) > r + κ ⇔ t̂ > 0, and this last condition is equivalent to (40). Finally,

notice that the uniqueness of the equilibrium follows from Lemma 12 and the uniqueness of the

switching time T such that Γ (T ) = 0. The convergence to the steady state is immediate from

the equilibrium prices and allocations described in parts (a) and (b) of Lemma 13.

Proof of Proposition 3. First, note that from parts (c) and (d) of Proposition 13, ξ+ (s)−
ξ0 (s) ≥ 0 if and only if

1− e
r+κ
σ
(T−s) 1−

r+κ
r+κ+δσe

−δ(s−t̂)

1− r+κ
r+κ+δσe

−δ(T−t̂)
≥ 0.

We first establish that ξ0(0
+) < ξ(0+). We proceed by contradiction. Suppose ξ0(0

+) ≥ ξ(0+).

From the proof of Lemma 12 we know that ξ̇0(t)/ξ0(t) is decreasing, with ξ̇0 (t) /ξ0 (t)→ 0 as

t → ∞. In addition, under condition (40), ξ̇0 (t) /ξ0 (t) > r + κ at t = 0+. Therefore, there is

a unique T > 0 such that ξ0(T ) = e(r+κ)T ξ(0+). For all s ∈ (0, T ), ξ0(s) > ξ (s) = ξ+(s) and

therefore

1− e
r+κ
σ
(T−s) 1−

r+κ
r+κ+δσe

−δ(s−t̂)

1− r+κ
r+κ+δσe

−δ(T−t̂)
< 0,

which together with (73) implies Ad (t) < 0 for all t ∈ (0, T ), a contradiction. Thus, ξ0(0+) <
ξ(0+). Finally, the fact that ln ξ0(0

+) < ln ξ(0+), ln ξ0 (T ) = ln ξ (T ) and that there is a

t̂ ∈ (0, T ] defined as in Proposition 13 such that d
dt ln ξ0 (t) ≥ r + κ = d

dt ln ξ (t) if and only if
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t ∈ [0, t̂], implies there is a unique t < T with ξ0(t) = ξ(t), and the property that ξ(t) > ξ0(t)

for all t ∈ (0, t) and ξ(t) < ξ0(t) for all t ∈ (t, T ). See Figure 5 for an illustration.
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B Stochastic recovery

Suppose the recovery occurs at some time tρ, i.e., tρ is the realization of the random variable Tρ.

We begin by describing the equilibrium of the economy after the recovery, taking as given deal-

ers’ inventories at the time the recovery occurs, Ad (tρ). Once we have solved for the equilibrium

from the time of the recovery onward, we solve for the equilibrium price and allocations before

the recovery and then piece both sets of paths together to characterize the full equilibrium from

the outset of the crash at t = 0.

Consider first the economy after the recovery. Let V h
i (a, t, tρ) denote the value function

corresponding to an investor who has preference type i and is holding portfolio a at time t,

conditional on the recovery having occurred at time tρ ≤ t. The investor’s value function is

V h
i (a, t, tρ) = Ei

(Z T̃

t
uk(s)(a) e

−r(s−t)ds +

e−r(T̃−t){ph(T̃ , tρ)a+max
a0
[V h

k(T̃ )
(a0, T̃ , tρ)− ph(T̃ , tρ)a

0]}
¾
, (74)

where ph(t, tρ) denotes the asset price. Notice that (74) is identical to (9) except for the fact

that ph(T̃ , tρ) replaces p(T̃ ). Therefore, the investor’s problem is the same as in Lemma 2 where

ph(t, tρ) replaces p(t). The dealer solves

Wh (ad, t, tρ) = max
q(s)

Z ∞

t
−e−r(s−t)ph(s, tρ)q (s) ds (75)

subject to ȧd (s) = q (s), ad (s) ≥ 0 for all s ≥ t, and the initial condition ad (tρ) = ad. The

problem (75) is analogous to (3).

For all t ≥ tρ, the equilibrium is characterized by the pair of differential equations (22)

and (38), together with the initial condition Ad (tρ). The following lemma characterizes the

equilibrium path that the economy follows after the recovery has taken place.

Lemma 14 Suppose the economy recovers at some time tρ ≥ 0. Then, there exists a unique
equilibrium path

©
ξ (t) , Ah

d (t)
ª
for t ≥ tρ such that:

(a) For all t ∈ (tρ, T ],

ξ(t) = ξ̄e−(r+κ)(T−t) (76)

Ah
d(t) = e−α(t−tρ)Ad(tρ) + α

Z t

tρ

e−α(t−s)
"
A−

IX
i=1

πiU
0−1
i [ξ(s)]

#
ds, (77)
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where T <∞ is the unique solution to Ah
d(T ) = 0.

(b) For all t ≥ T ,
©
ξ(t), Ah

d(t)
ª
= (ξ̄, 0), where ξ̄ solves

PI
i=1 πiU

0−1
i (ξ̄) = A.

Proof. Note that if Ad (T ) = 0 for some T ≥ tρ, then (22) and (38) imply {ξ(t), Ad(t)} =
(ξ̄, 0) for all t ≥ T . Thus, let T = inf {t ≥ tρ : Ad(t) = 0}. Next we show that T < ∞
by establishing that Ad (t) > 0 for all t ≥ tρ is inconsistent with equilibrium. Note that if

Ad (t) > 0 for all t ≥ tρ, (22) and (38) imply, after a change of variable,

Ad(t) = e−α(t−tρ)Ad(tρ) + α

Z t−tρ

0
e−αu

"
A−

IX
i=1

πiU
0−1
i [ξ(t− u)]

#
du

with ξ(s) = e(r+κ)(s−tρ)ξ(tρ). Thus, limt→∞Ad (t) = A > 0. From (37), p(t) = er(t−tρ)p(tρ)

which implies limt→∞ e−rtp (t) = e−rtρp(tρ) > 0. The dealer’s transversality condition is vio-

lated, so Ad (t) > 0 for all t ≥ tρ cannot be part of an equilibrium. We conclude that T < ∞
and this establishes part (b) of the lemma. For part (a), first note that the same arguments

we used in Lemma 9 can be applied here to establish that ξ (t) and Ad (t) are continuous for

all t ∈ (tρ,∞). (The only difference is that Lemma 9 is proven with Ui (a) = ε̄i
a1−σ

1−σ , but this

is immaterial for the results.) In particular, this means that ξ (t) and Ad (t) are continuous at

t = T > tρ. For any t ∈ (t0, t00) ⊂ (tρ, T ], (22) and (38) imply that {ξ(t), Ad(t)} are given by
(77) and (76), where (76) uses ξ (T ) = ξ̄, which follows from the continuity of ξ (·). We use the
continuity of Ad (·), to determine T : using (77) and (76), Ad (T ) = 0 can be written as

Ad(tρ) + α

Z T

tρ

eα(s−tρ)
"
A−

IX
i=1

πiU
0−1
i

h
e(r+κ)(s−T )ξ̄

i#
ds = 0. (78)

The left-hand side of (78) is equal to Ad(tρ) ≥ 0 at T = tρ and goes to −∞ as T → ∞.
Differentiate the left-hand side of (78) with respect to T to get:

α (r + κ)

Z T

tρ

eα(s−tρ)
IX

i=1

πi
e(r+κ)(s−T )ξ̄

U 00i [āi (s)]
ds < 0,

where āi (s) = U 0−1i

£
e−(r+κ)(T−s)ξ̄

¤
. So there is a unique T that satisfies Ad(T ) = 0. To

conclude, the uniqueness of the equilibrium follows from the fact that the saddle path leading

to the steady state depicted in Figure 9 is the only path that satisfies all the equilibrium

conditions. Any other path is inconsistent with the dealer’s optimization: paths above the

saddle path violate the transversality condition while those below would imply an upward jump

in ξ (t) at t = T (see Figure 9).
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According to Lemma 14 the equilibrium path of the economy starting from tρ is such that

Ah
d (t) > 0 for all t in the interval (tρ, T ) and Ah

d (t) = 0 for all t ≥ T . Furthermore, T > tρ

unless Ad(tρ) = 0. According to (76), the investor’s effective cost of holding the asset, ξ(t),

increases at rate r+κ while dealers hold inventories, meanwhile according to (77), the stock of

assets held by dealers decreases monotonically until it is fully depleted at time T . (To see this,

notice from (76) that ξ(t) < ξ̄ for all t < T . As a consequence, A−
PI

i=1 πiU
0−1
i [ξ(t)] < 0 for

all t < T and from (22) Ȧd (t) < 0.) The condition Ah
d(T ) = 0 can be rewritten as

Ad(tρ) + α

Z T−tρ

0
eαs

(
A−

IX
i=1

πiU
0−1
i

h
e−(r+κ)[(T−tρ)−s]ξ̄

i)
ds = 0. (79)

From (79) the time that it takes for dealers’ inventories to be depleted, T − tρ, is an implicit

function of the stock of inventories in dealers’ hands at the recovery time, Ad (tρ). Equivalently,

(24) provides a relationship between the effective cost of holding the asset at the recovery time,

ξ(tρ) = ξ̄e−(r+κ)(T−tρ), and dealers’ initial inventories, Ad (tρ). We represent this relationship

by the function ψ such that ξ(tρ) = ψ [Ad(tρ)].25 Notice that ψ0 < 0, so ξ(tρ) is decreasing in

Ad (tρ), and ψ(0) = ξ̄. Intuitively, the larger the stock of inventories that dealers are holding at

the time of the recovery, the lower the effective cost of holding the asset at the recovery time,

and the longer it will take to deplete dealers’ inventories once the recovery has occurred.

Figure 9 shows the phase diagram of the dynamic system [Ad(t), ξ(t)] following the recovery.

From (22) we see that the Ad−isocline is upward-sloping and intersects the vertical axis at the
steady-state point. The equilibrium trajectory of the economy is indicated in the figure by

arrows along the saddle-path, namely, ξ(t) = ψ [Ad(t)] . The initial condition Ad(tρ) determines

the starting point on the saddle path. The trajectories marked with dotted lines that do not

follow the saddle path are solutions to the differential equations (22) and (38) but they either

fail to satisfy the transversality condition or the requirement that the equilibrium path ξ(t) be

continuous.

Next, we analyze the economy before the arrival of the recovery shock. Let V c
i (a, t) denote

the value function corresponding to an investor who has preference type i and is holding portfolio

25From (79), the reciprocal of ψ is defined as

ψ−1(ξ) = −α

1
(r+κ)

ln(ξ̄/ξ)

0

eαs A−
i
πiU

0−1
i e(r+κ)sξ ds
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Figure 9: Dynamics after the recovery

a at time t < Tρ. Then, the investor’s value function satisfies

V c
i (a, t) = Ṽ c

i (a) + Ei
½
I{Tρ≤T̃}e

−r(T̃−t)max
a0

h
V h
k(T̃ )

(a, T̃ , Tρ)− ph(T̃ , Tρ)
¡
a0 − a

¢i
+I{T̃<Tρ}e

−r(T̃−t)max
a0

h
V c
k(T̃ )

(a0, T̃ )− pc(T̃ )
¡
a0 − a

¢i¾
, (80)

where the indicator function I{Tρ≤T̃} equals one if Tρ ≤ T̃ and zero otherwise, and

Ṽ c
i (a) ≡ Ei

(Z T̃

t

£
R+ I{s>Tρ}(1−R)

¤
uk(s) (a) e

−r(s−t)ds

)
.

This Bellman equation is a natural generalization of (9), for example, they coincide if we set

R = 1 and let ρ → 0. The function Ṽ c
i (a) is the expected discounted sum of utility flows

that an investor enjoys from holding a quantity a of the asset until he gains effective access

to the market at Poisson rate κ. The term
£
R+ I{s>Tρ}(1−R)

¤
indicates that the investor’s

instantaneous utility is scaled down by R until the economy recovers. It will be convenient to

define U c
i (a) = (r + κ)Ṽ c

i (a). If ρ = 0 then U c
i (a) reduces to RUi (a). Alternatively, as ρ→∞

(the economy recovers almost surely in the next instant), U c
i (a)→ Ui (a).
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The following Lemma gives a formulation of the investor’s problem which is analogous to

the one in Lemma 2.

Lemma 15 An investor of preference type i who holds portfolio a and gains direct effective

access to the market at time t before the recovery has taken place, solves

max
aci

h
U c
i (a

c
i)− ξc(t)aci

i
(81)

where

ξc (t) = (r + κ)

∙
pc(t)−

Z ∞

0
κe−(r+κ+ρ)τκpc(t+ τκ)dτκ

−
Z ∞

0

Z ∞

τρ

ρe−ρτρκe−(r+κ)τκph (t+ τκ, t+ τρ) dτκdτρ

#
. (82)

Proof. The first term on the right-hand side of (80), Ṽ c
i (a), satisfies the following flow

Bellman equation,

(r + κ)Ṽ c
i (a) = Rui(a) + δ

IX
j=1

πj

h
Ṽ c
j (a)− Ṽ c

i (a)
i
+ ρ

h
Ṽi(a)− Ṽ c

i (a)
i
, (83)

where Ṽi(a) = Ui(a)/(r + κ). The investor’s portfolio problem before the recovery is

max
a

n
Ṽ c
i (a)− pc(t)a− E

h
e−r(T̃−t)

h
I(T̃<Tρ)p

c(T̃ ) + I(T̃≥Tρ)p
h(T̃ , Tρ)

ii
a
o
. (84)

Use U c
i (a) = (r + κ)Ṽ c

i (a) to rewrite (84) as

max
a

h
U c
i (a)− ξc(t)a

i
,

where

ξc(t) = [r + κ]
n
pc(t)− E

h
I{T̃<Tρ}e

−r(T̃−t)pc(T̃ ) + I{Tρ≤T̃}p
h(T̃ , Tρ)

io
and

U c
i (a) =

r+κ
r+κ+ρ

⎡⎣ (r+κ+ρ)Rui(a)+δXI

j=1
πjRuj(a)

r+κ+δ+ρ

⎤⎦+ ρ
r+κ+ρ

(r+κ+ρ)Ui(a)+δ

XI

j=1
πjUj(a)

r+κ+δ+ρ .
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Using the fact that T̃ − t and Tρ − t are two independent exponentially distributed random

variables, the expected value of the resale price is

E
h
e−r(T̃−t)

h
I(T̃<Tρ)p

c(T̃ ) + I(T̃≥Tρ)p(Tρ, T̃ )
ii
=Z ∞

0

Z ∞

0
e−rτκ

h
I(τκ<τρ)p

c(t+ τκ) + I(τκ≥τρ)p(t+ τκ, t+ τρ)
i
κe−κτκρe−ρτρdτρdτκ

=

Z ∞

0
e−rτκ

∙
e−ρτκpc(t+ τκ) +

Z τκ

0
ρe−ρτρp(t+ τκ, t+ τρ)

¸
κe−κτκdτρdτκ.

Change the order of integration of the second term to arrive at (82).

According to Lemma 15, an investor maximizes his effective utility function, U c
i (a), minus

the effective cost of investing in the asset, ξc (t) a. Just as U c
i (a) takes into account both

idiosyncratic and aggregate preference shocks, ξc (t) takes into account the expected capital

gain that will be realized the next time the investor gains access to the market, which may be

before or after the economy recovers. As before the last two terms on the right-hand side of

(82) represent the expected resale price of the asset. From Lemma 15 it follows that during the

crisis, an optimal portfolio choice aci (t) satisfies

U c
i
0[aci(t)] = ξc(t). (85)

We now turn to analyze a dealers’s problem. At any time t before the recovery has occurred,

the dealer solves

max
q(s)

E
∙Z Tρ

t
−e−r(s−t)pc(s)q(s)ds+ e−r(Tρ−t)Wh [ad (Tρ) , Tρ, Tρ]

¸
, (86)

subject to ȧd (s) = q (s), ad (s) ≥ 0 for all s ≥ t and the initial condition ad (t). Lemma 16

simplifies the dealer’s problem.

Lemma 16 At any every time t before the recovery has occurred, the dealer solves

max
ad(t+s)≥0

Z ∞

0
e−(r+ρ)s

n
−rpc(t+ s) + ṗc(t+ s) + ρ

h
ph(t+ s, t+ s)− pc(t+ s)

io
ad(t+ s)ds

given an initial condition ad(t).

Proof. Integration by parts and the fact that limt→∞ e−rtph(s, tρ)ad (t) = 0 (by Lemma

14) implies that (75) can be written as

Wh (ad, t, tρ) =Wh (0, t, tρ) + ph(t, tρ)ad, (87)
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whereWh (0, t, tρ) = maxad(s)≥0
R∞
t e−r(s−t)

£
ṗh(s, tρ)− rph(s, tρ)

¤
ad (s) ds. Integration by parts

and (87) allow us to rewrite the dealer’s problem (86) as

max
ad(s)≥0

E
½Z Tρ

t
e−r(s−t)

h
ṗc(s)− rpc(s)

i
ad(s)ds+ e−r(Tρ−t)

h
ph(Tρ, Tρ)− pc(Tρ)

i
ad (Tρ)

¾
.

After a change of variables, defining τρ = Tρ − t and noticing that τρ is an exponentially

distributed random variable with mean 1/ρ, this last expression becomes

max
ad(t+s)≥0

{
Z ∞

0
ρe−ρτρ

Z τρ

0
e−rs

h
ṗc(t+ s)− rpc(t+ s)

i
ad(t+ s)dsdτρ +Z ∞

0
ρe−(r+ρ)τρ

h
ph(t+ τρ, t+ τρ)− pc(t+ τρ)

i
ad (t+ τρ) dτρ} (88)

for s ≥ t, with ad (t) given. Since (88) is the same as

max
ad(t+s)≥0

{
Z ∞

0

Z ∞

0
ρe−ρτρI{s<τρ}e

−rs
h
ṗc(t+ s)− rpc(t+ s)

i
ad(t+ s)dsdτρ +Z ∞

0
ρe−(r+ρ)τρ

h
ph(t+ τρ, t+ τρ)− pc(t+ τρ)

i
ad (t+ τρ) dτρ},

we can change the order of integration in the first term and integrate with respect to τρ to

arrive at the dealer’s problem as formulated in the statement of the lemma.

From Lemma 16 we see that the flow of profit of dealers during the crisis has three components:

the opportunity cost of holding the asset, rpc(t+s), the capital gain while the economy remains

in the crisis state, ṗc(t), and the expected capital gain ph(t+ s, t+ s)− pc(t+ s) if the economy

recovers (which occurs with Poisson intensity ρ). Clearly, ṗc(t) + ρ
£
ph(t, t)− pc(t)

¤
> rpc(t) is

inconsistent with equilibrium (the dealer’s problem would have no solution). Let acd(t) denote

the solution to the dealer’s problem. The dealer’s necessary conditions are immediate from

Lemma 16: as long as the economy is in the crisis state,n
−rpc(t) + ṗc(t) + ρ

h
ph(t, t)− pc(t)

io
acd(t) = 0 (89)

for all t, with acd(t) ≥ 0 and −rpc(t) + ṗc(t) + ρ
£
ph(t, t)− pc(t)

¤
≤ 0. The following lemma,

which is analogous to Lemma 3 allows us express the dealer’s first-order conditions (89) in terms

of investors’ effective cost of buying the asset before the recovery and after the recovery has

occurred. We use (76) to define

ξh (t, tρ) = ψ [Ad(tρ)] e
−(r+κ)(tρ−t). (90)
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Notice that given ξh [t, tρ, Ad(tρ)] we can use (21) to find the path for the asset price after the

recovery.26

Lemma 17 Condition (82) implies

−rpc(t) + ṗc(t) + ρ
h
ph(t, t)− pc(t)

i
= −ξc(t) +

ξ̇
c
(t) + ρ

£
ξh(t, t)− ξc(t)

¤
r + κ

.

Proof. Let

P c (t) =

Z ∞

t
κe−(r+κ+ρ)(s−t)pc (s) ds

Ph(t) = e(r+κ+ρ)t
Z ∞

t

Z ∞

z
ρe−ρzκe−(r+κ)sph (s, z) dsdz,

which correspond to the second and third terms in (82), respectively, after a change of variables.

Then (82) can be written more compactly as

ξc(t) = (r + κ)
h
pc(t)− P c (t)− Ph(t)

i
, (91)

and therefore,

ξ̇
c
(t) = (r + κ)

h
ṗc(t)− Ṗ c (t)− Ṗh(t)

i
. (92)

Note that

Ṗ c (t) = (r + κ+ ρ)P c (t)− κpc(t) (93)

and

Ṗh(t) = (r + κ+ ρ)Ph(t)− ρ

Z ∞

t
κe−(r+κ)(s−t)ph (s, t) ds. (94)

From the investor’s problem ((12) and Lemma 3), we know that

ξh(t, tρ) = (r + κ)

∙
ph(t, tρ)−

Z ∞

t
κe−(r+κ)(s−t)ph(s, tρ)ds

¸
,

which evaluated at tρ = t impliesZ ∞

t
κe−(r+κ)(s−t)ph(s, t)ds = ph(t, t)− ξh(t, t)

r + κ
. (95)

26Specifically, ph (t, tλ) =
∞
t

e−r(s−t) ξh (s, tλ)− ξ̇
h
(s,tλ)
r+κ

ds, where hereafter, ξ̇
h
(s, tλ) is used to denote

∂ξh (s, tλ) /∂s and ṗh (t, tλ) to denote ∂ph (t, tλ) /∂t.
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Substitute (95) back into (94) to get

Ṗh(t) = (r + κ+ ρ)Ph(t)− ρ

"
ph(t, t)− ξh(t, t)

r + κ

#
. (96)

Next, substitute (93) and (96) into (92) to arrive at

ξ̇
c
(t)

r + κ
= ṗc(t)− (r + κ+ ρ)

h
P c (t) + Ph(t)

i
+ κpc(t) + ρ

"
ph(t, t)− ξh(t, t)

r + κ

#
,

which after using (91) to substitute
£
P c (t) + Ph(t)

¤
and rearranging reduces to

−rpc(t) + ṗc(t) + ρ
h
ph(t, t)− pc(t)

i
= −ξc(t) +

ξ̇
c
(t) + ρ

£
ξh(t, t)− ξc(t)

¤
r + κ

,

the expression in the statement of the lemma.

Lemma 17 allows us to write (89) asn
ξ̇
c
(t) + ρξh(t, t)− (r + κ+ ρ) ξc(t)

o
acd(t) = 0.

To summarize, we have shown that once the economy has recovered from the crisis, say

at some time tρ, it will evolve along a deterministic path
©
Ah
d (t) , ξ

h (t, tρ)
ª
given by (77) and

(90). Before it has recovered from the crisis, it follows a path
©
Ac
d (t) , ξ

c(t)
ª
which, using (90),

satisfies n
ξ̇
c
(t) + ρψ[Ac

d (t)]− (r + κ+ ρ) ξc(t)
o
Ac
d(t) = 0 (97)

and the market clearing condition

Ȧc
d (t) = α

(
A−Ac

d (t)−
IX

i=1

πiU
c0−1
i [ξc (t)]

)
. (98)

We can now define an equilibrium to be a stochastic process {ξ(t), Ad (t)}, such that for t <
Tρ, {ξ(t), Ad (t)} =

©
ξc(t), Ac

d (t)
ª
satisfying (97) and (98), and for t ≥ Tρ, {ξ(t), Ad (t)} =©

ξh (t, Tρ) , A
h
d (t)

ª
satisfying (77) and (90).

Let (ξ̄c, Āc
d) denote the steady-state associated with (97) and (98); it is characterized by

ξ̄
c ≥ ρ

r + κ+ ρ
ψ(Āc

d) “ = ” if Āc
d > 0 (99)

A = Āc
d +

IX
i=1

πiU
c0−1
i (ξ̄

c
) (100)
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As the random time of recovery, Tρ, becomes very large,
©
ξc(t), Ac

d (t)
ª
approach their steady

state values (ξ̄c, Āc
d) as given by (99) and (100). Assuming Ā

c
d > 0, it can be checked from (97)

and (98) that the steady state is a saddle point and that there is a unique trajectory that brings

the system to its steady state.

Proof of Proposition 4 Dealers accumulate inventories if and only if Āc
d > 0. From (99) and

(100), Āc
d is determined by the condition Γ(Ā

c
d) = 0, where

Γ(Ad) = Ad +
IX

i=1

πiU
c0−1
i

∙
ρ

r + κ+ ρ
ψ(Ad)

¸
−A.

Since Γ0(Ad) > 0 and limAd→∞ Γ(Ad) = ∞, there is a unique Āc
d > 0 such that Γ(Āc

d) = 0 iff

Γ(0) < 0. Using the fact that ψ(0) = ξ̄ we know that Γ(0) =
PI

i=1 πiU
c0−1
i

³
ρ

r+κ+ρ ξ̄
´
− A, so

Γ(0) < 0 is equivalent to (41).

Derivation of Āc
d. From (79), normalizing tρ to 0 and assuming that Ad(tρ) = Āc

d, we get

Āc
d + α

Z T

0
eαs

"
A−

IX
i=1

πiU
0−1
i [ξ(s)]

#
ds = 0.

With the functional form ui(a) = εia
1−σ/(1− σ) we have U 0−1i [ξ(s)] = [ε̄i/ξ(s)]

1/σ and ξ(s) =

ξ̄e−(r+κ)(T−s). Hence,

Āc
d + α

Z T

0
eαs

"
A−

IX
i=1

πi

∙
ε̄i
ξ̄

¸1/σ
e(

r+κ
σ
)(T−s)

#
ds = 0.

Notice that
PI

i=1 πi
¡
ε̄i/ξ̄

¢1/σ
= A. After some calculations, we arrive at

Āc
d −A

A
+

γ

γ − α
eαT − α

γ − α
eγT = 0, (101)

where γ ≡ r+κ
σ . The steady-state condition (100) yields

A = Āc
d +

IX
i=1

πi

Ã
ε̂i

ξ̄
c

!1/σ
.

Combined with (99), ξ̄c = ρ
r+κ+ρ ξ̄e

−(r+κ)T ,

A = Āc
d + eγT

IX
i=1

πi

∙
r + κ+ ρ

ρ

ε̂i
ξ̄

¸1/σ
. (102)
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Using the fact that ξ̄
1
σ =

PI
i=1 πi (ε̄i)

1/σ /A, (102) becomes

eγTΩ =
A− Āc

d

A
, (103)

where Ω ≡
³
r+κ+ρ

ρ

´1/σPI
i=1 πi (ε̂i)

1/σ /
PI

i=1 πi (ε̄i)
1/σ. Substitute (103) into (101) to obtain

T =
1

α− γ
ln

∙
α

γ
+

µ
γ − α

γ

¶
Ω

¸
. (104)

Finally, substitute the expression for T given by (104) into (103) to obtain

Āc
d = A

(
1− Ω

∙
α

γ
+

µ
γ − α

γ

¶
Ω

¸ γ
α−γ

)
.

69


